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ON THE BRAID INDEX OF ALTERNATING LINKS

KUNIO MURASUGI

Abstract. We show that, at least for an alternating fibered link or 2-bridge link
L , there is an exact formula which expresses the braid index b(L) of L as a
function of the 2-variable generalization PL(l, m) of the Jones polynomial.

1. Introduction

Every oriented link L in S is represented as a closed braid with a finite
number of strings [A]. The braid index, denoted by b(L), of an oriented link
L is then defined as the minimum number of strings needed for L to be rep-
resented as a closed braid. Obviously, the braid index is a link type invariant
of L, but generally it is not easy to determine the braid index of a link.

Recently, however, some results on b(L) have been proved using a new
polynomial VL(t) defined by V. F. R. Jones [J]. In fact, Jones finds a few
criteria for L to have b(L) < n for some n [J]. Shortly after the discovery of
Jones' new polynomial was announced, a number of researchers (Freyd, Yetter,
Hoste, Lickorish, Millet and Ocneanu [FYHLMO] and Przytycki and Traczyk
[PT]) independently introduced a 2-variable polynomial PL(l, m) as one of the
many generalizations of Jones' polynomial. This polynomial PL(l, m) has a
more direct connection to the braid index of L . To be more precise, let /(/, m)
be a 2-variable integer Laurent polynomial, i.e., /(/, m) e Z[l, l~l, m, m~x\.
Write /(/, m) = Y,i=a <¡>¡(m)ll, where 4>a(m) ̂  0 ^ 4>b(m). We call b - a the
/-span of /(/, m). Then it is proved [Mo] that

(1.1) l-spanPL(l,m)<2{b(L)-l}.

Jones observed in [J] that equality (1.1) holds for all but five knots up to 11
crossings. For alternating links it seems most likely that this is always the case,
and, therefore, we propose the following conjecture.

Conjecture A. If L is an alternating (nonsplit) oriented link, then

(1.2) l-spanPL(l,m) = 2{b(L)-l}.
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238 KUNIO MURASUGI

The main purpose of this paper is to show Conjecture A for two special but
important classes of alternating links, i.e., alternating fibered links and 2-bridge
links. See Theorem A and Theorem B below. Our proofs of these theorems also
suggest the following slightly stronger conjecture:

Conjecture B. Let L be an oriented alternating link and L = LX*L2*- ••*Lh be
a "-product representation of L, where Li are special alternating links. (For
a definition of the "-product, see §5 or [Mu2].) Then

h
(1.3) (1)    l-spanPL(l,m) = ^l-spanPL(l,m).

i=\
(2) For any/,   \<i<h,  l-spanPL (I, m) = 2{b(L.) - 1}.

(3) b(L) - 1 is additive w.r.t. a "-product, i.e.,
n

b(L)-l=£{b(L;)-l}.
¡=i

Obviously, Conjecture B implies Conjecture A. Furthermore, Conjecture A
implies another Conjecture.

Conjecture C. Let L be an alternating oriented link. Then the exponent sum in
a minimal braid representation is a link invariant. It will be denoted by e(L).

The implication Conjecture A => Conjecture C follows easily from (1.2) and
Corollary 2 in [Mo].

In this paper, we will prove, in fact, Conjecture B and determine e(L) in
Conjecture C for the alternating links mentioned earlier. (See Theorem 4.2 and
Proposition 6.2.) It should be noted, however, that Conjecture B no longer holds
for nonalternating links, or even for positive links. For example, the (positive)
trefoil knot K is a "-product of two positive Hopf links L.. Since /-span
PL (l, m) = 2, we have ¿ji=l /-span PL (I, m) = 4, while /-span PK(l, m) =
2.'

Conjectures A and B may be compared with the result [Mu4, Th] that, for an
alternating link L,span VL(t) gives the minimum number of crossings among
all the diagrams that L can have. This result is no longer true if L is prime
and is not alternating.

Now we state the main theorems of this paper.

Theorem A. Let L be an oriented alternating fibered link, and let L = LX*L2*
■ ■ ■ * Lh be a '-product representation of L, where each Li is an elementary
torus link. Then

(1.4) (1)    2{b(L)-l} = I-spanPL(l,m),  and
(2)   b(L) = h + l.

Note that b(L,) = 2 .
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BRAID INDEX 239

Corollary 1. If L is an oriented alternating fibered link, then the number of
'-components in a reduced alternating diagram of L is an alternating-link in-
variant. Furthermore, the numbers of positive and negative '-components of L
are also alternating-link invariants.

A quantity k(L) associated with a link diagram L is called an alternating-
link invariant if k(Lx) = k(L2) for reduced alternating diagrams Lx and L2
of the same alternating link.

If L is an alternating fibered link, then b(L) can be described in terms of
other link type invariants.

Let c(L) denote the number of crossings in a reduced alternating diagram
Z of I, and let AL(t) be the reduced Alexander polynomial of L. Note that
c(L) = span VL(t) [Mu4]. Then we have

Corollary 2. Let L be an oriented alternating fibered link. Then, for any reduced
alternating diagram L of L,
(1.5) b(L) = c(L) - degAL(t) + I.

Proofs of Corollaries 1 and 2 will be given in §7.
The other main theorem is

Theorem B. Let L be a 2-bridge link of type (a, ß), where 0 < ß < a and ß
is odd. Let [2nx , ,2nX2, ... , 2nxk-2n2x, ... , -2«2Jt_, ... , (-1)/_12«(1,
... , (-\)'~ 2n ,] be a continued fraction form of a/(a - ß), where «. . > 0
for all i, j [B-Z]. Then
(1.6) (1)   2{b(L)-l} = I-spanPL(l,m) and

t    K
(2)   b(L) = £ XX-!) + '+K

,=i j=\
Since proving Theorem B is much easier than proving Theorem A, we will

first give a proof of Theorem B in §§3-4. A proof of Theorem A will be given
in §§5-6. Generalizing Theorem B to alternating Montesinos' links is straight-
forward, thus we state the formula without a proof in §4. §7 contains several
consequences of these theorems. In particular, we will show that a diagram of
a torus link of type (q, r), 2 < q < r, which is obtained from a closed tf-braid
representation, is a minimal diagram. See Proposition 7.5. In the last section
§8, we will prove one theorem on b(L) for a special type of alternating links
which was originally stated by K. Kobayashi [K2]. In the Appendix, we will
prove a lemma needed in the proof of Theorem A.

2. Preliminaries

In this paper, all knots or links are oriented unless stated otherwise. We begin
with some notation that will be used throughout this paper.

Let /(/, m) be an integer Laurent polynomial on two variables / and m ,
i.e., /(/, m) e Z[l, l~ , m, m~ ]. We write /(/, m) = J2i=a4>j(m)l', where
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240 KUNIO MURASUGI

<t>a(m) t¿ 0 # <t>b(m), a < b and d)¡(m) e Z[m, m ']. Denote by dmax4>¡(m)
the maximal degree of </>¡(m). We define

(2-1) am(f) = dm3xcpa(m),     bm(f) = dmax4>b(m),
al(f) = a,    b¡(f) = b,    and   l-span f(l, m) = b - a.

Furthermore, let a, and b, denote the coefficients of m"1"^ and m ra(^ in

4>a(m) and 4>b(m), respectively.  We denote A, = aj-ma^  la'^ and ßy =

bj-m mU'l ' '. For convenience, we will call A, the minimum term and B,
the maximum term, or the extremal terms, of /(/, m).

Now, PL(l, m) is defined recursively as follows [L-M].
Let L+, L and L0 be diagrams of links which are identical except in the

neighborhood of a crossing, where they look like

Figure 1

Then PL(l, m) satisfies the following formula:

(2.2) (1)   (\/l)PL+(l,m) + lPL {l,m) + mPL(l,m) = 0.
(2)    If L is a trivial («-component link, then

PL(l,m) i + r
\       m     J

If /(/, m) = PL(l, m), then af,am(f),a¡(f),Af,... will be denoted by
aL,am(L),al{L),AL,... .

Our proofs of the main theorems are based upon the precise evaluations of
AL and BL .

Let L be a link and L a diagram of L . By changing every positive crossing
X or negative crossing X„ of L to x , L becomes a collection of simple closed
curves on 5 , each of which is called a Seifert circle of L. (This operation
X —>x is called a splitting.) The number of Seifert circles in L will be denoted
by 5(1).

The following proposition plays an important role in determining the braid
index of a link.

Proposition 2.1 [Y]. Let L be a link and L its diagram. Then b(L) < s(L).

See [Y] for a proof.
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Proposition 2.2. Let p(L) be the number of components of L. Then, for any
diagram L of L, p(L) < b(L) < s(L).
Proof. A link L of p components cannot be represented as a closed braid with
fewer than p strings, and hence p(L) < b(L) < s(L).   Q.E.D.

From (1.1), we see that, for any diagram Z of L,

(2.3) /-spanPL(/,m)<2{s(Z)- 1}.

Proposition 2.3. Suppose that L has a diagram L such that I-spanPL(l, m) =
2{s(L)-l}. Then b(L) = s(L).
Proof. By Proposition 2.1, b(L) < s(L). Suppose b(L) < s(L). Say b(L) = n .
Then L has a diagram L obtained from a natural presentation of L as a closed
«-braid. Obviously, s(L) = n . Now (2.3) yields /-span PL(l, m) < 2(n - 1) <
2{s(L) - 1} = /-span PL(l, m), a contradiction.   Q.E.D.

3. Proof of Theorem B(I)

As was shown in Proposition 2.3, in order to determine b(L), it suffices to
find a diagram Z of a 2-bridge link L for which /-span PL(l, m) = 2{s(Z)-l} .
Although L is an alternating link, the diagram we find need not be alternating.

Now the diagram we seek can be described most conveniently using the planar
graph associated with a diagram. Therefore, we first recall the graph of a link
diagram.

With a link diagram Z of L, one can associate a planar graph T as follows.
(Y will be called the graph of L and is denoted by T(L).) L divides S into
finitely many domains which will be classified as shaded or unshaded. No two
shaded or unshaded domains have an edge in common. Each vertex corresponds
to an unshaded domain and each edge of Y corresponds to a crossing in Z. T
is weighted in the sense that each edge e inY is assigned the weight w(e) = +1
or -1 as is shown in Figure 2. Y depends on the shading p of the domain
in S2 - Z. If we use the different shading p , then the resulting graph is its
dual with the opposite weight. (For the details, see [Mu6].) Conversely, given

2 —a weighted planar graph r on S , one can construct a link diagram L of a
link L such that Y is the graph of Z. There is, however, no way to specify the
orientation of L, and, hence, the link constructed from Y is unoriented. But,
if T is an even graph, i.e., if every vertex has even valency, then one can specify
an orientation for Z in such a way that the boundary of a shaded domain is
an oriented circuit. Such an oriented diagram Z is called a special diagram. In
fact, every oriented link has a diagram which is special [B-Z, Theorem, p. 220].

We will use a special diagram Z of a 2-bridge link in order to evaluate AL
and BL .

Let L be a 2-bridge link of type (a, ß). Since we are only concerned about
the braid index of L, we may assume w.l.o.g. that 0 < ß < a and ß is odd.
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242 K.UNIO MURASUGI

w (e)= +1 w (e) = - 1

Figure 2

2n.11
2n 12 2n 1/k. (-1)'   12t t,k,

Figure 3

Then a/(a - ß) has a unique continued fraction form,

[2nxx,...,2nx, ,-2n2¡,,..., -2rc2>, ,...,

(-1)' V ,...,(-1)' '2«.'(,1 ' • • • ' V    x/      "'U.kJ'

where n{ . > 0 for any / and j. Using this continued fraction from, we will
construct a special diagram Z of L. We should note that if / > 1 then Z is
not alternating.

Now, since a 2-bridge link is an algebraic link (or an arborescent link), a
weighted tree T in 5 will be associated with L. And L is the boundary of a
surface F constructed by plumbing as specified by this weighted tree T. For
a 2-bridge link L, T is an arc-tree, i.e., T has only two stumps. A stump is a
vertex with valency 1. See Figure 3.

The weight at the left-end stump is 2nx , .
Next we will define a weight w(e) = +1 or -1 to each edge e on T

depending on whether the weight of the left-end of e is positive or negative.

Example. 2-bridge link of type (140, 61). The continued fraction form of A^Q
is [2,4,-2,2,4].

Now take a new vertex v0 off the tree T and join v0 to each vertex vi
(which has weight (-1)'" 2ni   ) by disjoint simple arcs. The weight of a new
edge is +1 or -1 according to whether (-1)'- 2ni , >0 or not. The number,
st   , of edges joining vQ and v¡    is determined by the following formulas.

(3.1) (I)   Ift= 1 and/:, = 1, thensn = 2nlx.
(II)    Suppose t > 2 or kx > 2, then

(1) sxx=2nxx-l.
(2) Let (/, ;')#(!, 1) or (t, kt).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



braid index 243

4-1       +1 -1        +1

Figure 4

(i) If v.     is the common end of two edges having the same weight, then
si,j = 2nij-2-

(ii) If v¡     is the common end of two edges having different weights, then
sij = 2ni,r

(3)   stk =2ntk -1   ifkt > 2, and

>t,k, 2nt,k, + l   if*t=l..

Now the resulting weighted graph Y (ignoring the weights of vertices) is what
we wish to use as the graph of a (special) diagram of L. See Figure 5.

Since T is an even graph, one can construct an oriented link diagram Z
of some link L such that Y is the graph of Z. Z is a special diagram of a
2-bridge link L of type (a, ß). From our construction, we easily see

Proposition 3.1.

(1) For every vertex vi , (except for vQ), the weight of v. . (= (-1)'" 2ntj)
is equal to the sum of all weights of edges incident to vi ..

(2) stj = 0   (mod2) for (i, j) ¿ (I, \) or (t, kt) and
S\\ - St,k, = 1    (mod 2).

Using the special diagram L of a 2-bridge link L, we will determine AL
and BL.

Figure 5
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Proposition 3.2.

(3.2) ;i)   am(L) = ^K-2
(=i

(2)   at(L) = - £  ¿Z2ni,r2
i=0(2) 7=1 i=\

(3)   bm(L) = J2ki-2
¿=i

i+1

r+1
£*,■
i=i

(4) b,(L)=  £  ¿22niJ + 2
¿=i(2) 7=1

(5) \aL\ = \bL\ = l.

1 Í    *'(6) ^{b,(L) - a,(L)} = J2 5>< J - 1) + '•
1=1   7=1

Proo/. Since (6) follows from (l)-(5), we will prove only (l)-(5). A proof is
an easy induction on t and ki. Thus we will omit most of our computations.
In fact, if we apply a crossing change X->Xj or X->X and splitting X-^
on a crossing on L, the resulting link is also a 2-bridge link with a shorter
continued fraction form. Therefore, we can apply the induction assumption on
the resulting links. Then the formula (2.2) will prove the proposition

Case 1.  t = 1. If kx = 1, then L is a torus link of type (2nx ,, 2) and, hence,
AL = -ml and BL = (-l)n"~]m~ll2n"+l, which proves (3.2).

If kx > 1 , apply a crossing change and splitting on the crossing on the left-
most edge joining vQ and vxx . Then the link L and LQ have, respectively,
the following continued fraction forms:

L_: [2nx3, 2nX4, ... , 2nx k]   if nxx = 1,

[2(nlx - 1), 2n]2, ... , 2nx k ]   if nn > 1;
L0: [2n,2, 2nM3 2n,.t]

Since -i"L(/, m) — I PL (I, m)+lmPL (I, m), a simple computation shows:

(3.3)
fc, ,fc,1)    If «j, = 1, then /iL = -mlAL = ±m 7 ' and

BL = -lmBL =±mk>~2ñ  /C|+2,

/c, ,*,(2)If«n>2, then AL = -lmAL = ±m 7 ' and

BL = -l2BL   =±m*'-2/'V'-'c'+2,

where /V, = 2«,, -I-1-2«, fc . Now (3.3) proves (3.2) for the case t = 1

Case 2.   t > 2 and t = 0 (mod 2).
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We apply a crossing change and splitting on the crossing on the rightmost
edge e joining v0 and vt k . We state only the continued fraction forms for
L+ and L0 . The rest of the proof consists of straightforward computations
using the induction assumptions.

( 1 ) Suppose kt - 1. Then

L+: [2nn,... , 2nxk¡, ... , (-1)'"22«(_M , ... , (-l)'~22«r_, ^.J,
if nt , = 1,

[2«,,,... ,2nxk,..., (-\)l~22nt_xx, ...,

(-\)'-22nt_X!kii,(-l)l-l2(ntX-l)],

ifntx>2;

L0: [2nxx, ... , 2nXJc¡, ... , (-1),_22«,_1;1, ... , (-l)'-22n(_1Jt_ ],

and
—2 — 1

AL = -/   AL    and   BL = -/   mBL .

(2) Suppose kt>2. Then

L+: [2nxx, ... , 2.^ , ... , (-l)i_12«M, ... , (-l)i_12«r >fc_2],    if «rJt_ = 1,

[2nu,...,2»,ifci, ... , (-l)i_12n(1,... , (-l)i-12(«; ^ - 1)],    if nt fc >2;

L0: [2n, p ... , 2«, ^ , ... , (-1)/_12«(1, ... , (-\)'2ntk_x].

If nt k = 1, then AL = -l~ mAL and BL = -/_ «ít5¿ . If nt k > 2, then
AL = -l2AL   and BL = -FxmBL .

Case 3.  t>2 and t = 1 (mod 2). Since a proof is analogous to Case 2, a proof
will be omitted.

A proof of Proposition 3.2 is now complete.

4. Proof of Theorem B(II)

By Propositions 2.3 and 3.2(6), Theorem B will follow from Proposition 4.1
below.

Proposition 4.1. There is a diagram L of a 2-bridge link L which contains
t kexactly ]£I=1 J2/=\(nij - 1) + í + 1 Seifert circles.

Proof. Let Z be the diagram of L constructed in §3.  Since Z is a special
diagram, the number s(L) of Seifert circles in Z is exactly the number of

2 —domains 5 - Y(L). Let V and E denote, respectively, the number of vertices
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and edges in Y. Then we see easily that

(4.1) (1)    I/ = ¿£, + l,
(=1
t      k, t

(2) E=z2T,(2nij-v+z2ki+2t-1-
1=1  7=1 i'=l

Therefore, Euler's formula yields s(L) = E-V + 2 = 2{£j=1 E/Li(«y-l)+0 •
~ t kBy comparing j(L) with /-span P¿(/, m) = 2{^¡=1 X^Lií*2,,- U + O » we must

/ k ~eliminate ¿2¡=i ¿~^jLi(nn — 1 ) -1- í — 1 Seifert circles from L.
Let s¡j be the number of edges joining v(j and v0 defined in (3.1). Then we

can eliminate [s^/2] Seifert circles by simple deformation depicted in Figure

6 (which replace short arcs PiPi   by long arcs).
Repeated applications of this deformation eventually eliminate J2¡ ,[í(,/2] =

J2i ,(",, - 1) + r — 1 Seifert circles. This proves Proposition 4.1 and hence
Theorem B.   Q.E.D.

Theorem B and Theorem 1 in [Y] show that the exponent sum e(L) in a
minimal braid representation of a 2-bridge link L is equal to the writhe w(L)
(= c (L) - c_(L)) of a diagram Z with a minimal number of Seifert circles,
where c+(L) and c_(L) denote, respectively, the number of positive and neg-
ative crossings in Z. Therefore, it is easy to determine e(L) for a 2-bridge
link.

Theorem 4.2. Let L be a 2-bridge link of type (a, ß). Then

(4-2) e(L)=  ££«,-  EE«^1^'
1=1(2)7=1 i=0(2)7=l

Proof. A diagram of L with a minimal number of Seifert circles is obtained
from a special diagram Z by applying isotopic deformations shown in Figure 6.

(a) (b)
Figure 6
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If PjP[   is an over-passing arc, then this deformation decreases w(L) by one.

On the other hand, if P.P'  is an under-passing arc, then it increases w(L) by
~ kone. Since the original diagram L has exactly 5Z,-=i(2) Í 23^== i (2/J,- -—2)+^.+2}—1

kpositive crossings and I],=o(2){S;=i(2"iJ - 2) + k¡ + 2} negative crossings, the
final diagram Z we obtained in Proposition 4.1 has the writhe

w
1=1(2)

2) + k¡ + 2

-'-IEEK
1=1(2)7=1

1) + /-l

-  £     £(2";7-2) + ^ + 2    + £ £(«,.-l) +
i=0(2) [j=l J       ¡=0(2)7=1

- EE",
1=1(2) 7=1

+ 2 Í+1 1 - t- 1 - E 2X
1=0(2) 7=1

Since 2[^i] - [|] - [i^i] - 1 = (1 - (-l)'/2), we obtain (4.2).
The braid index of an alternating Montesinos link L is also determined

without difficulty. In fact, L is an algebraic link which is associated with a
weighted tree T. We state the following theorem without a proof.

Theorem 4.3. Let T be a weighted tree associated with a Montensinos link L.
Suppose that T is positive and excessive. In other words, for each vertex v of
T, the weight w(v) is positive and w(v) is at least equal to the valency, val(n)
at v . Then

~w(v) - val(v)'
(4.3) b(L) = £ + s,

where the summation runs over all vertices in T and s denotes the number of
stumps in T.

Remark 4.1. A link in Theorem 4.3 is a special alternating link. The braid
index of an alternating Montesinos link associated with a excessive but not
necessarily positive tree is also determined without much difficulty. However,
the braid index of a general alternating algebraic link is not easy to determine,
although some appropriate algorithm may exist. We do not pursue this problem
any further in this paper. Rather, we will return to a proof of Theorem A in
the next section.

5. Proof of Theorem A(I)

A proof of Theorem A is much more complicated than that of Theorem B.
Contrary to a 2-bridge link, it is unlikely that an alternating fibered link has
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a neat diagram which reduces to a simpler alternating fibered link after one
crossing change. Therefore, we must use a "global" argument, instead of a local
one.

First we recall the definition of the "-product of two links. Let L be an
oriented link and L its diagram in S . A Seifert circle C in L is classified
as type (I) or type (II). C is said to be of type (II) if both the interior and the
exterior of C contain other Seifert circles. Otherwise C is of type (I). If there
are no Seifert circles of type (II), the diagram is special. Suppose that there is
a Seifert circle C of type (II) in Z. If we erase the interior of C, we obtain
a new link diagram of some link, say L,. See Figure 7.

Example. Z has two Seifert circles C and C', and L is a "-product of three
links Lx, L2 and L3, i.e., L = Lx* L2* L3.

Similarly, by erasing the part of Z which is exterior to C , we will obtain the
other link diagram Z2 of a link L2. We say then that the link L is a (planar)
"-product (or a (planar) Murasugi sum) of two links Lx and L2, written as
Lx * L2. Also the diagram Z is called a (planar) "-product of two diagrams
Zj and Z2, written as Z = Lx * L2. We can repeat the same argument as long
as a diagram has Seifert circles of type (II) and L will be decomposed into a
finite number of links LX,L2, ... ,Lk with special diagrams Z,, Z2, ... Lk .
We write L = Lx * L2 * • • ■ * Ln and call it a (planar) "-products representation
of L. Similarly, a diagram Z is written as L = LX*L2* ■■■ *Lk . (For more
details, see [Mu2 or G].) Since the connected sum of two links can be considered
aplanar "-product of these links, we may assume that Li is prime. A "-product
representation of a link is not unique. Nevertheless, this concept is particularly
important in the study of alternating links. In fact, if L is an alternating link,
each component L¡ of a (planar) "-product representation of L is a special
alternating (either positive or negative) link.

Now suppose that L is an alternating fibered link. Since a special alternating
prime fibered link is an elementary torus link [Muí], L is a (planar) "-product
of elementary torus links, i.e., torus links of type (qt, 2) or (qt, -2), where
<^2-

Recall c+(L)  and c_(L) to denote the number of positive and negative
crossings in Z. Therefore, c(L) = c+(L) + c_(L). Write w(L) = c+(L)-c_(L)
and s(L) is the number of Seifert circles in Z.   h+(L) and h_(L) denote
the number of positive and negative "-components in Z, and hence h(L) =
h+(L) + h_(L). Then Theorem A will follow from the following

Proposition 5.1. If L is an alternating fibered link, then
,,  ,. ...        . .     . ,c+*       c-h-2h    ,w-h(5.1) (1)   AL = (-\)    +m -I

,_.      „ ,    . ,c+h       c-h-2h. ,w+h(2)   BL = (-l)     -m +l

where, for simplicity, we delete L from the notation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



braid index 249
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Figure 7

In fact, since s(L) - h(L) + 1, we see that /-span P¿(/, am) = 2h(L) -
2{s(L) - 1} and hence, b(L) = s(L) = h(L) + 1 by Proposition 2.3. This
proves Theorem A.

Now, for the mirror image L* of L, we know that PL.(l, m) = PL(l-i AM
[L-M] and hence AL is obtained immediately from BL. . Therefore, we need
only prove (5.1)(2).
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A proof of (5.1)(2) will be given by induction on «(Z) and c(L).
Suppose h(L) = 1 . Then we may assume that «+(Z) = 1 and «_(Z) = 0. L

is a torus link of type (q, 2), q > 2 . Then a simple computation [M-L] shows
that BL = (-\)qmq~^lq^ . Since c(L) = q, h+(L) = 1 = «(Z), h_(L) = 0
and w(L) = q , (5.1)(2) follows immediately.

Now suppose « > 2. Suppose furthermore that all "-components are posi-
tive. Then h(L) = h+(L) and h_(L) = 0. Since Z is an alternating diagram,
L must be a connected sum of these positive elementary torus links L.. (We
need the assumption here that L be alternating.) Then it is known [L-M] that
bl = n?=i bl ' and hence we obtain (5-1)(2).

Therefore, we may assume in the rest of this section and the next that

(5.2) h+(L)¿0¿h_(l).

Now, given a link L and its diagram Z, there are, say, k crossings cx,
c2, ... , ck on Z such that crossing changes at these crossings make L a trivial
link L0 . Then the polynomial PL(l, m) of L is given by the formula [Mu3].

PL(l,m) = (-\)kl2[y-x)PL(l,m)

(5'3) +(-l)¿X      £      ld-2UdPLj   ;(/,m),
d=\ \<}{<-<jd<k

where y and x are, respectively, the number of positive and negative crossings
among {cx, ... , ck}, ud is the number of negative crossings among {c}. , ... ,
c  }, and L, ,    ,    is a link diagram obtained from Z by splitting each of

'd hh'")d
crossings c¡ , ... , c¡ . We can choose these k crossings so that each link di-

-M Jd
agram L¡    ,   is connected. If L is an alternating fibered link, then, to eachh'"ii
{j, , ... , j.}, L is an alternating fibered link diagram or a trivial knot. It

-*]      Jd
cannot be a trivial link, since L     ,   is alternating and connected. We should

>\'"ld
note that L, , may not be reduced, i.e., it may contain removable (or nuga-
tory) crossings.

Now, to prove (5.1)(2), we carefully choose a set of crossings on which cross-
ings changes and splittings are applied.

Let Z be "-product of elementary torus link diagrams Z( of type (qn 2) or

(qt, -2), q,>2.
Lemma 5.2. There are, say, k crossings cx, c2,... , ck such that ( 1 ) crossing
changes at cx, c2, ... , ck  make L a trivial link, and (2) for each  i,   i =
1,2.A, the number a( of crossing changes applied on L¡ is at least one
but at most q¡- I, i.e., 0 < a( < qt. In other words, each Z( has at least one
crossing in {cx, c2, ... , ck}, but it never has all crossings in {cx, c2, ... , ck}.
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Note that if a, = q,-l, then a diagram of some L¡    ,   is not reduced. Also
II J\'"Jd

we may not need to apply crossing changes at all crossings cx, ... , ck to make
Z trivial. In other words, we apply some unnecessary crossing changes to L to
prove Lemma 5.2. We postpone a proof of Lemma 5.2 to the Appendix.

Now, we proceed to a proof of Proposition 5.1. Let {cx, c2, ... , ck} bea set
of crossings found in Lemma 5.2. Consider (5.3). Write C = l2{-y~x^PL (/; rn)

and /(/, am) = EÎ=i«rfEi<,■<...</ <kld~2UdPL      (/,w). Then we claim
—'1 Jd — ÍV¡d

Proposition 5.3.
ie as n l    tsc+h       c—h — 2h. ,w+h(5.4) Bf = (-l)     -am 7

A proof of Proposition 5.3 will be given in the next section. In the rest of
this section, we will prove, using (5.4), that B, is in fact the maximum term
of PL(l, am).

Proposition 5.4. Bf = BL . In other words, Bc cannot be the maximum term
ofPL(l,m).
Proof. Let p be the number of components in L. Since LQ is a trivial p-
component link,

and hence

PL(l, am) = (-(/ + /  l)/m)ß  '

c = ñy-x)(-(i + rl)/mf-\
Therefore, we have

(5.5) Bc = (-\f-{m-{ß-l)l2{y-x)+(ß-{).

Now we may assume w.l.o.g. that 2y < c+(L). (Otherwise consider "comple-
mentary" crossing changes. That is, if we apply only crossing changes at those
crossings which are not in the set {c,, c2, ... , ck}, then we have another set of
crossings that satisfies all conditions in Lemma 5.2. For this set, it holds that
2y < c+(L).)

Suppose that Bc is the maximum term of PL(l, m). Then 2(y - x) + p -
1 > w(L) + h . But since the maximal degree of PL(l, m) w.r.t. / is at most
w(L) + s(L) - 1 = w(L) + h [Mo], we must have

(5.6) 2(y-x) + p-l=w{L) + h.
Furthermore, since -(p - 1) is the minimal degree of PL(l, am) w.r.t. am

[L-M], we see

(5.7) -(p-l) = c(L)-h-2h+.

Combining (5.6) and (5.7), we obtain that 2(y -x) = 2c+(L) - 2h+ . This is
impossible, however, since 2c+(Z) > 2h+ + 2y and x > 0, proving Proposition
5.4.
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6. Proof of Theorem A(II)

This section will be devoted to the proof of Proposition 5.3.
Suppose that some L,      ,   is not reduced. Let L,      ,   = L, * L, * ••• *

7i >--»7¿ 7[ .•■•,7¿ 1 L

L. . Since L,      ,   is not reduced, some of Z,. represents trivial knots, i.e.,
' ''"'Jd ^ ' ^       ^

all crossings but one of L   must be split.   For simplicity, each of Lx-L}
is a trivial knot with one positive crossing and each of Lk+X, ... , Lx+v  is a
trivial knot with one negative crossing. Then L,       ,   is isotopic to a reduced

ä ^ ^Ji.j¿
alternating fibered link Z       = ^x+v+\ * ' ' ' * ̂ h > an<* hence we have

(6.1) (1)   c(Lh...Jd) = c(L)-d-(k + v),

(2) h(Lh...Jd) = h(L)-(k + u),

(3) h+(LJr.Jd) = h+(L)-k,

(4) h_{Lh...Jd) = h_(L)-v,
(5) «/(£,.    l) = w(L)-d + 2ud-k + v.

Since Z,      ,   is reduced, we can apply the induction assumption on L
7l.--.7rf )\,-,¡d

to show that
r, r, i    ,\C—d+h   —X    c—h—2h-d+2X,w+h—d+2uA—2XB, = Br = (_1) "AM + I d        ,

h-id h-id

and hence we have
lr -, d ,d-2uj r, ,    ,,c-d+h   -X    c—h-2h++2X,w+h-2X(6.2) AM   / ''t?. =(-1) "AM /

From (6.2), we see that if k ^ 0 then am / ~2UdBL        cannot be the max-
h —ii

imum term of /(/, am) . Therefore, to prove (5.4), it is sufficient to show that
Ö=. ^<f<-<jd<k^rd+H- = (-DC+A- + 1 , or equivalent^,

(6.3) ¿        £       (-!)' = -!.
</=i i<7,<-••<;,,<*

where the summation is further restricted to {jx, ... , jd} such that L        has
k = 0. Thus we need to count the number of links L,       .   with k = 0.

j.'A/
If k - 0 for all I,    ,   or, in particular, if all L,      ,   are reduced, then

J\'"Jd J\ '- 'Jd
since there are exactly  (dk)  choices of sequences jx, ... , jd from k distinct
indices, 1, 2, ... , k , we see

£    £   (-i)' = e(2)<-o' = -i
rf=l   l<7,<-<7,,<* ¿=1

and we are done.   To prove (6.3) in general, let 5? = {cx,c2, ... , ck) be
crossings found in Lemma 5.2. Since h (L) ^ 0 ^ h_(L), some crossings in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BRAID INDEX 253

S? are positive and some are negative. For simplicity, let Lx, ... , L   all be
positive links Li with q(. = q. - 1, i = 1, 2, ... , p , but each of the remaining
h-p links L   ,, ... , Lh has either negative crossings or has at most q¡ - 2
positive crossings in 5?. Note from Lemma 5.2 that 0 < p < h . Denote by £,
the left-hand side of equation (6.3). £ will easily be evaluated as follows.

We see from (6.2) that mdld~2"dBL is the maximum term of /(/, am)
j\.Jd

if and only if, to each /, / < / < p, all ai crossings of Li contained in S?
never occur in {c,-,..., c- }. The number £. of such links L, ....   is given by

-M id i\     id

<,- e e (:;)■■■ ©fe)-fe).'i'-''p  mp+l'"mh P P

where the summation runs over all ix,... , i , mp+x, ... , mh such that 0 <
¿ic <ctk- 1, k = 1, 2, ... , p and 0<AMr<ar, r = p + I,... , h. Putting

we can write £, = Ei/=o(-^) ^d ~ ^ • However, a straightforward computation
shows that

e(-.)%={e(-.)'-+"(";)-C;)}

Since h - p > 0, the second factor is

e<-»"'*'+- +"'fc) •■(::)=ñ èt-T(:;)-o.
and hence ^ = -1 as required. This proves Proposition 5.3, and the proof of
Theorem A is now complete.

Theorem A immediately implies

Proposition 6.2. For an alternating fibered link L, e(L) = w(L), where L is a
reduced alternating diagram of L.

1. Corollaries

We begin with a proof of Corollary 1.

Proof of Corollary 1. Since h(L) - b(L) - 1, h(L) is an alternating-link invari-
ant. Furthermore, it follows from Theorem 5.4 in [Mu2] that the signature

o(L) = -{(c+(L) - h+(L)) - (c_(L) - h_(L))}
= -{c,(L)-c_(L)} + h,(L)-h_ (Z).
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Since c+(Z)-c_(Z) = w(L) is an alternating-link invariant [Mu5], so is h+(L)-
h_(L). Now the invariances of h+(L) and h_(L) follow immediately.

Remark 1 A. The invariances of h+(L) and h_(L) are also proved by Traczyk
[Tr]. He proves that if L is a (nonsplit) alternating fibered link, then, for the
homfly polynomial QL(x, y, z) of L,

(7-1) <mQL(x,y,z)= -c+(L) + h+(l),
dLnQL(x,y,z)= -c_(L) + h_(L),

where d^inQ and d^Q denote the minimal degree of Q w.r.t. x and y,
respectively. Since c+(L) and c_(L) are alternating-link invariants [Mu6], so
are h+(L) and h_(L).

Proof of Corollary 2. Let L be an alternating fibered link and Z its reduced
alternating diagram. Then it is known [Mu2] that degAL(t) = c(L) - s(L) + 1 .
Since Z is reduced, it follows that b(L) = h + 1 = s(L) - c(L) - degAL(i) +
1.   Q.E.D.

Next we show a few immediate consequences of the main theorems.

Proposition 7.1. Let L¿, i = 1, 2, be either an alternating fibered link or a
2-bridge link. Then

b(L,#L2) = b(L,) + b(L2)-l.

This solves Problem 10 in [B] for these links. A proof follows from the fact
that PL(l, am) is multiplicative w.r.t. a connected sum.

Proposition 7.2. Let L be a 2-bridge link of type (a, n), where 0 < ß < a and
ß is odd. Then

(7.2) (1)    b(L) = 2    iffß = \.
(2)   b(L) = 3   iff either

(i) for some p , q > 0, a = 2pq + 3/> + 3# + 4 and ß = 2p + 3 , or
(ii) for some p > 0, a = 2pq + p + q + 1 and ß = 2p + 1.

Proof. A proof of (1) is obvious. To show (2), we note by Theorem B that
b(L) = 3 iff the continued fraction form of L is either (1) t = 1 and all «, = 1
but one nxk = 2, i.e. [2, 2, ... , 2, 4, 2, ... , 2], or (ii) t = 2 and «; = 1
for all i and j, i.e., [2,2, ... ,2, -2, -2, ... , -2]. A simple computation
shows that, for each case, a and ß have the form given in Proposition 7.2.

Remark 7.2. Proposition 7.2 proves the conjecture by Przytycki [P].
We call an «-braid y = a,£| • ■ • a]k , e; = ±1 , 1 </.,...,/,<«- 1, a

homogeneous braid if e; = e¡ whenever i. = i¡. y is called an alternating braid
if e = e¡ iff i. = i j (mod 2). y is called reduced if each a., 1 < j < n — 1,
appears at least twice in y .
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Proposition 7.3. If y is an alternating and reduced n-braid, then the braid index
of the closure y of y is exactly n .
Proof, y is an alternating fibered link with a natural downward orientation.
Since y is reduced, y has exactly « (nontrivial) *-components, and hence
Proposition 7.3 follows from Theorem A.

The closure of a homogeneous «-braid may have a smaller braid index than
« , but if it has the braid index « , then we can determine the minimal number
of crossings of its closure. In fact, let c(L) denote the minimal number of
crossings among all diagrams that a link L can have. Then we can prove

Proposition 7.4. Let y be a homogeneous n-braid. Let d¡ be the exponent sum
of a¡ in y. If b(y) = n or if y is a reduced pure n-braid, then c(y) = E¿=i' Kl •

Proof. If y is reduced and pure, then b(y) = n by Proposition 2.2. Therefore,
we assume that b(y) = n. Let d = E¿=i \d¡\ and let Z be any diagram
of L. Then the degree of the reduced Alexander polynomial A(/) of y is
bounded above by c(L) -s(L) +1. On the other hand, since y is homogeneous,
degA(A) = c(y) - s(y) + \=d-n + l, where y is the diagram obtained from
y asa closed «-braid. Therefore c(L) - s(L) + 1 > d - « + 1 and hence
c(L)-d > s(L)-n > 0 by Proposition 2.1. Therefore c(L) > d, i.e., d = c(y).

As a typical application, we have

Proposition 7.5. Let L(q, r) be the torus link of type (q, r), where 2<q<r.
Then c(L(q, r)) - r(q - 1).
Proof. The minimal bridge number of a link is at most equal to its braid in-
dex. Since the minimal bridge number of L(q, r) is q [S], it follows that
b(L(q, r)) = q . (This fact will also follow from [J, Theorems 9.7 and 15.1] for
a torus knot of type (q, r).) Since L(q, r) is represented as the closure of a
homogeneous #-braid (oxa2 ■ ■ ■ o   x)r, the proposition follows immediately.

8. Special alternating links
To determine the braid index of an alternating link L, we may need the braid

index of each ^-component of L , which is a special alternating link. Generally,
there is no known algorithm which can be used to determine the braid index of
a special alternating link. However, there are some particular types of special
alternating links besides 2-bridge links and fibered links, whose braid indices
are easily determined.

Let L be a special alternating link and Z a reduced special alternating dia-
gram. Let T(Z) be the weighted graph associated with L. Since Z is special
alternating, we may assume that T is positive and even. A (planar) graph T
(or the link diagram Z associated with T) is said to be of the nonmultiple type
if no two vertices in the dual graph T* of Y are connected by a single edge.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



256 K.UNIO MURASUGI

Figure 8

Theorem 8.1. Let L be a special alternating link and L a reduced special al-
ternating diagram. Let s(L) denote the number of Seifert circles in L. Then
b(L) - s(L) iff Y(L) is of the nonmultiple type.

The "if" part of the theorem was originally stated by K. Kobayashi in [K2].
However, we will prove both implications.

Proof of Theorem 8.1. First we prove the "only if part. Suppose that T(Z) is
not of the nonmultiple type. Then it suffices to prove that L has a diagram Z
such that s(L) < s(L). In fact, then, by Proposition 2.1, b(L) < s(L) < s(L).

Since T(Z) is not of the nonmultiple type, there are two vertices in the dual
graph T* of T(Z) which are joined by a single edge. Therefore, there is an
edge e in Y which connects two nontwigs, say vx and v2, where a twig is
a vertex with valency two. Let D be the domain in S - Y whose boundary
contains e . D corresponds to one shaded domain in S - Z. See Figure 8(a).

Take two points P,   and P2  on an overcrossing arc that passes over the

crossing associated with e . Then replace the short arc  Px P2  by the long path

PXQP2 depicted in Figure 8(b). P¡QP2 is an over-crossing arc which lies
outside D but is close to the boundary of D. It is easy to see from Figure 8(b)
that a new diagram Z has s(L) - 1 Seifert circles. This proves the "only if
part of Theorem 8.1. Therefore, if Y(L) is not of the nonmultiple type, then,
by (2.3),
(8.1) l-spanPL(l, m) <2{s(L)- 1}.

For the "if part, suppose that T(Z) is of the nonmultiple type. Then, by
Proposition 2.3, it is enough to prove

(8.2) /-spanPL(/, am) = 2{s(Z) - 1}.

We evaluate a¡(L) and b¡(L); a¡(L) is easily evaluated even for positive
links.
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Proposition 8.2. Let L be a (nonsplit) positive link. Let r = degAL(?).  Then
AL = (-l)rmrí.

For a positive link L, it it is shown [Kl] that r = a¡(L) and r is also the
maximal degree of am in PL(l, m). Since L is a positive link, almost the
same argument employed in [Mu3] can be used to prove Proposition 8.2 by
induction on c(L). What we need to prove (8.2) is the fact that r = at(L),
which is already proved in [Kl], and hence we omit a proof. For details, see
[Kl] or [Mu3].

Now if Z is reduced special alternating diagram of L, then r = c(L) -
s(L) + 1, and hence (8.2) will follow from

(8.3) b,(L) = c(L)+s{L)-l.

We will prove (8.3) by induction on c(L). We may assume w.l.o.g. that Z
is positive.

If c(L) = 2, then Y is <3> and (8.3) obviously holds.
Suppose that two nontwigs vx and v2 are connected by a sequence of twigs

wx,w2, ... ,wk, k>\.
Let e¡ be an edge joining wj and wl+x, i = 0, \, ... , k , where w0 = vx and

wk+x - v2 . Apply the formula (2.2) on a crossing associated with the first edge
ex . For convenience, we denote the polynomials P(l, am) of L, L_ and LQ by
Pk+\ ' ?k-\ anc* ^k ' respectively, since these links contain exactly k + 1, k - 1
and k edges connecting vx and v2. Now (2.2) implies that -Pk+X(l, am) =
lmPk(l, m) + l Pk_x(l, am) . Repeated applications of (2.2) yield, for k-n > 0,

(8.4) Pk+X(l, am) = qn(l, m)Pk_n+x(l, m) + rn(l, m)Pk_n(l, am),

where qn and rn are polynomials in /     and am    . Then an easy induction
on « will prove

Lemma 8.3. If k - n > 0, then Bn  = ±/"m" and Br  = ±l"+lm"~l .
"n n

2Proof. Since qx(l, am) = -/am and rx(l, am) = -/ , the lemma holds trivially
for « = 1 . Now, from (8.4), we have

Pk+Xd, m) = qn(l, m)(-lmPk_n(l, am) - l2Pk_n_x(l, am))
+ r„(/, m)Pk_n(l, am)

= {-lmqn(l, m) + rn(l, m)}Pk_n(l,m)

-l2qn(l,m)Pk_n_x(l,m)

and hence,

Qn+[(l,m) = -lmqn(l,m) + rn(l,m)   and   rn+x(l, m) =-l2qn(l, m).

Since, by the induction assumption, 2?    = ±l"mn and 5   = ±ln+{mn~{ , we

have 5,    = ±mn+lln+   and 5     = ±am"/"+  . This completes the induction.
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Now (8.4) and Lemma 8.3 imply that

Pk+iV> m) = qk(l, m)Px(l, m) + rk(l, m)P0{l, am),

where B„  = ±1 m    and Br  = ±m ~ll +1.  We should note that Ln is of
Ik rk u

the nonmultiple type or the connected sum of these, while Lx is not of the
nonmultiple type. Since b,(L), c(L) and s(L) are additive w.r.t. a connected
sum, by induction we have b¡(P0(l, am)) = c(L0) + s(L0) - 1. Since c(L0) —
c(L) - k - 1 and s(L0) = s(L), it follows that b¡(PQ(l, am)) = c(L) + s(L) -
k-2 and hence bt(rk(l, m)(P0(l, am)) = c(L) + s(L) - 1. On the other hand,
Lx is not of the nonmultiple type, and hence (8.1) shows that bt(Px(l, am)) <
c(Lx) + s(Lx) - 1. Since c(Lx) = c(L) - k and s(Lx) = s(L), it follows that
b¡(qk(l, m)Px(l, am)) < c(L) + s(L) - 1 - k + k = c(L) + s(L) - 1, and hence
b,(Pk+x(l, am)) = b¡(rk(l, m)P0(l, am)) = c(L) + s(L) - 1, proving (8.3).

Remark 8.1. It is not difficult to determine bm(L) for a prime special alter-
nating link L of the nonmultiple type. In fact, if there are exactly q nontwigs
in T(Z), then bm(L) = c(L) - 3(s(L) - 1) - 2(q - 1).

Example 8.1. Let L be a pretzel link L of type (ax, a2, ... , a2k), where ai >
2 for all /. Then the orientation of L can be chosen so that L is a special
alternating link of the nonmultiple type. Therefore b(L) = 2k .

Appendix. Proof of Lemma 5.2. Let L be an alternating fibered link and Z =
Lx*--*Lh a "-product representation of L . Li is an elementary torus link. L,
spans an orientable surface F( consisting of two disks Di , and Di 2 which are
joined by finitely many bands. Each band is half twisted positively or negatively.
L is constructed from these L¡ by a sequence of identifications of two disks
Di x (or D¡ 2) and D- x or Dj 2 [Mul]. To illustrate this construction, we
use a construction graph defined as follows. Take two vertices vi , and vt 2
on the plane associated with the disks Z)( j and D¡ 2 of Ft. v: , and v¡ 2
are joined by an edge et. If Di ,, say, of Fi is identified to Dj ,, say, of
Fj, then vi x and v ( associated with D¡ x and D. , are identified. The
resulting graph Z(L) associated with L is not only planar, but it is also a tree,
since L is fibered. (For more details, see [Mul].)

Now to construct a descending diagram L0 from L, first define an order to
the components Kx, K2, ... , K of L and pick up a base point bi from each
component Ki. Let LQ be a descending diagram of L w.r.t. this order and
base points. LQ represents a trivial link with trivial components K'x,..., K' .
L0 is obtained from L by applying crossing changes at, say, cx, ... , cg . Let
£? = {cx, c2, ... , c }. If S* satisfies Lemma 5.2, we are done. If not, two
cases can occur.

Case 1. None of the crossings on some L ■ belongs to S?.

Case 2. All crossings on some L   belong to S'.
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Figure 9

Since Case 2 is dual to Case 1, we consider only Case 1.
Let K'¡ be the first component of L0 that passes over crossings in L . Since

no crossings on L. are in S?, no preceding component K'¡, j < i, passes under
crossings in L . Let cr be the first crossing on L- over which K\ passes.

Suppose that K'¡ crosses over another crossing cp on L , see Figure 9. Then
K[ must have a path y (in L0) joining Br to A . Since the construction
graph X is a tree, y must cross under some crossing on L . Let c be the
first crossing on L, under which y passes. If cq^ cr, then it follows from the
choice of K'¡ that a crossing change must be made at cq and hence c e ■¥,
a contradiction. Therefore, c = cr, i.e., cr is a self-crossing of K¡. Then we
make an unnecessary crossing change at cr without violating the property that
L0 be a trivial link. Now 5?' = S^li {cr} satisfies the condition in Lemma 5.2
for Lj.

Repeat this argument for Lt when none of the crossings on Lt belong to
S? . This proves Lemma 5.2.

Added in proof. Conjecture A is false. A counterexample can be found in [M-P].
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