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ON THE BOUNDEDNESS OF CLASSICAL OPERATORS
ON WEIGHTED LORENTZ SPACES

Y. RAKOTONDRATSIMBA

Abstract. Conditions on weights u(·), v(·) are given so that a clas-
sical operator T sends the weighted Lorentz space Lrs(vdx) into
Lpq(udx). Here T is either a fractional maximal operator Mα or
a fractional integral operator Iα or a Calderón–Zygmund operator. A
characterization of this boundedness is obtained for Mα and Iα when
the weights have some usual properties and max(r, s) ≤ min(p, q).

§ 0. Introduction

Let u(·), v(·), w1(·), w2(·) be weight functions on Rn, n ∈ N∗, i.e., non-
negative locally integrable functions; and let T be a classical operator. The
purpose of this paper is to determine when T is bounded from the weighted
Lorentz space Lrs

v (w1) into Lpq
u (w2), i.e.,

∥

∥

∥w2(·)(Tf)(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·) f(·)
∥

∥

∥

Lrs
v

for all functions f(·). (0.0)

Here C > 0 is a constant which depends only on n, p, q, r, s, and on the
weight functions. Recall that

‖g(·)‖q
Lpq

u
= q

∞
∫

0

(

∫

{y∈Rn; |g(y)|>λ}

u(y)dy
)

q
p

λq−1dλ,

for 1 ≤ p < ∞ and 1 ≤ q < ∞; and

‖g(·)‖Lp∞
u

= sup
λ>0

λ
(

∫

{y∈Rn; |g(y)|>λ}

u(y)dy
) 1

p
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for 1 ≤ p < ∞. It is always assumed that 1 < r, s, p, q < ∞. For conve-
nience, the embedding defined by (0.0) will be denoted by T : Lrs

v (w1) →
Lpq

u (w2).
The classical operator under consideration is a fractional maximal opera-

tor or a fractional integral operator or a Calderón–Zygmund operator. The
fractional maximal operator Mα of order α, 0 ≤ α < n, is defined as

(Mαf)(x) = sup
{

|Q|α
n−1

∫

Q
|f(y)|dy; Q a cube with Q 3 x

}

.

Here Q is a cube with sides parallel to the coordinate planes. Thus M =
M0 is the well-known Hardy–Littlewood maximal operator. The fractional
integral operator Iα, 0 < α < n, is given by

(Iαf)(x) =
∫

Rn
|x− y|α−nf(y)dy.

The Hilbert transform

(Hf)(x) = P.V.
∫

R1

f(y)
x− y

dy = lim
ε→0

∫

|x−y|>ε

f(y)
x− y

dy

is a particular case of the Calderón–Zygmund operator.
The boundedness M : Lrs

v (1) → Lpq
u (1) was considered and studied by

many authors (see, for instance, [1], [2] and the references therein). However,
as mentioned by Kokilashvili and Krbec [1], easy necessary and sufficient
conditions on v(·), u(·) for which Mα : Lrs

v (1) → Lpq
u (1), 0 ≤ α < n, are not

known. In this paper we find a sufficient condition for such a boundedness.
For weight functions having some special properties (generally shared by
usual weights), the condition found here is also a necessary one. One of the
reasons which lead to considering Mα : Lrs

v (w1) → Lpq
u (w2) is the fact that

weights cannot be combined as in the Lebesgue case where, for instance,
‖f(·)‖Lpp

u
= ‖u

1
p (·)f(·)‖Lpp

1
.

A weight function w(·) is constant on annuli if for a constant c > 0

sup
R<|y|≤64R

w(y) ≤ c inf
R<|z|≤64R

w(z) for all R > 0.

This latter condition can be denoted by w(·) ∈ A. If w(x) = |x|α lnβ(e +
|x|), with α ∈ R and β ≥ 0, then w(·) ∈ A. A large class of weight
functions w(·) for which w(·) ∈ A is given by those nondecreasing (resp.
nonincreasing) radial w(·) which satisfy w(64t) ≤ Cw(t) (resp. w(t) ≤
Cw(64t)) for all t > 0. In the proof of Lemma 1 below, it is observed
that Mα : Lrs

v (1) → Lpq
u (1) implies necessarily H : Lrs

v (1) → Lpq
u (w) with

w(x) = |x|α−n and (Hf)(x) =
∫

|y|<|x| f(y)dy. In view of this observation
and also for convenience, it is always supposed that w1(·) ∈ A and w2(·) ∈
A.
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As in Lemma 1 below, the boundedness Mα : Lrs
v (1) → Lpq

u (1) implies
∥

∥

∥

∥

(R + |cdot|)α−n
∥

∥

∥

∥

Lpq
u

∥

∥

∥

∥

1
v(·)

11|·|<R(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

≤ C for all R > 0(0.1)

and

|x|n[ α
n + 1

p−
1
r ](u(x))

1
p ≤ c(v(x))

1
r for almost every x (0.2)

for α
n + 1

p −
1
r = 0. Here 11E(·) denotes the characteristic function of the

measurable set E. Since (0.2) is a pointwise inequality, this condition can be
easily checked for given weights u(·) and v(·). Contrary to the well-known
standard conditions (see [2], [1]), (0.1) is expressed neither in terms of the
operator Mα itself nor in terms of arbitrary cubes. This test condition needs
only integrations on balls centered at the origin, which are well adapted for
radial weight functions (the most useful weights in applications). Conse-
quently, our idea is to derive Mα : Lrs

v (1) → Lpq
u (1) from conditions (0.1)

and (0.2). However, when testing the problem in classical Lebesgue spaces,
it is not reasonable to expect that the above embedding can be obtained
only from these two conditions.

Roughly speaking, for max(r, s) ≤ min(p, q) we will prove that Mα :
Lrs

v (1) → Lpq
u (1) whenever both (0.1) and a more stronger condition than

(0.2) are satisfied (see Theorem 2). Eventually, for the Lebesgue case (i.e.,
r = s, p = q) the results we find are new. It is also of interest to note that
the conditions used to get (0.0) are suitable for explicit computations.

The main results are presented in §1. The basic lemmas needed to prove
them are given in §2. These latter are proved in §3. The final §5 is devoted
to the proofs of the basic lemmas given in §2.

§ 1. The Results

Recall that our purpose is to study T : Lrs
v (w1) → Lpq

u (w2), i.e.,
∥

∥

∥w2(·)(Tf)(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·)f(·)
∥

∥

∥

Lrs
v

for all functions f(·),

where T is a classical operator defined as above and w1(·), w2(·) ∈ A.
Indeed, in considering this boundedness, restrictions on the range of r, s, p,
q, and on the weight functions have to be done. To simplify the statement,
consider the case of T = Mα.

Lemma 1. Let 0 ≤ α < n. Assume the embedding Mα : Lrs
v (w1) →

Lpq
u (w2) is satisfied. Then

|Q|α
n

∥

∥

∥

∥

w2(·)11Q(·)
∥

∥

∥

∥

Lpq
u

≤ C1

∥

∥

∥

∥

w1(·)11Q(·)
∥

∥

∥

∥

Lrs
v

for all cubes Q. (1.1)
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Consequently if w1(·) = w2(·) = 1, then 1
r −

1
p ≤

α
n . On the other hand,

∥

∥

∥

∥

1
v(·)w1(·)

11Q(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

< ∞ for all cubes Q. (1.2)

The weight functions u(·), v(·) satisfy the Wheeden–Muckenhoupt condition
∥

∥

∥

∥

w2(·) (R + | · |)α−n
∥

∥

∥

∥

Lpq
u

∥

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

≤ C2 (1.3)

for all R > 0.
Let 1 < r < n

α and 1
r∗ = 1

r −
α
n . If p = r∗ then

w2(x) |x|n[ 1p−
1

r∗ ] (u(x))
1
p ≤ cw1(x) (v(x))

1
r for almost every x. (1.4)

This inequality is also satisfied for p 6= r∗ if both u(·), v(·) ∈ A.

In view of this result, it will always be assumed that

v(·) and w1(·) satisfy (1.2).

So by (1.1), the study of Mα : Lrs
v (1) → Lpq

u (1) for 0 ≤ α < n and 1 < r < n
α

makes non-trivial sense only for the range p ≤ r∗. For this reason and also
for technical motivation it will be supposed that

1 < r <
n
α

, p ≤ r∗, max(r, s) ≤ min(p, q). (1.5)

In dealing with Mα when max(r, s) = p < q, it is useful to assume that

N−1
∑

m=−∞

∥

∥

∥ w2(·)11{2m<|·|≤2m+1}(·)
∥

∥

∥

p

Lpq
u

≤ C
∥

∥

∥ w2(·)11{|x|<2N}(·)
∥

∥

∥

p

Lpq
u

(1.6)

for all N ∈ Z. Such an inequality is always satisfied when q ≤ p (see Lemma
2 in §2). For the range p < q, (1.6) is true for some weight functions as in
the case of w2(·) = 1, or for power weights (see Proposition 8 below).

A stronger condition than (1.4) is

w2(x) |x|n[ α
n + 1

p−
1
r ]

(

sup
4−1|x|<|z|<4|x|

u(z)
) 1

p ≤

≤ cw1(x) (v(x))
1
r for a.e. x, (1.7)

or

w2(x) |x|n[ α
n + 1

p−
1
r ] (u(x))

1
p

(

sup
4−1|x|<|z|<4|x|

v(z)
)− 1

r ≤

≤ cw1(x) for a.e. x, (1.7′)
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We are now in the position to state our first main result for the fractional
maximal operator.

Theorem 2. (The fractional maximal operator Mα with 0 ≤ α < n)
(A) Suppose Mα : Lrs

v (w1) → Lpq
u (w2). Then the Wheeden–Muckenhoupt

condition (1.3) is satisfied.
(B) For the converse assume restrictions (1.5) and (1.6) hold. Then

condition (1.3) implies Mα : Lrs
v (w1) → Lpq

u (w2) whenever the pointwise
inequality (1.7) (or (1.7′)) is satisfied.

Remarks 3. (1) For the Hardy–Littlewood maximal operator M = M0,
this results deals with the embedding M : Lrs

v (w1) → Lrq
u (w2), since by

restriction (1.5) we have α = 0, r∗ = r = p, and s ≤ r = p < q. For Mα

with 0 < α < n, and in the Lebesgue case, i.e., p = q and r = s, restriction
(1.5) means r ≤ p ≤ r∗.

(2) Theorem 2 and Lemma 1 yield the following conclusion: With re-
strictions (1.5) and (1.6), both conditions (1.3) and (1.4) characterize the
embedding Mα : Lrs

v (w1) → Lr∗q
u (w2) whenever either u(·) or v(·) is con-

stant on annuli. Similarly, if p 6= r∗ and both u(·) and v(·) are constant
on annuli, then Mα : Lrs

v (w1) → Lpq
u (w2) if and only if (1.3) and (1.4)

are satisfied. Indeed, in the latter result condition (1.4) can be dropped by
virtue of Proposition 9 and Remarks 11 below.

(3) The Wheeden–Muckenhoupt condition (1.3) is equivalent both to

Rα−n
∥

∥

∥

∥

w2(·) 11{|·|<R}(·)
∥

∥

∥

∥

Lpq
u

∥

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

≤ A (1.8)

and to
∥

∥

∥

∥

w2(·) | · |α−n 11{|·|>R}(·)
∥

∥

∥

∥

Lpq
u

∥

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

≤ H (1.9)

for all R > 0. The latter inequality is also useful to get the boundedness of
some Hardy type operators in weighted Lorentz spaces (see Lemma 3).

It is of interest to identify some situations where the extra-condition (1.7)
(or (1.7′)) can be obtained from the Wheeden–Muckenhoupt condition (1.3).
Such a question will be discussed below.

But for the moment we state the main result for the fractional integral
operator.

Theorem 4. (The fractional integral operator Iα with 0 < α < n)
(A) Suppose Iα : Lrs

v (w1) → Lpq
u (w2). Then the Hardy condition (1.9) is

satisfied and so is its dual version
∥

∥

∥

∥

1
v(·)w1(·)

| · |α−n11|·|>R(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

∥

∥

∥

∥

w2(·) 11{|·|<R}(·)
∥

∥

∥

∥

Lpq
u

≤ H∗. (1.9∗)
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(B) For the converse, assume restriction (1.5) holds. Then both condi-
tions (1.9) and (1.9∗) imply Iα : Lrs

v (w1) → Lpq
u (w2) whenever the pointwise

inequality (1.7) (or (1.7′)) is satisfied.

As in Remark 3(2), by Theorem 4 and Lemma 1 we see that, with restric-
tion (1.5), both conditions (1.9), (1.9∗) and (1.4) characterize the embedding
Iα : Lrs

v (w1) → Lr∗q
u (w2) whenever either u(·) or v(·) is constant on annuli.

Next, the weighted inequalities for Calderón–Zygmund operators T are
considered. Each T is a linear operator which sends C∞c (Rn) into L1

loc(Rn,dx),
is bounded on L2(Rn, dx), and has the representation

(Tf)(x) =
∫

Rn
K(x, y)f(y)dy a.e. x 6∈ supp f

for every f ∈ L∞c (Rn). The kernel K(x, y) is a continuous function defined
on {(x, y) ∈ Rn × Rn; x 6= y} and satisfying the standard estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
(

|x−x′|
|x−y|

)ε
|x− y|−n whenever

2|x − x′| ≤ |x − y|. Here C > 0 and ε ∈]0, 1] are fixed constants. These
operators were introduced by Coifman and Meyer in [3] and were known to
be bounded on each space Lp for 1 < p < ∞.

Now we are in the position to state the sufficient conditions for these
operators to be bounded on weighted Lorentz spaces.

Theorem 5. (The Calderon–Zygmund operator T )
Let s ≤ r ≤ q. Then conditions (1.9) and (1.9∗) (with α = 0, p = r)

imply T : Lrs
v (w1) → Lrq

u (w2) whenever the pointwise inequality (1.7) is
satisfied.

For the Hilbert transform some of the above conditions become also nec-
essary.

Proposition 6. (The Hilbert transform H)
Suppose H : Lrs

v (w1) → Lrq
u (w2). Then conditions (1.9), (1.9∗), and

(1.4) (with α = 0, r∗ = r = p) are satisfied.

Next we deal with a result which yields cases where the Muckenhoupt
condition (1.8), with α ≥ 0, implies the Hardy inequality (1.9). For this
purpose, some weight conditions are needed. Thus v(·) ∈ RDν,r,s(w1),
ν > 0, when for a constant c > 0
∥

∥

∥

1
v(·)w1(·)

11{|·|<λR}(·)
∥

∥

∥

L
r

r−1
s

s−1
v

≤cλnν(1− 1
r )

∥

∥

∥

1
v(·)w1(·)

11{|x|<R}(·)
∥

∥

∥

L
r

r−1
s

s−1
v
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for all 0 < λ ≤ 1 and R > 0. Similarly, u(·) ∈ Dε,p,q(w2), ε ≥ 1, when
∥

∥

∥ w2(·) 11{|·|<λR}(·)
∥

∥

∥

Lpq
u

≤ c λnε 1
p

∥

∥

∥ w2(·) 11{|·|<R}(·)
∥

∥

∥

Lpq
u

for all λ ≥ 1 and R > 0.

Proposition 7. The Muckenhoupt condition (1.8), with 0 ≤ α < n,
implies the Hardy condition (1.9) whenever v(·) ∈ RDν,r,s(w1) for some
ν > 0. This implication is also true if u(·) ∈ Dε,p,q(w2) for 1 ≤ ε < (1−α

n )p.

After some tedious computations, we obtain

Proposition 8. Let w(x) = |x|β−n, w1(x) = |x|β1−n, w2(x) = |x|β2−n,
u(x) = |x|γ−n, v(x) = |x|δ−n where β, β1, β2, γ, δ are nonnegative reals.

(A) If 0 < (β − n) + 1
pγ, then

∥

∥

∥w(·)11|·|<R(·)
∥

∥

∥

Lpq
u

≈ R(β−n)+ 1
p γ ≈

( 1
Rn

∫

|y|<R
w(y)dy

)(

∫

|y|<R
u(y)dy

) 1
p

for all R > 0.
(B) The extra-assumption (1.6) is satisfied with w2(·) = w(·).
(C) Let 0 ≤ α < n, 0 < (β2 − n) + 1

pγ and (β1 − n) + 1
r δ < n. Then the

pointwise inequality (1.4) and the Muckenhoupt condition (1.8) are satisfied
if and only if

α + (β2 − n) +
1
p
γ = (β1 − n) +

1
r
δ. (1.10)

Moreover, since v(·) ∈ RDν,r,s(w1) with ν = r
r−1

1
n [(n−β1)+(n− 1

r δ)] > 0,
then by Proposition 7 the Wheeden condition (1.3) is equivalent to (1.10).

We will end this section by studying some cases where the pointwise
inequality (1.7) becomes a necessary condition for Mα : Lrs

v (w1) → Lrq
u (w2).

For this purpose two weight conditions are introduced. Therefore we write
that u(·) ∈ H whenever for some C > 0 and N ∈ N∗:

sup
4−1|x|<|y|<4|x|

u(y) ≤ C|x|−n
∫

2−N |x|<|y|<2N |x|
u(y)dy, (1.11)

and v(·) ∈ ˜H(r′, s′), r′ = r
r−1 , s′ = s

s−1 , whenever

|x|n
[ 1
v(x)

]r′

v(x) ≤ C
∥

∥

∥

1
v(·)

112−N |x|<|·|<2N |x|(·)
∥

∥

∥

r′

Lr′s′
u

.

Without any difficulty we get

Proposition 9. The Muckenhoupt condition (1.8) implies the pointwise
inequality (1.7) whenever u(·) ∈ H and v(·) ∈ ˜H(r′, s′).
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In this result the condition constant on annuli for w1(·) and w2(·) is taken
in the sense that supR<|y|≤22N R w(y) ≤ c infR<|z|≤22N R w(z) with N ≥ 3.
An immediate consequence of Proposition 9 can be stated as

Corollary 10. Let u(·) ∈ H and v(·) ∈ ˜H(r′, s′); then
– Condition (1.7) (or (1.7′)) in Theorem 2 can be dropped;
– Condition (1.7) (or (1.7′)) in Theorems 4 and 5 can be replaced by the

Muckenhoupt condition (1.8).

Remarks 11. (1) Property (1.11) holds for a large class of weight func-
tions. For instance, w(·) satisfies (1.11) whenever w(·) ∈ A. Condition
(1.11) is also true for any radial and monotone weight. But there also ex-
ists w(·) not necessarily monotone for which (1.11) is satisfied (take, for
instance, w(x) = |x|δ−n11|x|<1(x) + |x|γ−n11|x|>1(x)).

(2) The condition v(·) ∈ ˜H(r′, r′) holds if v1−r′(·) satisfies condition
(1.11). For general r and s, we have v(·) ∈ ˜H(r′, s′) whenever there is
C > 0 such that

|x|−n
∫

2−N |x|<|y|<2N |x|
v(y)dy ≤ cv(x). (1.12)

Indeed, using the Hölder inequality and (1.12), with C(x,N) = {2−N |x| <
|y| < 2N |x|}, we obtain

|x|
n
r′

[ 1
v(x)

]

v
1
r′ (x) ≈

(

∫

Rn

1
v(y)

11C(x,N)(y)v(y)dy
)

×
(

|x|nv(x)
)− 1

r ≤

≤ c1

∥

∥

∥

1
v(·)

11C(x,N)(·)
∥

∥

∥

Lr′s′
v

(

∫

C(x,N)
v(z)dz

) 1
r ×

(

|x|nv(x)
)− 1

r ≤

≤ c2

∥

∥

∥

1
v(·)

11C(x,N)(·)
∥

∥

∥

Lr′s′
v

.

Any Muckenhoupt A1-weight function v(·) satisfies condition (1.12). The
same is true for v(·) ∈ A.

(3) Theorem 2, Proposition 9 and Remark 11(2) yield the following con-
clusions: With restrictions (1.5) and (1.6), the Wheeden–Muckenhoupt con-
dition (1.3) characterizes the embedding Mα : Lrs

v (w1) → Lpq
u (w2) whenever

both u(·) and v(·) are constants on annuli. Similarly, if u(·) and v(·) are
constant on annuli, then Iα : Lrs

v (w1) → Lpq
u (w2) if and only if both (1.8),

(1.9) and (1.9∗) are satisfied.

§ 2. Basic Lemmas

In this section we prove Lemma 1 and give some basic lemmas needed
for the proofs of our results.
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Proof of Lemma 1. Assume that Mα : Lrs
v (w1) → Lpq

u (w2), i.e.,
∥

∥

∥w2(·)(Mαf)(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·)f(·)
∥

∥

∥

Lrs
v

for all functions f(·). Let Q be a

cube and f(·)≥0 with Q as its support. Since |Q|α
n−1

(

∫

Q f(y)dy
)

11Q(x)≤
(Mαf)(x), therefore

|Q|α
n−1

(∫

Q
f(y)dy

)

∥

∥

∥w2(·)11Q(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·)(f11Q)(·)
∥

∥

∥

Lrs
v

. (2.1)

This is the key inequality for the inequalities of this lemma (except for
(1.3)).

Taking f(·) = 11Q(·) in (2.1), we obtain (1.1). In particular, for w1(·) =

w2(·) = 1 we have |Q|
α
n + 1

p−
1
r

(

|Q|−1
∫

Q u(y)dy
) 1

p ≤ C
(

|Q|−1
∫

Q v(y)dy
) 1

r
.

The latter inequality implies s
n + 1

p −
1
r ≥ 0. Indeed, if this is not the

case, then by the Lebesgue differentiation theorem and letting |Q| → 0 we
necessarily have u(·) = 0 a.e..

To prove (1.2), suppose the contrary, i.e.,
∥

∥

∥

1
v(·)w1(·)11Q(·)

∥

∥

∥

L
r

r−1
s

s−1
v

= ∞
for the cube Q. Then there is g(·) ≥ 0 for which ‖g(·)11Q(·)‖Lrs

v
< ∞ and

∞ =
∫

Q g(y)( 1
v(y)w1(y) )v(y)dy =

∫

Q g(y)w−1
1 (y)dy. Consequently inequality

(2.1) cannot hold for the function f(·) = g(·)w−1
1 (·) unless u(·) = 0 a.e.

(since the quantity on the right is finite).
The Wheeden–Muckenhoupt condition (1.3) can be derived from an in-

equality similar to (2.1) which is

(

∫

|y|<R
f(y)dy

)∥

∥

∥(R + | · |)α−n w2(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·)f(·)
∥

∥

∥

Lrs
v

, (2.2)

for each f(·) ≥ 0 and whose support is the ball B = B(0, R) = {y; |y| < R}
centered at the origin and with radius R. Inequality (2.2) can be obtained
immediately from Mα : Lrs

v (w1) → Lpq
u (w2) and

(R + |x|)α−n
(

∫

|y|<R
f(y)dy

)

≤ c (Mαf)(x).

Here c = c(α, n) > 0 depends only on α and n. This inequality is valid,
since for |x| ≤ R we have B ⊂ B(x, 2R) and (R+ |x|)α−n

∫

B f(y)dy ≤ Rα−n
∫

B(x,2R) f(y)dy ≤ c(Mαf)(x), and for R < |x| we obtain B ⊂ B(x, 2|x|) and
(R+ |x|)α−n

∫

B f(y)dy ≤ |x|α−n
∫

B(x,2|x|) f(y)dy ≤ c(Mf)(x). Our purpose
is to bound the quantity

T =
∥

∥

∥w2(·) (R + | · |)α−n
∥

∥

∥

Lpq
u

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

L
r

r−1
s

s−1
v
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by a constant which does not depend on R > 0. Since it can be assumed
that 0 <

∥

∥

∥

1
v(·)w1(·) 11{|·|<R}

∥

∥

∥

L
r

r−1
s

s−1
v

< ∞, there is g(·) ≥ 0 such that
∥

∥

∥g(·)11|y|<R(·)
∥

∥

∥

Lrs
v

≤ 1 and

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

L
r

r−1
s

s−1
v

=

=
∫

|y|<R

1
v(y)w1(y)

g(y)v(y)dy =
∫

|y|<R
w−1

1 (y)g(y)dy.

Finally, condition (1.3) appears by taking f(·) = w−1
1 (·)g(·) in (2.2). Indeed,

T =
(

∫

|y|<R
w−1

1 (y)g(y)dy
)∥

∥

∥(R+|·|)α−n w2(·)
∥

∥

∥

Lpq
u

≤C
∥

∥

∥g(·)11|y|<R(·)
∥

∥

∥

Lrs
v

≤C.

To prove (1.4), an inequality similar to (2.1), with cubes replaced by balls,
is used. First consider the case p = r∗. Let x 6= 0 and B = B(x,R) be the
ball centered at x and with a small radius R, i.e., R < 1

2 |x|. Since w1(·),
w2(·) ∈ A, for each y ∈ B: w1(x) ≈ w1(y) (in the sense that c−1w1(y) ≤
w1(x) ≤ cw1(y)) and w2(x) ≈ w2(y). Indeed, 1

2 |x| < |y| < 4 1
2 |x| and

w1(y) ≤ sup 1
2 |x|≤ |z|<64 1

2 |x|
w1(z) ≤ c inf 1

2 |x|≤ |z|<64 1
2 |x|

w1(z) ≤ cw1(x).
Analogously, w1(x) ≤ cw1(y). Taking f(·) = 11B(·) in (2.1) (with balls
instead of cubes) and using the above equivalences we obtain

w2(x) |B|
α
n + 1

p−
1
r

(

|B|−1
∫

B
u(y)dy

) 1
p ≤ Cw1(x)

(

|B|−1
∫

B
v(y)dy

) 1
r
. (2.3)

Here α
n + 1

p −
1
r = 0 and |B| = Rn. Thus by (2.3) and the Lebesgue

differentiation theorem (by letting R → 0) we have w2(x) (u(x))
1

r∗ ≤
C w1(x) (v(x))

1
p .

Next suppose p 6= r∗ (α
n + 1

p −
1
r 6= 0), and assume both u(·), v(·) ∈ A.

The purpose is to estimate I = I(x) = w2(x) |x|n[ α
n + 1

p−
1
r ](u(x))

1
p . For the

present case, the ball B = B(x, R) is taken with radius R = 1
9 |x|. Observe

that 8
9 |x| < |y| < 64 8

9 |x| whenever y ∈ B. The conclusion appears as
follows:

I = w2(x) |x|n[ α
n + 1

p−
1
r ]

(

u(x)
) 1

p ≤

≤ c1 w2(x)Rn[ α
n + 1

p−
1
r ]

(

sup
8
9 |x|<|y|≤64 8

9 |x|
u(y)

) 1
p ≤

≤ c1G(u) w2(x) Rn[ α
n + 1

p−
1
r ]

(

R−n
∫

B
[ inf
8
9 |x|<|z|≤64 8

9 |x|
u(z)] dy

) 1
p ≤
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≤ c1G(u) w2(x)Rn[ α
n + 1

p−
1
r ]

(

R−n
∫

B
u(y)dy

) 1
p ≤

≤ c2G(u) w1(x)
(

R−n
∫

B
v(y)dy

) 1
r ≤ (by (2.3))

≤ c3G(u)w1(x)
(

sup
8
9 |x|<|z|≤64 8

9 |x|
v(z)

) 1
r ≤

≤ c3G(u)G(v) w1(x)
(

inf
8
9 |x|<|y|≤64 8

9 |x|
v(z)

) 1
r ≤

≤ c3G(u)G(v) w1(x)
(

v(x)
) 1

r
.

In the proofs of our results we will have to perform some summations as
stated in the following

Lemma 2. Suppose
∑

k 11Ek(·) ≤ C 11∪Ek(·) for a fixed constant C > 0,
where Ek’s are measurable sets (so these sets are quasi-disjoint).

(A) Then
∑

k

∥

∥

∥f(·)11Ek(·)
∥

∥

∥

λ

Lrs
w

≤ c1

∥

∥

∥f(·)11∪Ek(·)
∥

∥

∥

λ

Lrs
w

for all functions f(·)

whenever max(r, s) ≤ λ.
(B) For a constant c > 0, which depends only on C,

∥

∥

∥

∑

k

f(·)11Ek(·)
∥

∥

∥

γ

Lpq
u

≤ c
∑

k

∥

∥

∥f(·)11Ek(·)
∥

∥

∥

γ

Lpq
u

whenever 0 < γ ≤ min(p, q).

Also, the proofs of our results will depend much on the boundedness
of generalized Hardy type operators on weighted Lorentz spaces which are
already introduced and studied by Edmunds, Gurka, and Pick [4]. The
Hardy type operators under consideration are of the forms

(Hf)(x) = (Ha,bf)(x) = a(x)
∫

|y|≤|x|
f(y) b(y)dy

and
(H∗g)(x) = (H∗a,bg)(x) = b(x)

∫

|x|≤|y|
g(y) a(y)dy,

where a(·) and b(·) are measurable nonnegative functions. It is supposed
that

r = s = 1 or 1 < r < ∞ and ; 1 ≤ s ≤ ∞,

p = q = 1 or 1 < p < ∞ and 1 ≤ q ≤ ∞.
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Lemma 3. Let r, s, p, q be as above and, moreover, max(r, s)≤min(p, q).
Then

∥

∥

∥(Hf)(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥f(·)
∥

∥

∥

Lrs
v

for all f(·) ≥ 0

if and only if

sup
R>0

∥

∥

∥ a(·) 11R<|·|(·)
∥

∥

∥

Lpq
u

∥

∥

∥

1
v(·)

b(·) 11|·|<R(·)
∥

∥

L
r

r−1
s

s−1
v

< ∞.

Similarly,
∥

∥

∥(H∗g)(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥g(·)
∥

∥

∥

Lrs
v

for all g(·) ≥ 0

if and only if

sup
R>0

∥

∥

∥ b(·) 11|·|<R(·)
∥

∥

∥

Lpq
u

∥

∥

∥

1
v(·)

a(·) 11R<|x|(·)
∥

∥

∥

L
r

r−1
s

s−1
v

< ∞.

In order to get the weighted inequality for the maximal operators Mα,
0 ≤ α < n, the following cutting lemma is needed.

Lemma 4. Let 0 < λ ≤ min(p, q). Then for some constant C > 0 and
for all f(·) ≥ 0:

∥

∥

∥w2(·) (Mαf)(·)
∥

∥

∥

λ

Lpq
u

≤ C
(

Sλ
1 + Sλ

2 + Sλ
3

)

,

where

Sλ
1 =

∥

∥

∥ w2(·)| · |α−n
(

∫

|y|≤|·|
f(y)dy

) ∥

∥

∥

λ

Lpq
u

,

Sλ
2 =

∑

k∈Z

∥

∥

∥w2(·)
(

Mαf11Gk

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Sλ
3 =

∑

m∈Z

[

2(α−n)m
(

∫

Em

f(y)dy
)

]λ ∥

∥

∥ w2(·) 11|x|<2m(·)
∥

∥

∥

λ

Lpq
u

and Ek = {2k < |x| ≤ 2k+1}, Gk = {2k−1 < |x| ≤ 2k+2}.

In order to state in a condensed form a similar result for any fractional
integral and any Calderón–Zygmund operators, define the linear operator
Tα, 0 ≤ α < n, as sending C∞c (Rn) into L1

loc(Rn, dx) and such that

(Tαf)(x) =
∫

Rn
Kα(x, y)f(y)dy a.e. x 6∈ supp f

for every f(·) ∈ L∞c (Rn), and with the kernel Ks(x, y) satisfying

|Kα(x, y)| ≤ C|x− y|(α−n) for all x 6= y.



ON THE BOUNDEDNESS OF CLASSICAL OPERATORS 189

It is also assumed that (Tαf)(·) is well defined almost everywhere for all
bounded functions with compact supports. This is the case for 0 < α < n
when Tα is the fractional integral operator Iα. For α = 0 this assumption
will be realized if T0 : Lp → Lp for some p > 1 (which is the case for a
Calderón–Zygmund operator).

Lemma 5. Let 0 ≤ α < n and 0 < λ ≤ min(p, q). Then for a constant
C > 0 and for all functions f ∈ C∞c (Rn):

∥

∥

∥w2(·) (Tαf)(·)
∥

∥

∥

λ

Lpq
u

≤ C
(

Sλ
1 + Sλ

2 + Sλ
3

)

where

Sλ
1 =

∥

∥

∥w2(·)| · |α−n
(

∫

|y|≤|·|
|f(y)|dy

) ∥

∥

∥

λ

Lpq
u

,

Sλ
2 =

∑

k∈Z

∥

∥

∥w2(·)
(

Tαf11Gk

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Sλ
3 =

∥

∥

∥ w2(·)
(

∫

|·|≤|y|
|f(y)||y|α−ndy

) ∥

∥

∥

λ

Lpq
u

and Ek and Gk are defined as in Lemma 4.

The proofs of these lemmas will be given in §4, and now we proceed to
proving our main results.

§ 3. Proofs of the Main Results

Proof of Theorem 2. The real problem is to prove Part B. Since max(r, s) ≤
min(p, q) (see (1.5)), therefore one can find λ > 0 for which max(r, s) ≤ λ ≤
min(p, q). In view of cutting Lemma 4, we have to estimate each of Sλ

1 , Sλ
2 ,

and Sλ
3 by

C
∥

∥

∥ w1(·)f(·)
∥

∥

∥

λ

Lrs
v

for a fixed constant C > 0 which, in general, depends on α, n, p, q, r, s,
u(·), v(·), w1(·) and w2(·).

Estimate of Sλ
1 . By taking g(·) = w1(·)f(·), we obtain

∥

∥

∥w2(·)| · |α−n
(

∫

|y|≤|·|

1
w1(y)

g(y)dy
)∥

∥

∥

Lpq
u

≤ C
∥

∥

∥g(·)
∥

∥

∥

Lrs
v

.

Such an inequality can be considered as H : Lrs
v → Lpq

u where H = Ha,b is
a Hardy type operator given by a(x) = w2(x)|x|α−n and b(y) = 1

w1(y) . In
view of Lemma 3, this boundedness of H is equivalent to

sup
R>0

∥

∥

∥ a(·) 11R<|·|(·)
∥

∥

∥

Lpq
u

∥

∥

∥

b(·)
v(·)

11|·|<R(·)
∥

∥

∥

L
r

r−1
s

s−1
v

< ∞
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or to
∥

∥

∥ w2(·)| · |α−n 11R<|·|(·)
∥

∥

∥

Lpq
u

∥

∥

∥

1
v(·)w1(·)

11|·|<R(·)
∥

∥

∥

L
r

r−1
s

s−1
v

< C

for all R > 0. It is the Hardy condition (1.9) which is an immediate conse-
quence of the Wheeden–Muckenhoupt condition (1.3).

Estimate of Sλ
3 . Here the Muckenhoupt condition (1.8) (also an immedi-

ate consequence of (1.3)) is used. Now by the Hölder inequality and (1.8)
we have

Sλ
3 =

∑

m∈Z

[

2(α−n)m
(

∫

Em

f(y)dy
)

]λ ∥

∥

∥w2(·)11|·|<2m(·)
∥

∥

∥

λ

Lpq
u

≤

≤ Cλ
∑

m∈Z

[

2(α−n)m
∥

∥

∥w2(·) 11|·|<2m(·)
∥

∥

∥

Lpq
u

×

×
∥

∥

∥

1
v(·)w1(·)

11|·|<2m(·)
∥

∥

∥

L
r

r−1
s

s−1
v

]λ ∥

∥

∥w1(·)(f11Em)(·)
∥

∥

∥

λ

Lrs
u

≤

≤ (CA)λ
∑

m∈Z

∥

∥

∥w1(·)(f11Em)(·)
∥

∥

∥

λ

Lrs
v

≤

≤ (C ′A)λ
∥

∥

∥w1(·)f(·)
∥

∥

∥

λ

Lrs
v

by Part A in Lemma 2.

Estimate of Sλ
2 . To estimate Sλ

2 it is sufficient to get
∥

∥

∥w2(·)
(

Mαf11Gk

)

(·)11Ek(·)
∥

∥

∥

Lpq
u

≤ C
∥

∥

∥w1(·)(f11Gk)(·)
∥

∥

∥

Lrs
v

. (3.1)

Indeed, since
∑

k 11Gk(·) ≤ 3 and max(r, s) ≤ λ, therefore by Part A in
Lemma 2:

Sλ
2 ≤ Cλ

∑

k∈Z

∥

∥

∥w1(·)(f11Gk)(·)
∥

∥

∥

λ

Lrs
u

≤ (cC)λ
∥

∥

∥w1(·)f(·)
∥

∥

∥

λ

Lrs
u

.

To get (3.1) we will use the fact that Mα : Lrs
1 (1) → Lr∗s

1 (1) (see [1],
Theorem 5.2.2, p. 155), where 1 < r < ∞, 1 ≤ s ≤ ∞ and 1

r∗ = 1
r −

α
n . The

following three properties of Lorentz spaces (see [5]) are also used:

‖11E(·)‖Lps
w

=
(

∫

E
w(y)dy

) 1
p

for all measurable sets E;

‖f‖Lps1 ≤ ‖f‖Lps2 for a fixed p, and s2 ≤ s1;

‖f1f2‖Lps ≤ c‖f1‖Lp1s1 ‖f2‖Lp2s2 with
1
p

=
1
p1

+
1
p2

and
1
s

=
1
s1

+
1
s2

.
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For convenience, set

W1,k = sup
x∈Gk

w1(x), W2,k = sup
y∈Ek

w2(y), and Uk = sup
z∈Ek

u(z).

Recall that w1(·), w2(·) ∈ A and the pointwise condition (1.7) is assumed.
The chain of computations which leads to inequality (3.1) is as follows:

Tk =
∥

∥

∥w2(·)
(

Mαf11Gk

)

(·)11Ek(·)
∥

∥

∥

Lpq
u

≤

≤
∥

∥

∥w2(·)
(

Mαf11Gk

)

(·)11Ek(·)
∥

∥

∥

Lps
u

≤

(here s ≤ q since max(r, s) ≤ min(p, q))

≤ c0W2,k U
1
p
k

∥

∥

∥

(

Mαf11Gk

)

(·)11Ek(·)
∥

∥

∥

Lps
≤

≤ c1W2,k U
1
p
k

∥

∥

∥

(

Mαf11Gk

)

(·)
∥

∥

∥

Lr∗s
×

∥

∥

∥11Ek(·)
∥

∥

∥

Lr̃∞
≤

(

where
1
r̃

=
1
p
− 1

r∗
=

1
p

+
α
n
− 1

r

)

≤ c2 2nk[ 1
p + α

n−
1
r ]W2,k U

1
p
k

∥

∥

∥(f11Gk)(·)
∥

∥

∥

Lrs
≈

(since Mα : Lrs
1 (1) → Lr∗s

1 (1))

≈ c2 2nk[ α
n + 1

p−
1
r ]W2,k U

1
p
k

[

∑

j

2js
(

∫

Gk∩{f(·)>2j}
dx

) s
r
] 1

s

=

= c2

[

∑

j

2js
(∫

Gk∩{f(·)>2j}

[

2nk[ α
n + 1

p−
1
r ]W2,k U

1
p
k

]r
dx

) s
r
] 1

s

≤

≤ c3

[

∑

j

2js
(∫

Gk∩{f(·)>2j}

[

|x|n[ α
n + 1

p−
1
r ] w2(x)×

×
(

sup
4−1|x|<|z|<4|x|

u(z)
) 1

p
]r

dx
) s

r
] 1

s

≤
(

here W2,k ≤ sup
(4−1|x|)<|y|<16(4−1|x|)

w2(y) ≤ cw2(x) since w2(·) ∈ A
)

≤ c4

[

∑

j

2js
(∫

Gk∩{f(·)>2j}
(w1(x))r v(x)dx

) s
r
] 1

s

≤

(

by hypothesis (1.7)
)

≤ c4

[

∑

j

Ws
1,k2js

(∫

Gk∩{f(·)>2j}
v(x)dx

) s
r
] 1

s

≤
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≤ c5

[

∑

j

2(j+Nk)s
(∫

Gk∩{2Nk f(·)>2(j+Nk)}
v(x)dx

) s
r
] 1

s

≤

(

since 2Nk ≤ W1,k < 2Nk+1 for some Nk ∈ Z
)

≤ c5

[

∑

j

2(j+Nk)s
(∫

Gk∩{W1,kf(·)>2(j+Nk)}
v(x)dx

) s
r
] 1

s

≤

≤ c6

[

∑

j

2ls
(∫

Gk∩{cw1(·)f(·)>2l}
v(x)dx

) s
r
] 1

s

≤

(here W1,k ≤ sup
(8−1|x|)<|z|<64(8−1|x|)

w1(z) ≤ cw1(x) since w1(·) ∈ A
)

≤ c7

∥

∥

∥w1(·)(f11Gk)(·)
∥

∥

∥

Lrs
v

.

Now we will study how to obtain the same local estimate (3.1) if instead
of (1.7) we use condition (1.7′). The main point is the existence of C > 0
for which

2nk[ α
n + 1

p−
1
r ] W2,k U

1
p
k ≤ Cw1(x)

(

v(x)
) 1

r
for all x ∈ Gk.

Indeed, by virtue of this inequality, a modification of the previous chain of
computations leads to

Tk =
∥

∥

∥w2(·)
(

Mαf11Gk

)

(·)11Ek(·)
∥

∥

∥

Lpq
u

≤

≤ c2

[

∑

j

2js
(∫

Gk∩{f(·)>2j}

[

2nk[ α
n+1

p−
1
r ]W2,kU

1
p
k

]r
dx

) s
r
] 1

s

≤
(

see above
)

≤ c8

[

∑

j

2js
(∫

Gk∩{f(·)>2j}
(w1(x))r v(x)dx

) s
r
] 1

s

≤
(

by this main point
)

≤ c9

∥

∥

∥w1(·)(f11Gk)(·)
∥

∥

∥

Lrs
v

(

see again the details in the above estimate
)

.

To prove the main point, it is essential to observe that

1
sup4−1|z|<|y|<4|z|[

1
v(y) ]

≤ v(x) for all x ∈ Gk and z ∈ Ek.

This inequality is true, since for x ∈ Gk and z ∈ Ek we have 4−1|z| <

2k−1 < |x| < 2k+2 < 4|z| and 1 = v(x) 1
v(x) ≤ v(x) sup4−1|z|<|y|<4|z|

[

1
v(y)

]

.
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So the main point appears since

2nk[ α
n + 1

p−
1
r ]W2,k U

1
p
k ≤ C1 sup

z∈Ek

{

|z|n[ α
n + 1

p−
1
r ]W2,k

(

u(z)
) 1

p
}

≤

≤ C2 sup
z∈Ek

{

|z|n[ α
n + 1

p−
1
r ]w2(z)

(

u(z)
) 1

p
}

≤
(

since w2(·) ∈ A
)

≤ C3 sup
z∈Ek

{

w1(z)
1

sup4−1|z|<|y|<4|z|[
1

v(y) ]
1
r

}

≤
(

by condition (1.7′)
)

≤ C4 w1(x) sup
z∈Ek

{

1

sup4−1|z|<|y|<4|z|[
1

v(y) ]
1
r

}

≤
(

since w1(·) ∈ A
)

≤ C4 w1(x)
(

v(x)
) 1

r (

by the above observation
)

.

Proof of Theorems 4 and 5. Part A of Theorem 4 is proved. Next a con-
densed proof for Part B of Theorem 4 and Theorem 5 is given.

Suppose Iα : Lrs
v (w1) → Lpq

u (w2). Since (Mαf)(·) ≤ c(s, n)(Iαf)(·), we
have Mα : Lrs

v (w1) → Lpq
u (w2) and the necessity of condition (1.3) (given

by Lemma 1) implies the Hardy condition (1.9). On the other hand, observe
that Iα : Lrs

v (w1) → Lpq
u (w2) is equivalent to Iα : Lp′q′

u ( 1
uw2

) → Lr′s′
v ( 1

vw1
)

where p′ = p
p−1 , q′ = q

q−1 , . . . . So the dual condition (1.9∗) appears from

the embedding Mα : Lp′q′
u ( 1

uw2
) → Lr′s′

v ( 1
vw1

) as above.
To get Part B of Theorem 4 and Theorem 5, it is sufficient to derive the

embedding Tα : Lrs
v (w1) → Lpq

u (w2) with 0 ≤ α < n by using conditions
(1.9), (1.9∗) and hypothesis (1.7). As in the proof of Theorem 2 and in
view of Lemma 5, the problem is reduced to estimating each of Sλ

1 , Sλ
2 ,

and Sλ
3 by C

∥

∥

∥w1(·)f(·)
∥

∥

∥

λ

Lrs
v

. Here C > 0 is a constant which depends

eventually on α, n, p, q, r, s, u(·), v(·), w1(·), w2(·), and λ is chosen such
that max(r, s) ≤ λ ≤ min(p, q).

The estimation of Sλ
1 can be carried out as in the proof of Theorem 2 by

using the Hardy condition (1.9) and Lemma 3.
Also, Sλ

2 can be estimated as in the proof of Theorem 2. Indeed, in the
present case for α > 0 we have Iα : Lrs

1 (1) → Lr∗s
1 (1) (see [1], Theorem

6.3.3, p. 191), where 1 < r < ∞, 1 ≤ s ≤ ∞ and 1
r∗ = 1

r −
α
n ; and, on the

other hand, for α = 0 we have Tα : Lrs
1 (1) → Lrs

1 (1) which can be obtained
by interpolation.

The estimate for Sλ
3 is equivalent to H∗ : Lrs

v → Lpq
u , with H∗ = H∗a,b

and b(x) = w2(x), a(y) = 1
w1(y) |y|

α−n. By Lemma 3, this boundedness of
H∗ is equivalent to the dual Hardy condition (1.9∗).
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Proof of Proposition 6. Suppose H : Lrs
v (w1) → Lrq

u (w2). Our purpose is
just to get conditions (1.4) and (1.9) (with α = 0, r∗ = r = p), since (1.9∗)
can be obtained by using a duality argument. The main key to the proof is

(

∫

I
f(y)dy

) ∥

∥

∥w2(·)
(

| · −xI |+ |I|
)−1∥

∥

∥

Lrq
u

≤ C
∥

∥

∥w1(·)(f11I)(·)
∥

∥

∥

Lrs
v

(3.2)

for each interval I centered at xI , and for each f(·) ≥ 0 whose support is I.

Indeed, (3.2) first implies
∥

∥

∥w2(·)11I(·)
∥

∥

∥

Lrq
u

≤ C ′
∥

∥

∥w1(·)11I(·)
∥

∥

∥

Lrs
v

. So

using w1(·), w2(·) ∈ A, we obtain

w2(x)
(

|I|−1
∫

I
u(y)dy

) 1
r ≤ cw1(x)

(

|I|−1
∫

I
v(y)dy

) 1
r
,

for each interval I centered at x 6= 0 and with a length |I| sufficiently
small. Then by the Lebesgue differentiation theorem: w2(x)(u(x))

1
r ≤

cw2(x)(v(x))
1
r , which is actually condition (1.4).

On the other hand, applying (3.2) for intervalls I =]−R,R[ (i.e., xI = 0)
we obtain condition (1.9), since
∥

∥

∥

1
v(·)w1(·)

11|·|<R(·)
∥

∥

∥

L
r

r−1
s

s−1
v

∥

∥

∥w2(·)
(

| · |+ R
)−1 ∥

∥

∥

Lrq
u

≤

≤ c
(
∫

|x|<R

1
v(y)w1(y)

g(y)v(y)dy
)∥

∥

∥w2(·)
(

| · |+ R
)−1 ∥

∥

∥

Lrq
u

≤
(

where ‖g(·)‖Lrs
v
≤ 1

)

≤ cC
∥

∥

∥w1(·)
1

w1(·)
g(·)

∥

∥

∥

Lrs
v

= cC ‖g(·)‖Lrs
v
≤ cC.

In view of Part B of Lemma 2, inequality (3.2) will be obtained immedi-
ately for some N > 0:

(

∫

I
f(y)dy

) ∥

∥

∥w2(·)sI(·)11]a+N,∞[(·)
∥

∥

∥

Lrq
u

≤ C
∥

∥

∥ w1(·)(f11I)(·)
∥

∥

∥

Lrs
v

(3.3)

and
(

∫

I
f(y)dy

)∥

∥

∥w2(·)sI(·)11]−∞,a+N [(·)
∥

∥

∥

Lrq
u

≤ C
∥

∥

∥w1(·)(f11I)(·)
∥

∥

∥

Lrs
v

, (3.4)

where sI(x) =
(

|x− xI |+ |I|
)−1

and I is any intervall centered at xI and

having the form I = [a, a + R], R > 0. Inequalities (3.3) and (3.4) will be
immediate consequences of the pointwise estimates

(

Hf11[a,a+N ]

)

(·) 11]a+N,∞[(·) ≥ c sI(·)
(

∫

I
f(y)dy

)

11]a+N,∞[(·) (3.5)
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and
(

Hf11[a+N,a+R]

)

(·) 11]−∞,a+N [(·) ≥ c sI(·)
(

∫

I
f(y)dy

)

11]−∞,a+N [(·) (3.6)

for a some N > 0 and N < R. So the problem of obtaining inequality (3.2)
is just reduced to obtaining (3.5) and (3.6).

Let f(·) ≥ 0 be supported by I = [a, a + R], and let Q =
∫

I f(y)dy. One
can take 0 < N < R such that 1

2Q =
∫

[a,a+N ] f(y)dy. Clearly, 0 < x− y =

|x− y| ≤ |x− xI |+ |I| = s−1
I (x) for each x ∈]a + N,∞[ and y ∈ [a, a + N ].

Inequality (3.5) is satisfied, since

(

Hf11[a,a+N ]

)

(x) 11]a+N,∞[(x) ≥ sI(x)
(

∫

[a,a+N ]
f(y)dy

)

11]a+N,∞[(x) =

= sI(x)
1
2
Q 11]a+N,∞[(x) = sI(x)

1
2

(

∫

I
f(y)dy

)

11]a+N,∞[(x).

If we note that
∫

[a+N,a+R]
f(y)dy =

∫

[a,a+R]
f(y)dy −

∫

[a,a+N ]
f(y)dy =

1
2
Q,

inequality (3.6) can be proved in the same way
Proof of Proposition 7. To get the Hardy condition (1.9) from the Muck-
enhoupt condition (1.8), first consider the case v(·) ∈ RDν,r,s(w1), ν > 0.
Applying Lemma 2 with 0 < θ ≤ min(p, q), we have

∥

∥

∥w2(·)| · |α−n11{|·|>R}(·)
∥

∥

∥

θ

Lpq
u

∥

∥

∥

1
v(·)w1(·)

11{|·|<R}(·)
∥

∥

∥

∥

θ

L
r

r−1
s

s−1
v

≤

≤ c1

∑

k≥0

∥

∥

∥w2(·) | · |α−n 11{2kR<|·|≤2k+1R}(·)
∥

∥

∥

θ

Lpq
u

×

×
∥

∥

∥

1
v(·)w1(·)

11{|·|<2−(k+1)2(k+1)R}(·)
∥

∥

∥

∥

θ

L
r

r−1
s

s−1
v

≤

≤ c2

∑

k≥0

2−nνθk(1− 1
r )(2k+1R)α−n

(

∥

∥

∥w2(·) 11{|·|≤2k+1R}(·)
∥

∥

∥

Lpq
u

×

×
∥

∥

∥

1
v(·)w1(·)

11{|·|<2(k+1)R}(·)
∥

∥

∥

∥

L
r

r−1
s

s−1
v

)θ

≤ c3Aθ.

For u(·) ∈ Dε,p,q(w2), 1 ≤ ε < (1− α
n )p and with the same choice of θ, then

∥

∥

∥w2(·)| · |α−n11{|·|>R}(·)
∥

∥

∥

θ

Lpq
u

≤c4

∑

k≥0

∥

∥

∥w2(·)| · |α−n11{2kR<|·|≤2k+1R}(·)
∥

∥

∥

θ

Lpq
u

≤
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≤c52R(α−n)θ
∑

k≥0

2k(α−n)θ
∥

∥

∥w2(·) 11{|·|≤2k+1R}(·)
∥

∥

∥

θ

Lpq
u

≤

≤c6R(α−n)θ
∑

k≥0

2−knθ[(1−α
n )− 1

p ε]
∥

∥

∥w2(·) 11{|·|<R}(·)
∥

∥

∥

θ

Lpq
u

≤

≤c7

(

R(α−n)
∥

∥

∥w2(·) 11{|·|<R}(·)
∥

∥

∥

Lpq
u

)θ

.

Clearly, by the latter estimate, condition (1.8) implies (1.9).

§ 4. Proofs of the Basic Lemmas and Propositions 8 and 9

In this section we prove Lemmas 2, 3, and 4 (which were used for the
proofs of our main results) and also Propositions 8 and 10.
Proof of Lemma 2. A proof of Part A with C = 1 was given in [6]. The
present case can be easily obtained by using a duality argument.

To prove Part B, assume that 0 < γ ≤ min(p, q). For p = q or q < p, the
key is based on the fact that ‖ · ‖

L
p
γ

q
γ

u

is equivalent to a norm. Hence

∥

∥

∥f(·)
∑

k

11Ek(·)
∥

∥

∥

γ

Lpq
u

=
∥

∥

∥

(

f(·)
∑

k

11Ek(·)
)γ∥

∥

∥

L
p
γ

q
γ

u

≤

≤c1

∥

∥

∥fγ(·)
∑

k

11Ek(·)
∥

∥

∥

L
p
γ

q
γ

u

≤c2

∑

k

∥

∥

∥fγ(·)11Ek(·)
∥

∥

∥

L
p
γ

q
γ

u

=c3

∑

k

∥

∥

∥f(·)11Ek(·)
∥

∥

∥

γ

Lpq
u

.

Now consider the case p < q, so γ ≤ p < q or γ
p ≤ 1 and 1 < q

γ . Thus for
a nonnegative sequence of reals (bj)j ∈ lθ, with

∑

j bθ
j ≤ 1 and θ = q

γ−q we
obtain

∥

∥

∥f(·)
∑

k

11Ek(·)
∥

∥

∥

γ

Lpq
u

≤ c4

[

∑

j

2jq
(
∑

k

∫

Ek∩{f(·)>2j}
u(y)dy

)
γ
p×

q
γ
]

γ
q

≤

≤c4

[

∑

j

[

2jγ
∑

k

(
∫

Ek∩{f(·)>2j}
u(y)dy

)
γ
p
]

q
γ
]

γ
q

≤
(

since
γ
p
≤ 1

)

≤c4

∑

k

∑

j

2jγ bj

(

∫

Ek∩{f(·)>2j}
u(y)dy

)
γ
p ≤

≤c4

∑

k

[

∑

j

2jq
(

∫

Ek∩{f(·)>2j}
u(y)dy

)
q
p
]

γ
q

≈ c4

∑

k

∥

∥

∥f(·)11Ek(·)
∥

∥

∥

γ

Lpq
u

.

The first part of this result was proved by Edmunds, Gurka, and Pick [4].
The second part can be derived by the first one with a duality argument.



ON THE BOUNDEDNESS OF CLASSICAL OPERATORS 197

Proof of Lemma 4. Since Mα is subadditive, for a fixed constant c > 0

‖w2(·) (Mαf)(·)‖λ
Lpq

u
≤ c(Pλ

1 + Pλ
2 + Pλ

3 ) for all f(·) ≥ 0

with

Pλ
1 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Mαf11{|y|≤2k−1}

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Pλ
2 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Mαf11Gk

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Pλ
3 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Mαf11{2k+2<|y|}

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

.

We have only to estimate Pλ
1 and Pλ

3 .
Estimate of Pλ

1 . The key is to prove
(

Mαf{|·|≤2k−1}

)

(x) ≤ c |x|(α−n)
[

∫

{|y|≤|x|}
f(y)dy

]

for all x ∈ Ek. (4.1)

Here c > 0 is a constant which depends only on α and n. Indeed, using
(4.1) we have

Pλ
1 ≤ c1

∥

∥

∥

∑

k∈Z
w2(·)| · |α−n

(

∫

|y|≤|·|
f(y)dy

)

11Ek(·)
∥

∥

∥

λ

Lpq
u

=

= c1

∥

∥

∥ w2(·)| · |α−n
(
∫

|y|≤|·|
f(y)dy

) ∥

∥

∥

λ

Lpq
u

= c1Sλ
1 .

To get inequality (4.1) observe that |y| ≤ |x|, for x ∈ Ek and |y| ≤
2k−1. Thus the support of g(·) = f(·)11{|y|≤2k−1}(·) is contained in the set
{y; |y| ≤ |x|} = {|y| ≤ |x|}. On the other hand, the term

∫

B(x,r) g(y)dy
does not vanish whenever r ≥ 2k+2. Consequently for such a real r

rα−n
∫

B(x,r)
g(y)dy ≤ c 2k(α−n)

∫

B(x,r)
g(y)dy ≤

≤ c′ |x|k(α−n)
∫

B(x,r)∩supp g
g(y)dy ≤ c′ |x|k(α−n)

∫

{|y|≤|x|}
f(y)dy;

so (4.1) is proved.
Estimate of Pλ

3 . To estimate Pλ
3 we claim that

(

Mαf{2k+2≤|·|}

)

(x) ≤ c sup
l≥2

{

d(α−n)
k+l

(

∫

Ek+l

f(y)dy
)}

for each x ∈ Ek, (4.2)

where dk+l = 2k+l and c = c(α, n) > 0. The proof of this claim is given
below.



198 Y. RAKOTONDRATSIMBA

First, the cases λ = p = q, λ ≤ q < p, and λ < p ≤ q are treated.
Observe that

[

∑

k∈Z

(

Mαf112k+2<|·|

)

(·) 11Ek(·)
]λ

≤
∑

k

(

Mαf112k+2<|·|

)λ
(·) 11Ek(·) ≤

≤ c
∑

k∈Z

[

sup
l≥2

{

d(s−n)
k+l

(
∫

Ek+l

f(y)dy
)}

]λ

11Ek(·) ≤

≤ c
∞
∑

l=2

∑

k∈Z

[

d(s−n)
k+l

(

∫

Ek+l

f(y)dy
)

]λ

11Ek(·) =

= c
∑

m∈Z

[

d(s−n)
m

(

∫

Em

f(y)dy
)

]λ m−2
∑

k=−∞

11Ek(·) =

= c
∑

m∈Z

[

d(s−n)
m

(

∫

Em

f(y)dy
)

]λ

11{|·|<2m}(·).

Since with the above hypotheses ‖ · ‖
L

p
λ

q
λ

u

is equivalent to a norm, we have

Pλ
3 ≤ cλ

∥

∥

∥ w2(·)λ
∑

m∈Z

[

d(s−n)
m

(

∫

Em

f(y)dy
)

]λ

11{|·|<2m}(·)
∥

∥

∥

L
p
λ

q
λ

u

≤

≤ C
∑

m∈Z

[

d(s−n)
m

(
∫

Em

f(y)dy
)

]λ ∥

∥

∥ w2(·) 11{|·|<2m}(·)
∥

∥

∥

λ

Lpq
u

.

Next the case λ = p < q is considered. The key point is hypothesis (1.6).
Thus

Pp
3 ≤ c

∥

∥

∥

∑

k∈Z

[

sup
l≥2

d(s−n)
k+l

(

∫

Ek+l

f(y)dy
)

]

w2(·) 11Ek(·)
∥

∥

∥

p

Lpq
u

≤

≤ C
∑

k∈Z

[

sup
l≥2

d(s−n)
k+l

(

∫

Ek+l

f(y)dy
)

]p ∥

∥

∥w2(·) 11Ek(·)
∥

∥

∥

p

Lpq
u

≤

(

by the second part of Lemma 2 (λ = p ≤ min(p, q))
)

≤ C
∞
∑

l=2

∑

k∈Z

[

d(s−n)
k+l

(

∫

Ek+l

f(y)dy
)

]p∥
∥

∥w2(·) 11Ek(·)
∥

∥

∥

p

Lpq
u

≤

≤ C
∑

m

[

d(s−n)
m

(

∫

Em

f(y)dy
)

]p m−2
∑

k=−∞

∥

∥

∥ w2(·) 11Ek(·)
∥

∥

∥

p

Lpq
u

≤

≤ C ′
∑

m

[

d(s−n)
m

(

∫

Em

f(y)dy
)

]p∥
∥

∥ w2(·) 11|·|<2m(·)
∥

∥

∥

p

Lpq
u

(

by (1.6)
)

.
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Now claim (4.2) can be proved. It is assumed that

S = sup
l≥2

2(α−n)(k+l)
[∫

{2k+l<|y|≤2k+l+1}
f(y)dy

]

< ∞.

Let x ∈ Ek. The claim is reduced to finding a constant c > 0 for which

rα−n
∫

B(x,r)
f(y)11{2k+2<|y|}(y)dy ≤ cS (4.3)

whenever
∫

B(x,r) f(y)11{2k+2<|y|}(y)dy is a non-vanishing term.
Consider r > 0 with

∫

B(x,r) f(y)11{2k+2<|y|}(y)dy 6= 0. There is an integer
m ≥ 2 for which B(x, r) ∩ {2k+m < |y| ≤ 2k+m+1} 6= ∅ and B(x, r) ∩
{2k+m+1 < |y| ≤ 2k+m+2} = ∅. Since 2k+m − 2k+1 < r ≤ 2k+m+1 and
m ≥ 2, we obtain 1

22k+m ≤ r < 22k+m. With these preliminaries

∫

B(x,r)
f(y)11{2k+2<|y|}(y)dy =

m
∑

l=2

∫

B(x,r)∩{2k+l<|y|≤2k+l+1}
f(y)dy ≤

≤
m

∑

l=2

∫

{2k+l<|y|≤2k+l+1}
f(y)dy ≤ S

m
∑

l=2

2(k+l)(n−α) ≤

≤S 22(n−α)

2(n−α) − 1
× 2[k+(m−1)](n−α) = c(α, n)S r(n−α).

The latter inequality immediately implies (4.3).
Proof of Lemma 5. First it is clear that for a fixed constant c > 0:

‖w2(·)(Tαf)(·)‖λ
Lpq

u
≤ c(Pλ

1 + Pλ
2 + Pλ

3 ) for all f(·) ∈ C∞c

with

Pλ
1 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Tαf11{|y|≤2k−1}

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Pλ
2 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Tαf11Gk

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

Pλ
3 =

∥

∥

∥

∑

k∈Z
w2(·)

(

Tαf11{2k+2<|y|}

)

(·) 11Ek(·)
∥

∥

∥

λ

Lpq
u

,

where Ek and Gk are defined as in the proof of Lemma 4. By the assumption
on Tα, the expressions (Tαf11{|·|≤2k−1})(·), (Tαf11Gk)(·), (Tαf11{2k+2<|·|})(·)
are well defined.

As in the proof of Lemma 4, the estimate for Pλ
1 will be obtained at once:

∣

∣

∣(Tsf{|·|≤2k−1})(x)
∣

∣

∣ ≤ c(α, n) |x|(α−n)
[

∫

{|y|≤|x|}
|f(y)| dy

]

for each x ∈ Ek.
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To get this inequality observe that |y| ≤ 1
2 |x| < |x| and 1

2 |x| ≤ |x − y| for
x ∈ Ek and |y| ≤ 2k−1. So using the standard estimate for the kernel K, we
have |K(x, y)| ≤ c|x− y|(α−n) ≤ c′|x|(s−n). Since x does not belong to the

support of the function (f{|y|≤2k−1})(·), we obtain
∣

∣

∣(Tsf11{|·|≤2k−1})(x)
∣

∣

∣ ≤
∫

{|y|≤2k−1} |K(x, y)||f(y)|dy ≤ C |x|(α−n)
[

∫

{|y|<|x|} |f(y)|dy
]

.
Similarly, the estimate for P3 is a consequence of

∣

∣

∣(Tsf{2k+2<|·|})(x)
∣

∣

∣ ≤ c(s, n)
[
∫

{|x|≤|y|}
|f(y)||y|(s−n) dy

]

for all x ∈ Ek.

Indeed, |x| < 2|x| ≤ |y| and 1
2 |y| ≤ |x − y|, for x ∈ Ek and 2k+2 < |y|. So

|K(x, y)| ≤ C|x− y|(s−n) ≤ C|y|(s−n). On the other hand, since x does not
belong to the support of the function (f11{2k+2<|y|})(·), we have

∣

∣

∣(Tsf11{2k+2<|·|})(x)
∣

∣

∣

∣

≤ C
[

∫

{|x|<|y|}
|f(y)||y|(s−n)dy

]

.
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