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ON THE BOUNDEDNESS OF SINGULAR INTEGRALS
WITH VARIABLE KERNELS

QINGYING XUE AND K0z0O YABUTA
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Abstract. We prove the L” (1 < p < oo) estimates for the singular integrals with
rough variable kernels. The L” boundedness of a class of modified directional Hilbert trans-
forms is also given. As a consequence of this result, we get a good estimate for the singular
integrals with rough odd kernels.

1. Introduction. In order to study the elliptic partial differential equations of order
two with variable coefficients, Calderén and Zygmund [4] studied the L? boundedness of
singular integrals T with variable kernels. In 1980, Aguilera and Harboure [1] studied the L?
boundedness of the associated maximal operator of singular integrals with variable kernels
to study the problem of pointwise convergence of those singular integrals. In 2002, Tang
and Yang [20] proved the L? boundedness of singular integrals with rough variable kernels
associated to surfaces. In order to give a more precise statement, we first give some definitions.

DEFINITION 1. Let K(x,y) : R" x R"\{0} — R. Then K (x, y) is said to be a
variable C-Z kernel if

(a) K(x,y) is positively homogeneous in y of degree —n, namely, K(x,Ly) =
AT"K(x,y) forany A > 0;

(b) / K(x,y)do(y') =0 for ae. x € R".
1

Define the variable Calderén-Zygmund singular integral operator T¢ associated to sur-
face of the form {x = @ (|y|)y’} by

(1.1 Top(f)(x) =p.v. /Rn K(x,y) f(x = ®(yhy"dy
forany f € C3°(R"). The truncated operator Ty and the truncated maximal operator T are
defined respectively by

To(f)(x) =[ K(x,y) f(x = @(yDy)dy,

e<|yl<l/e

T (NHx) = sup 175 (f) ()]
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These operators are considered by Fan and Pan [10] and Fan, Pan and Yang [11] in
the case where K(x,y) = K(y). In the variable kernel case, if we take @(|y|) = |y| for
y € R™{0}, then Tp = T is just the singular integral operator studied by Calderén and
Zygmund [4]. Related to the work of Fan, Pan and Yang [11], Tang and Yang proved the
following result.

THEOREM A ([20]). Suppose K (x,y) be a variable kernel as in Definition 1 and sat-
isfies for some g > 2(n — 1)/n

/ |K (x,y)|%do(y") < C1 for ae. x € R".
Snfl

Let ®@(t) be a nonnegative (or non-positive) c! function on (0, 00) satisfying @ (t)/t =
Cr ' (D) (t) for all t € (0, 00) and suppose that

(c) @ is strictly increasing (or decreasing);

(d) @ is a monotonic and uniformly bounded function.
Then Ty is bounded on L%(R"™) and T can be uniquely extended to be a bounded operator
on LE(R™).

REMARK 1. There is a defect in the proof of Theorem A for the L? boundedness of
T3, ie., the L? estimates for II (f) in [20, p. 499]. This was given by using the following
formula, which follows from the formula (2) in [21, p. 403]:

/°° Ipma @2 <1)’“ F—1rm  _ 0(;)

0 =1 S \2 I'n/22In+m—1) \mr-1)"

While in the proof of Theorem 1 in [20] this estimate of the integral played an essential role
to guarantee the convergence of the sum in m, the wrong estimate m " instead of m' ™" was
used there. It seems that it is not possible to obtain the L? boundedness of Tj by using their
method (since one has Zm>1 mém ™" m" 2 = 400, for0 < 8§ < 1). Hence we consider
another method used by Duoandikoetxea etc., which even shows that we can get some L?
estimates for T and Tj.

REMARK 2. We note the following: If g(r) € C 100, 00) is positive and decreasing
(increasing) on (0, c0) and ¢(¢)/(t¢'(¢)) is bounded on (0, 00), then lim;—¢ g() = +o0
(lim;—0 g(#) = 0) and lim;— 40 g(¢) = 0 (lim;—, 40 g(t) = +00), respectively. (See [23]
for the proof.)

So, we should interpret

p-V-/ K(x,y) f(x — @(yDy)dy = lim K(x,y) f(x = ®(yDy"dy
R" e—0 ly|>¢
in the case where @ is increasing, and

p-v. /R” K@, y) f(x = @(yhy)Hdy = Sli)nolo/ K(x, y) f(x = @(lyhy)dy

yl<e
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in the case where @ is decreasing; cf. Lemma 2.6 (Section 2) and proofs of Theorem 1 (Sec-
tion 3) and Theorem 2 (Section 4). Hence, it is adequate to define

p-v. /Rn K(x,y)f(x = @(lyhy)Hdy = lim K, y) f(x —@(yhy)dy.

e~V Je<|y|<l/e

We also note that

Ty f(x) <2sup

e>0

| Kkemra- <p(|y|)y’>dy‘
lyl>e
in the case where @ is increasing, and

Ty f(x) <2sup

e>0

/ K(x, y)f(x - ¢(|y|)y/)dy‘
yl<e

in the case where @ is decreasing.

Now, in the n (n > 2) dimensional case, if K (x, ¥) is odd in y, using the rotation method
as in Christ, Duoandikoetxea and Rubio de Francia [3, pp. 189-209], we see that the following
theorem holds.

THEOREM 1. Let ®(t) be a nonnegative (or nonpositive) and monotonic c! function
on (0, 00) such that @ (t) /(t®'(t)) is bounded. Furthermore, assume @ (t) satisfies one of the
following conditions:

(i) ¢ is monotonic,
(i) 1¢'(¢) is bounded,

(iii) @'(t) is monotonic on (0, 00),

where @(t) := @ (1) /(D' (¢)). Suppose K (x, y) is odd in y and satisfies

/ K (x,y)9do(y') < C, for a.e. x € R".
sn—1
Then, To (f)(x) exists a.e. for any f € LP(R"), and the operators Te and Ty, are bounded
in LP(R™) provided that 1 < p < max{(n + 1)/2,2}andq > p'(n — 1)/n (n > 2), where
Tgf = SUP.-g |Tq€)(f)|

For general kernel, we obtain only the following

THEOREM 2. Letn > 2. Suppose K (x, y) is a variable kernel homogeneous of degree
—n with respect to y and satisfies K (x, y') € L®(R") x L1(S"~") for some g > 2(n —1)/n.
Let @(t) be as in Theorem 1. Then, Tg and Ty, are bounded on L? (R"), if
1-@/G =D
n—(2/g—DHn—-1)/2
and p < max{(n + 1)/2, 2}, where ¢ = min{2, q}.

<p<24(@n/(n—1)=2)

REMARK 3. For an even kernel, we cannot modify the rotation method like as in
Calder6n and Zygmund [6] or Christ, Duoandikoetxea and Rubio de Francia [3, pp. 199—
200]. In fact, we see p.v. [K (x,y) f(x — @(|y})y)dy = p.v. [Ki(x, y) f (x — y)dy, where
Ki(x,y) = go(q)_l (JyD)K (x, y) (see the proof of Theorem 1). However, the kernel function
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K1(x, y) is not homogeneous of degree —n with respect to y, and so p.v. le(x, wR;(y —
u)du is not homogeneous of degree —n with respect to y, where R; is the j-th Riesz trans-
form kernel. Therefore, we cannot apply Theorem 1 to obtain the L” boundedness in the case
where K (x, y) is even with respect to y.

REMARK 4. There is no including relationship between Conditions (i) and (iii). There
are also no including relationships between Conditions (i) and (ii), and between Conditions
(i1) and (iii). These are seen in Examples 2 and 3 in [22], and Example 2.3 in [24].

REMARK 5. If @(¢) is a positive and monotonic function on (0, 0co) and @’(¢) is

monotonic, then the following (i) and (ii) are equivalent.
@) 2@/ D' ()| <M (0 <t < o0)forsome0 < M < oo.

(1) n <max{®Q2t)/D(), ©(t)/P(2t)} on (0, c0) for some 1 < n < oo.
This can be checked by elementary consideration, using convexity or concavity.

The condition n < max{®(2t)/P(t), @(¢t)/®(2t)} < L on (0, o0) for some 1 < n <
L < oo and the monotonicity of @’(¢) is used to prove L? boundedness of Marcinkiewicz
integrals along surfaces with convolution type kernel by Al-Qassem [2].

We arrange our paper in the following way. In Section 2, we prepare some lemmas which
will be used later. The proof of Theorem 1 can be found in Section 3. In Section 4, we give the
proof of Theorem 2. In the last section, we prove the key lemma which appeared in Section 2.

Throughout this paper, the letter C will denote a positive constant that may vary at each
occurrence but is independent of the essential variables.

The authors would like to thank the referee for his/her careful reading and some valuable
remarks which made this article more readable.

2. Preliminary Lemmas. We begin with recalling two known lemmas. The first
lemma can be obtained by (2.19) in [19, p. 152] and Theorem 3.10 in [19, p. 158] (see also
[20]).

LEMMA 2.1 ([19]). Letn > 2, k > 0 and P(y) be a spherical harmonics of degree
k. Then

o, 7 B
/ P(y/)eﬂx‘y dO‘(y/) = (_i)k(zn)n/ZMP X .
sn—1 |x|n/2—l |x|
LEMMA 2.2 ([14]). Suppose v and A satisfy v — A > —1,and |v| > 1/2, 1 > —1/2
orv>—1,A>0. Then

Q2.1

"J(t
/JV()dt‘<£ for 0<r <oo.
0

th - |v|A
Next, we shall give several elementary considerations.

LEMMA 2.3. Suppose g(t) is positive and decreasing, and ¢'(t) is increasing. Sup-
pose further —g(t)/(tg'(t)) > a for some a > 0. Then there exists C > 1 such that

g(t) < CgQt) for t>0.
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PROOF. We note that in this case ¢'(f) < 0. Since ¢'(¢) is increasing, g(¢) is convex.
Hence we have for any b > 1

bt) — g(t
% >4, ie., G- =
This combined with —g(¢)/(t¢’(t)) > a implies that

9() = gbn) _ ()
b—-Dtr — at
So, if we take 1 < b < 1 + a, then we get

9() — g1 _ _J0).

1
g(t) < mg(bf)-

Using this inequality [log2/log b] + 1-times, we see that there exists C > 1 satisfying
g(t)y <CgQ2t), t>0. |
LEMMA 2.4. Suppose @ (t) is positive and decreasing, and @' (t) is increasing. Sup-
pose further —® (1) /(D' (t)) < M for some M > 0. Then there exists C > 1 such that
o'y <co @2, t>0.
PROOF. From the assumption —®(r)/(t®'(r)) < M, it follows that
o'y o' (@7' (1) 1
O o@-l) T M’
On the other hand, since @ (¢) is positive and decreasing, and @’(¢) is increasing, we have
@1 (1) is also positive and decreasing, and @ 1(1)) is increasing.
Thus, @ ! () satisfies the assumption of Lemma 2.3, and hence there exists C > 1 such

that
o'y <co '), t>0. o

LEMMA 2.5. Suppose @ (t) is positive and increasing, and ®'(t) is monotonic. Sup-
pose further @ (t)/(t®'(t)) < M for some M > 0. Then, there exists C > 1 such that

o~ len<co ), t>0.

PROOF. (i) The case where @’ (¢) is increasing. Since in this case @1 (t) is concave,
we have
ol —o t o1t ol
(21) ()5@71@)/: ' ()SM ().
t 1o (@ 1(1)) t t

Thus, we have
o~ len<a+me @), t>0.
(ii) The case where @’ (¢) is decreasing. From the assumption @ (¢)/(t®'(¢)) < M, it

follows that
t o (@ (1)

oI (0@ (@ 1() @)@ (@ (1)) =




46 Q. XUE AND K. YABUTA

On the other hand, since @ (r) is positive and increasing, and @’(¢) is decreasing, we have
@~ 1(¢) is increasing and convex. So, for any 0 < a < 1, we have

&) — o (ar) _ 1
<@ ') = ——7F—
t —at (D~ (1))
-1 —1
_ t .qﬁ (t)<Md5 (t).
oL@ (@-1(1)) t - t
Thus, taking 0 < a < 1 such that 1 — M (1 — a) > 0, we obtain
o) < ;cp—l(m)
“1-M{ —a) '

Using this inequality [—1/log, a] + 1-times, we see that there exists C > 1 such that

t
qsl(z)gcqsl(z), t>0. o
The following lemma is used to give a reason why Remark 2 is well-grounded.

LEMMA 2.6. (i) Let @(t) be a positive and non-decreasing c! function on (0, 00),
such that ¢(t) = @(t)/(t®'(t)) < M for some M > 0. Then, for f € LP(R"),1 < p < o0,
and for ¢ > 0 it holds that

/ [f(x —@(yDhy")l [f(x =yl
[yl>¢

dy <M

dy < 4o00.
[y]" isoe)  1YI"

(i) Let ®(t) be a positive and non-increasing C' function on (0, 00), such that
—p@t) = —®@)/@tP' (1)) < M for some M > 0. Then, for f € LP(R"),1 < p < oo,
and for ¢ > 0 it holds that

/ [f(x —@(yhy)l [ f(x — )l
lyl<e

dy <M
[y|" iso@E  1yI"

PROOF. (i) Setting @(r) =t, we have

/ If(x—cb(lyl)y)ldy:/ /°° V&= @@ 01 4y 4 (47
ly|>€ [y|" st Je r

_ | f(x — 1y)] i :
= /S (L@ : a>—1(r>a>/<a>—1<t>>dt)d"(y )
_ f ( f - Mw(qbl(r))dr)da(y/)
Sn—l <D(£) t
<M </°° lf(x_ty)'dt)do(y/)ZM |f(X—)’)|dy
gn1 t isoeE  IYI"

D(e)
dy 1/p 1/p
§M</ ) (f If(x—y)l”dy) <CM| [l
yl=o(@) [¥I? yl>®(e)

dy < +o0.
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(i) Setting @ (r) = t, we have

/ |f(x—<1>(|y|)y)|dy=/ / L= PO 014,46 'y
Ivl<e §Jo '

[y]"

_ ® |f =0y : /
= /S ([p(e) : q>—1<t>¢f<q>—1<r>>dt)d“(y :

= f ( / h Mw@l(t))dt)da(y/)
st N\ J@(e) t

w (/“ lf(xt_ty/”dt)da(y’):M =l
sn—1

®(e) isoeE  IYI"

dy 1/p 1/p
§M</ ) (/ If(x—y)l”dy) <CM|flr. O
=@ [yI? yl>®(e)

Finally, we state the following key estimate to prove Theorem 2, whose proof we post-
pone to Section 5.

LEMMA 2.7. Let @(t) and ¢(t) be as in Theorem 2. Then forany 1 > n > 1/2—n/2
there exists C > 0 such that

hy J
1 S ) Jnzko1) c
/hl <P<@ <|§|>> §1/24n ds‘ = (n/2 +k — 1)n/2+n”’ 0<hi <hy <+o0.

REMARK 6. Using the above lemma, we can prove L2 boundedness of Tg directly,
but we could not reduce that of T directly.

3. Proof of Theorem 1. To prove Theorem 1, we use the rotation method. So, we
prepare two useful lemmas from the work by Christ, Duoandikoetxea and Rubio de Francia
[3], which play essential roles in this paper. Given an operator 7 on L”(R), 1 < p < oo, we
define an associated operator T by

TFr(x,0)=Tyf(x), (x,0)€R" xS,

where Ty acts on L”(R") by letting T act on the variable x - 6 while leaving the remaining
variables fixed.
We define the directional Hardy-Littlewood maximal operator M by

1 r
M f(x,0) =sup — | f(x —1t0)|dt, (x,0) € R" x §" 1.
r>0 2r —r
We state Lemma 4.1 and Theorem 1 in [3] as lemmas.

LEMMA 3.1. Suppose that the inequality

My fllLraoy < Clf e
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holds for some fixed p > 1, and qo > 1. If T is an operator which is bounded in
L" (R, w(x)dx) for every Muckenhoupt A,-weight w(x) in R (1 < r < 00), then

IT fllLecway < CyllfllLe

for the same p as above and for all g < q¢. Here

plq 1/p
||F||Lp(m)=(/ ([ |F(x,9)|‘1d9) dx) .
R" Sn—l

LEMMA 3.2. Ifl < p <max{(n+1)/2,2}andq < p(n — 1)/(n — p), then M is
bounded from L? (R") to L? (L9).

Now, we begin by giving a result on the following modified Hilbert transform.

PROPOSITION 3.1. Let ¢ be a positive and bounded function defined on (0, 00), sat-
isfying one of the following conditions:
(i) ¢ (¢) is a monotonic function.
(i1) 19’ (¢) is bounded.
(i) @) =t/ @ M) (@1(1))), where ® (1) is a positive and monotonic function
and its derivative @' (t) is a monotonic function.
Then the following two operators of one dimension:

Hy(rw = tim [ S e yyay

e<|yl

and

Gl

f —— f(x —y)dy
e<lyl Y
are bounded on L? (w) for any w € A,(R).

H(f)(x) = sup

e>0

REMARK 7. As is known, in the one dimensional case, Hy is not bounded even on
L2(R) for ¢(¢) = sin |t|, cf. Namazi [15, p- 421].

PROOF OF PROPOSITION 3.1. Denote ok (x) = (Xok 2k+1] — X[—2k+1, ok (X)) (@ (Ix])/
|x]). Then

Ho(f)= Y oxxf,
k=—00
and
2k+l 2k+l 2k+1
61 (£) =/ Me—”fdr—/ Me”fdrz—zi/ Msinrédr.
2k r 2k r 2k r

Next, we shall give the estimates of 63 (&) according to (i), (ii) and (iii).
Case (i). Itis easy to see that if ¢ is monotonic, then by the second mean value theorem
and the monotonicity of ¢, we immediately obtain

Cliglloo
2%

6% ()] <
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Case (ii). If |[r¢’(r)|lco < 00, integrating by parts, we get

) .[mr) cosrsr"“ (2 () = $() cosre
ox(&) = =2i| —= +21/ 5 dr.
ro & x 2k r §
Hence, we obtain
. ||¢|Ioo |I¢>||oo 2(7[p ()] ll o
4 o0 o
6:®)] <4700 I2,<§|(|| ) oo + [9l100) = 6752 e
Case (iii).

k+1
2 sinré

o) =2 /2 T e @ 1)

If @ and @’ are increasing, then @1 is also i increasing and 1/(®~ 1(r)q§’(<1)71(r))) is de-
creasing. So, by the second mean value theorem, we have for 2k < h; < 2k+1

. he 1

ok (&) = 2‘/2/( sinr dr o100 d (@120

_ 4 2t _ Cligllo
TRk eri@he(@Tl2h) T 12k

If @ is increasing and @’ is decreasing, then /@~ 1(r) is decreasing and /@' (@71 (r)) is
increasing. Hence, using the second mean value theorem twice and Lemma 2.6, we get for
some 2% < g < ), < 2k+1

h;( 1
ok (&) = 2‘/@ sinr& dr TN e (-T2
e 24! I _ Clglo
~ & q§71(2k+1)q§/(q§71(2k+1)) 2k+1 — |2k$|
If @ is decreasing, then the case that @’ is decreasing does not occur. So we only need to
consider the case that @’ is increasing. Thus, 1/ 1(r) is increasing and —1/®' (@71 (r)) is
positive and decreasing. By Lemma 2.5, we get

i 1 Cllgllso
ool [ -
oK)l ‘/h SIS T e e 1@ | =12k
On the other hand, we see that
2k+l 2k+l
$(r) ¢(>
seen=2| [ P sinrear| <2 [ L 0nelar <l e,

Thus, in all cases (i), (ii), (iii), we have proved

(3.1 6()] < Cllgllool2T'E] and  |61(5)| < 2l
Therefore, since Hy(f) = Y e~ 0Ok * f, by the same steps as in the proof of Corollary
4.2 in [9], one can show that Hy and H;; are bounded on L? (w) for any w € A,(R). In fact,
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let {4 }?‘;700 be a smooth partition of the unity in Ry = (0, co) adapted to the intervals
[2=/, 2=U=D] such that

yjeC, 0<y; <1, Y v =1,
j

suppy; C {#: 27U <1 <27U7D) - and |yl < Cr'

Also define the multiplier operator S; in R by (S; f )A(é) = f (6)¥;(l&]). Then we have

Hyf = de * <ZSj+ij+kf) = Z <Zsj+k(0k *Sj+kf)) =! Zij-
k j j k J

J
If w € A2(R), we have, noting
lok * g(x)| = / @lloclgMI/1y — xldy < 4llpllccM g(x)
2k§|)’—x\§2k+l
and using the A, weighted boundedness of the Hardy-Littlewood maximal function and
Littlewood-Paley decomposition operator (see [13]), that

IH; £ll20) < C1 Y 0w * Sjikf iz < C1C2 Y IM Sk )20y
k k

< C102C3 Y 1Sj4k S 2wy < C1C2C3CHf 2w
k

By the reverse Holder inequality, we have

IH; fll 2oy < CIfl2aiey . J€Z

for some ¢ > 0 (see [12]).
Now, using Estimate (3.1) for 6% (&), we can show as in the proof of Theorem B in [9]
that

IHj fl2gy < €27V fll 2Ry, JEZ.
Hence, interpolating with change of measure, we obtain
1H fl 2y < €27 fll g,y . ez,
which implies
IHg fllr2wy = CHFNL2w) -

Thus by the extrapolation theorem for A, weights (see [12]), we have for every w € A,(R),
1<p<oo,

1Hy fllLrawy < CNfllLew) -

By adapting the proof of Theorem E in [9] and using the same arguments as above, we obtain
the corresponding result for H ;; This completes the proof of Proposition 3.1. a

Using this Proposition 3.1 and Lemma 3.1, we obtain
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PROPOSITION 3.2. Let ®(t) be as in Theorem 1. Then the following two directional
operators of higher dimension:

d
Hy(f)(x, 0) = lim o(@~ (1)) f (x — IG)TI

e<|t|

and

H(f)(x,8) = sup

e>0

d
/ Hw@*l(un)f(x—te){
e<|t

are bounded from LP (R") to LP(L?) foranyq < p(n—1)/(n—p) and1 < p < max{2, (n+
1)/2}.

PROOF. By Lemma 3.2, M; is bounded from L”(R") to LP(L9) forall 1 < p <
max(2, (n+1)/2)andg < p(n — 1)/(n — p).

Next, let ¢ (1) = ¢(® ' (r)). Then the positivity and boundedness of ¢ imply those of ¢.
In the case (i), since ¢ and @ are monotonic, ¢ is also monotonic. In the case (ii), we have

ltg' ()| = 1t (@@ )| = 127" (@ 1))@ )| < lI@llocllse’ ()llso < +00.
In the case (iii), since () = @ (¢)/(t P’ (1)), we see that
o) =@ ') =@ 1) /( @)D (@ (1) =t/ @ (P (@ (1))

Also @'(r) is monotonic by assumption.
Hence, applying Proposition 3.1 and then Lemma 3.1, we obtain the desired
conclusion. )

Now, we are in a position to prove Theorem 1. We shall prove only the case where @ (¢)
is nonnegative and nondecreasing, since the other cases are proved in a similar way. Then,
under the condition of Theorem 1, we have limy,_.9 ®@(¢) = 0 and lim,_, 15, @ () = +o00.
We first note

/ K0S G = @y) / /°° K@D = O oty
Iyl BE st Je r

_ K@ y)f@ =1y ' /
= fs ( fm) i qbl(r)qb/@l(t))dt)d"(y :

= /SH (/00 Kr.y) fx — ty/)(p(q)_l(t))dt)da(y’)

() t

=/ (@ IyMK (x, y) f(x — y)dy.
[y|>®(e)



52 Q. XUE AND K. YABUTA
So, since K (x, y) is odd in y and @ () is increasing, we obtain that
To (f)(x) = p-V-/ K(x,y) f(x = @(yhy"dy
Rll

= lim (@ L(y)K (x, y) f(x — y)dy
E—> |y|>®(e)

= lim / /00 (p(qﬁfl(r))K(x, 0)f(x — V@)ﬂdG(Q)
sn—1 ®(¢e) r

e—0
= fﬂ)Tq?(f)(X)
3.2 0
02 = liml/ / </)(¢71(V))K(X,9)(f(x—Vy/)—f(x-l-V@))ﬂdG(@)
e—02 sn=1 Jp(e) r

. 1 -1 dr

= lim —/ / (@ () f(x —s0)—K (x,0)do (0)
e—02 =1 J|s|>® () r
1. ( 1 dt)

= 5 lim K (x,0) / @@ (D) f(x — 10)— )do (0)
2 e—0 sn—1 [t|>®(e) t
I (/ 4 dt)

= 7 lim K(x,0) (@ (Ith) f(x —16)— )do (0) .
2 n—0 sn—1 MES) t

Also similarly as above, we get

d
/ K(Xﬂ)(/ </>(<P—1(It|))f(x - t9)—t>d(f(9)‘
sn—1 It]>®(e) !

d
/ o@D fx — 1) 2
[t|>®(e) !

1
T3 (f)(x) = 5 Sup

e>0

do ()

1
(3.3) < —/ |K (x,0)| sup
2 Ssn—1 e>0

do (0) .

1
=—/ |K (x, 0)] sup
sn—1

2 n>0

d
/ o@ (D) fx — 1)
lt]>n !

Note that g > p’(n — 1)/n implies ¢’ < p(n — 1)/(n — p). Thus, applying Proposition 3.2,
we have by (3.3)

plq , pld N1/
ITg fllir < </R" (/Snl IK(X,G)quU(Q)) </Snl |Hg f (x,0)]1 dU(Q)) dx)

=< CIHH;f(xa Q)HLp(Lq’) <Clflcr.

Combining this with (3.2), we obtain that

plq ) pld \1/p
ITo fllr = (/R" (/Snl IK(X,Q)quG(9)> (/Snl |Hy f (x, 0)|7 d6(9)> dx)

< Cill Hy f GOl gy < Cllf 1.

This completes the proof of Theorem 1.

4. Proof of Theorem 2. In this section, we shall prove Theorem 2. Let Hy and Dy
be the space of surface spherical harmonics of degree k on $”~! and its dimension. By the
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same argument as in [4], one can reduce the proof of Theorem 2 to the case as follows:

feCP(R" and K(x,y) = ZZ ki (x ) is a finite sum,
k>1 j=1
where {Yy;}, k > 1,j = 1,2, ..., Dy, denotes the complete system of normalized surface

spherical harmonics. Set

Dy 2\ 2 ag, j(x)
ar(x) = (Zlak,f@') and e ="

Then we get

Zbkf(x)—l and  K(x,y) = Zak(X)Zbk,() T/(|y)

Jj=1 k>1

Note that if 2(n — 1)/n < go < 2 and we take 0 < § < 1 sufficiently close to 1, i.e.,
2/g0 — 1)(n — 1) < 8§ < 1, then by [7, p. 231] we have
1/q0

172
(Zk—sa,%m) §C< /S |K(x,y’)|q0do(y’>> =C.

k>1
If go = 2, this inequality becomes trivial for § = 0. Moreover, let

T4 () =pov. /R n "’(y ) f = a1y

=p.v. /R p(@(1y]) T’(y L=y
Then
Dy ) 2
(To (f)(x))* = (Zaku) > b, j<x)Tqé,k<f)(x>)
k>1 j=1
4.1) < (Zk‘sa;%(x))(Zk‘S Z[Tqék<f)(x>]2)
k>1 k>1 =

Dy, )
< C(Zk5 Z[Tg,k(fxx)]z) :

k>1 j=1
To prove Theorem 2 we prepare the following three lemmas:

LEMMA 4.1. LetO < n < 1/2. Then, for Ty = T}, k € N, j = 1,2,..., Dy,
there exists C > 0 such that

ITkj flig2 = C 1 &)Yy €Iz

kn/2 n

1T flle <€ 1 &)Yy €Iz

kn/2 n
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where

Yii(y
[ o@D ra - yay.
ly|>2! [yl

T/:}*f (x) = sup

leZ
and C is independent of j, k and f.

PROOF. Setting

Yim (¥')
o1(x) = p(@~ ' (Iy)) |m|,, Xy, leZ, ke N, m=12,..., Dy,
we have
1 km( /) —iy-E
1618) = || (@ (Iy)——— [ X2t 21y ([yDe dy
_c /21+1|§|(p<q)_1<i)> Jnj24k-105) s
2| &1 sn/?

“4.2) 2+ g]

<C/ oot (L)) nariot ) o

TS t3 /2N

ANk / @Ep”
= k= tyr = €T

Here in the last step we first used the second mean value theorem, then used Lemma 2.7;

h
/ (p<(pl<i>>~]n/2+l;—l(s) ds‘ - C _—
hy €] sn/2tn (n/2 +k — 1yn/z+n

Similarly, we have

Yiom (8] -

QIEp" N <@ flEn
(n/2+k_1)n/2_n|Ykm(é )lf k”/2 n

From (4.2) and (4.3) we have for the kernel function Kg,, (x) = (,o(CD_1 Ux D) X () /1™

i . . c ,
|Kkm(5)|s< RIGIES |oz<s>|) < Gy Vi)

2g1=1 2g1>1

4.3) o)l = C Yiem (1)1 -

Hence, by Plancherel’s theorem, we obtain

“4.4) 1 Tim fll2 = C 1 &) Yem E 2 -

kn/Z n
Next, we treat the maximal operator T} f. We denote Ty, by T. We modify the proof of
Theorem E in [9]. We redefine ¢ as follows: Take ¥ € S(R") such that ¢/(§) = 1 when
&) < 1, ¥(§) = 0 when [£] > 2,and 0 < ¥(§) < 1 when & € R"; write ¥(§) = ¥(2§)
and ¥ (§) = ¥ (2'€). Setting

o100 = 9@y 2 (o)

|yl
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and

Yim ('
Tif = @1y 20D iy ay,
2 <y [¥]
we decompose T} f = Z?OZZ oj* f(x)as

-1 00
T1f=Wz*<Tf— Z Gj*f(X)>+(5—‘1’1)*ZUj*f(X)
Jj=—o00 j=l

-1 00
=lp,*Tf—q/,*< > aj*f(x))+(5—w,)*zaj*f(x),

Jj=—00 Jj=l

where § is the delta function at the origin. Set

-1

6 — W) x Y 0% fx)

Uf(x)=sup|¥ * Y  oj*f(x)| and Vf(x)=sup )
! o0 I o
Then we have
4.5) Tim f(x) < SI;p W+ Tf)|+Ufx)+VIx).

We see

1 % Tf ()] = CTF) () andso |sup @« T ()| HLF ColTF e
[
where (T f)* is the Hardy-Littlewood maximal function of 7 f, and hence by (4.4) we get

1 N
< oo I ) Yim EDl 2 -

(4.6) Jswp i« 7|, = oy

Also, we have

0
Uf(x) = s?p v % Z Oji—1* f(x)
j=—00
0 0
< Z Slllp Y x0jp-1% f(x)]| = Z Ujfx).
j=—00 j=—00

Since U f(x) < (X ez 11 % 0j41-1 % £ (x)[H)/2, we have

/IUjf(x)lzdx < Z/ @) % 01 % f(x)]>dx

leZ
=C)y / W Q'E)6j 1) f €)1 d .
leZ
Set Y (¢') = 1/k"/*>7" i, (£")|. Then, using (4.2) and the property of v/, we get

55

[ (216)6,1-1€) = 0(12'6] = 2) and < CY(EH2/He < cyEH2V2lem (2 < 2).
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Also, if 271 < |E] < 27™, we have |ZZ§| > 2 forl > m+2, and hence 1//(215)6j+1_1(§) =
0 for! > m + 2. Thus, if 2771 < |E] <27, we get
Yl @e6 @)1 < Y CPrEHR g™
leZ [<m+1
— CZy(S/)Zzzjr} Z 22(l—m)7]|2m$|2n
I<m+1
Cc224n
<
2
This implies ||U; fl2 < C2j’7||f(§)Y(§’)||2. Thus we obtain
1
kn/2—n

Y(§)?20.

4.7 IUfl2=C 1 &) Yem ED 2 -

As for V f, we get

6 —W) %Y oj* f(x)

j=0

Vf(x) =sup
I

<D supl6 — W) oy ()] =1 ) Vif ().
j=0

j=0
Since V; f(x) < (317 |8 — W) x 0jq x f(x)[H)1/2, we have
/|ij(x)|2dx < Z/ |8 — W) % 0jr % f ()| dx

leZ

=C)y / (1= (2'8)8411E) f(©) dt .

leZ
Using (4.3) and the property of ¥, we see that

-0, 2'gl <1,

< CYEH[2/Hg|n <cy@EH2-v2lg|n, 12lE] > 1.
Also, if 271 < €] < 27™, we have |2’§| < 21/2’” < 1 for! < m, and hence (1 —
YV (2'£))6j11(8) = 0forl < m. Thus,if 271 < |§] <27™, we get

DI -y @ENsiu@P < > CPrE) 2 A lE

(1 — ¥ 2'£)6 4 (E)I{

leZ I>m+1
S C2y(§/)22—2j7} Z 2—2(l—m)n|2m%.|—2n
[>m+1
< ey 2
- 221 —1)°
This implies that [|V; fl2 < C2’j’7||f(§)Y(§/)||2. Thus, we obtain
1 N
(4.8) IVFll2 < Co——m—= 1 fE)Yim(ED2 .

kn/2—n
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By Estimates (4.5)—(4.8), we obtain the desired estimate for Tk*;;'; f.

LEMMA 4.2. Let 1 < pg < oo. Suppose sublinear operators T;, 1 = 1,2, ...

satisfy

m 12
([me(x)Fdx) <Cilflh,
=1

0T fllpy < Callfllpy, 1=1,2,...,m.
Then,if 1 < pgp < p <2,

m 1/2
H(Z ITzf(X)|2>
=1

andif2 < p < pp < 00,

m 1/2
H(Z ITzf(X)|2>
=1

where 1/p =60/2+ (1 —6)/ po.

PrOOF. Ifl < pp < p <2, using pp/2 < 1, we have

m Po/2 1/po m 1/po
([ (me(x)P) dx) < (/me(xw’ﬂ dx)
=1 =1

< mCYN I P0 = mPoCy | £l g -

0 ~1-6 1-6
<ciey om0y £y,
14

<l P m 0211,
P

Hence, interpolating between 2 and pg, we get

m 1/2
H(Z ITzf(X)|2>
=1

If2 < p < po < oo, we have by Mikowski’s inequality

m Po/2 1/po m 2/po\ 1/2
(/ (me(x)|2) dx) < (Z(/ITlf(x)lpodx) )
=1 =1

< G f15)"2 = m'2Call fllpo

0 ~1-60 1-6
<cicy m =) £y,
P

and hence interpolation of sublinear operators between 2 and pg gives

H(é ITzf(X)Iz)m

<1 ' m O £
p

a

LEMMA 4.3. Let 1 < p < oo For Tyjf(x) = p.V.f(p(q§’1(|y|))(ij(y’)/

IyI™) f(x — y)dy it follows that

ITkj fllLe < Cpll fllLe
1T fliee < Cpll fllee



58 Q. XUE AND K. YABUTA

PROOF. Noting [|¥jll,2(sn-1) = 1, by Corollary 4.1 in [9], we have the desired conclu-
sion. O

Now, we are in a position to prove Theorem 2. We first prove the L? boundedness of
T, using Equation (4.1).

To prove our theorem, we consider two cases:

(i) Thecase2—(1—-(2/g—Dn—-1)/(n—2/g—D@n—-1)/2)=2n—-1)/n—
2/g—1Dn—-1)/2) < p <2. Wefirsttake § > Osothat (2/g — 1)(n — 1) < § < 1 and
p > 2n —1)/(n — §/2), and then choose pg sufficiently near 1 and n sufficiently near O so
that np8/2 — p§/2 —n+2—pnb = pmn—56/2) —2n+2—np(1 —0)(1 —1/py) — pnd > 1,
where 1/p =6/24 (1 —60)/po.

In this case, using Estimate (4.1), and noting 0 < p/2 < 1, by Lemmas 4.1, 4.2 and 4.3,
together with interpolation theorems, we have

1/p 0 Dy p/2 1/p
</|T¢f(x)|” dx) < C(/Zkﬂ5/2<Z|Tk,f(x)|2) dx)
k=1 j=1

o0 52 Dy 1/p
14 [
< C(Zk - /2_,])9,7) 1 £l

k=1
00

1
< C( ka6/2—11p9/2+n—2+pn0) /p”f”p < C”f”p .
k=1
In the above, we have used the fact that ijil |Yk,j(.$§’)|2 = w ' Dy ~ k"2 (see [7, p. 255,
(2.6)]), where w denotes the area of §” 1.

(ii)) Thecase2 < p <2+ (gn/(n — 1) —2) = gn/(n — 1). We first take 6 > 0 so
that 2/g —1)(n—1) <§ <land2n/p >n—1486>n—-14+2/qg —1)(n — 1), and
then choose pg sufficiently big and 7 sufficiently near O so that n6 — 6 —n +2 — 236 =
2n/p—8—n+2+4+2n(1—0)/po—2n6 > 1,where 1/p =6/2+ (1 —6)/po.

Since

o0 Dy 1/2
|To f(x)] < C(Zk‘s > |Tkjf(x)|2) :

k=1 j=1

we have by Mikowski’s inequality and Lemmas 4.1, 4.2 and 4.3,

1/p o Dy p/2 2/p\ 1/2
</|T¢f(x)lpdx) SC(Zk8</<Z|Tkjf(x)|2> dx) )
k=1 j=1

s s_ Dk r - S—nb+n—2+2n0
5C<Zk k2(n/2r))6) ||f||p§C<Zk o >||f||p
k=1 k=1

=Clflp-

Thus we have proved the L” boundedness of T .
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Next, we shall prove the L” boundedness of T;5. To prove it, we note that we have only
to prove the L” boundedness of

Tg* f(x) = sup

keZ

f e(@ Ny K (x, y) fx — y)dy‘ .
ly|>2k

In fact, we see

2+l

K -
/ o ny |If(x )’)ldyS/ IK (x, y)|/ RS y”d do(y')
2d<fyl<2i+t |yl s

54/3 B |K (x, Y)IM1f (x, yNdo (PN 4IK G )l pasnn) 1M1 f O ) g gty
SC”le(-xv ')”Lq’(sn—l) s

where M f(x,y’) is the directional Hardy-Littlewood maximal function. From 2 — (1 —
2/g—1Dn—-1)/(n—2/g—1Dn—1)/2) < p <2itfollows that g’ < p(n — 1)/(n —
p+m—-—0D1A-p/2) < pm—1)/(n—p),andfrom2 < p <24 (gn/(n — 1) —2) it
follows ¢’ < p(n — 1)/(n — p+ (p —2)) < p(n — 1)/(n — p). By assumption we have
p < max{(n + 1)/2, 2}. Hence, by Lemma 3.2, we obtain

1/p
(/Rn<||M1f(x,~>||qu(Sn1))de> <Clflp.

and hence

lf G =»ldy| = Clellelflp-

p

_ IK (x, ¥
sup/ p(@ " (Iy]) ———
lez Jol <|y|<2i+! [yl

This implies our claim. Since, as in (4.1), we have

00 Dy 1/2
T3 f ()] < c(ZN > |T;;*f(x>|2) ,

k=1 j=1

the above proof for the L” boundedness of Tg also works in this case. This completes the
proof of Theorem 2.

5. Proof of Lemma 2.7. In this section, we will prove the key estimate, Lemma 2.7.
First, we note that since, as is well-known, J,,(s) = O(s") (s — 0) and J,(s) = O(s~/?)
(s — +o00), we have

| Inj2+k—1(s) i s
/o RO “’(‘p (m))

So, we have only to show Lemma 2.7 for 0 < h; < hy < oo. We also give only the proof in
the case that @ is positive, since the case for negative @ is similar.

5.1. Case (i): ¢ is monotonic. = We assume that @ (¢) and ¢(¢) are increasing, since
the proof is similar for other cases. In this case ¢(¢) is nonnegative, and &) is increasing,

1
ds < +oo for E—%<n<k.
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and so ¢(® ! (t/|€])) is increasing. Let v = n/2 +k — 1,and 0 < h; < hy. Then, by the
second mean value theorem, there exists 4’ with h; < h’ < h, such that

I A S h CI A S
/ n/2+k2+1(p)(p<(p_1<ﬁ))dp _ (p<@—1<_2>>/ n/2+k2+1(,0)d10.
hy pn/Hn &1 tq W pn/Hn
Hence for 1 > n > 1/2 — n/2, by Lemma 2.2 there exists C > 0 such that
/hz Jn/2+k—l(,0)(p o] P dp| < Cllolloo
e H = (/24 k— D

5.2. Case (ii): t¢'(¢) is bounded. For 0 < hy < hy < v, since J,(p) > O for

I :=

0 < p < v, we have by Lemma 2.2

ha o n gk C
/ n/2+k2 1(p)¢<¢1<£>>dp‘ - l¢lloo .
hy pn/Fn &1 (n/2 +k — 1)n/2+n
In the case where hy > v, we obtain

v _
/ n/2+k2 1(P)(p<q§_1<ﬁ>>dp‘

no P2 &1

"2 Jprii-1(p)

J2+k—1(p -1 P .

/v T ¢(¢ (m))d"‘ —hthk

For I, we know by (5.1) thatif 1 < v, 1 < Cll¢llco/(n/2 + k — 1)”/2‘“7, andif by > v, it
is contained in the case I>, which we will deal next.
For hy > v, take ¢ > O such that n/2 4+ n — & > 0. Then, integrating by parts, we have

b (" 1) N @ /gD P duppmi @)
2= v pn/2+n—e P hot v ,  uMrn—e

e () () el )k

Hence, by Lemma 2.2 we have

C @]l b2 dp ,
125(n/2+k_1)n/2+“( e+ [ ol + 11/ Ol + el

5.1 I =

I <

(5.2)
+

(5.3)
{llglloo + 126" ) lloo + ell@lloc) -

- C
T (/2 4k — 1)n/2+n
Thus, by (5.1), (5.2) and (5.3), we get

C
= i e Iellee + 116/ Ollos + ellglloo)

5.3. Case (iii): @’(¢) is monotonic on (0, 00). Since we have assumed @ is positive,
we only need to consider two cases, i.e., @ is a positive and increasing function and @ is a
positive and decreasing function.

Case A. @ is a positive and increasing function.
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As in Case (ii), we have only to estimate

"2 Jujagk—1(p) P
[ mele ()

for hy > v. For I, we consider the following two cases (A1) and (A2).

(A1) The case where @ (t) is positive and increasing, and @’ (¢) is increasing.

Since @~ (p/|&|) and &' (@~ (p/|&|)) are positive and increasing, by Lemma 2.2 and
the second mean value theorem we get for some v < h < hy

2 Jajak—1(p) _if P
Il G )

(5.4) b=

B fh2 Jn/24k-1(p) 1 dp
L el ol (p/IEND (D (p/I€)) IE]
(5.5) _ /h Jnj2+k-1(p) dp 1 ‘
P/ 2=l gl @1 (v/|E) @ (@1 (v/|E]))
_ /" Jn/2+k—1(:0)dp‘ v « 1
/21 &l @1/ 1E) @ (@1 (/) v

c

C 1
pn/24+n—1 lplioe X ; = (n/2+k— 1)"/2+T) lelloo -

(A2) The case where @ (¢) is positive and increasing, and @' (¢) is decreasing.
As before, we have only to estimate

"2 Jujaik—1(p) P
[ mele ()

for hy > v. In this case we proceed as follows.

We see @ 1(7) is increasing, and hence @'(¢) is decreasing implies that @' (@ (p))
is positive and decreasing. Thus, we know that 1/®’ (@ (p))isa positive and increasing
function. Now, for any 7> > v, it is easy to see that there exists a jo € N such that 2J0 <
hy/v < 2J90%1 "and so we have

I, =

Jo

1252

(5.6) 1=0

ol+1,,
In/2+k—1(p) —if P
/ — e P ) )9
2y P 1€
/hz Jn/Hkl(p)(p(‘P_l(ﬁ))dp‘
20y PN 1€ '

+
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Noting the positivity and the monotonicity of 1/®~!(p) and 1/®'(®~!(p)), and using the
second mean value theorem twice, we get

2l+1v

J, _
/ n/2+k 1(;0)¢ o2 dp
2y pn/ZHn tq

_ /wl” In/2+k—1(p) 1 dp
20y p/2Hn=1 @d=l(p/|EN@" (@~ (p/I€])) IE]
1 1 1" T jok—1(p)
= o1 T —1 (ol El W=t 4P|
| Q/IEN@ (@ /IEMIEN Sy o
where 7', " € [2v, 2/+1]. Hence, by Lemma 2.2 and Lemma 2.5, we get
2H~lv
n/2+k—1(0) —if P
/zzu PREs ¢(¢ (m))d"‘
1 C

(5.7) _lete gD 2% 1y/18)
= 21+1y, yn/2+1-1

-1/ g o1 /|Epe (@1 2/ €)))
Cligles _ €
— 2lyn/2+n = 2lyn/24n °

Since 1/®'(®~!(p)) is positive and increasing, we have as above for some 7', n” € [2/0v, h,]

"2 Jupask-1(p) i P
Lol () )
20y P €]

1 1| (7 Jujpsk—1(p)
©8 |@—L(2Jov/|E) @' (@~ 1(ha/IE)] I£] /,7 pr/2n-1
12t y/ED) gl C

= -1 (2o /|E]) 2Jo+lyn/24n = Djoyn/24n
Hence, by (5.6), (5.7) and (5.8), we get

h< Looc c . C
2= ZZ; 2l yn/2+n + 2yn/2+n — n/2+k— 1)n/2+7] :

Thus, we have proved that

h2 o aik—1(p) C
[2+k—1(P —1( P
AV ol o (£ ) )dp| < .
fhl 72 ‘”( (ISI)) ”‘ = W2+ k — Dyn/2en

Case B. @ is a positive and decreasing function.

In this case, since @'(r) is monotonic and @ () is decreasing, we see that only the case
that @'(z) is increasing occurs. Otherwise, @ () is concave and its graph traverses the x-axis.
As before, we have only to estimate

"2 Ty pri-1(p) i P
[ el () o

for hy > v. In this case we proceed as follows.

1 =

I =
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We see d~L(¢) is decreasing, and hence @’(¢) is increasing implies that —@/(p—1 (p/
|€])) is positive and increasing. Thus, we know that —1/®'(®~!(p/|£|)) is a positive and
decreasing function. Now, for any s > v, itis easy to see that there exists a jo € N such that
2/0 < hy/v < 240F1 and so we have

Jjo

2l+lv
Jnj24k—1(p) ( 1(/0))
L < f Sl (= ) )dp
ZZ:; 21y p/Fn €]

b2 Jajask—1(p)
/24+k—1(p 1 P
+ ——— 9| P — ) )d
~/2j0v pn/2+n g0( ('%")) P

Noting the positivity and the monotonicity of 1/®~!(p) and —1/®’(®~!(p)), and using the
second mean value theorem twice, we get

2y J2+k—1(0) Jo
n/2+k— -1
L el () o
/wl” Jnj21k—1(p) 1 dp
2y p/Fn=1@=1(p/IE)@" (@~ (p/I€])) I§]
1 1
et /ENe (@ 21 /IE])| H

where 1’, ” € [2'v, 2/+10]. Hence, by Lemma 2.2 and Lemma 2.4, we get

2H~lv

J; _
/ n/2+k 1(p)(p o 1(2L dp
2ly pn/2n €]

5.9

/"” Jnj2+k—1(0)

g Pt

dp

s

(5.10) _| e l@v/igD 2y lg] 1 c
= o7 1@ v/g) 1@/ [EDP (@1 (21v/[E]) |20 vi/2 T
1
< Cllplloo gy < Cqromrsry -

Since @~ !(¢) is positive and decreasing, we have as above

ha J sk 1(0) o-12hv/lE) 1
n/2+k—1(p0 qf P
—| P — | )dp| < C .
/2 PREE g"( (Iél)) g “ &1 (I [E]) 2000/

o-'20v/lE) 1 C
= T @12ty /|E|) 2jopn/24n = Djoyn/2+1 ’
Hence, by (5.9), (5.10) and (5.11), we get

(5.11)

Jjo
I < c 1 - C
2= ZZ; 20yn/240 = (n)2 4+ k — 1)n/2+n
Thus, we have proved that

hy g _ C
1=/ qu((p—l(ﬁ))d;}‘f L 0<h <h <00 O
wo o g (n/2+ Kk — 1y /25
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