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Abstract. In this paper it is proved that the perceptron error-

correction procedure stays bounded, even when no solution to the

system of linear inequalities exists. This supplements earlier

papers by B. Efron and by M. Minsky and S. Papert.

1. Introduction. Let F—{<b} be a finite set of vectors in Euclidean

«-space En, and consider the problem of finding a vector w in En such

that

(1) w-4> > 0       for all <b in F.

Such a vector w is called a solution of the system of inequalities (1).

The error-correction procedure we consider is an iterative method

for finding a solution if one exists:

Choose Ai arbitrarily in En. If Ai-<p>0 for all <p in F, then Ai is a

solution, and the process terminates. Otherwise, select as <¡>i any

(bin F such that A i • <pi ̂ 0, and let A 2 — A i +0i. In general,

<j>i G F   such that    A{-<pi ¿ 0,    and    Ai+i = A¡ + cbi,

t = 1, 2, • • • ,

as long as the process continues. It terminates when, and only when,

a solution is reached.

2. Soluble case. If the problem defined in (1) has a solution, then

it is easy to show that the process (2) will terminate at a solution after

a finite number of steps. This result is well known; but the following

proof, basically due to W. C. Ridgeway, is shorter than any previ-

ously published, and is therefore presented for completeness:

Suppose w is a solution of (1). Set

a = mm(w-<f>),       b = max||#||,       w = b2w/a.
0EF <t>£.F
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Then from (2),

\\Ai+i - w\\2 = || ii, - w\\2 + 2(Ai - w) -4>i + Ui\\2

= \\Ai - w\\2 - 2w-<Pi + b2 = \\Ai - w\\2 - b2.

Iterating, we obtain

0 g \\Ai+x - w\\2 = \\Ai - w\\2 - ib2,

and so

i è \\Ai- w\\2/b2,

which completes the proof.

3. Insoluble case. If no solution exists, then the process (2)

does not terminate. Excluding the trivial case in which F contains

the zero vector, the process cannot converge, since ||.<4,-+i —Ai\\ =\\(j>i\\

— min<¡,£F\\<p\\>0. The interesting fact is that the process always

stays bounded. This was conjectured by Nils Nilsson and indepen-

dently by Terry Beyer, and a proof was offered by B. Efron in a tech-

nical report [l]. This report was quite difficult to read; and, since

no version ever was published in a standard journal, the theorem in a

sense lacked a convincing proof. Finally, in their book [2], Minsky

and Papert published a reasonably clear analysis. There are some in-

formal parts to their treatment that need to be, and can be, made

rigorous; but there is one crucial gap which, it appears, cannot be

easily bridged. (This is the assertion ([2, p. 187, 1.17]) "||C|| < Af„_i,"

which does not follow, as implied, from the relation "|[.Bi + C||

<[|-Bi|| +Af„_i.") The purpose of the present paper is to give a pre-

cise proof of the Boundedness Theorem (§5 below). In so doing,

somewhat stronger form of boundedness is proved (Lemma 1). This

is new and of interest in itself.

The novel ideas and cogent insights of Minsky and Papert [2]

provide the basis for the proof below. Many parts of our proof are

adapted directly from theirs.

4. The fundamental lemma. In this section we prove the basic re-

sult (Lemma 1) of this paper. It can be applied directly to the proof of

Minsky and Papert to bridge the existing gap, or used in a much more

straightforward way to yield the Boundedness Theorem (Theorem 1)

as a corollary (§5).

Definition. A sequence A\, A2, • • ■ , Ak of vectors which satisfy

(2) for i = \, 2, ■ • • , k — \ is called an F-chain. It is called a proper

F-chainii\\At\\'=\\Ai\\ioTi = \,2,   ■ ■ ■ , k.
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Lemma 1. For any finite set F of vectors in Euclidean n-space is»,

there exists a positive number Mn(F) such that if Bi, B2, ■ ■ ■, B¡ is any

Proper F-chain, then

(3) ¡¡Bj - Bi\\ S Mn(F).

We defer the proof of this lemma until we establish certain con-

ventions. We introduce the notation z=z/||z|| for nonzero vectors z,

and in general indicate that a vector is a unit vector by the circum-

flex. By zx, we denote the set of vectors in En orthogonal to z. These

form an (n — l)-dimensional hyperplane, which is of course isomorphic

to .E„_i. The set FCsz1- of vectors in En lies in the subspace zx, and by

F*(z) we denote this (possibly vacuous) set regarded as a set of

vectors in -En-i- Finally, if B(E.En and sG£«, we denote by B-\-zx the

set of vectors of the form B+v, where »Gz1. If each of the vectors in

an F-chain lies in B +zx, we say that the F-chain lies in B +zx.

Lemma 2. For any unit vector ê in En, and any finite sel F of vectors

in En, n^2, there exists a neighborhood V(z) on the unit sphere in En

and a number K(£) such that if BÇzEn with the properties that ££ V(z)

and \\b\\ >K(z), then any proper F-chain beginning with B lies in

B+z\

Again, we defer the proof of this lemma and prove first one pre-

liminary result. We use the notation y=y — (y-z)ê to denote the

projection of an arbitrary En-vector y onto zx.

Lemma 3. Let zG-E» and let B, • ■ • , C be a proper F-chain in En

and lying in B +I-1-. Then the chain B, • ■ ■ , C is a proper (FCM1-)-chain

in En. Moreover, since the elements of this chain can be regarded as

elements of -E„_i, the chain B, • • • , C, regarded as a chain in £„_i, is a

proper F*(z)-chain.

Proof. First, to show that B, ■ • • , C is an (Fr\zL)-chain, we con-

sider any two consecutive elements u, v—u+<f> of the chain B, ■ ■ • ,

C. Then clearly ^GFfM-1-, and v — ü=$=<p. Moreover 4>-ü=<¡>-u,

and hence <£ •«=<£• m ?S0. Hence the projections form an (F^z-'-)-chain.

To show that the projected chain is proper, we need only utilize the

relation

||fi||' = ||w||i - (u-z)2 = \\u\\2 - (B-z)2.

Applying this result to B itself, and subtracting from the above, we

obtain

||fl||ï_||5||i = ||«||*-||B||*è 0
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for any u in the chain B, ■ ■ ■ , C. This completes the proof of

Lemma 3.

We now prove, by an "alternating" procedure of induction on the

dimension n of the Euclidean «-space in which the vectors of F lie,

both Lemma 1 and Lemma 2. That is, Lemma 1 is trivial in E\

(since we can simply choose Mi(F) ^max^ef-H^H, or as an arbitrary

positive number if F is empty), and we prove the lemmas therefore

by proving the following two propositions:

Proposition 1. The truth of Lemma 1 in En-i implies the truth of

Lemma 2 in En,for n = 2,3, ■ • ■ .

Proposition 2. The truth of Lemma 2 in En and Lemma 1 in EH-i

implies the truth of Lemma 1 in En,for n = 2, 3, ■ •

Clearly, these suffice to establish the truth of both lemmas.

We first verify Proposition 1. Note that the proof is trivial if

FGzL. Thus assume FC^ê1- and define o=§min0e»-L.*ej?|#-a| >0.

Again, let & = max4>ep||0|| and let M = max{b, Af„_i(F*(l))). (Note

that the case F*(z) empty is quite possible, but presents no special

problems.) Take

V(z) = {i:||* - ¿|| < a/37},      K(i) = M2/d.

It suffices to show that if EG V(z) and ||5|| >K(z), and ii B, ■ ■ ■ , C,

C+<p is a proper F-chain (with possibly B = C) for which the sub-

chain B, • • • , C (which is also a proper F-chain) lies entirely in

B+z-1, then 4>GzL. But as we observed previously (Lemma 3), the

projection B, ■ ■ ■ , C of the chain B, • ■ ■ , C onto âx may be re-

garded as a proper F*(l)-chain in £„_i. Since the hypothesis of Prop-

osition 1 is that Lemma 1 is true in £»_i, there exists a number

M„_i(F*(z)) such that WC-BW ̂Mn-i(FHß)). Moreover, C-B
= C-B, and hence ||C-5|| ^ Af„_i(F*(z)) =M. Thus

||C - á|| = \\C -ê\\+\\Ê- ¿H < ||C - 2*||/(||C|| NI)1'2 + Ô/M

= M/\\B\\+Ô/Mé 25/M.

But

(4) 0 = C-<t> = \\c\\z-4>+(C-\\C\\z)-cp

and

l(c-||cf|*)-*| g M ne-i|| y <20||ci!.

Now if 0^ 2X, we would have |||C[|a-0| èSô||C||. It would then follow
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from (4) that z-<f><0 and C-<b< — 3ö\\C\\. Thus we would obtain,
since (C—B) -z=0,

\\C + 42- \\B\\2 = \\4* + 2C-<b + \\C -B\\2+ 2(C -B)-(B- \\b\\z)

<Tá2- «||C|| + M2 + 2M\\B\\&/M

g 2M2 - U\\B\\ g - 2M2 < 0.

But this contradicts the assumption that B, • • • , C, C-\-<j> is proper.

Hence<^>Gzx, which completes the proof of Proposition 1.

We now prove Proposition 2, using first the Heine-Borel covering

theorem to select a finite set of neighborhoods V(zil)), • • • , V(z'-N))

of unit vectors IC1), • • • , ztA0 such that the union of these

neighborhoods covers the surface of the unit sphere in En. Set

K =   max  K(zim)).
lámgiV

We shall show that if Bi, ■ • ■ , B¡ is any proper F-chain, then

equation (3) holds with

Mn(F) =2K + b+  max Mn-i(F*(z™)).

(as before, & = max$eir||#||). This is clearly true if \\Bj\\ ^K. If

||5,-|| >K, let t be the smallest integer for which ||5¡|| ^K for all i^t.

Decompose the chain Bt, ■ ■ ■ , B¡ into a sequence of proper subchains,

each beginning with a vector of smaller norm than did the preceding

subchain (by listing the vectors Bt, ■ • • , B¡ in order and starting a

new subchain whenever a vector is encountered of norm smaller

than that of the initial vector of that subchain). Let the last such

subchain be Bs, • ■ ■ , B¡, and note that

KÚ INI è \\B,\\.
It is clear that \\B,-Bi\\^2K+b, since either ||5i|| ^K and so

í = í = 1, or INI^-ÍC, INII^INU <.£+&. Thus it suffices to show
that

(5) IN-^H^   max  M„_i(F*(z(m))).
lgmáiV

But since a hypothesis of Proposition 2 is that Lemma 2 is true in

E„, we know that, since J5sGF(z(i)) for some integer / in the set

l^lûN and \\Bt\\^K^K(z^), the chain B„ ■ ■ ■ , Bs lies in B,
+ (z(i))x. Then, just as in the proof of Proposition 1, we can project

the chain onto (z(l,)x and employ Lemma 3 and the hypothesis that

Lemma 1 holds in £„_i to verify (5). Thus Proposition 2 is established.
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5. Boundedness Theorem. From Lemma 1, we obtain the Bounded-

ness Theorem as an easy corollary :

Theorem 1. LetAi, A2, • • ■ , A ¡be a sequence of vectors generated by

the err or-correction procedure (2). Then \\Aj\\ = \\Ai\\ + M, where M is a

constant depending on the set F, but not on A i.

If the chain Ai, • • • , Aj is proper, the proof is immediate from

the lemma, since

\\AjW -\\Ai\\ á M/- ¿i|| ÚMn(F).
If it is not proper, it can be decomposed into a sequence of proper F-

chains each beginning with a vector of smaller norm than did the

preceding subchain, as in the proof of Proposition 2. If Ai, • • • , A¡

is the last such subchain, then

\\A,\\ = \\Aj - Ai\\ + ||¿4 g Mn(F) + \\Ai\\.
This completes the proof of the theorem. Note that, in any case, we

may choose M = Mn(F), where n is the dimension of the «-dimen-

sional Euclidean space En of which Fis a subset.

6. Concluding remarks. By using Lemma 1, one can now complete

the proof in Minsky and Papert [2, p. 182, Theorem 11.9] of their

further result that for any e>0, there exists an N(e, F) such that if

B, • ■ ■ , Cis a proper F-chain with ||5|| > A(e, F), then ||C||<||B\\+e.

Further, the Boundedness Theorem remains true if F consists of a

finite set of vectors in a Hubert space H. To see this, note that the set

.<4iWF, where ^4i is the initial vector, is a finite set; and hence spans a

finite dimensional subspace of H, isomorphic to En for some n, inside

of which the whole process takes place. The theorem is then applied to

the vectors of the set A iUF regarded as lying in £„.

Also, it is worth repeating the interesting observation of Minsky

and Papert that Theorem 1 implies that if the finite set of vectors in F

are constrained to have integer coordinates, then for each given

initial vector, the process is finite state, i.e., only finitely many of the

A i given by (2) are distinct. This is also true of course if the coor-

dinates are rational numbers, since Fis finite.

It would be interesting to see an effective estimate cf the bound M.

It would also be interesting and useful to know if there is a method of

selecting the</>¿ from among those satisfying Ai-<pi — 0 (e.g. the</> that

has been waiting longest, or the one which maximizes —Ai-cb, or by

cycling through the list of <p's in F in a fixed order) and a test on the

vectors A i (e.g. the rate of growth of ||¿<||) by means of which one

could decide as to whether or not a solution exists.
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