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Abstract
This paper proposes the use of F-split and globally F-regular conditions in the pursuit ofBAB
type results in positive characteristic. Themain technical work comes in the form of a detailed
study of threefold Mori fibre spaces over positive dimensional bases. As a consequence we
prove the main theorem, which reduces birational boundedness for a large class of varieties
to the study of prime Fano varieties.
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1 Introduction

There has been great success proving boundedness results in characteristic zero using the
techniques and results of the LMMP. Beyond dimension 2, however, there has not been much
progress in positive characteristic. This is perhaps a consequence of the relative newness of
the LMMP results in this setting, but it also tells of the existence of difficulties unique to
characteristic p.

In this direction, we prove the following.
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Theorem 1.1 Fix 0 < δ, ε < 1. Let Sδ,ε be the set of threefolds satisfying the following
conditions

• X is a projective variety over an algebraically closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F-split;
• (X ,�) is ε-klt and log Calabi-Yau for some boundary �; and
• The coefficients of � are greater than δ.

Then there is a set S′
δ,ε , bounded over Spec(Z) such that any X ∈ Sδ,ε is either birational

to a member of S′
δ,ε or to some X ′ ∈ Sδ,ε , Fano with Picard number 1.

The constraints on the characteristic of the field are required to control the singularities
arising in terminal Mori fibrations. In particular the p > 7 requirement ensures that terminal
del Pezzo fibrations have generically smooth fibres and the p > 2

δ
is needed to control the

singularities appearing in the base of a conic bundle. This in turn allows for lower dimensional
boundedness results to be applied.

The condition that X be terminal is to allow us to reduce to the case that X is a terminal
Mori fibre space. While we might normally achieve this by taking a terminalisation X̃ → X ,
we cannot do so while also ensuring that the coefficients of �̃ are still bounded below. In
fact while bounding the coefficients below is used to prove a canonical bundle formula for
Mori fibre spaces of relative dimension 1 it is in many ways the relative dimension 2 case
that forces the assumption X is terminal.

If (X ,�) → S is a kltMori fibre spacewith coefficients bounded below by 2
p thenwemay

freely take a terminalisation and run anMMP to obtain a tame conic bundle, which is what we
require for our boundedness proof. If however the relative dimension is 2 then after taking a
terminalisation and running anMMPwemay end with a Mori fibration of relative dimension
1, where we cannot easily control the singularities of the base. This happens whenever X is
singular along a curveC which maps inseparably onto the base and we expect this is the only
way it might happen.

The main motivation for this result comes from [9] where a similar result is proven in
the characteristic zero setting. More generally we have the following generalisation of BAB,
which essentially appeared in [24] and remains unsolved even in characteristic 0.

Conjecture 1.2 Fix κ , an algebraically closed field of characteristic 0, let d be a natural
number and take ε a positive real number. Then the projective varieties X over κ such that

• X has dimension d;
• (X , B) is ε-klt for some boundary B;
• −(KX + B) is nef; and
• X is rationally connected;

are bounded.

With the LMMP for klt pairs known in dimension 3 and characteristic p > 5, it is natural
to turn our attention to results and conjectures of this type in positive andmixed characteristic.
There are several major problems one would face in the pursuit of such a result, even in the
weaker case of birational boundedness in dimension 3, which do not arise in characteristic
zero. Perhaps the most immediate is that X rationally connected no longer removes the
possibility that KX �≡ 0. For example, in positive characteristic there are families of K3
surfaces which are rationally connected. It is not clear then, even in dimension 2, that such
a result would hold.
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It is also very difficult to control the singularities of the base, and indeed the fibres, of a
Mori fibre space, which makes proofs of an inductive nature very challenging. The failure of
Kawamata-Viehweg vanishing presents a similar difficulty.

Unique to positive characteristic, we have singularities characterised by properties of the
Frobeniusmorphism. In particular there are notions of globally F-split and globally F-regular
which can be thought of as positive characteristic analogues of lc log Calabi-Yau varieties
and klt log Fano varieties. While the exact nature of this analogy is the subject of a variety
of results and conjectures, it is expected, and often known, that these varieties should behave
similarly to their characteristic zero counterparts.

Most notably, in this context, the F-split and globally F-regular conditions are preserved
under the steps of the LMMP including Mori fibrations. In fact the conditions are also
preserved under taking a general fibre of a fibration. They also come naturally equipped
with vanishing theorems, with globally F-regular pairs satisfying full Kawamata-Viehweg
vanishing.

We also have some relevant characterisations of uniruled F-split varieties. If X is smooth
it cannot be simultaneously F-split, Calabi-Yau and uniruled. In particular, an F-split, canon-
ical surface cannot be uniruled and have pseudo-effective canonical divisor.

In many ways then, global F-singularities begin to resolve the most obvious difficulties
in proving positive characteristic boundedness results. They present their own problems
however, there is no satisfactory notion of “ε-F-split” or “ε-globally F-regular”whichmakes
it difficult to work solely with these notions in the context of boundedness.

That said, while the F-split and globally F-regular conditions fit naturally into the study of
log pairs, we may also choose to consider them as properties of the underlying base varieties.
In such a way we may formulate the following questions, though in practice even the most
optimistic might expect further conditions on the characteristic. One could also reasonably
ask that the ε-klt pair (X , B) is itself F-split, or globally F-regular, in place of the base
variety.

Question 1.3 Fix d a natural number and ε a positive real number. Then is the set, S, (resp.
S′) of projective varieties X such that (1) − (4) (resp. (1), (2), (3′), (4′)) hold bounded over
Z?

(1) X has dimension d over some closed field κ .
(2) (X , B) is ε-klt for some boundary B.
(3) −(KX + B) is big and nef.
(3’) KX + B ≡ 0.
(4) If κ has characteristic p > 0, then X is globally F-regular.
(4’) If κ has characteristic p > 0, then X is F-split and rationally chain connected.

Remark 1.4 Here rationally chain connected is chosen over rationally connected in light of
[16] which shows that globally F-regular threefolds are rationally chain connected in charac-
teristic p > 7. Further in characteristic zero, under mild assumptions on the singularities (X
admits a boundary � with (X ,�) dlt), rational chain connectedness coincides with rational
connectedness so this is still a natural generalisation. In any case, in dimension 3 the globally
F-regular condition is strictly stronger than F-split and rationally chain connected whenever
the characteristic is greater than 7.

In fact other than the case of Fano varieties of Picard number 1, Gongyo et al are able to
show separable rational connectedness. This might, therefore, also be a natural condition to
impose instead, especially since the classical proof of the boundedness of characteristic zero
prime Fano threefolds so heavily relies on the existence of a free curve.
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Given Question 1.3, it is natural to ask what can be gleaned from Theorem 1.1 about
globally F-regular varieties of the type described in Question 1.3. Unfortunately the answer
is very little, while every globally F-regular variety is F-split and if X is of ε-log Fano type
it is also of ε-LCY type, we cannot sensibly ensure that the resulting ε-LCY pair (X ,�) has
coefficients bounded below, even if we require it for the pair ε-log Fano pair (X ,�′).

As part of this work we prove the following weak BAB result in Theorems 6.1 and 6.4.
This draws heavily on the arguments of Jiang in [19].

Theorem 1.5 Fix 0 < δ, ε < 1 and let Tδ,ε be the set of threefold pairs (X ,�) satisfying the
following conditions

• X is projective over a closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F-split;
• (X ,�) is ε-klt and LCY;
• The coefficients of � are greater than δ; and
• X admits a Mori fibre space structure X → Z where Z is not a point.

Then the set {Vol(−KX ) : ∃� with (X ,�) ∈ Tδ,ε} is bounded above.
Remark 1.6 Together with the observation that taking a terminalisation and running a KX -
MMP can only increase the anti-canonical volume, we reduced weak BAB for varieties in
S�,ε to the case of prime Fano varieties of ε-LCY type. Over a fixed field, however, this
is essentially superseded by the result of [12], which gives weak BAB for varieties X with
KX + � ≡ 0 for some boundary � taking coefficients in a DCC set and making (X ,�) klt.

Results similar to Theorem 1.1 and Theorem 1.5 are proven in [36, Theorem 1.7, Theorem
1.8] for Fano threefolds satisfying certain conditions on the Seshadri constant at a smooth
closed point. Further these conditions are closely related to global F-regularity by [36,
Theorem 1.3].

We begin by collecting some relevant definitions and results for later usage. Then Sect. 4
establishes key results about the behaviour of conic bundles in sufficiently high characteristic.
Next Sect. 5 contains the key boundedness arguments, with weak BAB deferred to Sect. 6.
Finally Theorem 1.1 is proved in Sect. 7.

2 Definitions

2.1 MMP Singularities

Here K will be taken to mean either R or Q. If no field is specified, it is taken to be R. We
outline the key notions of singularity arising in the MMP.

Definition 2.1 Let X be a normal variety. A K-boundary is an effective K-divisor � where
KX + � is K-Cartier and the coefficients of � are at most 1.

A K pair is a couple (X , B) where X is normal and B is a K-boundary.
If B is not effective but (X , B) would otherwise be a K pair we call it a K sub pair.

Since KX + � is R-Cartier, we may pull it back along any morphism π : Y → X . If π

is birational then there is a unique choice of �Y = ∑ −a(Y , E, X ,�)E which agrees with
� away from the exceptional locus of π such that π∗(KX + �) ∼R KY + �Y . In a slight
abuse of notation we write f ∗(KX + �) = (KY + �Y ).
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Suppose that f : Y → X is birational morphism of normal varieties and there is a some
normal variety Z with g : Z → Y . If E is a divisor on Y with strict transform E ′ on Z then
a(Z , E ′, X ,�) = a(Z , E ′, Y ,�Y ) = a(Y , E, X ,�). We may view then the coefficients
a(Y , E, X ,�) as being independent of Y and write a(E, X ,�) instead.

Definition 2.2 Given a sub pair (X ,�) we define the discrepancy

Disc(X ,�) := inf{a(E, X ,�) such that E is exceptional and has non-empty center on X}
and the total discrepancy

TDisc(X ,�) := inf{a(E, X ,�) such that E has non-empty center on X}
We then use these to define a suite of singularities.

Definition 2.3 Let (X ,�) be a (sub) pair then we say that (X ,�) is

• (Sub) terminal if Disc(X ,�) > 0.
• (Sub) canonical if Disc(X ,�) ≥ 0.
• (Sub) plt if Disc(X ,�) > −1.
• (Sub) ε-klt if TDisc(X ,�) > ε − 1.
• (Sub) ε-lc if TDisc(X ,�) ≥ ε − 1.

For ε = 0 we say klt, lc respectively.
When we have resolution of singularities there is another, more practical version.

Definition 2.4 Let (X ,�) be a (sub) pair and π : Y → X a log resolution of (X ,�). Let

t = min{a(E, X ,�) such that E is a divisor on Y }
and

d = min{a(E, X ,�) such that E is an exceptional divisor of π : Y → X}.
Then (X ,�) is

• (Sub) ε-klt if t > ε − 1;
• (Sub) ε-lc if t ≥ ε − 1.

If � = 0 then X is

• terminal if d > 0;
• canonical if d ≥ 0;

This also gives rise to an additional notion of singularity, which is dependent on the choice
of resolution and can be thought of as the limit of a klt pair.

Definition 2.5 A pair (X ,�) is called dlt if there is a log resolution π : Y → X of (X ,�)

with KY + �Y = π∗(KX + �) such that CoeffE (�Y ) < 1 for every E exceptional.

If (X ,�) is sub klt or sub lc etc and π : Y → X is a birational morphism from a normal
variety and KY + �Y = π∗(KX + �) then (Y ,�Y ) has the same singularities. Conversely
we have the following.
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103 Page 6 of 30 L. Stigant

Lemma 2.6 [17, Lemma 3.38] Suppose (X ,�), (X ′,�′) are pairs equipped with proper
birational morphisms f : X → Y and f ′ : X ′ → Y with f∗� = f ′∗�′.

Suppose further that −(KX + �) is f nef and (KX ′ + �′) is f ′ nef. Then a(E, X ,�) ≤
a(E, X ′,�′) for any E with non-trivial center on Y .

In particular, these notions of singularity are preserved under a (KX + �) MMP.

Definition 2.7 A (sub) ε-klt pair (X ,�) where KX +� ≡ 0 is said to be (sub) ε-log Calabi-
Yau, or just (sub) ε-LCY.

If instead −(KX + �) is big and nef, it is said to be (sub) ε-log Fano.

Again for ε = 0 we just say LCY and log Fano, equally if � = 0 we drop the log.
Of particular interest is the class of prime Fano varieties which we may think of as Mori

fibre spaces over a point.

Definition 2.8 A terminal Fano variety is said to be prime if it has Picard rank 1.

Corollary 2.9 Suppose that (X ,�) is (sub) ε-LCY and f : X ��� X ′ is either a flip or a
divisorial contraction then (X ′, f∗�) is (sub) ε-LCY.

Proof Both (KX + �) and (KX ′ + �′) are numerically trivial so it suffices to show that
(KX ′ + �′) is R-Cartier by Lemma 2.6.

If g : X → Y is the contraction of an extremal ray and D ≡g 0 is Cartier, there is
some L Cartier on Y with g∗L = D. Suppose first that f is a divisorial contraction. Then
KX + � = f ∗L , say, and so KX ′ + �′ = L by the projection formula.

Otherwise f is a flip and there is g : X → Y a flipping contraction together with g′ : X ′ →
Y such that f = g′−1 ◦ g. Hence writing KX + � = g∗L again gives KX ′ + �′ = g′∗L .

In either case, (KX ′ + �′) is R-Cartier. �
Wewill be interested in LCYvarieties inwhich general points can be connected by rational

curves in the following senses.

Definition 2.10 Let X be a variety over a field κ . Then X is said to be:

• Uniruled if there is a proper family of connected curves f : U → Y where the generic
fibres have only rational components together with a dominant morphismU → X which
does not factor through Y .

• Rationally chain connected (RCC) if there is f : U → Y as above such that u2 : U ×Y

U → X ×k X is dominant.
• Rationally connected if there is f : U → Y as above witnessing rational chain connect-

edness such that the general fibres are irreducible.
• Separably rationally connected if f as above is separable.

If X → X ′ is a dominant morphism from X uniruled/RCC/rationally connected then we
may compose U → X → X ′ to see that X ′ is uniruled/RCC/rationally connected.

2.2 F-Singularities of pairs

We now introduce Frobenius singularities, unique to positive characteristic. We focus on the
F-pure and F-split conditions, as F-regularity will not be needed.
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Definition 2.11 Given a κ algebra R in positive characteristic we denote the Frobenius mor-
phism by F : R → R sending x → x p . Any R module M then has an induced module
structure, denoted F∗M where R acts as r .x = F(r)x = r px . Finally R is said to be F-finite
if F∗R is a finite R module. These definitions naturally extend to schemes over κ .

Note that all perfect fields are F-finite, and so is every variety over an F-finite field. In
this context we can view the Frobenius morphism as a map of R modules F : R → F∗R. We
will also write Fe : R → Fe∗ R for the eth iterated Frobenius.

Definition 2.12 Let X be a variety over an F-finite field. We say X is:

• F-pure if the Frobenius morphism OX → F∗OX is pure, or equivalently locally split.
• (Globally) F-split if the Frobenius morphism OX → F∗OX is split.

Being F-split is a particularly strong condition, giving the following vanishing result
almost immediately.

Lemma 2.13 Let X be an F-split variety and A an ample Q-Cartier divisor. Then
Hi (X , A) = 0 for all i > 0.

Proof By assumptionOX → Fe∗OX splits, and hence so does A = A⊗OX → A⊗Fe∗OX =
Fe∗ Ape . That is we have id : A → Fe∗ Ape → A, and taking cohomology we see that
Hi (X , A) injects into Hi (X , Fe∗ Ape ) = Hi (X , Ape ) which vanishes for e >> 0. �
Take X a normal variety. To mirror the notion of a boundary we introduce pairs (L, φ) where
L is a line bundle and φ : Fe∗L → OX . By applying duality on the smooth locus, which
contains all the codimension 1 pointsweobserve thatHomOX (Fe∗L,OX ) = H0(X ,L−1((1−
pe)KX )). Therefore such apair corresponds to adivisor�φ ≥ 0with (pe−1)(KX+�φ) ∼ L.
Reversing this procedure is slightly more involved. If (pe − 1)(KX + �) ∼ L (we write this
KX + � ∼Z(p) L) we may obtain φ� : Fe∗L → OX , however we could also write say
(p2e − 1)(KX + �) ∼ L′ where L′

� L. We introduce, therefore, the following notion of
equivalence.

First, we say that two such pairs, (L, φ) and (L′, φ′) are equivalent if:
• There is an isomorphism ψ : L → L′ such that following diagram commutes; or

Fe∗L Fe∗L′

OX

φ

Fe∗ ψ

φ′

• L = Lpe
′+1 and φ′ : Fe+e′

∗ Lpe
′+1 → OX is the precisely the map given by

Fe+e′
∗ (L ⊗ Lpe

′
)

Fe∗ φ−−→ Fe∗L
φ−→ OX .

We then expand the notion of equivalence to allow any finite combination of the above
equivalences, more precisely we take the transitive closure of our initial relation. This gives a
bijection between equivalence classes of pairs (L, φ) and� ≥ 0 with (KX +�) Z(p)-Cartier.
Full details on such pairs can be found in Chapter 16 of Schwede’s notes on F-singularities
[29].

To extend this framework to allow for sub pairs we can instead work with morphisms
Fe∗L → K (X)where we view K (X) as a constant sheaf on X . Given such a morphism φ, we
can always find E ≥ 0 Cartier such that when we twist by E we obtain φ′ : = Fe∗ (L((1 −
pe)E)) → OX and thus associate a divisor �φ′ with (1 − pe)(KX + �φ′) ∼ L((1 − pe)E
and then take �φ = �φ′ − E .
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103 Page 8 of 30 L. Stigant

Lemma 2.14 [14, Lemma 2.3]With the notation as above,�φ does not depend on the choice
of E.

Definition 2.15 A sub Z(p) pair is a couple (X , B) where (KX + B) is Z(p)-Cartier and

the coefficients of B are at most 1. We write φeB : Fe,B∗ Le,B → K (X) for the associated
morphism dropping the dependence on B when it remains clear. If B is effective (X , B) is
called a Z(p) pair and we view φ as being a morphism to OX .

Let (X , B) be a (sub) Z(p) pair, then (X , B) is

• (sub) F-pure if OX ⊆ Im(φe) for some e.
• (sub) F-split if 1 ∈ Im(H0(X , φe)) for some e.

Being F-split is also sometimes called globally F-split to distinguish to from F-pure, which
can be thought of as being locally split.

Locally to a point of codimension 1 these definitions are particularly well-behaved.

Lemma 2.16 [14, Lemma 2.14] Let R be a regular DVR with parameter t , then a sub Z(p)

pair (R, λt) is sub F-pure iff λ ≤ 1 and sub F-regular iff λ < 1.

In particular we see that the coefficient of �φ at E depends only on φ near E .

Corollary 2.17 Suppose φ : Fe∗L → K (X) has associated divisor � then 1 − CoeffE (�) =
inf{t : (X ,� + t E) is F-pure at the generic point of E}.

While these definitions do not pullback along birational morphisms as obviously as the
usual MMP singularities, it is still possible.

Lemma 2.18 [7, Lemma 7.2.1] Suppose that f : X → Y is a birational morphism with X
normal and (Y ,�) a sub F-split pair. Then there is �′ on X making (X ,�′) a sub F-split
pair such that (KX + �′) = f ∗(KY + �).

Proof Take the corresponding map φ : Fe∗L → K (Y ). Then we may freely view L as a
subsheaf of K (X) and so extend φ to a map φ : Fe∗ K (Y ) → K (Y ). Taking the inverse image
gives f −1(φ) : f −1Fe∗ K (Y ) → f −1K (Y ) and f −1Fe∗L → f −1K (Y ). Since π is birational
we obtain an isomorphism f −1K (Y ) → K (X). We then have the following situation.

f −1Fe∗ (L) ⊗ f −1Fe∗OY
Fe∗OX Fe∗ K (X) K (X)

f −1Fe∗ (L) f −1Fe∗ K (Y ) f −1K (Y )
f −1(φ)

∼ ∼

Note however that f −1Fe∗ (L) ⊗ f −1Fe∗OY
OX = Fe∗ f ∗L and hence we obtain the desired

map φ̃ : Fe∗ f ∗L → K (X). This induces a divisor �′ on X with

(pe − 1)(KX + �′) ∼ f ∗L ∼ (pe − 1) f ∗(KY + �).

The coefficient of�′ at a codimension one point can be recovered from φ̃ by working locally
around that point. In particular, wherever f is an isomorphism, φ and φ̃ agree. Therefore
the coefficients of � and �′ agree on this locus also, so we have f ∗(KY + �) = (KX +
�′) as required. Moreover commutativity of the earlier diagram gives that whenever 1 ∈
Im(H0(Y , φ)) then it is also in the image of H0(X , φ̃), and hence (X ,�) is sub F-split. �

In general the local forms of these singularities cannot be pushed forward, however the
global ones often can be, even along morphisms which are not birational.
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Lemma 2.19 [14, Theorem 5.2] Suppose that (X ,�) is sub F-split and there is a map
f : X → Y with f∗OX = OY and (KX + �) ∼Z(p) f ∗L for some line bundle L on Y . If
every component of � which dominates Y is effective then there is �Y with (Y ,�Y ) sub
F-split and L ∼Z(p) (KY + �Y ).

If f : X → Y is birational then the conditions are automatically satisfied and the induced
�Y is just the pushforward f∗� by Corollary 2.17. Therefore if X is sub F-split so is every
X ′ birational to X . Further if X is F-split and X ′ is obtained by taking a terminalisation or
running a KX + B MMP for any B then X ′ is F-split.

2.3 Boundedness

Finally we introduce the relevant notions of boundedness.

Definition 2.20 We say that a setX of varieties is birationally bounded over a base S if there
is a flat, projective family Z → T , where T is a reduced quasi-projective scheme over S,
such that every X ∈ X is birational to some geometric fibre of Z → T . If the base is clear
from context, say if every X ∈ X has the same base, we omit dependence on S.

If for each X ∈ X the map to a geometric fibre is an isomorphismwe say thatX is bounded
over S.

If S = Spec R we often just say (birationally) bounded over R. In practice we characterise
boundedness over Z via the following result, coming from existence of the Hilbert and Chow
schemes.

Lemma 2.21 [32, Proposition 5.3] Fix integers d and r. Then there is a flat projective family
Z → T where T is a reduced quasi-projective scheme over Z satisfying the following
property. If

(1) κ is a field;
(2) X is a geometrically integral projective scheme of dimension r over κ; and
(3) there is a closed immersion j : X → P

m
κ for some m ∈ Z such that j∗(O(1))r ≤ d.

Then X is realised as a geometric fibre of Z → T

Corollary 2.22 Suppose X is a set of varieties over closed fields and there are positive real
numbers d, V such that for every X ∈ X,

• X has dimension at most d; and
• There is M on X with φ|M| birational and Vol(M) ≤ V .

Then X is birationally bounded over Z. If in fact each M is very ample then X is bounded.

Conversely, if S is Noetherian then we may always choose H relatively very ample on
Z → T with trivial higher direct images. The restriction of H to any geometric fibre is
therefore very ample, and of bounded degree.

3 Preliminary results

In this section we gather necessary results for later usage. We begin with some results on
surfaces, followed by someMMP results and their applications. We also collect some Bertini
type theorems at the end of the section.
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Theorem 3.1 [1, Theorem 6.9] Fix ε > 0 and an algebraically closed field of arbitrary
characteristic. Let S be the set of all projective surfaces X which admit a � such that:

• (X ,�) is ε-klt;
• −(KX + �) is nef; and
• Any of the following holds KX �≡ 0, � �= 0, X has worse than Du Val singularities.

Then S is bounded.

Alexeev shows boundedness over a fixed field, however it is not immediately clear if such
varieties are collectively bounded over Z. We briefly show that his methods can be extended,
via the arguments of [34] to give a boundedness result in mixed characteristic.

Theorem 3.2 Fix ε a positive real number. Let S be the set of projective surfaces X such that
following conditions hold:

• X is a variety over some closed field κ;
• (X , B) is ε-klt for some boundary B;
• −(KX + B) is nef; and
• X is rationally chain connected and F-split (if κ has characteristic p).

Then S is bounded.

Proof We consider first Ŝ := {X ∈ S : KX �≡ 0}. Take any such X ∈ Ŝ, then by Alexeev [1,
Chapter 6] we have the following:

• The minimal resolution X̃ → X has ρ(X) < A, for some constant A, depending only
on ε and admits a birational morphism to P

2 or Fn for n < 2
ε
. In particular there is a set

Tε bounded over Z such that every X̃ is a blowup of some Y ∈ Tε along a finite length
subscheme of dimension 0. That is the set of minimal desingularisations is bounded over
Z.

• We may run a KX -MMP to obtain X ′ a Mori fibre space.
• There is an N , independent of the field of definition, such that NKX ′ is Cartier for any

Mori fibre space X ′ obtained as above.
• Vol(−KX ′) is bounded independently of the base field.
• If X ′ is such a Mori fibre space X ′ → P

1 and F a general fibre then −KX + ( 2
ε

− 1)F
is ample.

It is sufficient then to show S′ = {X ′ an ε − LCY type, Mori fibre space } is bounded in
mixed characteristic, then Ŝ is bounded by sandwiching as in Alexeev’s original proof and
the full result follows. In turn by Corollary 2.22 it is enough to find V such that every X ′ ∈ S′
has a very ample divisor, H , satisfying H2 ≤ V . We do this first for positive characteristic
varieties.

Fix, then,m > 2
ε
−1 and suppose X ′ → P

1 is aMori fibre space in positive characteristic.
Then A = −KX ′ + mF is ample and N A is Cartier. Further we have that A′ = 7NKX ′ +
27N 2A = (7N−27N 2)KX ′ +27N 2mF is very ample by [34, Theorem 4.1]. Since F is base
point free, we may add further multiples of F and consider the very ample Cartier divisor
Â = (27N 2 − 7N )(−KX ′ + 2mF). Then

Â2 = Vol(X ′, Â) ≤ (27N 2 − 7N 2)(Vol(X ′,−KX ′) + 2mVol(F,−KF ))

which is bounded above, since Vol(X ′,−KX ′) is bounded and Vol(F,−KF ) = 2.
Similarly if X ′ has ρ(X ′) = 1 and−KX ′ ample then−nKX ′ is a very ample Cartier divisor

with vanishing higher cohomology for some n fixed independently of X ′. Then (−nKX ′)2 =
n2Vol(X ,−KX ′) is bounded and the result follows similarly.
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Suppose then that X ∈ Swith KX ≡ 0, then itmust haveworse than canonical singularities
by Corollary 3.5. Let π : Y → X be a minimal resolution, with KY + B = π∗KX ≡ 0 and
B > 0, then Y is still ε-klt, so Y ∈ Ŝ. Consequently X has Q-Cartier Index dividing N also.
Moreover, there is H on Y very ample with H2 bounded above. Let H ′ = π∗H , so that NH ′
is ample and Cartier on X . Applying [34, Theorem 4.1] again we see that A ≡ 27N 2H is
very ample, since KX ≡ 0, with A2 bounded above.

The arguments in characteristic 0 are essentially the same,making use of Kollár’s effective
base-point freeness result [20, Theorem 1.1, Lemma 1.2] instead of Witaszek’s result, and
the existence of very free rational curves on smooth rationally connected surfaces instead of
Corollary 3.5. �
Remark 3.3 In particular we have an affirmative answer to Question 1 in dimension 2.

Theorem 3.4 [25, Theorem 1.2] Let X be a normal, Cohen Macaulay variety with WO-
rational singularities over a perfect field of positive characteristic. Then X cannot
simultaneously satisfy all the following conditions.

(1) X is uniruled.
(2) X is F-split.
(3) X has trivial canonical bundle.

If in fact X is smooth then we may replace KX ∼ 0 with KX ≡ 0.

We refer to [25, Definition 3.8] for a definition of WO-rational singularities. It suffices
to know that regular varieties have WO-rational singularities, from which we obtain the
following.

Corollary 3.5 Let X be a uniruled, F-split surface over a perfect field of positive character-
istic. If KX ≡ 0 then X has worse than canonical singularities.

Proof Suppose for contradiction that X has canonical singularities. Then we can replace X
with its minimal resolution and suppose that X is smooth. In particular it is Cohen-Macaulay
and has WO-rational singularities. We then apply Theorem 3.4 to obtain the result.

�
Lemma 3.6 [18, Lemma 2.5] Suppose X is projective and normal, D is an R-Cartier divisor
and S is a basepoint free normal and prime divisor. Then for any q > 0,

Vol(X , D + qS) ≤ Vol(X , D) + q dim(X)Vol(S, D|S + qS|S).
We now collect the necessary results from the positive characteristic MMP and consider

a few applications.

Theorem 3.7 [6, Theorem 1.7], [5, Theorem 1.2] Let k be an algebraically closed field
of characteristic p > 5. Let (X ,�) be a three-dimensional klt pair over k, together with a
projectivemorphism X → Z a quasi-projective k scheme, then there exists a (KX +�)-MMP
over Z that terminates.

In particular, if X is Q-factorial, then there is a sequence of birational maps of three-
dimensional normal and Q-factorial varieties:

X =: X0
ϕ0��� X1

ϕ1��� · · · ϕ�−1��� X�

such that if �i denotes the strict transform of � on Xi , then the following properties hold:
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(1) For any i ∈ {0, . . . , �}, (Xi ,�i ) is klt and projective over Z.
(2) For any i ∈ {0, . . . , �−1},ϕi : Xi ��� Xi+1 is either a (KXi +�i )-divisorial contraction

over Z or a (KXi + �i )-flip over Z.
(3) If KX + � is pseudo-effective over Z, then KX�

+ �� is nef over Z.
(4) If KX + � is not pseudo-effective over Z, then there exists a (KX�

+ ��)-Mori fibre
space X� → Y over Z.

Theorem 3.8 [15, Theorem10.4]Let X beanormal quasi-projective variety of any dimension
and characteristic for which the log MMP holds. Let B be an effective divisor with KX + B
R-Cartier then there is a birational morphism f : Y → X, called a dlt modification, such
that the following holds:

• Y is Q-factorial;
• a(E, X , B) ≤ −1 for every f exceptional divisor E;
• If BY = f −1∗ B ′ + ∑

E exceptional E then (Y , BY ) is dlt; and
• KY + BY + F = f ∗(KX + B) where F = ∑

E : a(E,X ,B)<−1 −(a(E, X , B) + 1)E.

where B ′ has coefficient min{CoeffE (B), 1} at each E. Further if (X , B) is a log pair then
F is exceptional.

Theorem 3.9 (Nlc Cone Theorem) Let (X ,�) be a threefold Q-pair, over a closed field of
characteristic p > 5. Then write N E(X/T )nlc for the cone spanned by curves contained in
the non log canonical locus of X. Then we have the following decomposition

N E(X)(X) = NE(X)KX+B≥0 + NE(X)nlc + Ri

where Ri are extremal rays with Ri ∩ NE(X)nlc = {0}, generated by curves Ci such that
0 > (KX + B).Ci ≥ −6.

Proof If (X ,�) is dlt this is part of the usual Cone Theorem [6, Theorem 1.1].
Suppose next that � = B + F where (X , B) is dlt and F has support contained in �B�.

Note that if C is an irreducible curve with F .C < 0 then C ⊆ F . Therefore any effective
curve C can be written C = C0 + CF where F .C0 ≥ 0 and CF ⊆ F . Thus by compactness
of the unit ball in a finite dimensional vector space, any [γ ] ∈ NE(X/T ) can be written
[γ ] = [γ0] + [γF ] with F .γ0 ≥ 0 and [γF ] ∈ NE(F/T ) in the same fashion.

Take any KX +� negative extremal ray L . Take a non-zero [γ ] ∈ L , then as L is extremal
we have [γF ], [γ0] ∈ L . If [γF ] �= 0 then L ⊆ NE(F/T ). Otherwise if [γF ] = 0 then L is
KX + B negative. Hence we can conclude the result from the Cone Theorem for dlt pairs.

Suppose finally that X is not dlt. Let π : Y → X be a dlt modification of (X , B) with
(Y , BY ) dlt and KY +BY +F = π∗(KX+B). Take any KX+B negative extremal ray, L , such
that L ∩ NE(X)nlc = {0}. Take any class γ with [γ ] ∈ L \ {0} and choose [γ ′] ∈ NE(Y/T )

with f∗[γ ′] = [γ ]. Then by the projection formula we have that (KY + BY + F).γ ′ =
(KX + B). f∗γ ′ = (KX + B).γ < 0.

From above, we can write γ ′ = C0+CF +∑
λiCi where λi > 0, (KY +BY +F).C0 ≥ 0

CF ∈ NE(F/T ) and the Ci each generate (KY + BY + F) negative extremal rays with
−(KY + BY + F).Ci ≤ 6. From our choice of R wemust have f∗C0 = f∗CF = 0 and hence
it follows that [ f∗Ck] ∈ R\{0} for some k. Thus (KX+B). f∗Ck = (KY +BY +F).Ck ≥ −6.

Since each R is the pushforward of a (KY + BY ) negative extremal ray, there are only
countably many generating curves Ci and they cannot accumulate in (KX + �)<0 else they
would accumulate on Y also. �
Lemma 3.10 Let X be a normal curve over any field and� ≥ 0 be a divisor with−(KX +�)

big and nef. Then the non-klt locus of � is either empty or geometrically connected.
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Proof If −(KX + �) is big and nef then so is −KX . After base changing to H0(X ,OX ) if
necessary we have deg KX = −2 by [31, Corollary 2.8] giving that deg� < 2. The non-klt
locus of (X ,�) is precisely the support of ��� and hence can contain at most one point. �
Theorem 3.11 [31, Theorem 5.2] Let (X ,�) be a surface log pair over any field κ . Let
π : X → S be a morphism of κ schemes with π∗OX = OS. Suppose that −(KX + �) is
π-nef and π-big, then for any s ∈ S XS ∩ Nklt(X ,�) is either empty or geometrically
connected.

Theorem 3.12 [Weak Connectedness Lemma] Let X be a threefold over any closed field κ

of characteristic p > 5 together with � ≥ 0 on X such that KX + � is R-Cartier. Suppose
that −(KX + �) is ample, then Nklt(X ,�) is either empty or connected.

Proof If (X ,�) is klt the result is trivially true, so suppose otherwise.
Let (Y ,�Y ) → (X ,�) be a dlt modification. Then−L := KY +�Y +F = f ∗(KX +�)

with (Y ,�Y ) dlt and L nef and big. We may further write L = A + E with A ample and E
effective and exceptional over X . In particular E has support contained inside SY = ��Y �.
Note that SY maps surjectively ontoNklt(X ,�) so it is sufficient to show that SY is connected.

Take a general GY ∼ εA + (1 − ε)L − δSY , then for small δ we may assume GY is
ample, and hence further that (X ,�Y + GY ) is dlt. Write KY + �Y + GY ∼ −PY =
−(εE + F + δSY ) and note Supp(PY ) = SY . In particular KY + �Y + GY is not pseudo-
effective and hence we may run a (Y ,�Y + GY ) LMMP which terminates in a Mori fibre
spaces Y ′ → Z . By the arguments of [5, Theorem 9.3] on the induced pair (Y ′,�Y ′),
Nklt(Y ′,�Y ′) = Supp(��Y ′ �) = Supp(PY ′) has the same number of connected components
as Nklt(X ,�), so it suffices to prove the result here.

Suppose first that dim Z = 0. Then ρ(Y ′) = 1. In particular if D, D′ are effective and
H ample, then H .D.D′ > 0, so certainly D.D′ > 0. Thus PY ′ cannot have disconnected
support.

Suppose next that dim Z > 0. Let T be the generic fibre. We must have PY ′ |T > 0 since
Y ′ → Z is a PY ′ ∼ −(KY ′ + �Y ′ + GY ′) positive contraction. However PY ′ has the same
support as ��Y ′ � so at least one connected component must dominate Z . Suppose then, for
contradiction, there is a second connected component. Clearly it must also dominate Z , else it
could not possibly be disjoint from the first. Consider then (T ,�T = �Y ′ |T ). Since T → Y ′
is flat, the pullback of �Y ′ is just the inverse image, and in particular ��T � contains the
pullback of both connected components. Suppose R is the extremal ray whose contraction
induces the Mori fibration. Then we have −(KY ′ + �Y ′ + GY ′).R > 0, but since R is
spanned by a nef curve, as contracting it defines a fibration, and GY ′ is effective, we must
have GY ′ .R ≥ 0. Hence in fact −(KY ′ + �Y ′).R > 0 also, and so −KT + �T is ample.
Then, however, the non-klt locus of (T ,�T ) must be connected, a contradiction. �
Lemma 3.13 [23, Proposition 4.37]Suppose that (S, B) is a klt surface and (KS+B+D) ∼ 0
for D effective, integral and disconnected, then D has exactly two connected components.

Finally we collect some needed Bertini type theorems.

Theorem 3.14 [30, Theorem 1] Let (X ,�) be a log canonical (resp. klt) pair over an alge-
braically closed field where � is an effective Q-divisor. Suppose D is a semiample divisor
on X then there is an effective divisor D′ ∼ D with (X ,� + D′) log canonical (resp. klt).

Corollary 3.15 Suppose that (X ,�) is a sub klt pair over analgebraically closedfield together
with D a divisor on X and π : (X ′,�′) → X a log resolution of (X ,�). Further assume
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that there is some D′ on X ′ with π∗D′ = D, −(KX ′ + �′ + D′) π-nef, (X ,�′) sub klt and
D′ semiample. Then there is E ∼ D on X effective with (X ,�+ E) sub klt. If in fact (X ,�)

is ε-klt then we may choose E such that (X ,� + E) is also.

Proof Wemaywrite�′ = �p−�n as the difference of two effective divisors. Since (X ′,�′)
is log smooth wemust have that (X ′,�p) is klt. Thus by the proceeding theoremwe have that
there is some E ′ ∼ D′ with (X ′,�p + E ′) klt. Then we must also have that (X ′,�′ + E ′) is
sub kltWrite E = π∗E ′, then R = π∗(KX+�+E)−(KX ′ +�′+E ′) ≡ f −(KX ′ +�′+D′)
is π-nef and exceptional. Hence by the negativity lemma we have that −R is effective, and
π∗(KX + � + E) ≤ (KX ′ + �′ + E ′) giving that (X ,� + E) is klt.

If (X ′,�) is ε-klt then so is (X ′,�p). Let δ = min(1−ε−ci )where ci are the coefficients
of �p and take m ∈ N such that 1

m < δ. Applying the previous theorem to mD′ instead of
D′, yields E ′′ ∼ mD with (X ′,�′ + E ′′) klt. Taking E ′ = 1

m E then continuing as above
gives the required divisor. �
Theorem 3.16 [26, Corollary 1.6] Let f : X → Z be a projective fibration of relative dimen-
sion 2 from a terminal variety with f∗OX = OZ over a perfect field of positive characteristic
p > 7, such that −KX is ample over Z. Then a general fibre of f is smooth.

Theorem 3.17 [Bertini for residually separatedmorphisms] [10, Theorem1]Let f : X → P
n

a residually separated morphism of finite type from a smooth scheme over a closed field. Then
the pullback of a general hyperplane H on P

n is smooth.

Here residually separated means that the induced map on residue fieldsOX ,x → OPn , f (x)

is a separable extension.

4 Conic bundles

In this section the ground field will always be algebraically closed of characteristic p > 0.
In some results we put additional restrictions on the characteristic, most often that p �= 2.
We start with some useful results on finite morphisms and klt singularities.

Definition 4.1 Take a finite, separable and dominant morphism of normal varieties f : X →
Y .

If D is a divisor on Y then f is said to be tamely ramified over D if for every prime divisor
D′ lying over D the ramification index is not divisible by p and the induced residue field
extension is separable.

Moreover f is said to be divisorially tamely ramified if for any proper birational morphism
of normal varieties Y ′ → Y we have the following. If X ′ → X is the normalisation of the
base change X ×Y Y ′, and f ′ : X ′ → Y ′ the induced map, then f ′ is tamely ramified over
every prime divisor in Y ′.

If instead f is generically finite, we say it is divisorially tamely ramified if the finite part
of its Stein factorisation is so. Equally if either of X or Y is not normal, f : X → Y is said
to be divisorially tamely ramified if the induced morphism on their normalisations is.

If f is generically finite of degree d < p then it is always divisorially tamely ramified. If
D′ lies over D then both the ramification index, rD′ and the inertial degree, eD′ are bounded
by d , in fact d = ∑

f (D′)=D rD′eD′ by multiplicativity of the norm. This remains the case
on any higher birational model.
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Lemma 4.2 Let f : Y → X be a dominant, separable, finite morphism of normal varieties.
Suppose that KX is Q-Cartier then KY = f ∗KX + � where � ≥ 0. Further if f is
divisorially tamely ramified, then for Q ∈ Y a codimension 1 point lying over P ∈ X we
have CoeffQ(�) = rQ − 1 where rQ is the degree of f |Q : Q → P.

Proof By localising at the codimension 1 points of X we reduce to the case of Riemann-
Hurwitz-Hasse to see that � exists as required and CoeffQ(�) = δQ where δQ ≥ rQ − 1
with equality when p � rq . In particular when f is divisorially tamely ramified, we ensure
δQ = rQ − 1. �

The singularities of the domain and image of a finite divisorially tame ramified morphism
are closely connected, as the following lemma shows.

Lemma 4.3 [21, Proposition 3.16] Let f : X ′ → X be a dominant, divisorially tamely
ramified, finite morphism of normal varieties of degree d. Fix � on X with KX + � Q-
Cartier. Write KX ′ + �′ = f ∗(KX + �) then the following hold:

(1) 1 + TDisc(X ,�) ≤ 1 + TDisc(X ′,�′) ≤ d(1 + TDisc(X ,�)).
(2) (X ,�) is sub klt (resp. sub lc) iff (Y ,�′) is sub klt (resp. sub lc).

Proof By restricting to the smooth locus of X , which contains all the codimension 1 points
of X , we may suppose that KX is Cartier and apply the previous lemma. Hence we get
�′ = f ∗(KX + �) − KX ′ where for Q ∈ X ′ lying over P ∈ X we have CoeffQ(�′) =
rQ(CoeffP (�)) − (rQ − 1).

Suppose that we have proper birational morphisms π : Y → X and we write Y ′ for the
normalisation of Y ×X X ′ so that we have the following diagram.

Y ′ Y

X ′ X

π ′

g

π

f

Let E ′ be a divisor on Y ′ exceptional over X ′ and E the corresponding divisor on Y .
At E ′ we can write

KY ′ = π ′∗(KX ′ + �′) + a(E ′, X ′,�′)E ′ = g∗π∗(KX + �) + a(E ′, X ′,�′)E ′

essentially by definition. Conversely however we have KY ′ = g∗KY + δE ′ E ′ which may be
rewritten as

KY ′ = g∗(π∗(KX + �) + a(E, X ,�)E) + δE ′ E ′.

In particular equating the two descriptions, as δE ′ = rE ′ − 1 by Lemma 4.3, we have that

rE ′a(E, X ,�) + (rE ′ − 1) = a(E ′, X ′,�′)

and thus a(E, X ,�) + 1 = 1
rE ′ (a(E ′, X ′,�′) + 1) with 1 ≤ rE ′ ≤ d .

Since, by a theorem of Zariski [22, Theorem VI.1.3], every valuation with center on X ′
is realised by some birational Y ′ → X ′ occurring as a pullback of a birational morphism
Y → X , this is sufficient to show that 1 + TDisc(X ,�) ≤ 1 + TDisc(X ′,�′) ≤ d(1 +
TDisc(X ,�)). The second part then follows. �

We will be interested in conic bundles satisfying certain tameness criteria. This in turn
will allow us to control the singularities arising on the base of the fibration. This is done in
Theorem 4.8.
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Definition 4.4 A conic bundle is a threefold sub pair (X ,�) equipped with a morphism
f : X → Z where Z is a normal surface, f∗OX = OZ , the generic fibre is a smooth rational
curve and (KX + �) = f ∗D for some Q-Cartier divisor on X . We will call it regular if X
and Z are smooth and f is flat; and terminal if X is terminal and f has relative Picard rank
1. Further we call it (sub) ε-klt or log canonical if (X ,�) is.

If each horizontal component of � is effective and divisorially tamely ramified over Z
then the conic bundle is said to be tame.

For P a codimension 1 point of Z we define

dP = max{t : (X ,� + t f ∗P) is lc over the generic point of P}.
The discriminant divisor of f : X → Z is DZ = ∑

P∈X (1− dP )P . The moduli part MZ is
then given by D − DZ − KZ .

In positive characteristic the discriminant divisor is not always well defined for a general
fibration, it may be that dP �= 1 for infinitely many P . This can be caused by either a failure
of generic smoothness or inseparability of the horizontal components of � over the base.

Suppose, however, that (X ,�) → Z is a tame conic bundle. We may take a log resolution
X ′ → X as this does not change dP and is still a tame conic bundle by Lemma 4.5. Thus we
may suppose that � is an SNC divisor and hence near P , � + f ∗P is also SNC for all but
finitely many P , by generic smoothness of the fibres and as the horizontal components are
divisorially tamely ramified over Z . Hence in fact DZ is well defined in this case.

Lemma 4.5 Let f : (X ,�) → Z be a tame conic bundle, and X ′ → X either a birational
morphism from a normal variety or the base change by a divisorially tamely ramified mor-
phism from a normal variety g : Z ′ → Z. Then there is�′ with (X ′,�′) a tame conic bundle
over Z or Z ′ as appropriate. Moreover in this case X ′ → X is also divisorially tamely
ramified.

Proof If π : X ′ → X is a birational morphism with KX ′ + �′ = π∗(KX + �) then the only
horizontal components of �′ are the strict transforms of horizontal components of �. Take
such a component D′ then, normalising if necessary, it factors D′ → D → Z with D → Z
divisorially tamely ramified but then it must itself be divisorially tamely ramified.

Suppose then g : Z ′ → Z is generically finite. From above, and by Stein factorisation we
may freely suppose that g is finite. Then the base change morphism g′ : X ′ → X is a finite
morphism of normal varieties and we may induce �′ with g′∗(KX + �) = KX ′ + �′. Again
the horizontal components of�′ are precisely the base changes of the horizontal components
of �.

It suffices to show then that if D is a horizontal divisor on X such that D → Z is
divisorially tamely ramified then D′ → Z ′, the base change, is also divisorially tamely
ramified. Certainly D′ → Z ′ is still separable. Suppose C is any curve on Z and C ′ a curve
on Z ′ lying over it. In turn take any CD′ lying over C ′ on D′. Then CD′ is the base change
of some CD . Since CD → C is separable, so too is CD′ → C ′. Equally as the ramification
indices of C ′,CD are not divisible by p, neither can the ramification index of CD′ over CD

be. This same argument holds after base change by any higher birational model of Z , and by
[22, Theorem VI.1.3] every valuation with centre on Z ′ is can be realised on the pullback of
some such model. Thus D′ → Z ′ is divisorially tamely ramified and hence (X ′,�′) → Z ′
is tame.

It is enough to show that X ′ → X is divisorially tamely ramified after base changing
by a higher birational model of Z . In particular, after taking a flatification we may assume
f : X → Z is flat. Now suppose D is a divisor on X , lying over some curve C on Z . We
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have f ∗C = ∑
Ei with E0 = D. Let C j be the curves lying over C in Z ′, then if Ei, j are

the divisors lying over Ei , for some fixed i , they are in one-to-one correspondence with the
C j . We have g′∗ f ∗C = ∑

ri, j Ei, j = ∑
j ri

∑
i E j and thus none of the ri, j , in particular

the r0, j are divisible by p. Moreover the E0, j → E0 must be separable since the C j → C
are.

The sameholds after taking a higher birationalmodel of X , and thus X ′ → X is divisorially
tamely ramified as claimed.

�
In practice we deal exclusively with tame conic bundles arising in the following fashion.

Lemma 4.6 Suppose that (X ,�) is klt and LCY, equipped with a Mori fibre space structure
over a surface Z and the horizontal components of � have coefficients bounded below by δ.
Then if X is defined over a field of characteristic p > 2

δ
, f : (X ,�) → Z is a tame conic

bundle.

Proof Since δ < 1, the characteristic is larger than 2 and the general fibre is necessarily a
smooth rational curve, in particular X is a conic bundle. Let G be the generic fibre, so that
(G,�G) is klt andG is also smooth rational curve. Then if D is some horizontal component of
� the degree of f : D → Z is precisely the degree of D|G . However deg δD|G < deg�|G =
−2 and thus deg D < p. Replacing D by its normalisation, D′ does not change the degree,
so D′ → Z has degree < p and thus is divisorially tamely ramified. �
Remark 4.7 One might be tempted to ask if this bound could be further improved for ε-klt
pairs, (X ,�). In this case we have (G,�G) is ε-klt and so one might attempt to use a bound
of the form p > 1−ε

δ
to prevent any component of � mapping inseparably onto the base. It

does not seem however that such a bound would ensure that every component is divisorially
tamely ramified and there may be wild ramification away from the general fibre.

Theorem 4.8 Let f : (X ,�) → Z be a sub ε-klt, tame conic bundle. Then for some choice
of M ∼Q MZ we have (Z , DZ + M) sub ε-klt. If in fact � ≥ 0, we may take DZ , M to be
effective also.

Remark 4.9 The implicit condition that (X ,�) is a threefold pair is necessary only in that
it assures the existence of log resolutions. This result holds in dimension d so long as the
existence of log resolutions of singularities holds in dimensions d, d − 1.

We will prove this in several steps. First we consider the case that �h , the horizontal part
of�, is a union of sections of f . In this setting we have an even stronger result. After moving
to a higher birational model, we have that (Z , DZ ) is klt and MZ is semiample.

Lemma 4.10 Suppose that f : (X ,�) → Z is a sub ε-klt conic bundle with �h effective
and with support that is generically a union of sections of f , then there is π : Z ′ → Z a
birational morphism with (Z ′, DZ ′) sub ε-klt and MZ ′ semiample. In particular for some
choice of M ∼ MZ ′ we have (Z , DZ + π∗M) sub ε-klt.

Proof This result is well known and essentially comes from [27]. Details specific to positive
characteristic can be found in [13, Section 4], [35, Lemma 3.1] and [8, Lemma 6.7]

We sketch, some key points of the proof.
Since generically X → Z is aP

1 bundle and the horizontal part of� is a union of sections,
we induce a rational map φ : Z ��� M0,n , the moduli space of n-pointed stable curves of
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genus 0. By taking appropriate resolutions we may suppose that (X ,�) is log smooth, Z is
smooth and φ is defined everywhere on Z . Blowing down certain divisors on the universal
family overM0,n and pulling back to Z we may further assume that X → Z factors through
a P

1 bundle over Z via a birational morphism.
Then working locally over each point of codimension 1 and applying 2 dimensional

inversion of adjunction, we see that in fact DZ is determined by the vertical part of�, indeed
�V = f ∗DZ , and that MZ is the pullback of an ample divisor on M0,n by φ. In particular
MZ is semiample and DZ takes coefficients in the same set as�V , therefore they are bounded
above by 1 − ε.

From the following lemma, we see that in fact we may further suppose that (Z , DZ ) is
log smooth. Since if π : (Z ′,�′) → Z is a log resolution of (Z , DZ ) we have KZ ′ + �′ =
π∗(KZ+DZ ),π∗MZ = MZ ′ and KZ ′+DZ ′+MZ ′ = π∗(KZ+DZ+MZ ) = KZ ′+�′+MZ ′ ,
giving DZ ′ = �′ as required. In particular then Corollary 3.15 gives that (Z , DZ + MZ ) is
sub ε-klt. �
Lemma 4.11 Suppose that Z is as given above and Z ′ → Z is the birational model found
in the proof with MZ ′ semiample. Suppose further that Y is a normal variety admitting a
birational morphism π : Y → Z ′. If MY is the moduli part coming from the induced conic
bundle XY → Y then π∗MZ ′ = MY .

Proof Let φ : Z ′ → M0,n and χ : Y ��� M0,n be the rational maps induced by the base
changes of X → Z . By assumption φ is a morphism.

Although χ is a priori defined only on some open set, it must factor through φ whenever
it is defined, and hence extends to a full morphism χ = φ ◦ π .

Write then that MZ ′ = φ∗A and MY = χ∗A′. A more careful study of the proof of the
previous result would give A = A′ and the result follows. However for simplicity one can
also note that MZ ′ = π∗MY = π∗χ∗A′ = φ∗A′, so that MY = π∗φ∗A′ = π∗MZ ′ . �

We now reduce from the general case of Theorem 4.8 to the special case of Lemma 4.10
to prove the theorem. This requires the following lemma, due essentially to Ambro.

Lemma 4.12 [2, Theorem 3.2] Suppose that f : (X ,�) → Z is a tame conic bundle. Let
g : Z ′ → Z be a finite, divisorially tamely ramified morphism of normal varieties and
(X ′,�′) → Z ′ the induced fibration. Then (X ′,�′) → Z is tame and g∗(KZ + DZ ) =
KZ ′ + DZ ′ for DZ ′ the induced discriminant divisor of (X ′,�′) → Z ′.

Proof ByLemma 4.5, (X ′,�′) → Z ′ is tame and hence DZ ′ is well defined by the discussion
proceeding Lemma 4.5.

It remains to show that g∗(KZ + DZ ) = KZ ′ + DZ ′ . To see this fix Q a prime of Z ′ and
write rQ for the degree of the induced map onto some P a prime of Z .

From the proof ofLemma4.3we see that if KZ ′+B = g∗(KZ+DZ ) then 1−CoeffQ(B) =
rQ(CoeffP (DZ ) − 1). In particular then it suffices to show that dQ = rQdP . We consider
two cases.

Suppose that c ≤ dP . Thenwe have (X ,�+c f ∗P) log canonical over P . Hence (X ′,�′+
g′∗ f ∗P = � + c f ′∗g∗P) is also log canonical by the Lemma 4.3. But f ′∗g∗P ≥ f ′∗rQQ
so it must be that dQ ≥ rQc. Hence in fact dQ ≥ rQdP .

Conversely if c ≥ dP then,(X ,� + c f ∗P) is not log canonical over P . In particular
replacing X with a suitable birational model X ′′ → X we suppose that there is some prime E
of X with fE = P andCoeffE (�+c f ∗P) < −1. Similarly there is E ′ on X ′ with g′(E ′) = E
and f ′(E ′) = Q which also has CoeffE (�′ + cg′∗ f ∗P) < −1 but CoeffE (cg′∗ f ∗P) =
CoeffE (c f ∗rQ P) and hence c ≥ rdQ . Thus we have the equality dQ = rQdQ . �
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Note that in the setup above g∗(KZ + DZ + MZ ) = KZ ′ + DZ ′ + MZ ′ so we must have
that MZ ′ = g∗MZ .

Lemma 4.13 Suppose that f : X → Z is a tame conic bundle. Then there is a finite, diviso-
rially tamely ramified morphism g : Z ′ → Z with g∗(KZ + DZ + MZ ) = KZ ′ + DZ ′ + MZ ′
and a birational morphism h : Z ′′ → Z ′ such that MZ ′′ is semiample.

Proof Let D be any horizontal component of�which is not a section of f then f restricts to
a divisorially tamely ramified morphism D → Z . After replacing D with its normalisation
and Stein factorising, we may suppose that D → Z is finite with D normal. Taking the fibre
product of X → Z with the normalisation D̃ of D we find X ′ → D̃ satisfying the initial
conditions but with the one component of � is now generically a section.

In this fashion, we eventually get to Z ′ → Z with g∗(KZ +DZ +MZ ) = KZ ′ +DZ ′ +MZ ′
and all the horizontal components of � being generically sections. Hence we may apply
Lemma 4.10 to give the result. �
Proof of Theorem 4.8 Take f : (X ,�) → Z as given. Then we have g : Z ′ → Z and
h : Z ′′ → Z ′ as above.Write d for the degree of g. Fix BZ ′′ ∼ MZ ′′ making (Z ′′, DZ ′′ +BZ ′′)
sub klt. Write BZ = 1

d g∗h∗BZ ′′ . It is sufficient to show that (Z , DZ + BZ ) is sub ε-klt since
BZ ∼ MZ is always effective and DZ ≥ 0 whenever � is.

Let Y → Z be a log resolution of (Z , DZ +BZ ) and take Y ′, Y ′′ appropriate fibre products
to form the following diagram.

Y ′′ Z ′′

Y ′ Z ′

Y Z

π ′′

h′ h

π ′

g′ g

π

We have that MY ′′ = π ′′∗MZ ′′ , so write BY ′′ = π ′′∗BZ ′′ and 1
d g

′∗h′∗BY ′′ = BY . Then we
must have thatπ∗BY = BZ and KY +DY +BY ∼ π∗(KZ+DZ+BZ ). Note further thatπ∗BZ

and BY differ only over the exceptional locus, hence BY has SNCsupport. Indeed DY +BY has
SNCsupport. Further since (Y ′′, DY ′′+BY ′′) is sub ε-klt and g′∗h′∗(DY ′′+BY ′′) = d(DY+BY )

it must be that DY + BY have coefficients strictly less than 1− ε, thus (Y , DY + BY ) is sub
ε-klt and therefore so is (Z , DZ + BZ ). �

4.1 Generic smoothness

We will also need to consider the pullbacks of very ample divisors on the base of a suitably
smooth conic bundle. This is done to obtain an adjunction result which is required in the
next section. We work here under the assumption the ground field is closed of positive
characteristic p > 2. This requirement on the characteristic is due entirely to the following
lemma.

Lemma 4.14 Let (X ,�) → Z be a regular conic bundle. Then there is some, possibly
reducible, curve C on Z such that for any P ∈ Z the fibre, FP , over P is determined as
follows:

(1) If P ∈ Z \ C then Fp is a smooth rational curve.
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(2) If P ∈ C \ Sing(C) then Fp is a the union of two rational curves meeting transversally.
(3) If P ∈ Sing(C) then Fp is a non-reduced rational curve.

Further if H is a smooth curve meeting C transversely away from Sing(C) then f ∗H is
smooth.

Proof This is essentially [28, Proposition 1.8].We sketch the proof as our statement is slightly
different.

Since X is smooth −KX is relatively ample and defines an embedding into a P
2 bundle

over Z . Fix any point P in X then in some neighbourhood U around P , XU is given inside
P
2×U by the vanishing of xt Qx . Here Q is a diagonalisable 3×3 matrix taking coefficients

in κ[U ], unique up to invertible linear transformation, so we may take C to be the divisor
on which the rank of Q is less than 3. That Q has rank 3 on some open set follows from
smoothness of the generic fibre.

Then the singular points of C are precisely the locus on which Q has rank less than 2.
By taking a diagonalisation of Q we may write XU as the vanishing of

∑
Ai x2i for some

Ai ∈ κ[U ] and we obtain the classification of fibres by consideration of the rank.
Suppose then H is a smooth curve as given. Away from C , f ∗H is clearly smooth, so

it suffices to consider the intersection with C , however we can see it is smooth here by
computing the Jacobian using the local description of X given above. �
Theorem 4.15 [Embedded resolutionof surface singularities] [11,Theorem1.2]Suppose that
V is a non-singular threefold, S a reduced surface in V and E a simple normal crossings
divisor on V then there is a sequence of blowups π : Vn → Vn−1 → ...V such that the strict
transform Sn of S to Vn is smooth. Further each blowup is the blowup of a non-singular
curve or a point and the blown up subvariety is contained in the locus of Vi on which the
preimage of S + E is not log smooth.

Corollary 4.16 Suppose (X ,�) → Z is a regular, tame conic bundle and we fix a very ample
linear system |A| on Z. Then there is a log resolution (X ′,�′) → (X ,�) such that for any
sufficiently general element H ∈ |A|, its pullback G ′ to X ′ has (X ′,G ′ + E) log smooth for
E the reduced exceptional divisor of π .

Proof By the previous theorem we may find birational morphism π : X ′ → X which is a
log resolution of (X ,�) factoring as blowups X ′ = Xn → Xn−1 → ....X0 = X of smooth
subvarieties contained in the non-log smooth locus of each step.

We show first a general G ′ is smooth. At each stage we blow-up smooth curves Vi in
the non-log smooth locus. Let Gi be the pullback of H to Xi , suppose for induction it is
smooth. ThatG0 is smooth is the content of Lemma 4.14 and so the base case of the induction
argument holds.

We may assume that fi,∗Vi = VZ ,i is a curve for fi : Xi → X → Z else a general H
avoids it and so a general Gi+1 is smooth also. Note that each vertical component of � is
log smooth near the generic point of their image, since X is a regular conic bundle, so Vi
must be contained in the strict transform of some horizontal component of �. Since Vi is not
contracted, it follows that Vi → VZ ,i is separable as (X ,�, Z) is tame. Thus as a general
H meets VZ ,i transversely, a general Gi meets Vi transversely and hence a general Gi+1 is
smooth. By induction then G ′ = Gn is smooth.

Suppose that V is a curve contained in the locus on which π−1 is not an isomorphism that
is not contracted by f . Then for a general point P of V , we claim that the fibre over P is log
smooth. As before we argue by induction, the the base case trivially true. Suppose then that
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we blowup a curve Vi lying over V on X and VZ on Z . Then Vi must meet the fibre over P
transversally. Indeed Vi → V → VZ is separable, as above, forcing Vi → V to be separable
also. But then Vi meets a general fibre transversally as claimed.

Suppose now that E is an integral exceptional divisor of X ′ → X . Let V = π∗E , then as
before general G meets V transversely if V is a curve, or not at all otherwise. Suppose V is
a curve, then for a general point P of V , the fibre over P is a system of log smooth curves.
Finally then the intersection of a generalG ′ and E is a scheme of pure dimension 1 contained
in the disjoint union of such systems of log smooth curves, in particular it is log smooth.

Suppose then we fix two exceptional divisors E1, E2 meeting at a curve V . Again we
suppose that V is not contracted by f ′ = f ◦ π . Write π∗V = VX and f ′∗V = VZ . Then
VX → VZ is separable as before and for a generalG ′ meeting V transversely, the intersection
of G with π∗V ′ is a log smooth system of rational curves, and then G.V ⊆ G.π∗VX is log
smooth, or equally it is finitely many points with multiplicity 1. �

Theorem 4.17 Let (X ,�) → Z be a regular, tame conic bundle and |A| a very ample linear
system on Z. Then there is a log resolution (X ′,�′) → (X ,�) such that for a general
H ∈ |A|, the pullback G ′ to X ′ is smooth with (X ′,�′ + G ′) log smooth.

Proof Write E for the reduced exceptional divisor. For a general H ∈ |A| we let G = f ∗H
be the pullback to X . We then take X ′ as in Corollary 4.16.

Clearly a general G ′ avoids the intersection of any 3 components of Supp(�′) + E , and
from above (X ′,G ′ + E) is log smooth. Suppose D is a vertical component of �. Then
either G can be assumed to avoid it, or to meet it at a smooth fibre. By the usual arguments,
since the only non-contracted curves we blow up map separably onto their image, G ′ meets
D′ the strict transform of D on X ′ along a log smooth locus. Further this locus meets any
exceptional divisor either transversally or not at all. Now suppose D2 is any other component
of Supp(�′) + E which does not dominate Z . Then if either D2.D′ has dimension less than
1 or is contracted over Z then a general G ′ avoids it, so suppose otherwise. In which case
D2 must be exceptional over X with image V ⊆ D on X . However D2.D′ is just the strict
transform of V inside D′ and, for a general G ′, G ′.D2.D is log smooth as required.

It remains then to consider the horizontal components of�. Let D be any such component
and D′ its strict transform. Since (X ,�, Z) is tame, so is (X ′,�′, Z). In particular then
D′ → Z is divisorially tamely ramified and so residually separated over Z away from
finitely many points of Z . Hence by Bertini’s Theorem, Theorem 3.17, the pullback of a
general H , which is just the intersection of a general G ′ with D′ is smooth. Further as
D′ → Z is divisorially tamely ramified, if V is any curve on D′ not contracted over Z a
general G ′|D′ meets it transversally. Hence for any other component D2 of Supp(�′) + E
we have (X ′, D′ + D2 + G ′) log smooth for a general G ′ and the result follows. �

Corollary 4.18 Suppose (X ,�, Z) is a terminal, sub ε-klt, tame conic bundle. Take a general
very ample H on Z, with G = f ∗H, then (G,�|G = �G) is sub ε-klt.

Proof Throwing away finitely many points of Z wemay freely suppose that the conic bundle
is regular.

By the previous theorem there is a log resolutionπ : (X ′,�′) → (X ,�)with (X ′,�′+G ′)
smooth. Write πG : G ′ → G for the restricted map. Then (KX ′ + �′ + G ′)|G ′ = π∗

G(KG +
�G) = KG ′ + �′|G . However �′|G is log smooth with coefficients less than 1 − ε by
construction, and hence (G,�G) is ε-klt by assumption. �
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5 F-split mori fibre spaces

The aim of this section is to prove the following theorem.

Theorem 5.1 For a field κ of positive characteristic we let Sκ be the set of (X ,�), ε-LCY
threefold pairs with X terminal, globally F-split and rationally chain connected over κ . We
further require that (X ,�) admits a KX Mori fibration f : (X ,�) → Z where either

(1) Z is a smooth rational curve, there is H on Z very ample of degree 1 and a general fibre
G of X → Z is smooth.

or

(2) p > 2 and (X ,�) → Z is a tame, terminal conic bundle such that there is a very ample
linear system |A| on Z with A2 ≤ c. In which case G the pullback of a sufficiently general
H ∈ |A| is smooth with (G,�G = �|G) ε-klt by Corollary 4.18.

Then the set of base varieties

S′ = {X such that ∃� with (X ,�) ∈ Sκ for algebraically closed κ}
is birationally bounded over Z.

Remark 5.2 In practice this will be applied to pairs over fields of characteristic p > 7, 2
δ
with

boundary coefficients bounded below by δ. The constraints on p come from Theorem 3.16
and Theorem 4.8, via Lemma 4.6.

This chapter is devoted to the proof, but the outline is as follows. We fix a general, very
ample divisor H on the base and write G = f ∗H . Then argue that A = −mKX + nG is
ample, for m, n not depending on X ,� or G. This is done by bounding the intersection of
KX with curves not contracted by f and generating an extremal ray in the cone of curves.
We then show that in fact we may choose these m, n such that A defines a birational map,
by lifting sections from G using appropriate boundedness results in lower dimensions. The
F-split assumption is used to lift sections from G with Lemma 2.13, it will also be needed
to apply Theorem 5.1 by ensuring that the bases Z are suitably bounded.

If, for some t > 0, the non-klt locus of (X , (1 + t)�) is contracted then since (KX +
(1+ t)�) ∼ −t KX it follows that every −KX negative extremal ray is generated by a curve
γ with KX .γ ≤ 6

t . In particular as we have G.C ≥ 1 for any −KX negative curve C it
must be that −KX + 7

t G is ample. Clearly for any (X ,�) → Z there is such a t , however
we wish to find one independent of the pair. For this we may use a result due to Jiang, the
original proof is a-priori for characteristic 0, but the proof is arithmetic in nature and holds
in arbitrary characteristic.

Theorem 5.3 [18, Theorem 5.1] Fix a positive integer m and ε > 0 a real number. Then
there is some λ depending only on m, ε satisfying the following property.

Take (T , B) any smooth, projective ε-klt surface. Write B = ∑
bi Bi and suppose KT +

B ≡ N − A for N nef and A ample. If B.N ,
∑

bi , B2 ≤ m then (T , (1 + λ)B) is klt.

First we show that results of this form lift to characterisations of the non-klt locus of
(X , (1 + t)�), then show how the result above may be applied here.

Lemma 5.4 We use the notation of Theorem 5.1. Suppose Z is a surface and there is t such
that (G, (1+ t)�G) is klt. Then every curve in the non-klt locus of (X , (1+ t)�) is contracted
by f .
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Proof Let π : X ′ → X be a log resolution of (X ,� + G) with KX ′ + �′ = π∗(KX + �),
then (X ′,�′ + G ′) is log smooth and �′ and G have no common components, where G ′ is
the pullback of G. Now X ′ → X must also be a log resolution of (X , (1+ t)�), and hence if
we write KX ′ + B = π∗(KX + (1+ t)�) then it is also true that (X ′, B +G ′) is log smooth
and that B and G ′ have no common components. Hence (G ′, B|G ′) is sub klt by assumption
and in particular it has coefficients strictly less than 1.

Suppose Z is a non-klt center of (X , (1 + t)�) and E is a prime divisor lying over Z
inside X ′. Then E has coefficients strictly larger than 1 in B. Since (X ′, B + G ′) is log
smooth, it must be that E |G ′ is an integral divisor and it is trivial if and only if E and G ′ do
not meet. But then E |G ′ = �E |G ′ � = 0 and so E does not meet G ′. Hence neither does H
meet f∗π∗E = f∗Z . In particular if C is a curve in the non-klt locus, then there is an ample
divisor H on Z not meeting f∗C . This is possible only if f∗C is a point. �
Lemma 5.5 Using the notation of Theorem 5.1 suppose that Z is a curve and write Y for the
generic fibre of f : X → Z. If there is t such that (Y , (1 + t)�Y ) is klt, then every curve in
the non-klt locus of (X , (1 + t)�) is contracted by f .

Proof This follows essentially as above. Take a log resolution π : (X ′,�′) → (X ,�). Write
Y ′ for the generic fibre of X ′ → Z . Then (Y ′,�′|Y ′) → (Y ,�Y ) is a log resolution. Again
write KX ′ + B = π∗(KX + (1+ t)�). Then again if B has a component D with coefficient
at least 1 then D cannot dominate Z , else it would pull back to G ′ to give a contradiction.
Hence the non-klt locus of (X , (1 + t)�) must be contracted as claimed. �
Lemma 5.6 Using the notation of the previous lemmas. There is some λ independent of
(X ,�) and G for which the non-klt locus of (X , (1 + t)�) is contracted for all t ≤ λ.

Proof We consider two cases.
Suppose first Z is a curve, so the generic fibre Y is a regular del Pezzo surface and (G,�G)

is ε-klt LCY. Then, by the work of Tanaka [32, Corollary 4.8], (−KG)2 ≤ 9. We write
�G = ∑

λi Di and since G is regular we have Di .KG ≥ 1. Hence
∑

λi ≤ �G .(−KG) ≤ 9
and �2

G = (−KG)2 ≤ 9. We conclude the result holds by Theorem 5.3 with N = −KG and
A = −KG .

Suppose then that Z is a surface. Then by Lemma 4.14, G is a smooth surface, geometri-
cally ruled over a general very ample divisor H on Z . Further by Corollary 4.18, (G,�G) is
ε-klt and by assumption KG+�G ∼ kF where F is the general fibre over H and H2 = k ≤ c.
Finally note that �V

G ∼ f ,Q 0.
We may write �G = ∑

λi Di + ∑
μi Fi where Fi are fibres over H and Di dominate H .

Since Fi is a fibre and G is smooth, each Fi is reduced by the genus formula and contains
at most 2 components since −KX .Fi = −2. Further �G .F = (−KG).F = 2 and hence
�2

G = (−KG + kF)2 = (−KG)2 − 2kKG .F + (kF)2 ≤ (−KG)2 + 4c which in turn is
bounded above by 8 + 4c due to [3, Proposition 11.19], since G is a smooth geometrically
ruled surface.

It remains then to show that the sum of the coefficients of �G is bounded. Note that∑
λi ≤ ∑

λi Di .F = �G .F = 2. We therefore need only bound
∑

μi .
Suppose for contradiction that w = ∑

μi > 3 + k. Let B = ∑
λi Di + (1 −

3+k
w

)
∑

μi Fi ∼ −KG − (F1 + F2 + F3), for general fibres Fi .
Then (G, B) is klt and so byLemma3.13, D = F1+F2+F3 has 2 connected components,

a clear contradiction.
Therefore we may choose A small and ample with A.�G < c and write N = kF + A to

satisfy the conditions of Theorem 5.3. The result then follows as �G .N = kF .�G + A.B ≤
3c is still bounded. �
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Corollary 5.7 There is some n such that for any (X ,�) → Z and G as in Theorem 5.1 we
have −KX + nG is ample.

Proof Take anyn ≥ 7
λ
forλ as in the previous lemma. Suppose R is a KX+(1+λ)� ≡ −λKX

negative extremal ray. By construction, every curve in the nlc locus is contracted by X → Z
so −λKX is positive on NE(X)nlc \ {0}. Hence by Theorem 3.9 any such ray is spanned by
a curve C with 0 < −λKX .C ≤ 6 and G.C > 0. Since G is Cartier, we have G.C > 0 and
hence (−KX + nG).G ≥ 1

λ
> 0. In particular −KX + nG is ample as claimed. �

Theorem 5.8 Let (X ,�) → Z and G be as in Theorem 5.1. Then there is t not depending
on the pair (X ,�) nor on G with −3KX + tG ample and defining a birational map.

Proof Consider first the case that dim Z = 1. Then G is a smooth del Pezzo surface, so
−3KG is globally generated by [4, Proposition 2.14]. Let G1,G2 be other general fibres and
consider

0 → OX (−3KX + kG − G1 − G2) → OX (−3KX + kG)

→ OG1(−3KG1) ⊕ OG2(−3KG2) → 0.

Since X is globally F-split Hi (X , A) = 0 for all i > 0 and A ample by Lemma 2.13.
In particular then H1(X ,OX (−3KX + kG − G1 − G2)) vanishes when k ≥ 3n + 2 for n
as given by the proceeding corollary. Therefore we may lift sections of −3KGi to see that
−3KX + kG defines a birational map for any k ≥ 3n + 2.

Suppose instead that dim Z = 2, so G is a conic bundle. Choose a general H ′ ∼ H
on Z and let G ′ be its pullback. Consider Ak = (−KX + kG)|G ′ = (−kG ′ + (k − 1)dF)

for d ≥ 1, where F is the general fibre of G ′ → H ′. Then Ak is ample for k > n and is
Cartier since G is smooth. In particular by the Fujita conjecture for smooth surfaces [33,
Corollary 2.5], KG ′ +4Ak is very ample. Choosing suitable k, k′ wemay write KG ′ +4Ak =
−3KG ′ + 4(k − 1)dF = (−3KX + k′G)|G ′ . Consider now

0 → OX (−3KX + (k′ − 1)G) → OX (−3KX + k′G) → OG ′(−3KG ′ + 4(k − 1)dF) → 0.

Again the higher cohomology of −3KX + (k′ − 1)G vanishes and we may lift sections to
H0(X ,OX (−3KX + k′G)) from general fibres. In particular −3KX + k′G separates points
on a general G ′ so −3KX + (k′ + 1)G separates general points and thus defines a birational
map.

We may then pick some suitably large t for which the result holds as k, k′ were chosen
independently of (X ,�) → Z and G,G1,G2. �
Lemma 5.9 Let (X ,�) → Z , S and G be as in Theorem 5.1 and t as in Theorem 5.8. Then
there is some constant C with (−3KX + tG)3 ≤ C and (X ,�) ∈ S.

Proof The anticanonical volumes Vol(X ,−KX ) are bounded by some V by Theorem 1.5
which is proved in the next section.

Suppose first dim Z = 1. Then Vol(G,−KG) = (−KG)2 ≤ 9 and so by Lemma 3.4

Vol(X ,−3KX + nG) ≤ Vol(X ,−3KX ) + 3tVol(G,−3KG) ≤ 27(V + 9t)

as required.
Suppose instead then that dim Z = 2. So G is a conic bundle over some H on Z with

H2 ≤ c. Hence we get

Vol(G, (−3KX + tG)|G) = (−3KG + (t + 1)H2F)2 = 9K 2
G − 2(t + 1)H2(KG .F)
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where F is a general fibre of G → H . Hence F is a smooth rational curve and KG .F = −2
and Vol(G, (−3KX + tG)|G) ≤ 72 + 4(t + 1)c. Then as before we may apply Lemma 3.6
to get

Vol(X ,−3KX + tG) ≤ Vol(X ,−3KX ) + 3nVol(G, (−3KX + tG)|G)

and boundedness follows. �
Proof of Theorem 5.1 Suppose (X ,�) ∈ S. Then A = −3KX+tG is birationalwith bounded
volume by the preceding results. Thus S′ is birationally bounded by Corollary 2.22. �

6 Weak BAB for mori fibre spaces

This section is devoted to providing a bound on the volume of−KX under suitable conditions.
Namely we show that the claim holds if X belongs to a suitable family of ε-LCY Mori fibre
spaces whose bases are bounded. We will work over fields of characteristic p > 5 as we will
need to appeal to Theorem 3.12 at several points. In practice these results will be applied
under the hypotheses of Theorem 1.5 with the constraints on characteristic needed to ensure
X is a tame conic bundle, or a generically smooth del Pezzo fibration as appropriate. We
consider first the case that X is a tame conic bundle over a surface.

Theorem 6.1 Pick ε, c > 0. Then there is V (ε, c) such that if f : (X ,�) → S is any
projective, tame conic bundle over any closed field of characteristic p > 5, (X ,�) is ε-klt
and S admits a very ample divisor H with H2 ≤ c, then Vol(−KX ) ≤ V (ε, c).

We may further assume that H and G = f ∗H are smooth. Moreover H may be taken so
that (G,�|G) is ε-klt also by Corollary 4.18.

If Vol(−KX ) = 0 the result is trivially true, so we may suppose that −KX is big. In
particular we may write −KX ∼ A + E where A is ample and E ≥ 0. Note that

−KX − (1 − δ)� ∼ −δKX ∼ δA + δE

for any 0 < δ < 1. Choose δ such that (X , (1− δ)�+ δE) and (G, (1− δ)�|G + δE |G) are
ε-klt and write B = (1 − δ)� + δE . Then (X , B) is ε-log Fano by construction. The proof
follows essentially as in characteristic zero, which can be found in [19], but we include a full
proof for completeness as some details are modified.

Lemma 6.2 [19, Lemma 6.5] With notation as above, Vol(−KX |G) ≤ 8(c+2)
ε

.

Proof Suppose for contradiction Vol(−KX |G) >
8(c+2)

ε
and choose r rational with

Vol(−KX |G) > 4r >
8(c+2)

ε
.

Write F for the general fibre of G → H . Then G|G = H2F = kF and for suitably
divisible m and any n we have the following short exact sequence.

0 → OG(−mKX |G − nF) → OG(−mKX |G − (n − 1)F) → OF (−mKF ) → 0

In particular then h0(G,−mKX |G − nF) ≥ h0(G,−mKX |G − (n − 1)F) −
h0(F,−mKF ). Hence by induction we have h0(G,−mKX |G − nF) ≥ h0(G,−mKX |G)−
n · h0(F,−mKF ).
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Note however that, letting n = mr we have

lim
m→∞

2

m2 (h0(G,−mKX |G) − n · h0(F,−mKF )) = Vol(−KX |G) − 2rVol(−KF ) > 0

since F is a smooth rational curve. Hence−mKX |G−mrF admits a section form sufficiently
large and divisible. Choose an effective D ∼Q −KX |G − r F .

Consider now

(G, (1 − k + 2

r
)B|G + k + 2

r
D + F1 + F2)

for two general fibres F1, F2. This has

− KG + (1 − k + 2

r
)B|G + k + 2

r
D + F1 + F2

∼ − (KX |G + kF) + k + 2

r
)B|G + k + 2

r
(−KX |G − r F) + F1 + F2

∼ − (1 − k + 2

r
)(KX + B)|G

and hence we may apply the Connectedness Lemma for surfaces, Theorem 3.11, to see that
its non-klt locus is connected. Note that we have r > c + 2 ≥ k + 2 and so as −(KX + B)

is ample, this pair satisfies the assumptions of the Connectedness Lemma.
Since both F1 and F2 are contained in the non-klt locus, there must be a non-klt center

W dominating H . Thus it follows that (F, (1 − k+2
r )B|F + k+2

r D|F ) is non-klt. However
(F, (1 − k+2

r )B|F ) is ε-klt so we must have deg( k+2
r D|F ) ≥ ε. Finally since D|F ∼

−KX |F = −KF we have deg(D|F ) = 2 and hence 2(c+2)
r ≥ 2(k+2)

r ≥ ε, contradicting the
choice of r . �
Proof of Theorem 6.1 Take V (ε, c) = 144(c+2)

ε2
suppose for contradiction that Vol(−KX ) >

144(c+2)
ε2

. Choose t with Vol(−KX ) > t · 24(c+2)
ε

>
144(c+2)

ε2
and consider the following short

exact sequence.

0 → OX (−mKX − nG) → OX (−mKX + (n − 1)G) → OG(−mKX |G − (n − 1)G) → 0

Arguing as before we see that h0(X ,−mKX − tmG) grows like r
6m

3 with r ≥
Vol(−KX ) − 3tVol(−KX |G) > 0 by the previous lemma. In particular we may find
D ∼Q −KX + tG.

Let π : Y → X be a log resolution of (X , (1− 3
t )B+ 3

t D). Wemaywrite KY +�Y +E =
π∗(KX + (1− 3

t )B+ 3
t D)where (Y ,�Y ) is sub klt and E is supported on the non-klt places

of (X , (1 − 3
t )B + 3

t D).
As shown by Tanaka in [30, Theorem 1], since |L| = π∗ f ∗|H | is base point free there is

somem with (Y ,�Y + 1
m (L1 + L2 + L3)) still klt for every choice of Li ∈ |L|. In particular,

fixing some general z ∈ Z we may take Hi ∈ |H | meeting Z for 1 ≤ i ≤ 2m such that for
any I ⊆ {0, 1, ..., 2m} with |I | = 3 the following hold:

• (Y ,�Y + ∑
i∈I 1

mπ∗ f ∗Hi ) is klt;
• ⋂

i∈I Hi = z.

Thus we must have

Nklt(X , (1 − 3

t
)B + 3

t
D) = Nklt(X , (1 − 3

t
)B + 3

t
D + 1

m
f ∗Hi )
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for each i .
Let F be the fibre over z and G1 = ∑2m

i=1
1
m Hi . Then clearly multF (G1) ≥ 2 and hence

(X ,G) cannot be klt at F . By construction we have

Nklt(X , (1 − 3

t
)B + 3

t
D) ∪ F = Nklt(X , (1 − 3

t
)B + 3

t
D + G1).

Similarly we may further take G2 ∼ f ∗H not containing F such that

Nklt(X , (1 − 3

t
)B + 3

t
D + G1 + G2) = Nklt(X , (1 − 3

t
)B + 3

t
D + G1).

Now −(KX + (1 − 3
t )B + 3

t D + G1 + G2) ∼ (1 − 3
t )(KX + B) is ample, so we may

apply the Connectedness Lemma, Theorem 3.12, to see there is a curve in the non-klt locus
of (X , (1− 3

t )B + 3
t D) meeting F . In particular then the non-klt locus dominates S. Hence

we must also have that (F, (1 − 3
t )B|F + 3

t D|F ) is not klt. However (F, B|F ) is ε-klt and
F is a smooth rational curve. Therefore by degree considerations, since −KX |F ∼ D|F we
must have t ≤ 6

ε
, contradicting our choice of t . �

Theorem 6.3 [Ambro-Jiang Conjecture for surfaces] [19, Theorem 2.8] Fix 0 < ε < 1.
There is a numberμ(ε) depending only on ε such that for any surface S over any closed field
k, if S has a boundary B with (S, B) ε-klt weak log Fano then

inf{ulct(S, B;G) where G ∼Q −(KS + B) and G + B ≥ 0} ≥ μ(ε)

Here ulct(S, B;G) = sup{t : (S, B + tG) is lc and 0 ≤ t ≤ 1} and in particular it is at
most the usual lct, if G is effective.

Though the proof is given for characteristic zero, it is essentially an arithmetic proof
that the result holds for P

2 and Fn for n ≤ 2
ε
. The arguments of the proof work over any

algebraically closed field and as the bound is given explicitly in terms of ε it is independent
of the base field.

By applying this result to a general fibre of a Mori fibration over a curve we obtain the
desired boundedness result.

Theorem 6.4 Pick ε > 0. Suppose that f : X → P
1 is a terminal threefold Mori fibre space

with smooth generic fibre over a closed field of characteristic p > 5. If there is a pair (X ,�)

which is ε-LCY then Vol(−KX ) ≤ W (ε) for some W (ε) depending only on ε.

Proof By Corollary 5.7, there is some t(ε) ≥ 1 depending only on ε with −KX + t(ε)F
ample, where F is a general fibre.

Let μ = μ(1) as given in Theorem 6.3 and take W (ε) = 27(t(ε)+2)
μ

. Suppose for contra-
diction Vol(−KX ) > W (ε) and choose s rational with Vol(−KX ) > 27s > W (ε). Clearly
s >

(t(ε)+2)
μ

> t(ε) + 2.
For any n and for sufficiently divisible m, we have the following short exact sequence.

0 → OX (−mKX − nF) → OX (−mKX − (n − 1)F) → OF (−mKF ) → 0.

This gives h0(X ,−mKX − nF) ≥ h0(X ,−mKX ) − nh0(F,−mKF ) and subsequently

lim
m→∞

6

m3 (h0(X ,−mKX ) − smh0(F,−mKF ) = Vol(−KX ) − 3sVol(−KF ).

Since F is a smooth del Pezzo surface we have Vol(−KF ) ≤ 9. So by construction−mKX −
smF is effective for large, divisible m.
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Choose D ≥ 0 with D ∼Q −KX − sF and consider (X ,
t(ε)+2

s D + F1 + F2) for F1, F2
general fibres. By construction we have

−(KX + t(ε) + 2

s
D + F1 + F2) ∼ −(KX − t(ε) + 2

s
KX − t(ε)F)

∼ (1 − t(ε) + 2

s
)(−KX + t(ε)F) + t(ε)(t(ε) + 2)

s
F

which is ample since F is nef and −KX + t(ε)F is ample. Then the Connectedness Lemma,
Theorem 3.12, gives that the non-klt locus is connected, and clearly contains F1, F2, so it
must contain a non-klt center W which dominates P

1. Thus it must be that (F,
t(ε)+2

s D|F )

is not klt. However F is smooth, and equivalently terminal, with −KF ∼ D|F ample, so by

Theorem 6.3 it follows that t(ε)+2
s ≥ lct(F, 0; D|F ) ≥ μ = μ(1). Thus we have s ≤ t(ε)+2

μ

contradicting our choice of s and proving the result. �

7 Birational boundedness

We are now ready to prove the main theorems using the results of the previous sections.

Lemma 7.1 Suppose that (X ,�) is an ε-klt LCYpair in characteristic p > 5, with� �= 0 and
X both rationally chain connected and F-split. Then there is a birational map π : X ��� X ′
such that X ′ has a Mori fibre space structure X ′ → Z and�′ = π∗� on X ′ making (X ′,�′)
klt and ε-LCY. Further both X ′ and Z are rationally chain connected and F-split and if X
is terminal, so is X ′.

Proof Replacing X by aQ-factorialisation, we can assume X isQ-factorial. This can be done
by Theorem 3.8.

Since (X ,�) is klt so is (X , 0) and hence we may run a terminating KX MMP X =
X0 ��� X1 ��� ... ��� Xn = X ′ by Theorem 3.7. At each step Xi ��� Xi+1 we may
pushforward �i to �i+1, which is still klt since KX + � ≡ 0. Similarly since Xi is F-split
and rationally chain connected, so is Xi+1 as these are preserved under birational maps of
normal varieties. Since KX cannot be pseudo-effective, X ′ has a Mori fibre space structure
X ′ → Z , where Z is also rationally chain connected and F-split. If X is terminal we may
run a KX MMP terminating at a terminal variety, hence X ′ is terminal also. �
Theorem 1.1 Fix 0 < δ, ε < 1. Let Sδ,ε be the set of threefolds satisfying the following
conditions

• X is a projective variety over an algebraically closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F-split;
• (X ,�) is ε-klt and log Calabi-Yau for some boundary �; and
• The coefficients of � are greater than δ.

Then there is a set S′
δ,ε , bounded over Spec(Z) such that any X ∈ Sδ,ε is either birational

to a member of S′
δ,ε or to some X ′ ∈ Sδ,ε , Fano with Picard number 1.

Proof Take any (X ,�) ∈ S and replace it by a Mori fibre space (X ′,�′) → Z by Lemma
7.1. Then Z is F-split and rationally chain connected. If Z is a surface then p > 2

δ
ensures

that (X ′,�′) → Z is a tame conic bundle by Lemma 4.6. In particular Z admits a boundary
�Z such that (Z ,�Z ) is ε-LCY by Theorem 4.8. Hence by BAB for surfaces, Theorem 3.2,
there is |A| a very ample linear system on Z with A2 ≤ c for some c independent of X ,�, Z .
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On the other hand, if Z is a curve then it is a smooth rational curve and p > 7 gives that
the general fibre of X → Z is smooth by Theorem 3.16. Let then S′

δ,ε,V be set of such Mori
fibre space (X ′,�′) → Z with Z not a point and Vol(−KX ) ≤ V (ε, c). In both cases we
conclude by Theorem 5.1 that the set is birationally bounded. �
Theorem 1.5 Fix 0 < δ, ε < 1 and let Tδ,ε be the set of threefold pairs (X ,�) satisfying the
following conditions

• X is projective over a closed field of characteristic p > 7, 2
δ
;

• X is terminal, rationally chain connected and F-split;
• (X ,�) is ε-klt and LCY;
• The coefficients of � are greater than δ; and
• X admits a Mori fibre space structure X → Z where Z is not a point.

Then the set {Vol(−KX ) : ∃� with (X ,�) ∈ Tδ,ε} is bounded above.
Proof Take (X ,�) ∈ Tδ,ε and let X → Z be the associated Mori fibre space structure. If Z
is a curve then we conclude that Vol(−KX ) is bounded by Theorem 6.4 in light of Theorem
3.16. If instead Z is a surface then the set of possible such Z is bounded by Theorem 3.2 and
Theorem 4.8 as above. Hence we conclude the claim by Theorem 6.1. �
Acknowledgements I would like to thank Paolo Cascini for his constant, and unerringly patient, support in
writing this. His help was indispensable throughout the process, from the choice of topic itself to the resolution
of many issues in earlier drafts. Thanks also to the reviewer for their careful reading and helpful comments.
I would also like to thank Federico Bongiorno for answering all the questions I was too embarrassed to ask
Paolo, and finally the EPSRC for my funding.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alexeev, V.: Boundedness and K 2 for log surfaces. Int. J. Math. 5(6), 779–810 (1994)
2. Ambro F.: The adjunction conjecture and its applications (1999). arXiv preprint arXiv: math/9903060
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