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1. INTRODUCTION 

CERTAIN deterministic models for the spatial spread of an epidemic or an advantageous gene 
among a population along a line can be analyzed in terms of the nonlinear convolution equation 

u(x) = (go u)*k(x) XER, (1.1) 

where go u is the composite of g and u, go u(x) = g(u(x)), and * denotes convolution, (</>*if/(x) = 
JR<f>(x - y)lf;(y) dy. In the epidemic model, g typically has the form g(x) = a(l - e-x), a some 
constant (o: > 1), cf. Diekmann [1], while in the genetic model g is given by g(x) = [o:x 2 + 
/h(l - x)]/[o:x2 + 2/3x(l - x) + y(l - x)2], o:, {3, and y positive constants, cf. Weinberger[2]. 
In both cases, k is a nonnegative function, normalized such that Jak(x) dx = 1. 

We consider ( 1.1) under the following hypotheses: 

(H!) g:R-R is continuous; g(O)=O; there exists a p>O such that g(x)>.X for O<x<p and 

g(p) = p. 

(H!) k:R-+R is nonnegative; keL1(R) with Ji(x)dx = 1; JRjxjk(x)dx < oo. 

Further hypotheses on g and k will be introduced as needed. 

Equation (1.1) has at least two constant solutions, viz., u0: x ~ 0 and uP: x ~ p. These we call 
trivial solutions. By a nontrivial solution of (1.1) we mean a Lebesgue measurable function 
u: R ~ R which satisfies (1.1) and the inequalities 0 ~ u(x) ~ p for almost all x ER and which is 

not a trivial solution. We are interested in nontrivial solutions of(l.l) and in the solution of the 

corresponding inhomogeneous equation 

u(x) = (go u)*k(x) + .f(x) XER, (1.2) 

where f is a given nonnegative function. 
In Section 2 we establish various general properties of the solutions of (I. l ). In sections 3 and 4 

we prove some non-existence results, i.e., we establish conditions on g and k under which one can 
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prove that the equation (1.1) does not have a nontrivial solution. These results are comple­

mentary to some earlier results of Weinberger [2] and of one of the authors [l] concerning the 

existence of nontrivial solutions of (1.1). As we will show, the existence or non-existence of such 

solutions hinges upon the distribution of the mass of the kernel k. Formally, this is determined by 

the existence or non-existence of real zeros of the function A 1-t 1 - g'(O)K(A.) (A.ER), where K is 

the two-sided Laplace transform of k. The problem has some Tauberian aspects and part of our 

arguments are based on Pitt's form of Wiener's general Tauberian theorem. This approach is 

related to the use of Tauberian methods in the study of linear convolution equations by Karlin 

[3] and Essen [ 4], cf. [ 5, Chapter 9]. 

In Section 5 we study the inhomogeneous equation (1.2). In Section 6 we turn our attention to 

the case when a nontrivial solution of (1.1) exists and investigate the question of its uniqueness 

(modulo translation, as (1.1) is translation invariant). Here, our method of proof forces us to 

impose further conditions on g and k. 

In the final Section 7 we apply our results to a problem in mathematical epidemiology, viz., 

the travelling wave problem for the Kermack-McKendrick-Kendall model for the spatial 

spread of an epidemic, cf. [1, 6-12]. 

Notation. N + denotes the set of all positive integers; R + = { x E R: x ;;:: 0} and R _ = 
{x ER: x ~ O}. The letter C is used to denote a generic positive constant. 

2. PRELIMINARIES 

Starting from k we form a sequence of functions {k"·: n EN+}· We interpret k1*as k, and define 

forn EN+' k(n+ 1>*: = k"* * k. Thus, k"*E L1(R) and Jek"*(x) dx = 1 for all n. Following Feller [13, 

Sections V.2, V.4], we call x a point of increase of kif J1k(y) dy > 0 for every open interval I 
00 

containing x, and we define L:: = u L:., where L:. denotes the set formed by the points of 
n=! 

increase of k"*. We say that k is concentrated on a set I if f e;1k(x) dx = 0. The following result 

will be used several times. 

LEMMA 2.1. If k is concentrated on R+(R_), then there exists an a ;;:: 0 such that L: contains the 

interval [a, oo) ((- oo, -a]). If k is not concentrated on either R+ or R_, then .L = R. 

Proof For an arbitrary real number b > 0 we define l(x): = min {k(x), b}. Then l E L"'(R) n 
L 1 (R) and, furthermore, 

k2'(x) ~ 12 (x) ~ f l(x - y)l(y) dy =: L(x). 

We claim that Ux) is uniformly continuous. Indeed, 1Ux1) - L(x2 )1 ~ b2 Jx 1 - x 2 1 + b Jel l(y) -

lx,-x 2(y)j dy, where lx(y): = l(y - x), and the translation map x 1-t Ix from R into L 1 (R) is uni­

formly continuous, see [14, Section 1.1.5]. 

Suppose JR+ k(x) dx > 0. Then L cannot be identically zero on R+ and, hence, there exist 

x 1 0 and <5 > 0 such that k2.(x) ~ L(x) > 0 for x E (xl' x 1 + <5). From this we deduce that 

k4 *(x) = (k 2* * k2*)(x) > 0 for x E (2x1' 2x1 + 2<5) and, by induction, k2"*(x) > 0 for x E (nxl' nx 1 + 
nb), n EN+. For sufficiently large n(n > <5- 1x1 ), successive intervals become overlapping and, 
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consequently, L: contains an interval [a, cx:::i) for some a ~ 0. A similar argument shows that if 
J._k(x) dx > 0, then L contains an interval (- ro, -a] for some a ~ 0. 

Suppose now that both JR+k(x) dx > 0 and J~_k(x) dx > 0. Let x0 -e R be arbitrary. For suffici­

ently large y we know that there exist positive integers m and n such that k"*(x) > 0 for x in a 

neighbourhood of tx0 + y and km*(x) > 0 for x in a neighbourhood of !x0 - y. Consequently, 

k<n+mJ*(x) > 0 for x in a neighbourhood of x 0 and x0 EL· 

The next lemma contains some basic information concerning nontrivial solutions of (1.1). 

LEMMA 2.2. Any nontrivial solution u of(l.1) is uniformly continuous, strictly positive, and such 

that inf{ u(x): x e R} = 0. 

Proof. Let u be a nontrivial solution of (1.1). The uniform continuity of u follows from the 

continuity of translation in L 1(R) (cf. the proof of Lemma 2.1). 

Next, we observe that go u(x) ~ u(x) for all x e R, so u(x) ~ u*k(x) and, upon iteration, 

u(x) ~ u*k"*(x) for n eN +· Hence, if u(x0 ) = 0 for some x 0 e R, then u*kn*(x0 ) = 0 for n eN +• 

which implies u(x) = 0 for all x such that x0 - x e L;. On account of Lemma 2.1 this implies that 

u(x) = 0 for all x e R if k is not concentrated on either R+ or R_. If, on the other hand, k is 
concentratedonahalf-axis,R+ say, thenLemma2.l implies thatu(x) = Oforallx e (-oo, x0 - a] 
for some a e R+ and, consequently, u(x) = 0 for all x e R, since the equation (1.1) has to be 
satisfied. In all cases we thus arrive at the conclusion that u(x) = 0 for all x e R, contrary to the 

assumption that u is nontrivial. 

Let a: = inf{u(x): x e R} and suppose oc > 0. Then go u(x) ~ min{g(y): oc:::::;; y:::::;; p}. Since g is 

continuous, there exists a f3e [oc, p] such thatg(,8) = min{g(y): IX:::::;; y ~ p}. Sou(x) =(go u)*k(x) 

~ g(,8) = rt + (g(/3) - a) ~ oc + (g(p) - p) = a + e, where e: = g(p) - f3 > 0. Hence, inf{ u(x): 

x ER} ~ rt + e, which is in-contradiction with the definition of a. We conclude that a = 0. 

3. THE FIRST NON-EXISTENCE RESULT 

In this section we give a non-existence result which can be proved by elementary arguments. 

Let L be defined by 

. g(x) 
L: = hmsup-. 

x!O X 

(3.I) 

Note that L ~ 1 ; L may be infinite. If g is differentiable at the origin with derivative value g'(O), 

then L = g'(O). 

LEMMA 3.1. Suppose g is monotone nondecreasing on [O,p]. If JR. k(x)dx > r 1, then any non­

trivial solution u of (1.1) is such that Jim inf u(x) > 0. 
x-+±cx; 

Proof We prove the lemma only for the upper sign. Let u be a nontrivial solution of (1.1) and 

suppose that lim inf u(x) = 0. Choose a monotonically decreasing sequence {y n: n e N +} such 
x~+ ex:. 

that Yn ! 0 and g(yn)/Yn-+ L as n-+ oo. Define x. for n = n0 , n0 + 1, ... , where n0 is such that 

u(O) > Yno' by xn: = sup{x ER+: u(y) ~ Yn for all y E [O, x]}. Then u(xn) = Yn and xn ~ 00 as 
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n --> ro. Furthermore, as g is monotone nondecreasing, 

u(xn) ;;:i: f" g O u(xn - y)k(y) dy ;;:i: g O u(xn) So''" k(y) dy, 

so (g(y.)!yJJ~"k(y) dy ~ 1 for all n. Letting n--> oo we obtain the inequality LJ11 +k(y) dy ~ l, a 

contradiction. We conclude that lim inf u(.x) > 0. 
x-+oo 

The following theorem is an immediate consequence of Lemmas 2.2 and 3.1. 

THEOREM 3.2. Suppose g is monotone nondecreasing on [O,p]. If J11 +k(x)dx > C 1 and 

J 11 _ k(x) dx > C 1, then there is no non trivial solution of ( 1.1 ). 

Proof Let u be a nontrivial solution of (1.1). Then either lim inf u(x) = 0 or liro inf u(x) = 0, 
x-+oo x~-oo 

by Lemma 2.2. However, from Lemma 3.1 we infer that Jim inf u(x) > 0 and lim inf u(x) > 0, 
x~+oo X4-oo 

and we arrive at a contradiction. We conclude that there is no nontrivial solution of (1.1). 

Remark 3.3. Up to this point we have not made use of the hypothesis that J11 lxlk(x) dx < ro, so 

all foregoing results remain valid if this hypothesis is actually violated. 

4. ANOTHER NON-EXISTENCE RESULT 

In the present section we establish a non-existence result whose proof is rather involved. It is 

based on various reformulations of (1.1) as an inhomogeneous linear convolution equation. 

First we rewrite (1.1) in the form 

u(x) - u*k(x) = ef>(x) XER, (4.1) 

where 

</J(x): = (go u - u)*k(x). (4.2) 

The function <P is nonnegative on R and we will exploit this fact in the investigation of solutions 

of (4.1), cf. Essen [ 4]. 

Let m denote the first moment of the kernel k, 

m = 1 xk(x) dx. (4.3) 

The first theorem requires barely more than a reference to the literature. 

THEoREM 4.1. If m = 0 then there is no nontrivial solution of (1.1). 

Proof It is known that the condition m ¥= 0 is necessary and sufficient for the existence of a 

bounded continuous function u such that u(x) - u*k(x) ~ 0, with strict inequality in some point, 

cf. [4, Theorem 3.1). 

Having established this non-existence result form = 0, we may henceforth assume m #- 0. 
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Let 

{
1cx; k(y)dy 

n(x): ~ - f:. k(y)dy 

x;;::: 0, 

(4.4) 

x < 0. 

fote that n(x) = H(x) - J:_ 00 k(y) dy and, consequently, n' = 6 - kin the sense of.distributions 
iere H denotes the Heaviside step function and b the Dirac distribution). The condition 
~lxjk(x)dx <co implies that nEL 1CR) with llnlli = J11 jxjk(x)dx,cf. [13, Section V.6]. The 
'ourier transform n of n, which is a continuous function, is related to the Fourier transform 
of k via the identity fl(A.) = (1 - k(A.))/(iA.) for A. # 0, while l'l(O) = rn. If rn # O, then l'l(A.) # O for 
IUER. 

,EMMA 4.2. Suppose m > 0. If u is any non trivial solution of (l.l), then lim u(x) and Jim u(x) 
x-+ - oc., x-+o:::. 

rcist and u( - oo) = 0, u( oo) = p. 

Proof Let u be a nontrivial solution of (1.1). Then u satisfies (4.1) with </> given by (4.2}. We 
ttegrate both members of (4.1) from a to x, 

I u(~) d~ - r f ~"' u(~ - 17)k(17) d17 d~ = r <PW d~. 
1terchanging the order of the integrals in the second term and integrating by parts we obtain 
te identity 

r I :ac u(~ - 11)k(11) d17 d~ = f u(~) d~ - f :ex; n(x - ~)uW d~ + t: n(a - ~)u(~) d~, 

here n is defined by (4.4). Hence, u satisfies 

U*n(X) - UM(a) = r </>(~) d~ xeR. (4.5) 

nee u is bounded and n e L 1 (R), U*n is bounded. Also, </>(x) is nonnegative for all x ER, so the 
tegral J:</>(.;) d~, besides being bounded, depends monotonically on x. It follows that lim 

x->oc 

</>(~) d~ exists and hence, from (4.5), that lim u*n(x) exists. In fact, 

U*n(oo) = U*n(a) + r </>(i;}d~. 
ow,n belongs to the Wiener class W(i.e.,n e L 1(R)and {A.ER: 11(-1.) = O} = 0),andu is bounded 
td uniformly continuous. It follows from Pitt'sform ofWiener'sfundamental Tauberian theorem, 
[5, Section 9.7] or [15, Section V.10], that lim u(x) exists and is given by 
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Similarly, one shows that lim u(x) exists and is given by 

x-u~:CD) = m- 1(n*n(a) - f 00 <fa(x)dx} 

A simple argument shows that both u( oo) and u( - CD) satisfy the scalar equation y = g(y), so 

{u(co), u(- co)} c {O, p }. Since u( CD) - u( - co) = J':' 00 <f;(x) dx > 0, we conclude that u( - CD) = O 

and u(CD) = p. 

Remark 4.3. The case m < 0 can be reduced to the case m > 0 by a change of variable -r: x ~ - x. 

The next step towards a non-existence result for m f:. 0 consists of an analysis of the rate of 

convergence of a nontrivial solution towards its limiting value 0 as x--+ - co. The following 

lemma is needed in the proof of Lemma 4.5. 

LEMMA 4.4. Let f:R-+ R be nonnegative, fEL 1(R). Define J<0 l(x) :=fix) and, recursively, 

J<kl(x) : = J~ 0J<k- ll(y) dy for those values of k EN+ for which pk-ll E L 1 (R_). Then, for any 

re R, 

f ~ -xN(.x)dx = k! f~<kl(x)dx, 

in the sense that if one side converges so does the other. 

Proof The identity given in the lemma follows upon induction from the identity 

f 
00 

(r - x)1'.f(x) dx = k L"' (r - x)k- 1j< 1l(x) dx. 

We omit the proof of the latter identity, as it is similar to the proof of Lemma I in [13, Section 

V.6]. 

Let l be defined by l: = lim infg(x). 

x!O X 

(4.6) 

Note that 1 ~ l ~ L, cf. (3.1); l may be infinite. If g is differentiable at the origin with derivative 

value g'(O), then l = L = g'(O). 

LEMMA 4.5 Let u be a nontrivial solution of (1.1) such that lim u(x) = 0. If l > I, then there 
x-+- a::, 

exists a b > 0 such that the integral J: 
00 

e - ,ixu(x) dx converges fod E S0 , where S0 : = {A EC: 0 < 

Re}, < 6}. 

Proof It suffices to prove the convergence of the integral Ji:_ 00 e-Ixu(x) dx for some r < oo 

and Ji. real, 0 < Ji. < b. 
Take aE (I,/) and let c be such that J<_ck(x) dx =(a + l)/(2a). Define a new function kc on R 

by putting kc(x): = k(x) if Jxl ~ c, kJ,,): = 0 if Ix!> c. If u is a nontrivial solution of (1.1), then 

u(x) = (go u)*k/x) + l/1 1 (x) for all x ER, with l/1 1 (x): = (go uh(k - kc)(x) ;?: 0. We rewrite the 

latter identity in the form 

2a ex: - 1 
u(x) - --u * k (x) = --u(x) + l/J(x) 

IX+} c cx:+l 
XER, (4.7) 
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where 

Let 

{ 

2a j'X) 
a+ l Jx kc<J)dy 

2a x -+If kb)dy 
a -a:o 

x ~ 0, 

x < 0. 

Then supp (nc) :::i [ - c, c]. We integrate both members of (4. 7) from x to some r < ro. Thus, 

fr 2a I r f 00 a I [r [r 
xu(c;)dc; - a+ l x -oo u(c; -11)k/11)d11dc; =a+ l Jx u(~)d~ + Jx ift(~)d~. 

Interchanging the order of the integrals in the second term and integrating by parts we obtain 
the identity 

(4.8) 

cf. (4.5). Because lim u(x) = 0, there exists xa ER such that go u(x) ~ au(x) for all x E ( - oo, xJ 
x-+-cc 

and, hence, ift 2 (x) -+ 0 for all x E ( - CX), xa - c]. The same is then true of ift(x) and we conclude, 
as in the proof of Lemma 4.2, that lim tu(~) de and lim tl/I( e) de exist. Letting x tend to 

x-+-oo x-+- co 

- oo we obtain the identity 

fr a +I[ fr J u(x) dx = ~ U*nc(r) - ift(x) dx . 
-cc a 1 -ex; 

If r is chosen such that r ::::; xa - c it follows that 

u(x) dx::::; -- max{u(x): XE [r - c, r + c]} ln/x)jdx. fr a +I l 
-ex; a - 1 R 

Next, we put u< 0 l(x): = u(x) and define u<kl(x): = f:_a:ou<k-Il(~)de,xER, for those values of 
k EN+ for which the integral exists. The functions ift<kl are defined similarly. Integration of (4.7) 
from - oo to x yields an equation for u<l) similar to (4.7), with l/I replaced by ift(ll, from which 
one deduces the relation 

a i I f' ul 1l*nk) - u< 1l*n/x) =a~ 1 Jx d 1l(e)de + Jx ift< 0 (~)dc;, 

cf. (4.8). The integrability of u on ( - ro, r) and the continuity of u imply the boundedness of u< 1l 
on (- oo, r + c]. As before, it follows that lim f:d 1l(c;) de and lim tl/l<ll(~) d~ exist, 

x-+-oo x-+-oo 

and, therefore, 

u<O(x) dx ~ --max{u<ll(x): x E [r - c, r + c]} Jn/x)jdx. f r a+l •f 
-ex; CX-} R 

D 
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Continuing in this manner we prove the existence of u<k> and obtain the sequence of inequalities 

fr u<k>(x) dx :::;; a + 1 max{u<k>(x): x E [r - c, r + c]}f Jnc(x)I dx, 
-a:; (X. - 1 R 

fork EN+· Now, for each k EN+, u<k> is a monotonically increasing function, so 

max{ u1k>(x): x E [r - c, r + c ]} = u<k>(r + c) 

:::;; f 
00 

u<k- ll(x) dx + cu<k- O(r + c) 

:::;; b-1u1k- t>(r + c), 

where b: = [(rx + l)(rx - 1)- 1J.Jnc(x)!.dx + c]- 1. Hence, by induction, 

max{u<k>(x):xE[r - c,r +c]}:::;; b-kmax{u(x):xE[r - c,r +c]}:::;; pb-k. 

Thus, there exists a positive constant C such that 

Loo u<k>(x)dx:::;; cb-k kEN+· 

Next, we apply Lemma 4.4 to the function u and conclude that each of the integral5 

J':.. 00(r - x)ku(x) dx converges. Moreover, 

1 J' k! -oo (r - xfu(x)dx:::;; cb-k. 

This result, in turn, implies the convergence of the infinite sum :L;'= 0(k!)- 1.l..kJ'_ 00(r - x)ku(x) dx 

and therefore of the integral f':_ oce..tir-x)u(x) dx, at least for A. < b. 

LEMMA 4.6. Let u be a nontrivial solution of (1.1). If the integral J~ 00 e-J.xu(x) dx converges in the 

strip Sb (cf. Lemma 4.5) then so does the integral J~ 00 e-"xk(x) dx. 

Proof. It suffices to prove the convergence of the integral J'.'.:' 00e-..txk(x) dx for A real, 0 < A. < b. 

Sinceu is a non trivial solution of (1.1) we have u*k(x) :::;; u(x) for all x ER, so J'.'.:' "'e-..txu*k(x) dx :::;; 

J'.'.:' 00e-..txu(x) dx < oo for any A E (0, b).On the other hand, f'.'.:' "'e-J.xu*k(x) dx = (f'.'.:' "'e-;.xk(x) dx) 

(f'.'.:' 00e-..txu(x) dx), in the sense that if the integral on the left hand side exists then so do the integ­

rals on the right hand side. Hence, J'.'.:' "'e-"xk(x) dx exists for A E (0, b) and satisfies the inequality 

f'.'.:' oce-..1.xk(x) dx :::;; l there. 

We remark that Lemmas 4.5 and 4.6 together imply that, if l > 1 then a necessary condition 

for the existence of nontrivial solutions of (1.1) is that J'.'.:' a;:,e-..txk(x) dx converges in Sb for some 

b > 0. 

The above results lead us to define a real number /\.k, 

Ak: = sup{.l..ER:J.e-.i.xk(x)dx <co} 
and to associate with each nontrivial solution u of (1.1) a number Au thus, 

Au:= sup{A.eR:J. e-"xu(x)dx <co}. 

(4.9) 

(4.10) 
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If follows from Lemma 4.6 that Au ~ Ak. Furthermore, let 

K(Jc): = k(-iA.) =f. e--<xk(x)dx, 

U(Jc): = u(-iA) =I ~-.i.xu(x)dx, 
whenever the defining integrals converge. It is a standard result from Laplace transfonn theory 

that if Au > 0 then U is analytic in the strip Su: = {A. e C: 0 < ReA. < Au}, cf. [15, Section VI.4]. 

The following result is a consequence of the positivity of u(x). 

LEMMA 4.7. If u is a nontrivial solution of (1.1) and 0 < Au < oo, then U(A.) is singular at A = Au. 

Proof Cf. [15, Section II.5]. 

At this point we make two further hypotheses concerning the functions g and k: 

(n;) the function g is differentiable at 0 with derivative value g'(O) and g(x) = g'(O)x + O(x1+") 

as x ! 0 for some e > 0; 
(J{f) the kernel k is exponentially small at - oo, i.e., there exists a {J > 0 such that e--<xk(x) is 

bounded for Jc e (0, fJ). 

Under these additional hypotheses we can prove the following result. 

LEMMA 4.8. Let u be a nontrivial solution of (1.1) with lim u(x) = 0. If 0 < Au < Ak, then 

1 - g'(O)K(Au) = 0. 

Proof We rewrite (1.1) as a linear inhomogeneous integral equation, 

u(x) - g'(O)u*k(x) = r(x) x e R, 

where r(x): = (go u - g'(O) u) * k(x). A two-sided Laplace transform yields the equation 

(I - g'(O)K(A.))U(Jc) = R(Jc), (4.11) 

which is valid for all A. e S.,. In fact, the right abscissa of convergence of R lies to the right of A,,. 
This can be shown in the following manner. Because of the hypothesis (J{f), lu(x) e-.i.xl = 

l(g o u)*k(x)e-.i.xl::;;; CJag o u(y) e-yRe..ldy. The integral is bounded for Re.A. sufficiently small, 

since g(x) < Cx for x near zero (x > O). Hence, using the hypothesis (H;) we obtain for A e (0, A,) 

and v sufficiently small (v > 0), 

ILoc.
00 

e-<H•lx(g Ou - g'(O)u)*k(x)dxl 

= K(A + v) f :oc. e-<Hv)xj(g o u - g'(O)u)(x)jdx 

::;;; CK(.A. + v) f :
00 

e-.i.xu(x)(e-<•felxu(x))8 dx 
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~CK(). + v)U(2)(sup{e-<•i*u(x): x ER})'. 

This result shows that the abscissa of convergence of R lies to the right of Au. Consequently, R().) 
is analytic in the neighborhood of). = Au. Since V(2) is singular at ). = Au (Lemma 4.7) we 

conclude from (4.11) that 1 - g'(O)K().) = 0 at A. = Au. 

The preceding lemmas lead to the following non-existence theorem. 

THEOREM 4.9. Suppose m > 0, g'(O) > 1 and 1 - g'(O)K(;t) =f. 0 for all A E [O, Ak). If there exists 
a ;t < Ak such that J~ 00 e-,\xk(x)dx > (g'(O)t 1, then there is no nontrivial solution of(l.l). 

Proof Suppose (1.1) has a nontrivial solution u. Then lim u(x) = 0 by Lemma 4.2, and 
X-f- - 00 

Au > Oby Lemma 4.5 and the definition (4.10) of Au. For any r.x E (1, g'(O)) there exists an xa such 
that go u(x) ;;:: cw(x) for all x ~ x •. Take any c > 0. Then u(x) ~ d~cu(x - y)k(y) dy whenever 

x ~ x" - c and, consequently, 

u(x) e-,\x ;;:: r.x f"' e-Mx-y)u(x - y) e- ,iyk(y) dy 

-c 

for real A. Now, lim infu(x) e-,\x = 0 for any A E [O, Au), so if we take a monotonically decreasing 
x ..... -a::, 

sequence {Yn: n EN+} such that Yn i 0 as n --+ oo, and define x" for n = n0 , n0 + I, ... , where n0 

is such that u(O) > Yno' by xn: = inf{x ER_ :u(y) e--<y ~ y n for all ye [ x, OJ}, then u(.x:.J e--<x,, = Yn 
andx"-+ - CIJ asn--+ CIJ. Now,[ -c, O] c [xn, OJ fornsufficientlylarge,sou(x" - y)e--<(xn-y) ~ Yn 

for all ye [ -c, OJ and 

Yn = u(xn)e-..\x,, ;;::(XJ~c e-.<(xn-y)u(xn-y)e-).Yk(y)dy 

Thus, we obtain the inequality 

;;::D:J:c e-..\(x,,-y)u(xn -y)e-..\Yk(y)dy 

;;::r.xyn re e-).yk(y)dy. 

(4.12) 

which is valid for any ;t E [O, AJ If Au were strictly less than A.k, then the function A. H- 1 - g'(O)K().) 
would have a zero at A" by Lemma 4.8, i.e., inside the interval [O, A.k), contrary to the hypothesis 
of the theorem. Hence, Au= Ak and the inequality (4.12) holds for all A. E [O, Ak). Since r.x and c 
were chosen arbitrarily subject to the constraints l < r.x < g'(O) and c > 0 we conclude that the 
assumption of the existence of a nontrivial solution of (1.1) leads to the validity of the inequality 
g'(O)J~ coe-.l.Yk(y) dy ~ 1 for all A. E [O, Ak). This proves the theorem. 

If Ak = oo, or if K(;t) --+ oo for A. j A.k, then there certainly exists a A. < A such that 
S~coe-;.xk(x)dx > (g'(O)t 1. If, on the other hand, K(;t) approaches a finite limit ask,1. j Ak, then 
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Theorem 4.9 is not necessarily applicable. In that case, one can conclude from a Tauberian theorem 
for Laplace transforms, cf. [15, Section V.4], that the function u;.:x~u(x)e-.:ix belongs to 
L 1(R) for A, = Ak. This implies that, under the hypothesis that k;.: x ~ k(x) e-.:ix is bounded for 

A = Ak, u;. is bounded for A, = Ak. Then one can repeat the analysis of the present section, starting 
from the identity uix) = fRe-.i.Y(g o u)(y)k,_(x - y) dy for A, = Ak, to obtain a non-existence 

result. We do not elaborate this idea any further. 

Remark 4.10. The condition that k has a finite first absolute moment (fRjxjk(x) dx < cx:i) has been 
used only once, in Lemma 4.2 to prove that any non trivial solution of (1.1) has limits as x--+ oo ±­
The proofs of Lemmas 4.5 through 4.8 and Theorem 4.9 proceeded without an explicit reference 
to this condition. It remains an open question whether, if k does not have finite first absolute 

moment, there exist nontrivial solutions of (1.1) which do not have limits as x --+ ± cx:i. 

5. THE INHOMOGENEOUS EQUATION 

As the greater part of the proofs in the foregoing section were based on inequalities, rather than 
equalities, the same or similar arguments can be used in the analysis of the inhomogeneous 
equation 

u(x) = (go u)*k(x) + f(x) XER. (5.1) 

In fact, let f satisfy the following hypothesis: 

(HJ) f: R --+ R is uniformly continuous, nonnegative and not equal to the zero function. 

We then have the following result. 

THEOREM 5.1. Suppose g(x) ;;::: p for x ;;::: p. The same hypotheses on g and k which lead to the non­
existence results of Theorem 4.1 and Theorem 4.9 guarantee that any bounded nonnegative 

solution u of (5.I) necessarily satisfies the inequality u(x) ~ p for all x ER. 

Proof Let u satisfy (5.1). We introduce the function w by the definition w(x): = min{u(x),p}, 
x ER. Then g o u(x) ;;::: w(x) for all x ER, so u(x) ~ (go u)*k(x) ~ W*k(x). But w(x) ::::.; p for all 
x ER, so w*k(x) ::::.; pf Rk(x) dx = p. Combining these two results we see that w satisfies the in­
equality w*k(x) ::::.; min{ u(x), p} = w(x) for all x ER. Under the hypotheses of Theorem 4.1, this 
inequality leads to the conclusion that w is constant, w(x) = c say. The case 0 ::::.; c < p is excluded, 
because then u(x) = c and (5.1) cannot be satisfied. Hence, w(x) = p and u(x) ~ p for all x ER. 

Under the hypotheses of Theorem 4.9 it follows that w(- cx:i): = lim w(x) and w(cx:i): = lim w(x) 
x~-~ x~oo 

exist and are such that w(cx:i) - w(- co);;::: 0 and {w(- co), w(co)} c {O,p}, cf. Lemma 4.2. One 

shows as in Lemma 2.2 that w(x) > O for all x ER, and that either w(x) = p for all x ER or 
inf{ w(x): x ER} = 0. If follows that either w(x) = p for all x ER or w( - oo) = 0. In the latter 
case, the chain of arguments leading from Lemma 4.4 to Theorem 4.9 can be repeated mutatis 

mutandis. Under the conditions of Theorem 4.9 the assumption that there exists a nontrivial w 
such that lim w(x) = 0 leads to a contradiction, so necessarily w(x) = p, i.e. u(x) ;;::: p, for all 

x-+ - oc, 

XER. 
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Remark 5.2. A close examination of the proof of Theorem 5.1 shows that the condition (H 1) 

can be weakened somewhat if there exists a monotonically nondecreasing function g0 on [O, p] 

such that g(x) ~ g0(x) > x for all x E (0, p).ln fact, let f: R - R be such that f(x) ~ f 0(x) for all 

x ER, where / 0 . R - R satisfies (H1). Suppose u is a solution of (5.1). Consider theequation 

v(x) = (g0 o v)*k(x) + f 0(x) x e R. (5.2) 

The minimal solution of (5.2) can be constructed via the method of successive iterations, 

v<0>(x): = f 0(x),v<n>(x): = (g 0 o v<n- 1>)*k(x) + j 0(x) (nEN+)· Any of these iterates is majorized 

by the solution u of (5.1). The monotonicity of g0 implies that the sequence { v<•>(x): n EN+} is 

monotonically nondecreasing for each x ER, so the sequence converges to a limit function, v 

say, which satisfies the equation (5.2) and the inequality v(x) ~ u(x) for all x e R. Suppose now 

that the function g0 is such that any bounded nonnegative solution v of (5.2) necessarily satisfies 

the inequality v(x) ~ p for all x, according to the theorem, then the solution u of (5.1) must also 

satisfy the inequality u(x) p for all x ER. 

6. ASYMPTOTIC BEHAVIOUR AND UNIQUENESS CRITERIA 

The key assumption leading to the non-existence result of Theorem 4.9 is that the function 

A, H I - g'(O)K(A.) does not vanish in the interval [O,Ak). In the present section we will drop this 

assumption, i.e., we assume that the function A. 1-+ I - g'(O)K(A.) has a real positive zero. The non­

negativity of k implies that K is a convex function on [O,Ak), so A. H I - g'(O)K(A.) has at most two 

real positive zeros. Let u denote the smallest positive zero; we assume that it is simple. 

In Section 4 we established various conditions which guarantee that any nontrivial solution 

of (1.1) has the property that Jim u(x) = 0. We also analyzed the rate of convergence of u(x) 
x-+- cc 

to its limiting value 0 in terms of the Laplace transform of u. Our first objective in the present 

section is to establish conditions which guarantee that any nontrivial solution of (1.1) has the 

property that u(x) "' e .. x as x - - oo. We will then use this knowledge of the asymptotic behaviour 

to establish a uniqueness result for the nontrivial solutions of (1.1). 

The following lemma is a modified version of Ikehara's Theorem and will be needed in the 

proof of Theorem 6.2. 

LEMMA 6.1. If the real-valued function </> is nonnegative and nonincreasing on R+, and there 

exists a i- > 0 such that the integral f(A.) = J~e-"x</J(x)dx converges for ReA. > -i-, and if, 

furthermore, for some constant A and some function h: R - R, 

lim [f(x + iy) - A(i- + x + iy)- 1] = h(y), 
X!- t 

uniformly on compact subsets of R, then 

lim <P(x) etx = A. 

Proof Analogous to the proof oflkehara's Theorem, see e.g. [15, Section V.17]. 

THEOREM 6.2. Suppose m > 0, g'(O) > 1 and g(x) ~ g'(O)x for x e [O, p]. If u is a monotone non­

decreasing nontrivial solution of {1.1), then there exists a positive constant A such that 
lim u(x) e-ax =A. 
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Proof Let u be a monotone nondecreasing nontrivial solution of (l.l). It follows from Lemm' 
4.5 and the definition (4.1 O) of Au that U(2) is defined for 2 E [O, A.) for some A > o. Moreove; 
[I - g'(O)K(2)] U(2) = ~(A.), cf. (4.11). T_he cont_inuity .of g, together with the pr~perties g(O) = o'. 
g'(O) > 1, and g(p) = p, imply th~t the i.ne~uahty ~ m the condition g(x) ~ g'(O)x for xE [O.p] 
in the statement of the theorem, 1s a stnct mequahty, g(x) < g'(O)x, at least on some subinterval 
of [O, p]. Hence, go u(x) < g'(O)u(x) on a set of positive measure on R and, consequently the 
function R: Ai-+ Ja e-'-x(g o u - g'(O)u)*k(x) dx does not vanish at 2 =a. Thus, ' 

U(A.) _ ... R(,1,) R( a) _ 1 

- 1 - g'(O)K(}_) ~ g'(O)K'(rr) (rr - ,1,) as}, la. 

The function R is regular in a neighbourhood of the line Rd = a. The zeros of the function 
,1, H 1 - g'(O)K(Jc), which lie in a vertical strip left-adjacent to the line Re,1, = rr lie, in fact, in a 
rectangle according to the Lemma of Riemann-Lebesgue [16, Section I.8]. The analyticity of 
K then implies that there are only finitely many inside this rectangle. Hence, if we choose the 
width of the strip sufficiently small, then there are no other zeros of .A. H l - g'(O)K(.A.) in this 
strip, besides the real zero A = rr, and we can apply Lemma 6.1 (with the obvious modifications) to 
obtain the statement of the theorem. 

The use of an Ikehara-type lemma makes the proof of the asymptotic behaviour rather simple, 
but has the disadvantage that the conclusion holds only for monotone solutions. Our next objec­
tive is to give an alternate proof of the asymptotic behaviour, under slightly different assump­
tions on k, without presupposing that the solution be monotone. 

THEOREM 6.3. Suppose m > 0, g'(O) > l, and g(x) ~ g'(O)x for x E [O, p]. Let e > 0 be such that 
g(x) = g'(O)x + O(x 1 +"), cf. (H;). Suppose that K(-6) < oo for some 6 > 0, and that there exists 
a p E (rr, rr(I +I:)) such that (i) g'(O)K(/3) < I, and {ii) k(x)e-[/3/(t +•llxis bounded. Ifu is a nontrivial 
solution of (1.1), then there exists a positive constant A such that lim u(x)e-ux =A. 

x-+-cc 

Proof In this proof we use for any given function</> :R ~ R the symbol </>;i to denote the mapping 
xH</>(x)e-.<x,xER Let u be a nontrivial solution of(l.l). We know that uP/<t+•lEL 1(R) and 
k1310 +e> E L 00(R). Hence, u131(1 + •>(x) ~ g'(O)u131<1 +•>*kp/(1 +•>(x) ~ ~ or, in other_ words, ~(x) ~ 
ce-!Pi< 1 +•>Ix for all x E R. We rewrite (I. l) as an inhomogeneous lmear convolution equat10n, 

u(x) = g'(O)u*k(x) + r(x) XER, (6.1) 

where r(x) : = (gou - g'(O)u)*k(x). There exists a positive constant C such that 0 ;;:::: r(x);;:::: 
-Cu 1 +e*k(x) ~ - Ce-Px for a!lxE R. Multiplying both sides of(6.l)withe-P"'we obtain 

up(x) = g'(O)u 13*kp(x) + rp(x) x ER. (6.2) 

The function r13 is nonpositive and bounded. Consider the iterative scheme v< 0 ~(x) := r13(x~ 
v<n>(x) : = g'(O)v<n- 1>*kp(x) + r p(x), n EN+. For each x, the sequence {v<•>(x) :n EN+} IS m~notone 
nonincreasing. Moreover, v<•>(x) ~ inf{ r 13(x) : x ER} (1 + r:x + IY.2 + ... +et), where~ =:= g (O)~(p) 
< l. So the sequence {v<•> : n EN + being bounded and monotone, converges to a hm1t function, +f . . 
v say, which satisfies the equation v(x) = g'(O)v*kp(x) + rp(x) for .all x ~~-The s~e equation is 
~atisfied by the function u13 , cf. (6.2). Since vis non positive and u13 is pos1t1ve, the difference u13. - : 
is not the zero function. Let the function w be defined by w13(x) : = u13(x) - v(x). Then w satisfies 
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the homogeneous linear convolution equation 

w(x) = g'(O)w*k(x) XER, (6.3) 

and the estimates O ~ w(x) ~ C(l +ell"") for all x ER. We claim that this implies that w(x) = 

Ae .. x for some A > 0. 

In order to support this claim we first collect some information concerning the roots of the 

characteristic equation g'(O)K(A.) = 1 in the strip Sil = {A E c: 0 ~ ReA. ~ P}. In this strip, 

<T is the only real root; all other roots occur in complex conjugate pairs. The nonnegativity of 

k implies that the real part ofany root other than q is strictly less than <T. As in the proof of Theorem 

6.2 it follows that there are only finitely many roots in SfJ. 

The function w, being a solution of (6.3) which satisfies the estimates 0 ~ w(x) ~ C(l + ePx), 

is a linear combination of exponential functions, possibly multiplied by polynomial functions, 

where the exponents are found as the roots of the characteristic equation in SfJ, cf. [16, Section 

11.2]. (It is in this step that the assumption K( -<5) < et:) is used.) Next, observe that any contribu­

tion from a pair of complex conjugate roots (with real parts less than q) leads to an oscillatory 

behavior of w which is asymptotically dominant over e .. x as x -+ - oo. Hence, if there were a 

contribution to w from any complex conjugate pair of roots of the characteristic equation in the 

strip SfJ, w(x) would certainly become negative for some x sufficiently large negative, which is 
impossible because w(x) is nonnegative, as we have seen. The conclusion is, therefore, that the 

only nonzero coefficient in the finite expansion for w is the one corresponding to <T. In other words, 

w(x) = Ae.-x for some A > 0, as claimed. 

Finally, u(x) = w(x) + v(x)eflx and so lim u(x)e-ux = lim w(x)e-ux =A. 
x ..... -c:o x-t-oo 

Our final results concern the uniqueness of nontrivial solutions of (1.1). We observe that the 

homogeneous equation (1.1) is invariant under translation, so uniqueness is to be understood in 

the sense of uniqueness modulo translation. 

THEOREM 6.4. Suppose that the conditions of Theorem 6.3 are satisfied and that, in addition, 

g is such that I g(x) - g(y) I ~ g'(O) Ix - y I for all pairs x, y E [O, p]. Then there is at most one 

nontrivial solution (modulo translation) of (1.1). 

Proof. Let ut and u2 be two nontrivial solutions of (1.1). There exist positive constants C* and C 

such that lim ut(x)e-ux = C* and lim ui(x)e-ux = C, according to Theorem 6.3. Define 
x-+-oo x ... -cc. 

u1 by puttingu1(x) : = ut(x - i-) for allx eR, wherer = a- 1 ln (C*/C). Then u1 is also a nontrivial 

solution of (1.1) and lim u1(x)e-ax =C. Thus, if we consider the function v defined by v(x) := 
x-+-a:. 

(u1 -u2)(x)e- .. xforallxeR,thenviscontinuousonR, lim v(x) =:v(±CX))exist,andv(-CX)) = 
x-+ ± oo 

v(CX)) = O.Also,ifz: = sup{jv(x)j:xeR},thenz = v(x0)forsomex0 eR.Now,v(x) = (u 1 - u2)(x) x 

e-ux =(go u1 - go u2)* k(x) e -ax, so since the Lipschitz constant of g on [O,p J is at most equal 

to g'(O) we have the inequality jv(x)j ~ g'(O)jvl*k .. (x), where k .. (x) := k(x)e-.-x, which is valid 

for all x ER. From this point on, the arguments parallel some of the arguments used in the proof 
of Lemma 2.2, cf. also Feller [13, Section XI.2]. Upon induction we obtain the estimate 

jv(x)I ~ (g'(o)rlvl*~·(x) XER, (6.4) 
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for any n EN+· Now, the expression in the right member of this inequality is at most equal to 
z(g'(O))"JRk:* (x)dx which, in turn, is equal to z(g'(O)Jakcr(x)dx}" = z(g'(O)K(u))" = z. Hence, at 
x = x 0 , the inequality (6.4) must be an equality, lv(x0)I = (g'(O)t/vl*~*(x 0 ) for all nEN+. 

00 

But this is only possible if v(x 0 - y) = v(x0 ) for all y E .L;. (We recall that L: = U L., Ln 
n= 1 

being the set consisting of the points of increase of k"*.) It follows that v(x) = v(x0 ) for all 
x ER if k is not concentrated on either R+ or R_, cf. Lemma 2.1. If k is concentrated on R+, 
say, then it follows that v(x) = v(x0 ) for all x E (- ro, x 0 - a] for some a ER+, but as v satisfies 
the inequality (6.4) one may conclude again that v(x) = v(x 0 ) for all x ER. Hence, vis a constant 
function on R. Since its limiting values at ± ro are zero, it follows that v is the zero function, 
i.e., u 1 (x) = u2(x) for all x ER. 

The proof of the following uniqueness theorem is analogous to the proof of Theorem 6.4. 

THEOREM 6.5. Suppose that the conditions of Theorem 6.2 are satisfied and that, in addition, g 

is such that I g(x) - g(y) I ~ g'(O)I x - y j for all pairs x, y E [O, p]. Then there is at most one mono­
tone nondecreasing non trivial solution (modulo translation) of (1.1). 

Remark 6.6. If g is monotone nondecreasing and sublinear (i.e., g(ax) ;;::: cxg(x) for a E [O, l], 
x E [O, p ]), then the Lipschitz constant of g on [O, p J is at most g'(O). The former properties were 
used by one of the authors in [17] to prove a uniqueness result. The fact that one can use the less 
restrictive condition involving the Lipschitz constant was observed by Barbour [8] for a function 
g which was explicitly given by an expression of the form g(x) = cx(l - e-x). 

Remark 6.7. We observe that a combination of the existence result for monotone solutions (cf. 
1, 2) and the uniqueness result of Theorem 6.4 leads, in a very indirect way, to the conclusion that 
monotone functions g lead to monotone nontrivial solutions of (1.1) only. It would be of interest 
to have a direct proof of this fact. 

7. APPLICATION TO A DETERMINISTIC MODEL FROM MATHEMATICAL 
EPIDEMIOLOGY 

The spatio-temporal development of an epidemic among a closed population, with habitat 
Rn, can be described by an integral equation of the form 

u(t, x) = j"' H(r) f. gou(t - r, y)V(x - y)dydr, 
Jo R" 

(7.1) 

- oo < t < ro, x E Rn, cf. [I]. Here u is a measure ~or the density of susceptible individuals. 
The equation is based on various assumptions, the most important being 

(i) the members of the population can be categorized as either susceptible to or infected by 

the disease; 
(ii) the infectivity of an infected individual as a function of time elapsed since exposure and 

position relative to the individual's own position is given by H: R+ -+Rand V: R"-+ R, 
respectively; 

(iii) the disease induces permanent immunity, so an individual can pass from the class of 
susceptibles to the class of infectives, but not vice versa. 
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Both Hand V are nonnegative, and normalized to have integral one. The assumption that the 

habitat Rn is homogeneous and isotropic is reflected in the fact that V is a radial function. The 

nonlinearity of the equation comes about through the function g which has the form g(x) = 

a(l - e-"). The parameter a has a threshold value 1, cf. [l, 6]; here, we restrict our attention to 

the more interesting case tx > 1. In the so-called traveling (plane) wave problem one looks for 

solutions of (7.1) of the form u(t, x) = w(x·v +et), where vis a fixed unit vector. If one chooses 

a basis in Rn such that v = (1, 0, ... , O), then the function w must satisfy the following convolution 

equation on the line, 

w(x) = (gow)* V,,(x) xeR, (7.2) 

where V,,(x):=f0"'H(r)V(x-cr)dr, xeR, with V(x 1):=fRn-1V(x1'x2, ••• ,xn)dx2 ... dxn, 

x1 e R. If c = 0 the function V,. is symmetric. One can then apply Theorem 4.1, from which it 

follows that (7.1) does not admit any standing wave solution. Next, we consider the case c =F 0. 

Because of the symmetry of V we can restrict our attention to the case c > 0. 

As c increases, the mass of V,. shifts to the right. This can be seen by inspecting the qualitative 

behavior of the characteristic function Le, associated with the linearized equation, as a function 

of the wave velocity c. By definition, 

Lc(A.) := g'(O) I e-..lyV,.(y)dy 

= g'(O) f e-;."H(r)dr f e-).yV(y)dy. 
JR+ Ja 

The nonnegativity of Hand Vim plies that, for c fixed, Le is a convex function of A. (A. e R) and, for 

A. fixed (A. > 0), it is a monotonically decreasing function of c. Furthermore, Lc(O) = g'(O) = a > 1. 

Hence, the number c0 : ::::: inf { c > 0: there exists A. > 0 such that Lc(A.) = 1} is well-defined if H 

and Vsatisfy the appropriate hypotheses [l]. 

Various authors have given constructive proofs for the existence of (monotone) nontrivial 

solution of (7.2) in the case c ~ c0, cf. [l, 2, 7, 9]. From the results of our investigation it follows 

that there exists exactly one such solution (modulo translation) at each speed c > c0 , at least 

if v .. : x H V(x)e-..ix is bounded for the value of A. specified in Theorem 6.4. (If, for instance, 

V has compact support then this condition is certainly fulfilled.) A similar conclusion has been 

reached at by Barbour [8] who used probabilistic arguments. 

Furthermore, it follows from the results of our investigation that no traveling waves exist with 

speed c < c0 . The same result has been obtained for the special case H(t) = ae-µt (a,µ nonnegative 

constants) by Atkinson and Reuter [7] and by Aronson [ 6], and for a discrete time model in 

population genetics by Weinberger [2]. Both Aronson and Weinberger based their proofs on 

the construction of a subsolution. This approach made it actually possible for them to conclude 

that c0 is the asymptotic speed of propagation of disturbances from a rest state of the associated 

initial value problem (see also Mollison [12]). 

In our opinion, the main advantages of the approach presented in this paper is that the same 

chain of purely analytical arguments leads to the nonexistence, as well as the uniqueness results. 
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