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ON THE BOUNDEDNESS OF SINGULAR INTEGRALS
WITH VARIABLE KERNELS
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Abstract. We prove the Lp (1 < p < ∞) estimates for the singular integrals with
rough variable kernels. The Lp boundedness of a class of modified directional Hilbert trans-
forms is also given. As a consequence of this result, we get a good estimate for the singular
integrals with rough odd kernels.

1. Introduction. In order to study the elliptic partial differential equations of order
two with variable coefficients, Calderón and Zygmund [4] studied the L2 boundedness of
singular integrals T with variable kernels. In 1980, Aguilera and Harboure [1] studied the L2

boundedness of the associated maximal operator of singular integrals with variable kernels
to study the problem of pointwise convergence of those singular integrals. In 2002, Tang
and Yang [20] proved the L2 boundedness of singular integrals with rough variable kernels
associated to surfaces. In order to give a more precise statement, we first give some definitions.

DEFINITION 1. Let K(x, y) : Rn × Rn\{0} → R. Then K(x, y) is said to be a
variable C-Z kernel if

(a) K(x, y) is positively homogeneous in y of degree −n, namely, K(x, λy) =
λ−nK(x, y) for any λ > 0;

(b)
∫
Sn−1

K(x, y ′)dσ(y ′) = 0 for a.e. x ∈ Rn.

Define the variable Calderón-Zygmund singular integral operator TΦ associated to sur-
face of the form {x = Φ(|y|)y ′} by

(1.1) TΦ(f )(x) = p.v.
∫

Rn
K(x, y)f (x − Φ(|y|)y ′)dy

for any f ∈ C∞
0 (R

n). The truncated operator T εΦ and the truncated maximal operator T ∗
Φ are

defined respectively by

T εΦ(f )(x) =
∫
ε<|y|<1/ε

K(x, y)f (x −Φ(|y|)y ′)dy ,

T ∗
Φ(f )(x) = sup

ε>0
|T εΦ(f )(x)| .
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These operators are considered by Fan and Pan [10] and Fan, Pan and Yang [11] in
the case where K(x, y) = K(y). In the variable kernel case, if we take Φ(|y|) = |y| for
y ∈ Rn\{0}, then TΦ = T is just the singular integral operator studied by Calderón and
Zygmund [4]. Related to the work of Fan, Pan and Yang [11], Tang and Yang proved the
following result.

THEOREM A ([20]). Suppose K(x, y) be a variable kernel as in Definition 1 and sat-
isfies for some q > 2(n− 1)/n

∫
Sn−1

|K(x, y ′)|qdσ(y ′) ≤ C1 for a.e. x ∈ Rn .

Let Φ(t) be a nonnegative (or non-positive) C1 function on (0,∞) satisfying Φ(t)/t =
C2Φ

′(t)ϕ(t) for all t ∈ (0,∞) and suppose that
(c) Φ is strictly increasing (or decreasing);
(d) ϕ is a monotonic and uniformly bounded function.

Then T ∗
Φ is bounded on L2(Rn) and TΦ can be uniquely extended to be a bounded operator

on L2(Rn).

REMARK 1. There is a defect in the proof of Theorem A for the L2 boundedness of
T ∗
Φ , i.e., the L2 estimates for III (f ) in [20, p. 499]. This was given by using the following

formula, which follows from the formula (2) in [21, p. 403]:

∫ ∞

0

Jn/2+m−1(t)
2

tn−1
dt =

(
1

2

)n−1
Γ (n− 1)Γ (m)

Γ (n/2)2Γ (n+m− 1)
= O

(
1

mn−1

)
.

While in the proof of Theorem 1 in [20] this estimate of the integral played an essential role
to guarantee the convergence of the sum in m, the wrong estimate m−n instead of m1−n was
used there. It seems that it is not possible to obtain the L2 boundedness of T ∗

Φ by using their
method (since one has

∑
m≥1m

δm−n+1mn−2 = +∞, for 0 < δ < 1). Hence we consider
another method used by Duoandikoetxea etc., which even shows that we can get some Lp

estimates for TΦ and T ∗
Φ .

REMARK 2. We note the following: If g(t) ∈ C1(0,∞) is positive and decreasing
(increasing) on (0,∞) and g(t)/(tg ′(t)) is bounded on (0,∞), then limt→0 g(t) = +∞
(limt→0 g(t) = 0) and limt→+∞ g(t) = 0 (limt→+∞ g(t) = +∞), respectively. (See [23]
for the proof.)

So, we should interpret

p.v.
∫

Rn
K(x, y)f (x −Φ(|y|)y ′)dy = lim

ε→0

∫
|y|>ε

K(x, y)f (x − Φ(|y|)y ′)dy

in the case where Φ is increasing, and

p.v.
∫

Rn
K(x, y)f (x −Φ(|y|)y ′)dy = lim

ε→∞

∫
|y|<ε

K(x, y)f (x −Φ(|y|)y ′)dy
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in the case where Φ is decreasing; cf. Lemma 2.6 (Section 2) and proofs of Theorem 1 (Sec-
tion 3) and Theorem 2 (Section 4). Hence, it is adequate to define

p.v.
∫

Rn
K(x, y)f (x −Φ(|y|)y ′)dy = lim

ε→0

∫
ε<|y|<1/ε

K(x, y)f (x − Φ(|y|)y ′)dy .

We also note that

T ∗
Φf (x) ≤ 2 sup

ε>0

∣∣∣∣
∫

|y|>ε
K(x, y)f (x − Φ(|y|)y ′)dy

∣∣∣∣
in the case where Φ is increasing, and

T ∗
Φf (x) ≤ 2 sup

ε>0

∣∣∣∣
∫

|y|<ε
K(x, y)f (x − Φ(|y|)y ′)dy

∣∣∣∣
in the case where Φ is decreasing.

Now, in the n (n ≥ 2) dimensional case, ifK(x, y) is odd in y, using the rotation method
as in Christ, Duoandikoetxea and Rubio de Francia [3, pp. 189–209], we see that the following
theorem holds.

THEOREM 1. Let Φ(t) be a nonnegative (or nonpositive) and monotonic C1 function
on (0,∞) such thatΦ(t)/(tΦ ′(t)) is bounded. Furthermore, assumeΦ(t) satisfies one of the
following conditions:

(i) ϕ is monotonic,
(ii) tϕ′(t) is bounded,

(iii) Φ ′(t) is monotonic on (0,∞),
where ϕ(t) := Φ(t)/(tΦ ′(t)). SupposeK(x, y) is odd in y and satisfies∫

Sn−1
|K(x, y ′)|qdσ(y ′) ≤ C1 for a.e. x ∈ Rn .

Then, TΦ(f )(x) exists a.e. for any f ∈ Lp(Rn), and the operators TΦ and T ∗
Φ are bounded

in Lp(Rn) provided that 1 < p ≤ max{(n + 1)/2, 2} and q > p′(n − 1)/n (n ≥ 2), where
T ∗
Φf = supε>0 |T εΦ(f )|.

For general kernel, we obtain only the following

THEOREM 2. Let n ≥ 2. SupposeK(x, y) is a variable kernel homogeneous of degree
−n with respect to y and satisfiesK(x, y ′) ∈ L∞(Rn)×Lq(Sn−1) for some q > 2(n− 1)/n.
Let Φ(t) be as in Theorem 1. Then, TΦ and T ∗

Φ are bounded on Lp(Rn), if

2 − 1 − (2/q̄ − 1)(n− 1)

n− (2/q̄ − 1)(n− 1)/2
< p < 2 + (q̄n/(n− 1)− 2)

and p ≤ max{(n+ 1)/2, 2}, where q̄ = min{2, q}.
REMARK 3. For an even kernel, we cannot modify the rotation method like as in

Calderón and Zygmund [6] or Christ, Duoandikoetxea and Rubio de Francia [3, pp. 199–
200]. In fact, we see p.v.

∫
K(x, y)f (x − Φ(|y|)y ′)dy = p.v.

∫
K1(x, y)f (x − y)dy, where

K1(x, y) = ϕ(Φ−1(|y|))K(x, y) (see the proof of Theorem 1). However, the kernel function
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K1(x, y) is not homogeneous of degree −n with respect to y, and so p.v.
∫
K1(x, u)Rj (y −

u)du is not homogeneous of degree −n with respect to y, where Rj is the j -th Riesz trans-
form kernel. Therefore, we cannot apply Theorem 1 to obtain the Lp boundedness in the case
where K(x, y) is even with respect to y.

REMARK 4. There is no including relationship between Conditions (i) and (iii). There
are also no including relationships between Conditions (i) and (ii), and between Conditions
(ii) and (iii). These are seen in Examples 2 and 3 in [22], and Example 2.3 in [24].

REMARK 5. If Φ(t) is a positive and monotonic function on (0,∞) and Φ ′(t) is
monotonic, then the following (i) and (ii) are equivalent.

(i) |Φ(t)/(tΦ ′(t))| ≤ M (0 < t < ∞) for some 0 < M < ∞.
(ii) η ≤ max{Φ(2t)/Φ(t), Φ(t)/Φ(2t)} on (0,∞) for some 1 < η < ∞.

This can be checked by elementary consideration, using convexity or concavity.
The condition η ≤ max{Φ(2t)/Φ(t), Φ(t)/Φ(2t)} ≤ L on (0,∞) for some 1 < η ≤

L < ∞ and the monotonicity of Φ ′(t) is used to prove Lp boundedness of Marcinkiewicz
integrals along surfaces with convolution type kernel by Al-Qassem [2].

We arrange our paper in the following way. In Section 2, we prepare some lemmas which
will be used later. The proof of Theorem 1 can be found in Section 3. In Section 4, we give the
proof of Theorem 2. In the last section, we prove the key lemma which appeared in Section 2.

Throughout this paper, the letter C will denote a positive constant that may vary at each
occurrence but is independent of the essential variables.

The authors would like to thank the referee for his/her careful reading and some valuable
remarks which made this article more readable.

2. Preliminary Lemmas. We begin with recalling two known lemmas. The first
lemma can be obtained by (2.19) in [19, p. 152] and Theorem 3.10 in [19, p. 158] (see also
[20]).

LEMMA 2.1 ([19]). Let n ≥ 2, k ≥ 0 and P(y) be a spherical harmonics of degree
k. Then ∫

Sn−1
P(y ′)e−ix·y ′

dσ(y ′) = (−i)k(2π)n/2 Jn/2+k−1(|x|)
|x|n/2−1 P

(
x

|x|
)
.

LEMMA 2.2 ([14]). Suppose ν and λ satisfy ν − λ > −1, and |ν| > 1/2, λ ≥ −1/2
or ν > −1, λ ≥ 0. Then

(2.1)

∣∣∣∣
∫ r

0

Jν(t)

tλ
dt

∣∣∣∣ ≤ C

|ν|λ for 0 < r < ∞ .

Next, we shall give several elementary considerations.

LEMMA 2.3. Suppose g(t) is positive and decreasing, and g ′(t) is increasing. Sup-
pose further −g(t)/(tg ′(t)) ≥ a for some a > 0. Then there exists C > 1 such that

g(t) ≤ Cg(2t) for t > 0 .



BOUNDEDNESS OF SINGULAR INTEGRALS WITH VARIABLE KERNELS 45

PROOF. We note that in this case g ′(t) < 0. Since g ′(t) is increasing, g(t) is convex.
Hence we have for any b > 1

g(bt)− g(t)
bt − t

≥ g ′(t) , i.e.,
g(t) − g(bt)
(b − 1)t

≤ −g ′(t) .

This combined with −g(t)/(tg ′(t)) ≥ a implies that

g(t)− g(bt)
(b − 1)t

≤ g(t)
at

.

So, if we take 1 < b < 1 + a, then we get

g(t) ≤ 1

1 − (b − 1)/a
g(bt) .

Using this inequality [log 2/ log b] + 1-times, we see that there exists C > 1 satisfying

g(t) ≤ Cg(2t) , t > 0 . �

LEMMA 2.4. Suppose Φ(t) is positive and decreasing, and Φ ′(t) is increasing. Sup-
pose further −Φ(t)/(tΦ ′(t)) ≤ M for some M > 0. Then there exists C > 1 such that

Φ−1(t) ≤ CΦ−1(2t) , t > 0 .

PROOF. From the assumption −Φ(t)/(tΦ ′(t)) ≤ M , it follows that

− Φ−1(t)

t (Φ−1(t))′
= −Φ

−1(t)Φ ′(Φ−1(t))

Φ(Φ−1(t))
≥ 1

M
.

On the other hand, since Φ(t) is positive and decreasing, and Φ ′(t) is increasing, we have
Φ−1(t) is also positive and decreasing, and (Φ−1(t))′ is increasing.

Thus, Φ−1(t) satisfies the assumption of Lemma 2.3, and hence there exists C > 1 such
that

Φ−1(t) ≤ CΦ−1(2t) , t > 0 . �

LEMMA 2.5. Suppose Φ(t) is positive and increasing, and Φ ′(t) is monotonic. Sup-
pose further Φ(t)/(tΦ ′(t)) ≤ M for some M > 0. Then, there exists C > 1 such that

Φ−1(2t) ≤ CΦ−1(t) , t > 0 .

PROOF. (i) The case whereΦ ′(t) is increasing. Since in this case Φ−1(t) is concave,
we have

Φ−1(2t)− Φ−1(t)

t
≤ (Φ−1(t))′ = t

Φ−1(t)Φ ′(Φ−1(t))
· Φ

−1(t)

t
≤ M

Φ−1(t)

t
.

Thus, we have
Φ−1(2t) ≤ (1 +M)Φ−1(t) , t > 0 .

(ii) The case where Φ ′(t) is decreasing. From the assumption Φ(t)/(tΦ ′(t)) ≤ M , it
follows that

t

Φ−1(t)Φ ′(Φ−1(t))
= Φ(Φ−1(t))

Φ−1(t)Φ ′(Φ−1(t))
≤ M .



46 Q. XUE AND K. YABUTA

On the other hand, since Φ(t) is positive and increasing, and Φ ′(t) is decreasing, we have
Φ−1(t) is increasing and convex. So, for any 0 < a < 1, we have

Φ−1(t)−Φ−1(at)

t − at
≤ (Φ−1(t))′ = 1

Φ ′(Φ−1(t))

= t

Φ−1(t)Φ ′(Φ−1(t))
· Φ

−1(t)

t
≤ M

Φ−1(t)

t
.

Thus, taking 0 < a < 1 such that 1 −M(1 − a) > 0, we obtain

Φ−1(t) ≤ 1

1 −M(1 − a)
Φ−1(at) .

Using this inequality [−1/ log2 a] + 1-times, we see that there exists C > 1 such that

Φ−1(t) ≤ CΦ−1
(
t

2

)
, t > 0 . �

The following lemma is used to give a reason why Remark 2 is well-grounded.

LEMMA 2.6. (i) Let Φ(t) be a positive and non-decreasing C1 function on (0,∞),
such that ϕ(t) = Φ(t)/(tΦ ′(t)) ≤ M for some M > 0. Then, for f ∈ Lp(Rn), 1 ≤ p < ∞,
and for ε > 0 it holds that

∫
|y|>ε

|f (x −Φ(|y|)y ′)|
|y|n dy ≤ M

∫
|y|>Φ(ε)

|f (x − y)|
|y|n dy < +∞ .

(ii) Let Φ(t) be a positive and non-increasing C1 function on (0,∞), such that
−ϕ(t) = −Φ(t)/(tΦ ′(t)) ≤ M for some M > 0. Then, for f ∈ Lp(Rn), 1 ≤ p < ∞,
and for ε > 0 it holds that

∫
|y|<ε

|f (x −Φ(|y|)y ′)|
|y|n dy ≤ M

∫
|y|>Φ(ε)

|f (x − y)|
|y|n dy < +∞ .

PROOF. (i) Setting Φ(r) = t , we have
∫

|y|>ε
|f (x − Φ(|y|)y ′)|

|y|n dy =
∫
Sn−1

∫ ∞

ε

|f (x −Φ(r)y ′)|
rn

rn−1drdσ(y ′)

=
∫
Sn−1

(∫ ∞

Φ(ε)

|f (x − ty ′)|
t

t

Φ−1(t)Φ ′(Φ−1(t))
dt

)
dσ(y ′)

=
∫
Sn−1

(∫ ∞

Φ(ε)

|f (x − ty ′)|
t

ϕ(Φ−1(t))dt

)
dσ(y ′)

≤ M

∫
Sn−1

( ∫ ∞

Φ(ε)

|f (x − ty ′)|
t

dt

)
dσ(y ′) = M

∫
|y|>Φ(ε)

|f (x − y)|
|y|n dy

≤ M

( ∫
|y|>Φ(ε)

dy

|y|p′n

)1/p′( ∫
|y|>Φ(ε)

|f (x − y)|p dy
)1/p

≤ CM‖f ‖Lp .
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(ii) Setting Φ(r) = t , we have

∫
|y|<ε

|f (x −Φ(|y|)y ′)|
|y|n dy =

∫
Sn−1

∫ ε

0

|f (x −Φ(r)y ′)|
rn

rn−1drdσ(y ′)

=
∫
Sn−1

( ∫ ∞

Φ(ε)

|f (x − ty ′)|
t

t

Φ−1(t)Φ ′(Φ−1(t))
dt

)
dσ(y ′)

=
∫
Sn−1

( ∫ ∞

Φ(ε)

|f (x − ty ′)|
t

ϕ(Φ−1(t))dt

)
dσ(y ′)

≤ M

∫
Sn−1

( ∫ ∞

Φ(ε)

|f (x − ty ′)|
t

dt

)
dσ(y ′) = M

∫
|y|>Φ(ε)

|f (x − y)|
|y|n dy

≤ M

( ∫
|y|>Φ(ε)

dy

|y|p′n

)1/p′( ∫
|y|>Φ(ε)

|f (x − y)|p dy
)1/p

≤ CM‖f ‖Lp . �

Finally, we state the following key estimate to prove Theorem 2, whose proof we post-
pone to Section 5.

LEMMA 2.7. Let Φ(t) and ϕ(t) be as in Theorem 2. Then for any 1 > η > 1/2 − n/2
there exists C > 0 such that

∣∣∣∣
∫ h2

h1

ϕ

(
Φ−1

(
s

|ξ |
))

Jn/2+k−1(s)

sn/2+η ds

∣∣∣∣ ≤ C

(n/2 + k − 1)n/2+η , 0 ≤ h1 < h2 ≤ +∞ .

REMARK 6. Using the above lemma, we can prove L2 boundedness of TΦ directly,
but we could not reduce that of T ∗

Φ directly.

3. Proof of Theorem 1. To prove Theorem 1, we use the rotation method. So, we
prepare two useful lemmas from the work by Christ, Duoandikoetxea and Rubio de Francia
[3], which play essential roles in this paper. Given an operator T on Lp(R), 1 ≤ p < ∞, we
define an associated operator T̃ by

T̃ f (x, θ) = Tθf (x) , (x, θ) ∈ Rn × Sn−1 ,

where Tθ acts on Lp(Rn) by letting T act on the variable x · θ while leaving the remaining
variables fixed.

We define the directional Hardy-Littlewood maximal operatorM1 by

M1f (x, θ) = sup
r>0

1

2r

∫ r

−r
|f (x − tθ)|dt , (x, θ) ∈ Rn × Sn−1 .

We state Lemma 4.1 and Theorem 1 in [3] as lemmas.

LEMMA 3.1. Suppose that the inequality

‖M1f ‖Lp(Lq0 ) ≤ C‖f ‖Lp
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holds for some fixed p ≥ 1, and q0 > 1. If T is an operator which is bounded in
Lr(R, w(x)dx) for every MuckenhouptAr -weight w(x) in R (1 < r < ∞), then

‖T̃ f ‖Lp(Lq) ≤ Cq‖f ‖Lp
for the same p as above and for all q < q0. Here

‖F‖Lp(Lq) =
( ∫

Rn

( ∫
Sn−1

|F(x, θ)|q dθ
)p/q

dx

)1/p

.

LEMMA 3.2. If 1 < p ≤ max{(n+ 1)/2, 2} and q < p(n − 1)/(n − p), then M1 is
bounded from Lp(Rn) to Lp(Lq).

Now, we begin by giving a result on the following modified Hilbert transform.

PROPOSITION 3.1. Let φ be a positive and bounded function defined on (0,∞), sat-
isfying one of the following conditions:

(i) φ(t) is a monotonic function.
(ii) tφ′(t) is bounded.
(iii) φ(t) = t/(Φ−1(t)Φ ′(Φ−1(t))), where Φ(t) is a positive and monotonic function

and its derivative Φ ′(t) is a monotonic function.
Then the following two operators of one dimension:

Hφ(f )(x) = lim
ε→0

∫
ε<|y|

φ(|y|)
y

f (x − y)dy

and

H ∗
φ (f )(x) = sup

ε>0

∣∣∣∣
∫
ε<|y|

φ(|y|)
y

f (x − y)dy

∣∣∣∣
are bounded on Lp(w) for any w ∈ Ap(R).

REMARK 7. As is known, in the one dimensional case, Hφ is not bounded even on
L2(R) for φ(t) = sin |t|, cf. Namazi [15, p. 421].

PROOF OF PROPOSITION 3.1. Denote σk(x) = (χ[2k,2k+1] −χ[−2k+1,−2k](x))(φ(|x|)/
|x|). Then

Hφ(f ) =
∞∑

k=−∞
σk ∗ f ,

and

σ̂k(ξ) =
∫ 2k+1

2k

φ(r)

r
e−irξ dr −

∫ 2k+1

2k

φ(r)

r
eirξdr = −2i

∫ 2k+1

2k

φ(r)

r
sin rξ dr .

Next, we shall give the estimates of σ̂k(ξ) according to (i), (ii) and (iii).
Case (i). It is easy to see that if φ is monotonic, then by the second mean value theorem

and the monotonicity of φ, we immediately obtain

|σ̂k(ξ)| ≤ C‖φ‖∞
|2kξ | .
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Case (ii). If ‖rφ′(r)‖∞ < ∞, integrating by parts, we get

σ̂k(ξ) = −2i

[
φ(r)

r

cos rξ

ξ

]2k+1

2k
+ 2i

∫ 2k+1

2k

r[φ(r)]′ − φ(r)

r2

cos rξ

ξ
dr .

Hence, we obtain

|σ̂k(ξ)| ≤ 4
‖φ‖∞
|2kξ | + 2

|2kξ | (‖r[φ(r)]
′‖∞ + ‖φ‖∞) ≤ 6

‖φ‖∞
|2kξ | + 2‖r[φ(r)]′‖∞

|2kξ | .

Case (iii).

σ̂k(ξ) = −2i
∫ 2k+1

2k

sin rξ

Φ−1(r)Φ ′(Φ−1(r))
dr .

If Φ and Φ ′ are increasing, then Φ−1 is also increasing and 1/(Φ−1(r)Φ ′(Φ−1(r))) is de-
creasing. So, by the second mean value theorem, we have for 2k ≤ hk ≤ 2k+1

|σ̂k(ξ)| = 2

∣∣∣∣
∫ hk

2k
sin rξ dr

1

Φ−1(2k)Φ ′(Φ−1(2k))

∣∣∣∣
≤ 4

|2kξ |
2k

Φ−1(2k)Φ ′(Φ−1(2k))
≤ C‖φ‖∞

|2kξ | .

If Φ is increasing and Φ ′ is decreasing, then 1/Φ−1(r) is decreasing and 1/Φ ′(Φ−1(r)) is
increasing. Hence, using the second mean value theorem twice and Lemma 2.6, we get for
some 2k ≤ hk ≤ h′

k ≤ 2k+1

|σ̂k(ξ)| = 2

∣∣∣∣
∫ h′

k

hk

sin rξ dr
1

Φ−1(2k)Φ ′(Φ−1(2k+1))

∣∣∣∣
≤ C

|ξ |
2k+1

Φ−1(2k+1)Φ ′(Φ−1(2k+1))
· 1

2k+1 ≤ C‖φ‖∞
|2kξ | .

If Φ is decreasing, then the case that Φ ′ is decreasing does not occur. So we only need to
consider the case that Φ ′ is increasing. Thus, 1/Φ−1(r) is increasing and −1/Φ ′(Φ−1(r)) is
positive and decreasing. By Lemma 2.5, we get

|σ̂k(ξ)| = 2

∣∣∣∣
∫ h′

k

hk

sin rξ dr

∣∣∣∣
∣∣∣∣ 1

Φ−1(2k+1)Φ ′(Φ−1(2k))

∣∣∣∣ ≤ C‖φ‖∞
|2kξ | .

On the other hand, we see that

|σ̂k(ξ)| = 2

∣∣∣∣
∫ 2k+1

2k

φ(r)

r
sin rξ dr

∣∣∣∣ ≤ 2
∫ 2k+1

2k

φ(r)

r
r|ξ | dr ≤ C‖φ‖∞|2k+1ξ | .

Thus, in all cases (i), (ii), (iii), we have proved

(3.1) |σ̂k(ξ)| ≤ C‖φ‖∞|2k+1ξ | and |σ̂k(ξ)| ≤ C

|2kξ | .

Therefore, sinceHφ(f ) = ∑∞
k=−∞ σk ∗f , by the same steps as in the proof of Corollary

4.2 in [9], one can show that Hφ and H ∗
φ are bounded on Lp(w) for any w ∈ Ap(R). In fact,
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let {ψj }∞j=−∞ be a smooth partition of the unity in R+ = (0,∞) adapted to the intervals

[2−j , 2−(j−1)] such that

ψj ∈ C1 , 0 ≤ ψj ≤ 1 ,
∑
j

ψj (t)
2 = 1 ,

suppψj ⊂ {t; 2−(j+1) ≤ t ≤ 2−(j−1)} , and |ψ ′
j (t)| ≤ Ct−1 .

Also define the multiplier operator Sj in R by (Sjf )ˆ(ξ) = f̂ (ξ)ψj (|ξ |). Then we have

Hφf =
∑
k

σk ∗
( ∑

j

Sj+kSj+kf
)

=
∑
j

( ∑
k

Sj+k(σk ∗ Sj+kf )
)

=:
∑
j

Hjf .

If w ∈ A2(R), we have, noting

|σk ∗ g(x)| ≤
∫

2k≤|y−x|≤2k+1
‖φ‖∞|g(y)|/|y − x|dy ≤ 4‖φ‖∞Mg(x) ,

and using the Ap weighted boundedness of the Hardy-Littlewood maximal function and
Littlewood-Paley decomposition operator (see [13]), that

‖Hjf ‖L2(w) ≤ C1

∑
k

‖σk ∗ Sj+kf ‖L2(w) ≤ C1C2

∑
k

‖M(Sj+kf )‖L2(w)

≤ C1C2C3

∑
k

‖Sj+kf ‖L2(w) ≤ C1C2C3C4‖f ‖L2(w) .

By the reverse Hölder inequality, we have

‖Hjf ‖L2(w1+ε) ≤ C‖f ‖L2(w1+ε) , j ∈ Z

for some ε > 0 (see [12]).
Now, using Estimate (3.1) for σ̂k(ξ), we can show as in the proof of Theorem B in [9]

that

‖Hjf ‖L2(R) ≤ C2−|j |‖f ‖L2(R) , j ∈ Z .

Hence, interpolating with change of measure, we obtain

‖Hjf ‖L2(w) ≤ C2−(ε/(1+ε))|j |‖f ‖L2(w) , j ∈ Z ,

which implies

‖Hφf ‖L2(w) ≤ C‖f ‖L2(w) .

Thus by the extrapolation theorem for Ap weights (see [12]), we have for every w ∈ Ap(R),
1 < p < ∞,

‖Hφf ‖Lp(w) ≤ C‖f ‖Lp(w) .
By adapting the proof of Theorem E in [9] and using the same arguments as above, we obtain
the corresponding result forH ∗

φ . This completes the proof of Proposition 3.1. �

Using this Proposition 3.1 and Lemma 3.1, we obtain
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PROPOSITION 3.2. Let Φ(t) be as in Theorem 1. Then the following two directional
operators of higher dimension:

Hϕ(f )(x, θ) = lim
ε→0

∫
ε<|t |

ϕ(Φ−1(|t|))f (x − tθ)
dt

t

and

H ∗
ϕ (f )(x, θ) = sup

ε>0

∣∣∣∣
∫
ε<|t |

ϕ(Φ−1(|t|))f (x − tθ)
dt

t

∣∣∣∣
are bounded fromLp(Rn) to Lp(Lq) for any q < p(n−1)/(n−p) and 1 < p ≤ max{2, (n+
1)/2}.

PROOF. By Lemma 3.2, M1 is bounded from Lp(Rn) to Lp(Lq) for all 1 < p <

max(2, (n+ 1)/2) and q < p(n − 1)/(n− p).
Next, let φ(t) = ϕ(Φ−1(t)). Then the positivity and boundedness of ϕ imply those of φ.

In the case (i), since ϕ and Φ are monotonic, φ is also monotonic. In the case (ii), we have

|tφ′(t)| = |t (ϕ(Φ−1(t)))′| = |Φ−1(t)ϕ′(Φ−1(t))ϕ(Φ−1(t))| ≤ ‖ϕ‖∞‖sϕ′(s)‖∞ < +∞ .

In the case (iii), since ϕ(t) = Φ(t)/(tΦ ′(t)), we see that

φ(t) = ϕ(Φ−1(t)) = Φ(Φ−1(t))/(Φ−1(t)Φ ′(Φ−1(t))) = t/(Φ−1(t)Φ ′(Φ−1(t)) .

Also Φ ′(t) is monotonic by assumption.
Hence, applying Proposition 3.1 and then Lemma 3.1, we obtain the desired

conclusion. �

Now, we are in a position to prove Theorem 1. We shall prove only the case whereΦ(t)
is nonnegative and nondecreasing, since the other cases are proved in a similar way. Then,
under the condition of Theorem 1, we have limε→0Φ(ε) = 0 and limε→+∞Φ(ε) = +∞.
We first note

∫
|y|>ε

K(x, y ′)f (x −Φ(|y|)y ′)
|y|n dy =

∫
Sn−1

∫ ∞

ε

K(x, y ′)f (x −Φ(r)y ′)
rn

rn−1drdσ(y ′)

=
∫
Sn−1

( ∫ ∞

Φ(ε)

K(x, y ′)f (x − ty ′)
t

t

Φ−1(t)Φ ′(Φ−1(t))
dt

)
dσ(y ′)

=
∫
Sn−1

( ∫ ∞

Φ(ε)

K(x, y ′)f (x − ty ′)
t

ϕ(Φ−1(t))dt

)
dσ(y ′)

=
∫

|y|>Φ(ε)
ϕ(Φ−1(|y|))K(x, y)f (x − y)dy .
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So, since K(x, y) is odd in y and Φ(t) is increasing, we obtain that

TΦ(f )(x) = p.v.
∫

Rn
K(x, y)f (x −Φ(|y|)y ′)dy

= lim
ε→0

∫
|y|>Φ(ε)

ϕ(Φ−1(|y|))K(x, y)f (x − y)dy

= lim
ε→0

∫
Sn−1

∫ ∞

Φ(ε)

ϕ(Φ−1(r))K(x, θ)f (x − rθ)
dr

r
dσ(θ)

= lim
ε→0

T εΦ(f )(x)

= lim
ε→0

1

2

∫
Sn−1

∫ ∞

Φ(ε)

ϕ(Φ−1(r))K(x, θ)(f (x − ry ′)− f (x + rθ))
dr

r
dσ(θ)

= lim
ε→0

1

2

∫
Sn−1

∫
|s|>Φ(ε)

ϕ(Φ−1(s))f (x − sθ)
dr

r
K(x, θ)dσ(θ)

= 1

2
lim
ε→0

∫
Sn−1

K(x, θ)

(∫
|t |>Φ(ε)

ϕ(Φ−1(|t|))f (x − tθ)
dt

t

)
dσ(θ)

= 1

2
lim
η→0

∫
Sn−1

K(x, θ)

( ∫
|t |>η

ϕ(Φ−1(|t|))f (x − tθ)
dt

t

)
dσ(θ) .

(3.2)

Also similarly as above, we get

(3.3)

T ∗
Φ(f )(x) = 1

2
sup
ε>0

∣∣∣∣
∫
Sn−1

K(x, θ)

(∫
|t |>Φ(ε)

ϕ(Φ−1(|t|))f (x − tθ)
dt

t

)
dσ(θ)

∣∣∣∣
≤ 1

2

∫
Sn−1

|K(x, θ)| sup
ε>0

∣∣∣∣
∫

|t |>Φ(ε)
ϕ(Φ−1(|t|))f (x − tθ)

dt

t

∣∣∣∣dσ(θ)
= 1

2

∫
Sn−1

|K(x, θ)| sup
η>0

∣∣∣∣
∫

|t |>η
ϕ(Φ−1(|t|))f (x − tθ)

dt

t

∣∣∣∣dσ(θ) .
Note that q > p′(n − 1)/n implies q ′ < p(n − 1)/(n− p). Thus, applying Proposition 3.2,
we have by (3.3)

‖T ∗
Φf ‖Lp ≤

( ∫
Rn

( ∫
Sn−1

|K(x, θ)|qdσ(θ)
)p/q(∫

Sn−1
|H ∗

ϕf (x, θ)|q
′
dσ(θ)

)p/q ′

dx

)1/p

≤ C1‖H ∗
ϕ f (x, θ)‖Lp(Lq′ ) ≤ C‖f ‖Lp .

Combining this with (3.2), we obtain that

‖TΦf ‖Lp ≤
(∫

Rn

( ∫
Sn−1

|K(x, θ)|qdσ(θ)
)p/q( ∫

Sn−1
|Hϕf (x, θ)|q ′

dσ(θ)

)p/q ′

dx

)1/p

≤ C1‖Hϕf (x, θ)‖Lp(Lq′ ) ≤ C‖f ‖Lp .
This completes the proof of Theorem 1.

4. Proof of Theorem 2. In this section, we shall prove Theorem 2. Let Hk and Dk
be the space of surface spherical harmonics of degree k on Sn−1 and its dimension. By the
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same argument as in [4], one can reduce the proof of Theorem 2 to the case as follows:

f ∈ C∞
0 (R

n) and K(x, y) =
∑
k≥1

Dk∑
j=1

ak,j (x)
Ykj (y

′)
|y|n is a finite sum,

where {Ykj }, k ≥ 1, j = 1, 2, ...,Dk , denotes the complete system of normalized surface
spherical harmonics. Set

ak(x) =
( Dk∑
j=1

|ak,j (x)|2
)1/2

and bk,j (x) = ak,j (x)

ak(x)
.

Then we get

Dk∑
j=1

b2
k,j (x) = 1 and K(x, y) =

∑
k≥1

ak(x)

Dk∑
j=1

bk,j (x)
Ykj (y

′)
|y|n .

Note that if 2(n − 1)/n < q0 < 2 and we take 0 < δ < 1 sufficiently close to 1, i.e.,
(2/q0 − 1)(n− 1) < δ < 1, then by [7, p. 231] we have( ∑

k≥1

k−δa2
k (x)

)1/2

≤ C

( ∫
Sn−1

|K(x, y ′)|q0 dσ(y ′)
)1/q0

= C .

If q0 = 2, this inequality becomes trivial for δ = 0. Moreover, let

T
j

Φ,k(f )(x) = p.v.
∫

Rn

Ykj (y
′)

|y|n f (x −Φ(|y|)y ′)dy

= p.v.
∫

Rn
ϕ(Φ−1(|y|))Ykj (y

′)
|y|n f (x − y)dy .

Then

(4.1)

(TΦ(f )(x))
2 =

( ∑
k≥1

ak(x)

Dk∑
j=1

bk,j (x)T
j
Φ,k(f )(x)

)2

≤
( ∑
k≥1

k−δa2
k (x)

)( ∑
k≥1

kδ
Dk∑
j=1

[T jΦ,k(f )(x)]2
)

≤ C

( ∑
k≥1

kδ
Dk∑
j=1

[T jΦ,k(f )(x)]2
)
.

To prove Theorem 2 we prepare the following three lemmas:

LEMMA 4.1. Let 0 < η < 1/2. Then, for Tkj = T
j
Φ,k , k ∈ N , j = 1, 2, . . . ,Dk ,

there exists C > 0 such that

‖Tkj f ‖L2 ≤ C
1

kn/2−η ‖f̂ (ξ)Ykj (ξ ′)‖L2 ,

‖T ∗∗
kj f ‖L2 ≤ C

1

kn/2−η ‖f̂ (ξ)Ykj (ξ ′)‖L2 ,
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where

T ∗∗
kj f (x) = sup

l∈Z

∣∣∣∣
∫

|y|>2l
ϕ(Φ−1(|y|))Ykj (y

′)
|y|n f (x − y)dy

∣∣∣∣ ,
and C is independent of j , k and f .

PROOF. Setting

σl(x) = ϕ(Φ−1(|y|))Ykm(y
′)

|y|n χ[2l ,2l+1)(|y|), l ∈ Z , k ∈ N , m = 1, 2, . . . ,Dk ,

we have

(4.2)

|σ̂l(ξ)| =
∣∣∣∣
∫
ϕ(Φ−1(|y|))Ykm(y

′)
|y|n χ[2l ,2l+1)(|y|)e−iy·ξ dy

∣∣∣∣
= C

∣∣∣∣
∫ 2l+1|ξ |

2l |ξ |
ϕ

(
Φ−1

(
s

|ξ |
))

Jn/2+k−1(s)

sn/2
ds Ykm(ξ

′)
∣∣∣∣

≤ C

∣∣∣∣
∫ 2l+1|ξ |

2l |ξ |
ϕ

(
Φ−1

(
s

|ξ |
))

sηJn/2+k−1(s)

sn/2+η ds Ykm(ξ
′)
∣∣∣∣

≤ C
(2l+1|ξ |)η

(n/2 + k − 1)n/2+η |Ykm(ξ ′)| ≤ C
(2l+1|ξ |)η
kn/2+η |Ykm(ξ ′)| .

Here in the last step we first used the second mean value theorem, then used Lemma 2.7;∣∣∣∣
∫ h2

h1

ϕ

(
Φ−1

(
s

|ξ |
))

Jn/2+k−1(s)

sn/2+η ds

∣∣∣∣ ≤ C

(n/2 + k − 1)n/2+η .

Similarly, we have

(4.3) |σ̂l(ξ)| ≤ C
(2l |ξ |)−η

(n/2 + k − 1)n/2−η |Ykm(ξ ′)| ≤ C
(2l|ξ |)−η
kn/2−η |Ykm(ξ ′)| .

From (4.2) and (4.3) we have for the kernel functionKkm(x) = ϕ(Φ−1(|x|))(Ykm(x ′)/|x|n)

|K̂km(ξ)| ≤
( ∑

2l |ξ |≤1

|σ̂l(ξ)| +
∑

2l |ξ |>1

|σ̂l(ξ)|
)

≤ C

kn/2−η |Ykm(ξ ′)| .

Hence, by Plancherel’s theorem, we obtain

(4.4) ‖Tkmf ‖2 ≤ C
1

kn/2−η ‖f̂ (ξ)Ykm(ξ ′)‖L2 .

Next, we treat the maximal operator T ∗∗
kmf . We denote Tkm by T . We modify the proof of

Theorem E in [9]. We redefine ψ as follows: Take ψ ∈ S(Rn) such that ψ(ξ) = 1 when
|ξ | < 1, ψ(ξ) = 0 when |ξ | ≥ 2, and 0 ≤ ψ(ξ) ≤ 1 when ξ ∈ Rn; write ψl(ξ) = ψ(2lξ )
and Ψ̂l(ξ) = ψ(2lξ ). Setting

σl(x) = ϕ(Φ−1(|y|))Ykm(y
′)

|y|n χ[2l ,2l+1)(|y|)
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and

Tlf =
∫

2l<|y|
ϕ(Φ−1(|y|))Ykm(y

′)
|y|n f (x − y) dy ,

we decompose Tlf = ∑∞
j=l σj ∗ f (x) as

Tlf = Ψl ∗
(
Tf −

l−1∑
j=−∞

σj ∗ f (x)
)

+ (δ − Ψl) ∗
∞∑
j=l

σj ∗ f (x)

= Ψl ∗ Tf − Ψl ∗
( l−1∑
j=−∞

σj ∗ f (x)
)

+ (δ − Ψl) ∗
∞∑
j=l

σj ∗ f (x) ,

where δ is the delta function at the origin. Set

Uf (x) = sup
l

∣∣∣∣Ψl ∗
l−1∑

j=−∞
σj ∗ f (x)

∣∣∣∣ and Vf (x) = sup
l

∣∣∣∣(δ − Ψl) ∗
∞∑
j=l

σj ∗ f (x)
∣∣∣∣ .

Then we have

(4.5) T ∗∗
kmf (x) ≤ sup

l

|Ψl ∗ Tf (x)| + Uf (x)+ Vf (x) .

We see

|Ψl ∗ Tf (x)| ≤ C(Tf )∗(x) and so
∥∥∥sup

l

|Ψl ∗ Tf (x)|
∥∥∥
Lp

≤ Cp‖Tf (x)‖Lp ,

where (Tf )∗ is the Hardy-Littlewood maximal function of Tf , and hence by (4.4) we get

(4.6)
∥∥∥sup

l

|Ψl ∗ Tf (x)|
∥∥∥
L2

≤ C2
1

kn/2−η ‖f̂ (ξ)Ykm(ξ ′)‖L2 .

Also, we have

Uf (x) = sup
l

∣∣∣∣Ψl ∗
0∑

j=−∞
σj+l−1 ∗ f (x)

∣∣∣∣

≤
0∑

j=−∞
sup
l

∣∣∣∣Ψl ∗ σj+l−1 ∗ f (x)
∣∣∣∣ =:

0∑
j=−∞

Ujf (x) .

Since Ujf (x) ≤ (
∑
l∈Z |Ψl ∗ σj+l−1 ∗ f (x)|2)1/2, we have∫
|Ujf (x)|2 dx ≤

∑
l∈Z

∫
|Ψl ∗ σj+l−1 ∗ f (x)|2 dx

= C
∑
l∈Z

∫
|ψ(2lξ )σ̂j+l−1(ξ)f̂ (ξ)|2 dξ .

Set Y (ξ ′) = 1/kn/2−η|Ykm(ξ ′)|. Then, using (4.2) and the property of ψ , we get

|ψ(2lξ )σ̂j+l−1(ξ)| = 0 (|2lξ | ≥ 2) and ≤ CY(ξ ′)|2j+lξ |η ≤ CY(ξ ′)2ηj |2lξ |η (|2lξ | ≤ 2) .
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Also, if 2−m−1 ≤ |ξ | < 2−m, we have |2lξ | ≥ 2 for l ≥ m+2, and henceψ(2lξ )σ̂j+l−1(ξ) =
0 for l ≥ m+ 2. Thus, if 2−m−1 ≤ |ξ | < 2−m, we get∑

l∈Z

|ψ(2lξ )σ̂j+l−1(ξ)|2 ≤
∑
l≤m+1

C2Y (ξ ′)222jη|2lξ |2η

= C2Y (ξ ′)222jη
∑
l≤m+1

22(l−m)η|2mξ |2η

≤ C224η

22η − 1
Y (ξ ′)222jη .

This implies ‖Ujf ‖2 ≤ C2jη‖f̂ (ξ)Y (ξ ′)‖2. Thus we obtain

(4.7) ‖Uf ‖2 ≤ C
1

kn/2−η ‖f̂ (ξ)Ykm(ξ ′)‖L2 .

As for Vf , we get

Vf (x) = sup
l

∣∣∣∣(δ − Ψl) ∗
∞∑
j=0

σj+l ∗ f (x)
∣∣∣∣

≤
∞∑
j=0

sup
l

|(δ − Ψl) ∗ σj+l ∗ f (x)| =:
∞∑
j=0

Vjf (x) .

Since Vjf (x) ≤ (
∑
l∈Z |(δ − Ψl) ∗ σj+l ∗ f (x)|2)1/2, we have∫

|Vjf (x)|2 dx ≤
∑
l∈Z

∫
|(δ − Ψl) ∗ σj+l ∗ f (x)|2 dx

= C
∑
l∈Z

∫
|(1 − ψ(2lξ ))σ̂j+l (ξ)f̂ (ξ)|2 dξ .

Using (4.3) and the property of ψ , we see that

|(1 − ψ(2lξ ))σ̂j+l (ξ)|


= 0 , |2lξ | ≤ 1 ,

≤ CY(ξ ′)|2j+lξ |−η ≤ CY(ξ ′)2−ηj |2lξ |−η , |2lξ | > 1 .

Also, if 2−m−1 ≤ |ξ | < 2−m, we have |2lξ | ≤ 2l/2m ≤ 1 for l ≤ m, and hence (1 −
ψ(2l ξ ))σ̂j+l (ξ) = 0 for l ≤ m. Thus, if 2−m−1 ≤ |ξ | < 2−m, we get∑

l∈Z

|(1 − ψ(2lξ ))σ̂j+l (ξ)|2 ≤
∑
l≥m+1

C2Y (ξ ′)22−2jη|2lξ |−2η

≤ C2Y (ξ ′)22−2jη
∑
l≥m+1

2−2(l−m)η|2mξ |−2η

≤ C2Y (ξ ′)22−2jη
(

22η

22η − 1

)
.

This implies that ‖Vjf ‖2 ≤ C2−jη‖f̂ (ξ)Y (ξ ′)‖2. Thus, we obtain

(4.8) ‖Vf ‖2 ≤ C
1

kn/2−η ‖f̂ (ξ)Ykm(ξ ′)‖2 .
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By Estimates (4.5)–(4.8), we obtain the desired estimate for T ∗∗
kmf . �

LEMMA 4.2. Let 1 < p0 < ∞. Suppose sublinear operators Tl , l = 1, 2, . . . ,m,
satisfy ( ∫ m∑

l=1

|Tlf (x)|2 dx
)1/2

≤ C1‖f ‖2 ,

‖Tlf ‖p0 ≤ C2‖f ‖p0 , l = 1, 2, . . . ,m .

Then, if 1 < p0 < p ≤ 2,∥∥∥∥
( m∑
l=1

|Tlf (x)|2
)1/2∥∥∥∥

p

≤ Cθ1C
1−θ
2 m(1−θ)/p0‖f ‖p ,

and if 2 ≤ p < p0 < ∞,∥∥∥∥
( m∑
l=1

|Tlf (x)|2
)1/2∥∥∥∥

p

≤ Cθ1C
1−θ
2 m(1−θ)/2‖f ‖p ,

where 1/p = θ/2 + (1 − θ)/p0.

PROOF. If 1 < p0 < p ≤ 2, using p0/2 < 1, we have
(∫ ( m∑

l=1

|Tlf (x)|2
)p0/2

dx

)1/p0

≤
( ∫ m∑

l=1

|Tlf (x)|p0 dx

)1/p0

≤ (mC
p0
2 ‖f ‖p0

p0)
1/p0 = m1/p0C2‖f ‖p0 .

Hence, interpolating between 2 and p0, we get∥∥∥∥
( m∑
l=1

|Tlf (x)|2
)1/2∥∥∥∥

p

≤ Cθ1C
1−θ
2 m(1−θ)/p0‖f ‖p .

If 2 ≤ p < p0 < ∞, we have by Mikowski’s inequality
( ∫ ( m∑

l=1

|Tlf (x)|2
)p0/2

dx

)1/p0

≤
( m∑
l=1

( ∫
|Tlf (x)|p0 dx

)2/p0
)1/2

≤ (mC2
2‖f ‖2

p0
)1/2 = m1/2C2‖f ‖p0 ,

and hence interpolation of sublinear operators between 2 and p0 gives∥∥∥∥
( m∑
l=1

|Tlf (x)|2
)1/2∥∥∥∥

p

≤ Cθ1C
1−θ
2 m(1−θ)/2‖f ‖p . �

LEMMA 4.3. Let 1 < p < ∞. For Tkjf (x) = p.v.
∫
ϕ(Φ−1(|y|))(Ykj (y ′)/

|y|n) f (x − y)dy it follows that

‖Tkj f ‖Lp ≤ Cp‖f ‖Lp ,
‖T ∗
kj f ‖Lp ≤ Cp‖f ‖Lp .
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PROOF. Noting ‖Ykj‖L2(Sn−1) = 1, by Corollary 4.1 in [9], we have the desired conclu-
sion. �

Now, we are in a position to prove Theorem 2. We first prove the Lp boundedness of
TΦ , using Equation (4.1).

To prove our theorem, we consider two cases:
(i) The case 2 − (1 − (2/q̄ − 1)(n− 1))/(n− (2/q̄ − 1)(n− 1)/2) = (2n− 1)/(n−

(2/q̄ − 1)(n − 1)/2) < p ≤ 2. We first take δ > 0 so that (2/q̄ − 1)(n − 1) < δ < 1 and
p > (2n − 1)/(n − δ/2), and then choose p0 sufficiently near 1 and η sufficiently near 0 so
that npθ/2 −pδ/2 −n+ 2 −pηθ = p(n− δ/2)− 2n+ 2 −np(1 − θ)(1 − 1/p0)−pηθ > 1,
where 1/p = θ/2 + (1 − θ)/p0.

In this case, using Estimate (4.1), and noting 0 < p/2 < 1, by Lemmas 4.1, 4.2 and 4.3,
together with interpolation theorems, we have

( ∫
|TΦf (x)|p dx

)1/p

≤ C

( ∫ ∞∑
k=1

kpδ/2
( Dk∑
j=1

|Tkjf (x)|2
)p/2

dx

)1/p

≤ C

( ∞∑
k=1

kpδ/2
Dk

k(n/2−η)θp

)1/p

‖f ‖p

≤ C

( ∞∑
k=1

kpδ/2−npθ/2+n−2+pηθ
)1/p

‖f ‖p ≤ C‖f ‖p .

In the above, we have used the fact that
∑Dk
j=1 |Yk,j (ξ ′)|2 = w−1Dk ∼ kn−2 (see [7, p. 255,

(2.6)]), where w denotes the area of Sn−1.
(ii) The case 2 < p < 2 + (q̄n/(n − 1) − 2) = q̄n/(n − 1). We first take δ > 0 so

that (2/q̄ − 1)(n − 1) < δ < 1 and 2n/p > n − 1 + δ > n − 1 + (2/q̄ − 1)(n − 1), and
then choose p0 sufficiently big and η sufficiently near 0 so that nθ − δ − n + 2 − 2ηθ =
2n/p − δ − n+ 2 + 2n(1 − θ)/p0 − 2ηθ > 1, where 1/p = θ/2 + (1 − θ)/p0.

Since

|TΦf (x)| ≤ C

( ∞∑
k=1

kδ
Dk∑
j=1

|Tkjf (x)|2
)1/2

,

we have by Mikowski’s inequality and Lemmas 4.1, 4.2 and 4.3,

(∫
|TΦf (x)|p dx

)1/p

≤ C

( ∞∑
k=1

kδ
( ∫ ( Dk∑

j=1

|Tkj f (x)|2
)p/2

dx

)2/p)1/2

≤ C

( ∞∑
k=1

kδ
Dk

k2(n/2−η)θ

)1/p

‖f ‖p ≤ C

( ∞∑
k=1

kδ−nθ+n−2+2ηθ
)

‖f ‖p
≤ C‖f ‖p .

Thus we have proved the Lp boundedness of TΦ .
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Next, we shall prove the Lp boundedness of T ∗
Φ . To prove it, we note that we have only

to prove the Lp boundedness of

T ∗∗
Φ f (x) = sup

k∈Z

∣∣∣∣
∫

|y|>2k
ϕ(Φ−1(|y|))K(x, y)f (x − y)dy

∣∣∣∣ .
In fact, we see
∫

2l<|y|<2l+1

|K(x, y ′)|
|y|n |f (x − y)|dy≤

∫
Sn−1

|K(x, y ′)|
∫ 2l+1

2l

|f (x − ry ′)|
r

drdσ(y ′)

≤4
∫
Sn−1

|K(x, y ′)|M1f (x, y
′)dσ(y ′)≤4‖K(x, ·)‖Lq(Sn−1)‖M1f (x, ·)‖Lq′ (Sn−1)

≤C‖M1f (x, ·)‖Lq′ (Sn−1)
,

where M1f (x, y
′) is the directional Hardy-Littlewood maximal function. From 2 − (1 −

(2/q − 1)(n − 1))/(n − (2/q − 1)(n − 1)/2) < p ≤ 2 it follows that q ′ < p(n − 1)/(n −
p + (n − 1)(1 − p/2)) < p(n − 1)/(n − p), and from 2 < p < 2 + (qn/(n − 1) − 2) it
follows q ′ < p(n − 1)/(n − p + (p − 2)) < p(n − 1)/(n − p). By assumption we have
p ≤ max{(n+ 1)/2, 2}. Hence, by Lemma 3.2, we obtain

( ∫
Rn
(‖M1f (x, ·)‖Lq′ (Sn−1))

pdx

)1/p

≤ C‖f ‖p ,

and hence∥∥∥∥sup
l∈Z

∫
2l<|y|<2l+1

ϕ(Φ−1(|y|)) |K(x, y
′)|

|y|n |f (x − y)|dy
∥∥∥∥
p

≤ C‖ϕ‖∞‖f ‖p .

This implies our claim. Since, as in (4.1), we have

|T ∗∗
Φ f (x)| ≤ C

( ∞∑
k=1

kδ
Dk∑
j=1

|T ∗∗
kj f (x)|2

)1/2

,

the above proof for the Lp boundedness of TΦ also works in this case. This completes the
proof of Theorem 2.

5. Proof of Lemma 2.7. In this section, we will prove the key estimate, Lemma 2.7.
First, we note that since, as is well-known, Jν(s) = O(sν) (s → 0) and Jν(s) = O(s−1/2)

(s → +∞), we have∫ ∞

0

∣∣∣∣Jn/2+k−1(s)

sn/2+η ϕ

(
Φ−1

(
s

|ξ |
))∣∣∣∣ds < +∞ for

1

2
− n

2
< η < k .

So, we have only to show Lemma 2.7 for 0 < h1 < h2 < ∞. We also give only the proof in
the case that Φ is positive, since the case for negativeΦ is similar.

5.1. Case (i): ϕ is monotonic. We assume that Φ(t) and ϕ(t) are increasing, since
the proof is similar for other cases. In this case ϕ(t) is nonnegative, andΦ−1(t) is increasing,
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and so ϕ(Φ−1(t/|ξ |)) is increasing. Let ν = n/2 + k − 1, and 0 < h1 < h2. Then, by the
second mean value theorem, there exists h′ with h1 ≤ h′ ≤ h2 such that∫ h2

h1

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ = ϕ

(
Φ−1

(
h2

|ξ |
)) ∫ h2

h′
Jn/2+k−1(ρ)

ρn/2+η dρ .

Hence for 1 > η > 1/2 − n/2, by Lemma 2.2 there exists C > 0 such that

I :=
∣∣∣∣
∫ h2

h1

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ ≤ C‖ϕ‖∞
(n/2 + k − 1)n/2+η .

5.2. Case (ii): tϕ′(t) is bounded. For 0 < h1 < h2 ≤ ν, since Jν(ρ) > 0 for
0 < ρ ≤ ν, we have by Lemma 2.2

(5.1) I =
∣∣∣∣
∫ h2

h1

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ ≤ C‖ϕ‖∞
(n/2 + k − 1)n/2+η .

In the case where h2 ≥ ν, we obtain

(5.2)

I ≤
∣∣∣∣
∫ ν

h1

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
+

∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ =: I1 + I2 .

For I1, we know by (5.1) that if h1 < ν, I1 ≤ C‖ϕ‖∞/(n/2 + k − 1)n/2+η, and if h1 > ν, it
is contained in the case I2, which we will deal next.

For h2 ≥ ν, take ε > 0 such that n/2 + η − ε > 0. Then, integrating by parts, we have

I2 =
∣∣∣∣
( ∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η−ε dρ

)
ϕ(Φ−1(h2/|ξ |))

h2
ε −

∫ h2

ν

( ∫ ρ

ν

Jn/2+k−1(u)

un/2+η−ε du

)

×
{
ϕ′(Φ−1

(
ρ

|ξ |
))

Φ−1(ρ/|ξ |)
ρ1+ε ϕ

(
Φ−1

(
ρ

|ξ |
))

− ε
1

ρ1+ε ϕ
(
Φ−1

(
ρ

|ξ |
))}

dρ

∣∣∣∣ .
Hence, by Lemma 2.2 we have

(5.3)
I2 ≤ C

(n/2 + k − 1)n/2+η−ε

(‖ϕ‖∞
νε

+
∫ h2

ν

dρ

ρ1+ε {‖ϕ‖∞ + ‖tϕ′(t)‖∞ + ε‖ϕ‖∞}
)

≤ C

(n/2 + k − 1)n/2+η {‖ϕ‖∞ + ‖tϕ′(t)‖∞ + ε‖ϕ‖∞} .

Thus, by (5.1), (5.2) and (5.3), we get

I ≤ C

(n/2 + k − 1)n/2+η {‖ϕ‖∞ + ‖tϕ′(t)‖∞ + ε‖ϕ‖∞} .

5.3. Case (iii): Φ ′(t) is monotonic on (0,∞). Since we have assumed Φ is positive,
we only need to consider two cases, i.e., Φ is a positive and increasing function and Φ is a
positive and decreasing function.

Case A. Φ is a positive and increasing function.
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As in Case (ii), we have only to estimate

(5.4) I2 =
∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣

for h2 > ν. For I2, we consider the following two cases (A1) and (A2).
(A1) The case where Φ(t) is positive and increasing, and Φ ′(t) is increasing.
Since Φ−1(ρ/|ξ |) and Φ ′(Φ−1(ρ/|ξ |)) are positive and increasing, by Lemma 2.2 and

the second mean value theorem we get for some ν ≤ h ≤ h2

(5.5)

∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
=

∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η−1

1

Φ−1(ρ/|ξ |)Φ ′(Φ−1(ρ/|ξ |))
dρ

|ξ |
∣∣∣∣

=
∣∣∣∣
∫ h

ν

Jn/2+k−1(ρ)

ρn/2+η−1

dρ

|ξ |
1

Φ−1(ν/|ξ |)Φ ′(Φ−1(ν/|ξ |))
∣∣∣∣

=
∣∣∣∣
∫ h

ν

Jn/2+k−1(ρ)

ρn/2+η−1
dρ

∣∣∣∣ ν

|ξ |Φ−1(ν/|ξ |)Φ ′(Φ−1(ν/|ξ |)) × 1

ν

≤ C

νn/2+η−1 ‖ϕ‖∞ × 1

ν
= C

(n/2 + k − 1)n/2+η ‖ϕ‖∞ .

(A2) The case where Φ(t) is positive and increasing, and Φ ′(t) is decreasing.
As before, we have only to estimate

I2 =
∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣

for h2 > ν. In this case we proceed as follows.
We see Φ−1(t) is increasing, and hence Φ ′(t) is decreasing implies that Φ ′(Φ−1(ρ))

is positive and decreasing. Thus, we know that 1/Φ ′(Φ−1(ρ)) is a positive and increasing
function. Now, for any h2 > ν, it is easy to see that there exists a j0 ∈ N such that 2j0 ≤
h2/ν < 2j0+1, and so we have

(5.6)

I2 ≤
j0∑
l=0

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
+

∣∣∣∣
∫ h2

2j0ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ .
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Noting the positivity and the monotonicity of 1/Φ−1(ρ) and 1/Φ ′(Φ−1(ρ)), and using the
second mean value theorem twice, we get∣∣∣∣

∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
=

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η−1

1

Φ−1(ρ/|ξ |)Φ ′(Φ−1(ρ/|ξ |))
dρ

|ξ |
∣∣∣∣

= 1

|Φ−1(2lν/|ξ |)Φ ′(Φ−1(2l+1ν/|ξ |))|
1

|ξ |
∣∣∣∣
∫ η′′

η′

Jn/2+k−1(ρ)

ρn/2+η−1 dρ

∣∣∣∣ ,
where η′, η′′ ∈ [2lν, 2l+1ν]. Hence, by Lemma 2.2 and Lemma 2.5, we get

(5.7)

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
≤

∣∣∣∣Φ
−1(2l+1ν/|ξ |)
Φ−1(2lν/|ξ |)

2l+1ν/|ξ |
Φ−1(2l+1ν/|ξ |)Φ ′(Φ−1(2l+1ν/|ξ |))

∣∣∣∣ 1

2l+1ν

C

νn/2+η−1

≤ C‖ϕ‖∞
2lνn/2+η ≤ C

2lνn/2+η .

Since 1/Φ ′(Φ−1(ρ)) is positive and increasing, we have as above for some η′, η′′ ∈ [2j0ν, h2]

(5.8)

∣∣∣∣
∫ h2

2j0ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
= 1

|Φ−1(2j0ν/|ξ |)Φ ′(Φ−1(h2/|ξ |))|
1

|ξ |
∣∣∣∣
∫ η′′

η′
Jn/2+k−1(ρ)

ρn/2+η−1 dρ

∣∣∣∣
≤ C

Φ−1(2j0+1ν/|ξ |)
Φ−1(2j0ν/|ξ |)

‖ϕ‖∞
2j0+1νn/2+η ≤ C

2j0νn/2+η .

Hence, by (5.6), (5.7) and (5.8), we get

I2 ≤
j0∑
l=0

C

2lνn/2+η + C

2lνn/2+η ≤ C

(n/2 + k − 1)n/2+η .

Thus, we have proved that

I =
∣∣∣∣
∫ h2

h1

Jn/2+k−1(ρ)

ρn/2
ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ ≤ C

(n/2 + k − 1)n/2+η .

Case B. Φ is a positive and decreasing function.
In this case, since Φ ′(t) is monotonic and Φ(t) is decreasing, we see that only the case

that Φ ′(t) is increasing occurs. Otherwise, Φ(t) is concave and its graph traverses the x-axis.
As before, we have only to estimate

I2 =
∣∣∣∣
∫ h2

ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
for h2 > ν. In this case we proceed as follows.
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We see Φ−1(t) is decreasing, and hence Φ ′(t) is increasing implies that −Φ ′(Φ−1(ρ/

|ξ |)) is positive and increasing. Thus, we know that −1/Φ ′(Φ−1(ρ/|ξ |)) is a positive and
decreasing function. Now, for any h2 > ν, it is easy to see that there exists a j0 ∈ N such that
2j0 ≤ h2/ν < 2j0+1, and so we have

(5.9)

I2 ≤
j0∑
l=0

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
+

∣∣∣∣
∫ h2

2j0ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ .
Noting the positivity and the monotonicity of 1/Φ−1(ρ) and −1/Φ ′(Φ−1(ρ)), and using the
second mean value theorem twice, we get∣∣∣∣

∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
=

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η−1

1

Φ−1(ρ/|ξ |)Φ ′(Φ−1(ρ/|ξ |))
dρ

|ξ |
∣∣∣∣

= 1∣∣Φ−1(2l+1ν/|ξ |)Φ ′(Φ−1(2lν/|ξ |))∣∣
1

|ξ |
∣∣∣∣
∫ η′′

η′
Jn/2+k−1(ρ)

ρn/2+η−1 dρ

∣∣∣∣ ,
where η′, η′′ ∈ [2lν, 2l+1ν]. Hence, by Lemma 2.2 and Lemma 2.4, we get

(5.10)

∣∣∣∣
∫ 2l+1ν

2lν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣
≤

∣∣∣∣ Φ
−1(2lν/|ξ |)

Φ−1(2l+1ν/|ξ |)
2lν/|ξ |

Φ−1(2lν/|ξ |)Φ ′(Φ−1(2lν/|ξ |))
∣∣∣∣ 1

2lν

C

νn/2+η−1

≤ C‖ϕ‖∞
1

2lνn/2+η ≤ C
1

2lνn/2+η .

Since Φ−1(t) is positive and decreasing, we have as above

(5.11)

∣∣∣∣
∫ h2

2j0ν

Jn/2+k−1(ρ)

ρn/2+η ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣ ≤ C
Φ−1(2j0ν/|ξ |)
Φ−1(h2/|ξ |)

1

2j0νn/2+η

≤ C
Φ−1(2j0ν/|ξ |)
Φ−1(2j0+1ν/|ξ |)

1

2j0νn/2+η ≤ C

2j0νn/2+η .

Hence, by (5.9), (5.10) and (5.11), we get

I2 ≤
j0∑
l=0

C
1

2lνn/2+η ≤ C

(n/2 + k − 1)n/2+η .

Thus, we have proved that

I =
∣∣∣∣
∫ h2

h1

Jn/2+k−1(ρ)

ρn/2
ϕ

(
Φ−1

(
ρ

|ξ |
))
dρ

∣∣∣∣≤ C

(n/2 + k − 1)n/2+η , 0 ≤ h1 < h2 ≤ ∞ . �
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