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ON THE BRAUER GROUP OF TORIC VARIETIES

FRANK R. DEMEYER AND TIMOTHY J. FORD

Abstract. We compute the cohomological Brauer group of a normal toric va-
riety whose singular locus has codimension less than or equal to 2 everywhere.

Associated to each algebraic variety X is the cohomological Brauer group
B'(X) = tors(H2(X, Gm)) which is the torsion subgroup of the second étale
cohomology group of X with coefficients in the sheaf of units. Except in the
easiest cases, calculations of this group are scarce. Toric varieties over an al-
gebraically closed field of characteristic 0 provide a nontrivial class of higher
dimensional varieties for which calculations of B'(X) can sometimes be made.
These calculations are the purpose of this article.

Each toric variety X is determined by a combinatorical object A in real
affine space called a fan. Tied into the structure of the fan are arithmetic
properties of sublattices of free Z-lattices. Our arguments therefore ultimately
reduce questions about B'(X) to calculations with integer matrices.

In §1 we determine the Brauer group B(X) = B'(X) of any nonsingular toric
variety X (Theorem 1.1). This group is a direct sum of finitely many copies
of finite cyclic groups and copies of <Q>/Z. The algebras generating this group
are given explicitly as smash products of cyclic Galois extensions of X. In
§2 we consider toric varieties whose singular locus has codimension at most
2 everywhere in X. Let Tn denote the torus identified with an open subset
of X, B'(TN/X) the elements in B'(X) split by F#, and X a Fv-invariant
desingularization of X. In Theorem 2.2 we construct an exact sequence 0 —►
B'(TN/X) — B'(X) -» B'(X) -* 0 which reduces the calculation of B'(X) to
the calculation of B'(T^/X). The hypotheses on X in §2 imply we can assume
the associated fan A contains cones of dimension at most 2. Corresponding
to each cone t, of dimension 2 is an irreducible closed subvariety V¡ = orb t,
and an affine neighborhood i7Tj of V¡ which has a finite cyclic divisor class
group Cl(77Ti). If A has 2-dimensional cones X\, ... , im, we construct an
exact sequence (Theorem 2.3)

m

0 - Pic(*) - Ql(X) -» 0Cl(C7t/) - B'(TN/X) - 0.
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560 F. R. DEMEYER AND T. J. FORD

For each prime number p we find a subset X\, ... ,xe (after a suitable rela-
belling) of {t, , ... , xm} such that [©?=1 Cl(UT¡)]p sé [B'(Tn/X)]p . We calcu-
late the Brauer group of any toric surface (Corollary 2.9). In this case B'(TN/X)
is nontrivial when there is a cycle of divisors on X whose pairwise consecutive
intersections are singular points on X whose local rings all have divisor class
groups of order divisible by a common prime p . An analogous statement holds
for X of higher dimension. We employ terminology and notation of [ 12] for
toric varieties and [11] for étale cohomology.

1
Following the notation terminology of [12] let r > 0 be an integer and N =

II a free abelian group of rank = r. Let A be a finite fan on Ng, and X =
Ttf emb(A) the associated toric variety containing the r-dimensional torus Tn
as an open subset defined over the algebraically closed field k of characteristic
0. Let N' be the subgroup of N generated by |JCTeA a n N. The basis theorem
for finitely generated abelian groups gives a basis n\,... ,nf of N such that
N' = Zûi«i © Za2n2 © • • • © Zarnr where the a¡ are nonnegative integers and
a¡\a¡+i for 1 < / < r— 1. Call {ai, ... , ar} the set of invariant factors of A (or
X — TNemb(A)). Let B(X) denote the Brauer group of Azumaya algebras on
X and B'(X) the torsion subgroup of Fl2(X, Gm) the cohomological Brauer
group of X. Our principal result of § 1 is

Theorem 1.1. If X = TNemb(A) is nonsingular and ai, ... , ar is the set of
invariant factors of X, then

r-l
B(X) = B'(X) 2 0Hom(Z/a;, Q/Z)r-''.

¡=i
We list two special cases of Theorem 1.1.

Corollary 1.2. If A contains a cone a such that dim o > r-1, then B(X) = (0).
Proof. Since X is nonsingular, [12, Theorem 1.10] implies there is a basis
ni, ... , nr of N such that M>o"i H-H ^>o«r-i Ç er • Since each n¡ e o~C\N,
all of the invariant factors a,■■ — 1 for 1 < i < r— 1. So B(X) = (0) by
Theorem 1.1.   □
Corollary 1.3.  B(X) is finite if and only if Rankz(yV') > r - 1. In this case

B(x)s0(z/fl/r''.
1=1

The rest of this section is devoted to a proof of Theorem 1.1. From now
on we assume X = Tn emb(A) is nonsingular. Along the way we will obtain
explicit information about the Azumaya algebras on X and show the Brauer
group B(X) of Azumaya algebras on X is equal to the cohomological Brauer
group B'(X) = H2(X,Gm).

Let T = {0, pi, ... , p„] be the fan on Afo consisting of all cones in A of
dimension < 1 and let U = Tn emb(r). The open immersion U ^-> X induces
the isomorphisms of the next lemma.
Lemma 1.4. For each positive integer v,

(a)   H1(^,Z/i/)^H1(f7,Z/i/),
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ON THE BRAUER GROUP OF TORIC VARIETIES 561

(b) H2(X,Z/v)^H2(U,Z/v),
(c) B'(X)^B'(U).

Proof. Let X, 77 be as above and let Z = X - U. Then part of the long exact
sequence of cohomology with supports [11, Proposition 1.25] is

Hxz(X,Z/v) -» HX(X, Z/v) -» HX(U, Z/v) -» H|(X, Z/v)
-* U2(X, Z/v) -» H2(77, Z/i/) -♦ H|(Z, Z/i/)

since the codimension of Z in X is > 2, [11, Lemma 9.1, p. 268] implies
WZ(X, Z/v) = (0) for s < 4, which proves (a) and (b) in our context. There
is an exact sequence [3, Theorem l.c]

0 -» H2(X, Gm) - H2(U,Gm) - KZ(X, p)

and H|(X, p) £ lúa H|(X, Z/v) = (0), which proves (c).   D

Notice that N' = (U^a*7 n N) = (U"=i />' n ^ so as a consequence of
Lemma 1.4(c) we can assume that A = {0, pi, ... , p„} and X — U. We write
pk = M^nf/c where nk G N and nk is primitive (the GDC of the coordinates
of nk is 1). Let nx, ... , nr be a basis for N with N' = Ztfi«i © •• • © Zarnr
and a,|a,+i for 1 < / < r. ({ai, ... , ar} is the set of invariant factors of
A.) Let mi, ... ,mr be a dual basis for M = Hom(N, Z). Then TN =
Specrc[A7]. An element ¿^aimi m M is usually identified with the Laurent
monomial xf'x"2 •■■xf' and k[M] with k[xi, xf1, ... , xr, x~x]. Let v be
a positive integer and fix a primitive i/th root of unity (. Given units a, ß
in k[xi, xj"1, ... , xr, x~x], the symbol algebra (a, ß)„ is the associative k-
algebra generated by elements u, v subject to the relations uv = a, vv = ß -,
and uv = Çvu. In what follows, we choose to identify (x¡, Xj)v as (m¡, mf)v
and work in k(M). By [10, Theorem 6], vB(Tn) is a free Z/V-module with
basis given by the set of symbol algebras {(m¡, ntj)»}i<i<j<r for each v > 2.
Since Tn is an open subset of X and X is nonsingular, B(X) is a subgroup
of B(TN) by restriction and our object is to identify this subgroup explicitly.

From [4, Corollary 1.4] there is an exact sequence
n

(1) 0 -+ B'(X) -» B(TN) -^ 0H1(orb/J¡, Q/Z)
i=i

where orb^, is the r^-invariant divisor on X = Tn emb(A) corresponding
to the face p¡ of A. Given a symbol algebra (a, ß)v representing a class in
B(TN), the ramification map a agrees with the tame symbol (see the discussion
following [4, Remark 1.7] and [14, Theorem 8, p. 155]). This means the kth
coordinate of a((a, /?)„), the ramification of (a, ß)v along orb^ > is identi-
fied with a cyclic Galois extension of orb pk of degree v . Over the function
field .K(orb pk) this extension is given by adjoining the vih root of aVk^//?u*(a)
where vk is the valuation on K(X) determined by the prime divisor orb pk .

From the remarks above, to determine the ramification of an arbitrary alge-
bra A representing an element in B(Tn) along orbpk it suffices to determine
K(orbpk) and vk(mj) for each k, j. The following lemma is well known.
We include its short proof for completeness and to fix notation.
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562 F. R. DEMEYER AND T. J. FORD

Lemma 1.5. Let nk be the primitive vector in N n pk and ( , ) the natural
inner product from M x N -» Z.

(a) K(orb pk) is the quotient field of k[n^].
(b) vk(m) = (m, nk).

Proof. Since nk is primitive there is a primitive pk e M with (pk, nk) — 1.
Let nk = {m e M\(m, nk) - 0} . Then M = n^ © Z/*fc since

0-^n^M-^Z^O

splits, where <p(m) = (m, nk). The affine coordinate ring of

UPk = 7Vemb{0, pk}

is k[nk , pk]. Localizing X along orb pk is equivalent to localizing UPk along
orb pk . The prime ideal corresponding to orb pk is the principal ideal in
k[nk , pk] generated by pk . Hence pk is a local parameter along orb pk.
K(orbpk) is the quotient field of k[nk , Pk\l(Pk) giving (a). The valuation
vk of any m e M is the pk -coordinate when m is written in terms of the
decomposition M = nkL @ Zpk . Thus vk(m) = (m, nk).   □

Keeping the notation above, define a homomorphism ramorb/)/, : „B(7/y) -?
M/vM by letting ramorb/)jt(m;, mf)v = (ntj, nk)mi - (m¡, nk)m¡ + vM be the
assignment on the basis for VB(TN), and extending by Z/V-linearity.

Lemma 1.6.  (m¡,mj)l/ is unramified along orb pk if and only if

ramothpit(m¿, mf)v = 0.
Proof. The ramification of (m¡, mf)v along orb pk corresponds to the cyclic
extension of the affine coordinate ring k[n^] of orb pk obtained by adjoining
the i/th root of vk(mj)m¡ - vk(m¡)mj = (mj, nk)m¡ - (m¡, nk)mj. (Note
«m,, nk)m¡ - (m¡, nk)mj ,nk) = 0 so (w7, nk)m¡ - (m¡, nk)m¡ e n^ .) Thus,
(mi, m¡)v is unramified along orb pk if and only if (m¡, nk)mi - (m,, r}k)m}
is a i^th power in k[nk] if and only if (mj, nk)m¡ - (m¡, nk)m¡ e vM if and
only if ramorb^(mí, mf)v = 0.   D

Let A be any Azumaya algebra representing a class in UB(TN). We have
seen A is equivalent to n¿</('w¿> mj)ev' where 0 < e,j < v. Moreover the
class of A determines and is determined by the integers e¡j. Associate to the
class represented by A in ^(Tn) the matrix

-    0 é-12       en     ••• £>!,-
-et2     0     e2i   ■■■ e2r

ms=   ; ;

.-eir   -e2r •••    -er-\,r    0 .

Lemma 1.7. (a) The assignment A —► M^ induces a monomorphism

<j>: VB(TN) -* Homz(/V, M/vM).

(b) A is unramified along orb pk if and only if MA • nk - 0.
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ON THE BRAUER GROUP OF TORIC VARIETIES 563

Proof, (a) The matrix MA defines the indicated homomorphism <f>(A) by rep-
resenting elements in N as column vectors with respect to the basis n\,... ,nr\
the elements in M as column vectors with respect to the dual basis m\,... ,mr
and following left multiplication by MA by reduction modulo vM. Since mul-
tiplication of symbols corresponds to addition of exponents modulo v , it is
clear that </> is a homomorphism. If 0(A) = MA = 0, then each e¡j = 0, so
A = 0 in B(TN). Thus 0 is a monomorphism.

(b) Write nk = £-=1 r¡kint and let A = Ui<j(mi> mffv ■ Then

ramorb^(m,, m¡)v = (ra,, nk)mi - (m¡, nk)mj = r\k¡rm - nkimj.

Hence

ramorb/,t(A) = ramorb^    \\(mi, mffj*

= ^2eijnkj>ni - eijtnj + vM
KJ

r        r r        r

= 5Z 5Z eunkjm -Y.Y. eiñkirnj + vM
1=1 7=1+1 1=1 7=1+1

r r r r

= Yl S e'ñkjmi-Y^ Yl eji1kj™i + vM
1=1   7=1+1 j=\   i=j+l

r¡ki
= M,A -

Vkr

As we observed in the proof of Lemma 1.6, ramorb/^(A) = m + vM for some
m e n^ . The ramification of A along orbpk is the cyclic extension of k^^]
obtained by adjoining the i/th root of m and this extension is split (A is un-
ramified along orbpk) if and only if m evnk . Since n^ is a direct summand
of M, A is unramified along orb pk if and only if m e vM if and only if

M,A -

Vki

r\kr

= 0.    G

Theorem 1.8. Let X = TN emb(A) be a nonsingular toric variety and ai, ... , ar
the set of invariant factors of X. Then B'(X) is the subgroup of B(TN) repre-
sented by algebra classes Y[i<j(mi > mj)^ where Vi\a¡, 1 < i < r.

Proof. The exact sequence (1) and Lemma 1.7 imply VB'(X) consists of those
algebra classes A in VB(TN) suchthat MA-nk =0 for the primitive vector nk
on each 1-dimensional cone pk in A (1 < k < n). If N' is the subgroup of
N generated by \JaeAo~r\N then N' is generated by {tyt}£=1 so A represents
a class in VB'(X) if and only if MA vanishes on N'. For each i/>0we have
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564 F. R. DEMEYER AND T. J. FORD

the commutative diagram with exact rows and columns
0 -► „B(Tn) ->    Homz(N,M/vM)

I Î
0 -► vB'(X)  --+ Homz(/V/7V', M/vM)

1 Î
0 0

Taking the direct limit over all v > 2 gives a monomorphism

B'(X) -» Homz(/V/7Y', M ® Q/Z).
Let ni, ... , nr be a basis for A^ such that A77 = Zai«i © • • • © Zar«r and
a,|a,+i for 1 < / < r — 1. That is ai, ... , ar is the set of invariant factors
for X. Then Homz(/V//V', M <g> Q/Z) s Homz(©(Z/i//Zfl/n/), M ® Q/Z).
This means B'(X) is contained in the subgroup of B(Tn) of algebra classes
Ili<j(mi> mifvi where 0 < v¡ and i/j|ß,-, 1 < i < r. Conversely, if v¡\aj and
v¡ > 1 then the matrix MA for (m,■, mf)Vi has a +1 in the ijth entry and a
-1 in the ;/th entry. A typical element in N' is x = Aiai«H-vXrarnr and
AfA • x = Xjüjmi - Xjujmj G a,A7. Thus (m,, mf)Vi represents an element in
B'(X). So B'(X) = m^jim,, mj)ïf\0 < v, and v^a,} .   D

Now it follows that B'(X) S 0^ Hom(Z/a;, Q/Z)r-!. To complete the
proof of Theorem 1.1 it suffices to show B(X) = B'(X). It suffices to find an
Azumaya algebra A on X suchthat K(X)<g>A is equivalent to (m,, mf)Vi for
each Vi\a¡.
Lemma 1.9. Let X be as in Theorem 1.8 and let N' = (\JaGAo-r\N). Let v > 2
and let Mv = {m G M \ (m, n') = 0 (mod v) for all n' e N'}. If (v, a¡) is
the greatest common divisor of v and a¡, then

r

HX(X, Z/v) S Mv/vM S 0 Z/(v , ai).
i=i

Proof. Restriction induces an embedding UX(X, Z/v) —> HX(TN, Z/v). The
correspondence which assigns to each element m e M the cyclic extension of
TN obtained by adjoining the t-th root of m induces an isomorphism M/vM =
H1 (TN, Z/v). An element m + vM corresponds to an element of H1 (X, Z/v)
if and only if K(X)(mx/l/) is unramified along orbpk for 1 < k < n if and only
if the restriction of m to orbpk is a unit in the coordinate ring k[n^ , pk] of
orb pk if and only if vk(m) = 0 (mod v) if and only if (m, nk) = 0 (mod v)
where unexplained notation is as in Lemma 1.5. Thus

Hx(X,Z/v) = {meM\ (m, nk) = 0 (mod v) (1 <k <n)} + vM
= {m G M I (m, n') = 0 (mod v) for all n' e N'} + vM
= Mv/vM.

But N' = Z«i«i © • • • © Zarnr so it is easy to check that

Mv/vM s 0Z (jJL—m)} /Z(vmt) S (gz/fo., v).   D
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ON THE BRAUER GROUP OF TORIC VARIETIES 565

Lemma 1.10. If X is as in Theorem 1.8, then B(X) = B'(X).
Proof. It suffices to show each (m¡, mf)Vi is in the image of the cup prod-
uct map HX(X, Z/vi) x HX(X, pv¡) —► B(X) when v¡\a¡, since cup products
correspond to taking smash products of cyclic Galois extensions and thus are
Azumaya algebras (e.g. [6]).

If a¡ = 0, both m,, mj e MVi since v¡/(a¡, v¡) = Vj/v¡ = 1 = v¡/(0, v¡). If
üj; ¿ 0, then (m¡, m¡)Vi ~ (m¡, tnffjj^ ~ ((a,/z/;)ra/, mj)a¡. But aj/(a¡, aj)
-üj/üí which divides a¡/vi since v¡\a¡. Thus (aj/vi)m¡ and mj are both in
Ma¡ and (m,■■, rrij)v¡ is equivalent to an algebra in the image of the cup product
map HX(X, Z/af) xHx(X, pa¡) -» 0jB(X). So B(X) = B'(X).   D

As a result of observations made so far, we can show the following proposi-
tion.

Proposition 1.11. Let Y[i<j(mi ' mj)vJ represent a class in B(7V) of order v.
Let MA be the matrix transformation in Hom(N, M/vM) defined in Lemma
1.7 and let t be the rank of kernel(MA). Then there exists a direct summand
P of M with rank(T') = r - t and an Azumaya algebra L over k[P] with
A = k[M] ®k[P] L. No direct summand of M of smaller rank has this property.
Proof. Find a basis nx, ... ,nr of N such that ker(MA) = Z¿i«i © Zb2n2 ©
• • • © Zbrnr and b¡\b¡+i for 1 < i < r — 1. Since ker(AfA) has rank t, bt / 0
and bt+i = 0 for i > 1.

Let P be a direct summand of M and assume A is obtained by extending
an algebra over k[P]. Let m\, ... , m's be a basis for P and extend this basis
to a basis for M. We can assume A = Ili<7<j(mí' m'j)v ■ If n\, ... , n'r is
the dual basis to m\, ... , m'r, then the matrix of the transformation MA with
respect to this new basis pair has a kernel which contains a direct summand of
N of rank r - s. Therefore t > r - s so s >r — t. Now let mi, ... , mr be a
dual basis for M with respect to ni, ... , nr. The matrix A7A with respect to
this new basis is

MK =

0 0
0

-et+i,t

-et+\,r

et+\,t
0

et+\,r

0

So A is defined on the torus k[mt+¡, ... , mr, -m,+i
take P — (rrit+i, ... , mr). The rank of P is r- t.   D

-mr] and we can

In this section we continue to let A be a finite fan on NR and X = Tn emb(A)
the associated toric variety containing the r-dimensional torus Tn as an open
subset. Assume A consists of cones of dimension < 2 and let A(2) = {ti , ... ,
xm) . Let Ui = UT¡, Vj = V(x¡) = orb(r,) and let V = Vx U • • • U Vm. Then
X - V = rAemb(A - A(2)) is nonsingular. In this situation our first lemma
gives information about the étale cohomology groups of the affine open subsets
Ui of X.
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566 F. R. DEMEYER AND T. J. FORD

Lemma 2.1. (a) For each i and each p > 0, we have a short exact sequence

0 - W(U,, Gm) -» W(U, - Vt, Gm) - Wftl(Ut, Qm) - 0.

(b) HP(U¡, Gm) = Hp(Lr_2, Gm) vvAere Tr_2 is a torus of dimension r-2.

Proof. First we check that Hp(i/,, Gm) is torsion for p > 2. For notational
simplicity we suppress the subscript i from t, , 77,, and V¡. Now x is a two-
dimensional cone in Ar . Let f be x viewed as a two-dimensional cone in
Rt . Then U = U^x Tr-2 where Tr_2 is an (r - 2)-dimensional torus. Let
R be the affine coordinate ring of Uj, and Rh the henselization of 7? at the
maximal ideal m corresponding to the closed point orbt. Let R[X, X~x]
denote the affine coordinate ring of U and let Uh = Spec7?Ä[X, X-1]. Let
Vh = V x Uh . Then Vh is the closed set corresponding to 7 = mRh[X, X~x].
The completion of Rh[X, X~x] in the 7-adic topology is R[X, X~x] where R
is the m-adic completion of R. By [13, p. 127], we see that (Rh[X, X~x], I)
is a Hensel pair. By [5, p. 35] Cl(Rh[X, X~x]) embeds into Cl(R[X, X~x]).
Since the singularity of U is given by a finite cyclic group action [12, p. 30], it
is well known that Cl(R[X, X~x]) = Cl(R) is also finite cyclic [2, Satz 2.11].
Thus Cl(Uh) is finite. The long exact sequences for the pairs V ç U and
yh ç jjh gjve t^g commutative diagram

-» W-l(U-V,Gm) - Hv(U,Gm) -H"(l/,Gm)- W(U-V,Gm)

-+W-l(Uh - Vh , Gm)-H;t([/» , Gm)^W(Uh , Gm)^W(Uh - Vh , Gm)

with exact rows. By excision WV(U, Gm) S Hpyh(Uh , G„) [11, p. 92]. By [15]
W(Uh,Gm) = W(Vh, Gm) = HP((orbf) x Tr_2,Gm) which is torsion for
p>2 since Tr_2 is smooth [7, p. 71]. Again by [7, p. 71] W(Uh-Vh ,Gm) and
W(U-V ,Gm) are torsion for p > 2 . But Hx(Uh-Vh , Gm) = Pic(Uh-Vh) =
Cl(Uh - Vh) = Cl(Uh) is torsion. It now follows that H'(C7, Gm) is torsion
for p > 2.

The natural map U x A ' —> U and Kummer theory induce the commutative
diagram

0-»H"-l(l/ x A[ , Gm)®Z/n^HP{U x A1 , /i„)—„H"({/ x /l1 , Gm)^0

q A y

0^     HP-'íC/.GmJigiZ/n    -    HP(U,ß„)     -     „H"(L',Gm)    ^0

for all p > 2 and n > 2. By [ 11, p. 240] ß is an isomorphism for p > 2.
Since Pic U = 0 = Pic( U x A ' ), a is an isomorphism for p = 2 . Therefore, y
is an isomorphism for p = 2 and all n > 2. Taking the inductive limit over all
n, we have H2(L x Ax , Gm) = H2(7/, Gm). By induction on p we see that
H"(i/x^1,Gm)^H"(77,Gm) for all p > 2 .

We can give the coordinate ring k[5^] of U a grading by the nonnega-
tive integers such that the degree = 0 subring is the coordinate ring of Lr_2.
Since H"(C7xyll,Gm) = W(U, Gm), [8, Theorem 1.1] implies H"(7/,Gm)i=
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ON THE BRAUER GROUP OF TORIC VARIETIES 567

Hp(Tr_2, Gm), which proves (b). We have a commutative diagram

H"(7;_2,Gm)    i*   W(U,Gm)    A    W(U-V,Gm)

W(Tr,Gm)

where the maps ß, y, ô are induced from restriction. Since ß is injective, a
is injective and Lemma 2.1 now follows.   D

Theorem 2.2. Let A be a fan which consists of cones of dimension < 2. Let A'
be a nonsingular fan obtained from A by subdividing the two-dimensional faces
of A and let X = TNemb(A'). Then the sequence 0 -> B'(TN/X) -» B'(X) ->
B'(X) -+ 0 (with natural maps) is exact.

Proof. Let n : X —► X be the desingularization resulting from the subdivision
A' of A [12, Corollary 1.18] and let U¡ = k~x(U¡). From the long exact
sequence of cohomology with supports, and the observation that F is a disjoint
union of closed sets V¡ (see pp. 92-93 of [11]) we have a commutative diagram
with exact rows

m

0->B'(Tn/X)^B>(X)^     B'(X-V)      -►      ©^([/„G«)
¡=i

\ß-L ■X'
m

0        ^B'(X)^B'(X-n-x(V))     -     0H3_,TO(¿7;.,  Gm)
i=i

The second row is exact since X is nonsingular. First check ß is injective. For
each i, Lemma 2.1 yields the commutative diagram with exact rows

0 -► B'(Ui) -►      B'(Ui-Vi)      ->     H%(Ui,Gm)     ->0

0 -► B'(Ui) -► B'(Ûi-7t-l(Vi)) -► Hl_i{v¡)(Üi,Gm)

Here B'(U¡) = B'(U1: x Tr_2) = B(rr_2) by Lemma 2.1 and B'(C/, - V¡) =
H2(Í7, - V¡, Gm) since U¡ - V¡ is nonsingular. If A'(t,) is the fan whose cones
are the cones of A' contained in x¡, then A'(t,) is a nonsingular fan whose one
dimensional faces lie in a plane. The invariants for U¡ = 7Aremb(A'(T;)) are
{1, 1, 0, ... , 0} and Theorem 1.1 implies B'(f7;) = B'(c\ x Tr_2) = B(Tr_2)
so a, is an isomorphism. Since ker/3, = cokera,, /3, is injective so ß is
injective. But ker/? = cokera, so a is an epimorphism and the theorem
follows.   D

As a result of Theorem 2.2 and our analysis of the Brauer groups of nonsin-
gular toric varieties in §1, we are left with the study of B'(TN/X).

Theorem 2.3. Let A be a fan which consists of cones of dimension < 2. Let
A(2) = {xi, ... ,xm} . Let X = Tn emb(A) and let U¡ = UTi be the open subsets
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of X associated to the x¡. Then there is an exact sequence
m

0 -» Pic(X) -» C1(X) -» 0C1(l/,) -» B'(TN/X) -h. 0.
1=1

Proo/. Let F = F(t,) = orb(r,) and let F = F U- • -UFW . From the long exact
sequence of cohomology with supports in the closed set V we have (since V
is the disjoint union of the closed sets V¡)

m

••• - HX(X, Gm) - HX(X - V, Gm) -> 04(I,Gm)
(1) '='

- H2(X, Gm) - H2(X - F, Gm) - 04(1, GM) - - .
i=i

Since F has codimension 2 in X,and X-F is nonsingular, HX(X-V, Gm) =
Pic(X - V) = C1(X - F) = C1(X). Since U¡ is an open neighborhood of V¡,
HPV,(X, Gm) = Wv¡(Ui,Gm) for all p > 0 [11, p. 93]. From Lemma 2.1 with
p = 1 we get the exact sequences

0 -» Pic 77, -» Cl C7¿ -» Hf.(C7¿, Gm) -» 0       (1 < i < m).
Lemma 2.1(b) gives Pic77, = PicTr_2 = 0 so Cl(í/,) = H2v.(U¡,Gm). Since
T, is simplicial, Cl(7/,) = Pic(77, - V¡) is torsion [12, Proposition 2.1]. Since
X - V is nonsingular, B'(X - K) = H2(X - V, Gm) and B'(X - V) -+ B(TN)
is injective. But PicX -» C1(X) is injective [5]. With these identifications (1)
reduces to the sequence of the theorem.   D

Corollary 2.4. In the context of Theorem 2.3, // rankz(A) = r < 3 and m > 1,
then

m

0 -. Pic(X) - C1(X) -» 0C1(7/,) -» B'(X) -» 0
i=i

Ptoo/. We need to check B'(X) = B'(TN/X). H2(7/,, GM) = H2(Tr_2, Gm) =
0 for r < 3 (Lemma 2.1 and [10]). From Lemma 2.1(a) we have (since U¡— V¡
is nonsingular) B'(C/( - Vf) = H2(U¡ - V¡,Gm) = H3K(L(-, Gm) = H3K(X, Gm)
so (1) becomes

m m

0 -» PicX -» C1(X) -» 0C1(7/,) -» B'(X) -» B'(X - V) -» 0B'(t7/ - F,).
¡=i i=i

Since X- F is nonsingular, restriction induces a monomorphism B'(X- V) -»
B'(7/, - F) for each i and the corollary follows.   D

The object of the rest of this section is to give an algorithm for finding for
each prime p a subset xi, ... , xe of the two-dimensional faces of A such
that [®ei=iCl(Uri)]p^[B'(TN/X)]p. (For G a finite abelian group, Gp is the
Sylow /7-subgroup.) In particular, the exact sequence of Theorem 2.3 is split-
exact. To the fan A we associated a bipartite graph T. The vertex set of T is
A(1)UA(2) = {pi, ... , p„}{J{xi, ... ,xm) and there is an edge in Y connecting
Pj and Xj if and only if p¡ is a face of t, . If Y is the L^-invariant divisor
X - Tn on X, then T is the graph associated to  Y in the sense of [4].  A
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cycle Z in T (i.e., Z is homeomorphic to the unit circle) determines a finite
set xi, ... , x¡ of two-dimensional cones and pi , ... , p¡ of one-dimensional
faces of A configured as follows:

P2 P/-I

If Az is the subfan of A consisting of the cones {0, pi, ... , p¡, xi, ... , t/} ,
we will show that the cohomological Brauer group of Tn emb(Az) is cyclic
of order the greatest common divisor of {|C1C/T/|}(=1. Of course, there may
be many such cycles in T and the last step in the analysis is to choose for
each prime p a list of cycles {Z,}¿=1 and for each Z, a face t, such that
[@UiCl(UTi)]p^[B'(TN/X)]p.

We adopt the following notation: for each two-dimensional cone x¡ in A
(I < i < m) let pu and p¡2 be the one-dimensional faces of x¡ so t, =
Pn + Pn • We have observed C1(X) = C1(X - V) = Pic(X - F) and Cl(7/,) =
C1(l/¡-F) = Píc(7/¡-F). Now we want to present Pic(X-F) and Pic(£/,-F)
in terms of support functions on the fan A-{ii, ... , xm). If we let pi, ... , pn
be the one-dimensional cones in A, then we can identify the support functions
on A- {tí , ... , xm] with the direct sum of copies of Z indexed by the p¡. If
A, = {0, pn , pi2\, then U¡ - V¡ = 7Vemb(A,). It follows from [12, Corollary
2.5] that the sequences

(2)
y\/-+0Z/>,^C1(X)^O,

1=1

M -A Zpn © Zpi2 -» Cl(C7f) -» 0

are exact. Combining these sequences with the exact sequence of Theorem 2.3
gives a commutative diagram with exact rows and columns

0M    -►        kV^Pj ——*     C1(X)     -

mm m

0M -_£— 0(Zp„©Zfe) ^^ 0C1(£7/) -► 0
i=i

1-
B'(TN/X)

i=i i=i
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It is routine to check that im a + im ß — kerôy . As a result we have a funda-
mental exact sequence which we exploit for the remainder of this section: (in
this sequence y/ = ôy),

(3) ®Zpi2)^B'(TN/X)^0.

Let T be the graph associated to A. Observe that T has 2m edges since each
Xi has exactly two one-dimensional faces pn and pi2. The free abelian group
©i=i(Zp/i © Zpii) is called the edge space of T. If we write T as a union of
its connected components T, we get a corresponding decomposition of A into
subfans A, with A,-nA/ = {0} whenever i ^ j . The decomposition of A gives
an open cover of X where the elements in the open over are TN emb(A,) = X,
and X, n Xj — TN whenever ij^j. With this notation we can prove
Proposition 2.5. The natural map B'(X) -+ ®, B'(X,) induces an isomorphism
B'(Tn/X)^®íB'(Tn/Xí).
Proof. Assume A = Ai UA2 where Ai and A2 are fans with Ai nA2 = {0} . It is
sufficient to prove B'(TN/X) £ B'(TN / XX)®B'(TN / X2) where X, = TNemb(Ai)
(i =  1
A2(l) =

2).   Let A,(l) = {pi /?„,}  and A,(2) = {xx iuii }  and
{/,, ... ,r„2} and A2(2) = {ti tm2}.   Also let T, = pn + pi2

and tj = rji + rj2 where pik e Ai(l) and rjt e A2(l). With respect to this
decomposition the exact sequence (3) decomposes as

0Z^©0A/
7=1 1=1

"2 mi

0ZO©0M;=i ¡=i
(a,+ß,)®(a2+ß2)

m¡

0(Z/>,1 © Zpi2)
m2

0(Zr/,eZr/2)
Li=l

B'(TN/X)-+0.

But coker(ai + ßi)®(a2 + ß2) = B'(TN/Xi)®B'(TN/X2) by (3) so B'(TN/X) =
B'(TN/Xi)®B'(TN/X2).    D

Notice in Proposition 2.5 that if X, corresponds to a connected component of
T containing no two-dimensional faces t, as vertices, then X, = LV emb{0, p}
for some one-dimensional cone p in A. In this case X, is nonsingular and
B'(Tn/X¡) = 0. Thus, as a result of Proposition 2.5 we can assume T is
connected and at least one vertex of T is a two-dimensional cone in A.

We now determine a matrix representation for the map a + ß in (3). Let
x — pi + p2 e A(2) and consider the map

M © Zp2 -+ Cl(Ur) -> 0

as in (2). Pick a basis ni, ... , nr for N and a dual basis mi, ... , mr for M.
Let r\i be a primitive element in N with p¡ = R>on¡. The matrix of ß with
respect to the basis pair {mx,... , mr) , {pi, p2} is the 2 x r matrix whose
i, /th entry is (m,, t]¡). But (m,, n,) is the jib coordinate of n¡ so we can
write this matrix as (^') where we think of n¡ as a row vector. Therefore the
map ß in (3)

m m

0M-A0(Z^i©Zpi2)i=i i=i
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has a matrix representation which is a direct sum of 2 x r matrices ('") where
t]n and r\i2 are the primitive generators of pn and p¡2 expressed with respect
to the basis {«i, ... , nr) . To determine the matrix for the homomorphism

$Z/);A0(Z/)fl$Z/»a)
7 = 1 1=1

given in (3) we observe the jib column of this matrix is a(pj). Thus the j'th
column has a 1 in the row determined by pik if pj - pik . Otherwise this entry
is 0. The matrix of the homomorphism a + ß of (3) is then

Q = a(pi) ■ ■ ■ a(pn)

C")

(>lm\\

Note Q is an integral matrix with 2m rows and n + rm columns, and we can
identify im(a+/?) with the column space of Q. Since B'(TN/X) = coker(a+/?)
from (3), calculating B'(TN/X) is reduced to determining the column space of
Q. Our first observation is a straightforward calculation:

(4)

m

nn

L-/,J

= (0)

where Ir is the rxr identity matrix. Thus the last r columns of Q containing
('"") are linear combinations of the preceding columns. We now assume Y is
connected, and let F be a spanning tree for Y. We observe that in T each
vertex t, is joined by edges x¡-Pn , Xi~pi2 to vertices pn , pi2 so there are
2m edges in Y. Since Y is connected, there are n + m - 1 edges in T [1].

Thus, if Ci, ... , ce denote the edges of Y that are not in T, then e = m-n + l
and for each i at least one of x¡-p¡\, t,_/?,2 is in T. By reindexing we can
assume cx — xi-pi2, ... , ce = xe-pe2. We identify c¡ with the basis vector
Pj2 in the edge space 0£li(Z/>,i ©Z/>,2). For I < i < m let niX be a primitive
vector in N with R>o«ii = Pn and choose «,2 in N with {«(1, «,2} a basis
for Et, n N. We can extend {n¡\, ni2} to a basis {n¡\, n¡2,... , «,>} for A^.
With respect to this basis we can write n¡i = n¡\, n¡2 = a¿nn + b[ni2 where the
rjij are as in Q. With respect to these basis choices for tV and corresponding
dual basis choices for M, and after deleting columns consisting of zeros, the
matrix Q for a + ß becomes
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Pi        P2 Pn

Q =

?1 - Pu
fi - Pn

T/ - Pn
t, - Pn
?m - Pm\
Tffi ~ Pmï

Oi(pi)    a(p2) ■ ■ ■ a(pn)

V

aißi

La, b{ \

atßi      amßn

La, b,\

r i   o ]
Yambm\ )

where the first n columns span im a and the last 2m columns span im ß.
We checked in (4) above that the last 2 columns labeled am and ßm are linear
combinations of the preceding n + 2(m - 1) columns. It follows from (2) that
\bi\ = |Cl(i/T/)| = |ClÍ7,-1. The columns ßi, ... , ße are biCi, ... , bece.

Theorem 2.6. Let A be a fan on Afo and let X — TN emb(A). Assume all the
cones in A have dimension < 2. Assume the two-dimensional faces X\,... , xm
and one-dimensional faces p{, ... , p„ of A can be ordered so that t, riTi+i = p¡
(1 < i < m - 1) and xm n Xi = pm. Let b¡ be the order of Cl(t/T/). Then
B'(TN/X) is cyclic of order gcd{Z>i, ... , bm} .
Proof. Using Proposition 2.5 and the hypotheses, we can assume that the graph
T is connected and consists of one cycle as shown:

Pm-l

T]
P] Pi

We take the spanning tree T for Y to be the graph obtained from Y by deleting
the edge cj = Xi-pm . Let C be the matrix whose only column is Ci and form
the augmented matrix [Q\C] :

VPi

h-Pm

i2_p2

VPi
T3-P3

T3-P2

Tm-lPm-l

Xm-\Pm-2

Xm-Pm

tti-i  in- 1

Pi P2 P3

1 0 0

0 0 0

0 i o

1 0 0

0 0 I

0 1 0

0 0 0 ...

0 0 0 ...

0 0 0  ...

0 0 0  ...

Pm-2   Pm-l    Pm     «1    ßl   a2   h -   Vl    Pm-l   «»   K   C

0       0      01   1    0

0       0       1 I   a,  ¿7,

0        0       01

0        0       01

I

1    0

a2 b2

1 01

0 01

0 1 I

1 01

öm-l    bm-\

am    bm
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Here C) corresponds to the edge Xi-pm and 0™ ,(Z/>,'© Z/>,_i) is the edge
space of T where po = Pm ■ We observed that B'(TN/X) is the quotient of the
edge space by the column space of Q. Let [B\C] be the matrix whose columns
are the columns labeled pi, ... , pm, ai, a2, ... , am_i, Ci . We check that the
columns of [B\C] form a basis for the edge space by using column operations to
reduce to a permutation matrix. Use column Ci to eliminate ai from column
a i and the 1 in the entry with row index xi-pm and column index pm . Then
use the 1 in the new column ai to eliminate the 1 in the entry with row index
Ti_/?i and column index pi . Use the new column pi to eliminate the a2
in column a2 . Continue inductively, eliminating a^, ... , am-2 from columns
indexed a3, ... , am_2 and the ones in the entries with row index x¡-p¡ and
column index p¡, for 2 < i < m - 2. At the last step use the remaining 1 in
column pm-2 to eliminate am_i in column qw_i . Use 1 in the new column
aOT_i to eliminate the 1 in the entry in row Tm_i_/9m_i , column /?OT_i . The
result is a matrix whose Z-rank is 2m, which shows that C[ generates the
quotient of the edge space 0™{(Zpt © Z/?,-_i) (po = pm) by the column space
of Q. Recall that the last two columns of Q are a linear combination of the
preceeding ones. Thus to calculate this quotient we simply project each of the
columns ßi, ... , ßm on Zci . These projections follow the recursive pattern:

Column vector Projection on Zcx
ßi = biCi biCi
ß2 = b2(pi-(a\-a\Ci)) b2a{Ci
ßi = b3(p2 - (a2 - a2(pi - (a, - flic,)))) b3a2aiC{

ßm bmam-i ■ ■ ■ a2axci

The subgroup generated by the projections of the columns ß, on Zci is the
subgroup generated by dc\ where d = gcd{¿i, b2ai, ... , bmam-i ■■■a2ai}.
Since gcd(a,, b¡) = 1 for 1 < /' < m, we see d = gcd{¿>i, ... , bm}. But \t>¡\
is the order of Cl( UTi ), so the theorem follows.   D

To extend Theorem 2.6 it is necessary to introduce some additional notation.
Suppose the graph Y we have associated to the fan A is connected and let T
be a spanning tree for Y. Since each vertex labeled by a two-dimensional face
x, is connected by exactly two edges to vertices p,\ and p¡2 corresponding to
the one-dimensional faces of x¡ in A, each t, is a vertex in T. If A(2) =
{ti, ... , xm}, designate xm as the root node for T. Let C be the matrix
whose columns are Ci, ... ,ce and let [Q\C] be the augmented matrix similar
to that used in the proof of Theorem 2.6. Then Xi, ... ,xe are leaf nodes
of T and c, = t,_/),2 for 1 < i < e. For e < i < m relabel p,i and pi2 if
necessary so the edge Xi-Pn is closer to the root node xm than the edge x^pi2.
In our previous analysis this amounts to permuting the basis of the edge space
©i=i (Zp/i ®Zpi2). This does not affect the columns labeled ax, ß\, ... , ae, ße
in Q. Let [B\C] be the matrix obtained from [Q\C] by deleting from Q the
columns labeled ßi, ... , ßm-i , ßm , am . We note that the column space of
B depends on the choice of xm .

Lemma 2.7. The columns of [B\C] form a basis for 0^, (Zpn ®Zpi2), the edge
space, for any choice of root node xm .
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Proof. If T is a tree, then T = Y and e = 0. In this case we need to show that
the columns of B span the edge space. Each leaf node of Y must be p¡2 for
some / since each t, is incident to two edges in Y - T and pn is closer to the
root node xm than pi2. We call the pair (t, , pi2) a leaf node pair. If i — m,
then it is possible for pn to be a leaf node. This is the only exception and will
be treated in the basis step for our induction below. Assume (t, , p¡2) is a leaf
node pair and i ^ m . In A, p¡2 is a face of exactly one two-dimensional cone
x¡. Thus the column indexed by p¡2 in B has exactly one nonzero entry which
is a 1 in the row indexed t,_/?,2 as indicated below.

Pu Pn   ai

Use the column indexed p¡2 to eliminate a, in the column a, by an elementary
column operation, then use the new column a, to eliminate the 1 in the Xj-pn
entry of column pn . After these two steps are performed, we say we have
pruned the leaf node pair from the tree Y — T. The two columns indexed p¡2
and a i are now elementary basis vectors in our basis for the edge space and
appear in no further column operations. After the columns indexed p¡2 and a,
are deleted, the remaining matrix is the matrix we would associate to the fan
A' obtained from A be deleting the cones p¡2 and x¡. Apply this leaf pruning
algorithm iteratively to reduce to the case where Y is the tree pmi-Xm-pm2.
The matrix B for this tree is [¿ ° ] . Thus our algorithm reduces the original
matrix B, using elementary column operations, to a permutation matrix.

If T is not a tree, let xi-pi2, ... , xe-pe2 be the edges of Y which are not
in T. Fix i, 1 < i < e. Since x¡-p¡\ is in T, it follows that x, is a leaf node
of T. We can use the column indexed c, and elementary column operations
to eliminate the entry a¡ from the column indexed a, and the entry 1 in the
column indexed p¡2 and row indexed x¡-p¡2 in the matrix [7?|C]. Use the new
column a i to eliminate the 1 in the x¡-p¡i entry of column pn . Repeat this
step for i — I, ... , e. Observe that the 2e x 2e submatrix of [B\C] whose
columns are indexed a, (1 < i < e), c¡ (\ < i < e) and whose rows are indexed
Xi-Pij (1 < i < e and 1 < j < 2) has rank 2e. If we delete this submatrix
from [B\C] (which corresponds to deleting Xi, ... ,xe from the fan A), the
resulting matrix is the one we would associate to the fan A' = A-{xi, ... ,xe].
The graph of A' is a tree so the result follows from the first part of the proof.   D

Corollary 2.8. Let A be a fan on W whose cones all have dimension < 2. If
the graph Y associated to A is a disjoint union of trees and X = r^emb(A),
then B'(TN/X) = 0.
Proof. By Proposition 2.5 we can assume Y is connected, so the hypotheses
imply T is a tree. By Lemma 2.7 the columns of B span the edge space of Y.
But the column space of B is contained in im(a + ß) in (3) B'(TN/X) -0.   D

Corollary 2.9. Let A be a fan on R2 and X = TN emb(A) the associated toric
surface.

(a) If A = {0}, then B(X) s Q/z.
(b) If A ¿ {0} and |A| ̂  R2 (i.e., X is not complete), then B(X) = 0.
(c) If |A| = R2  (i.e.,  X is complete), A(l) = {pi, ... , p„} and N' =

(pi nN,..., Pn nN), then B(X) s n/N'.
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Proof. Every toric surface is a normal projective surface [12] so by [9, Corollary
9] B(X) = B'(X). If A = {0} , then X = TN is nonsingular and since r = 2,
B(X) = Q/Z [10]. If A # {0} and |A| # R2, then the graph Y associated to
A is a disjoint union of trees. By Proposition 2.5 we assume Y is a tree and
contains at least one two-dimensional cone x. By Corollary 2.8 and Corollary
2.4, B(X) = 0. If |A| = R2 , then T is a cycle. Corollary 2.4 implies B(X) =
B(Tn/X) . If A(2) = {ti, ... , xm} , then Theorem 2.6 implies B(X) is cyclic
of order gcd{|Cl( 7/^)1}^, . Let pi, ... , pm be the one-dimensional cones in
A with t, = pi + Pi+i (1 < i < m) where pm+i = pi and let p¡ = R>o??i for
primitive vectors rji, ... , nm in N. Choose a basis «i, «2 for tV with «i = r¡i
and write ni - a¡ni + b¡n2. Then N/N' = N/(t]i, ... , nm) is cyclic of order
gcd{èi, ... , bm} . On the other hand for (1 < / < m - 1), Cl(UT.) is cyclic of
order |det[£&|]| and |C1([/TJ| = |det[£ ¿]| by (2). Since gcd(a;, b¡) = 1
for each i, an easy calculation shows gcd{| C1(£7T/)|}™, = gcd{èi , ... , bm} .   D

To determine the p-subgroups of B'(TN/X) for each prime number p , we
introduce some additional notation and terminology. Let Y be a finite edge-
weighted graph such that to each edge E is associated the positive integer
weight(Ts). Let vp be the p-adic valuation on Z and set the p-weight of
E = weightp(£') = vp(viei$ú(E)). If Ti is a subgraph of Y, let weight^T,) =
53 weighty (F) where the summation is over all edges E in T|. A p-maximal
spanning tree for Y is a spanning tree T for Y suchthat weighty (F) is maximal
among the p -weights of all spanning trees. It is clear that every connected graph
has a p-maximal spanning tree. Let F be a p-maximal spanning tree for Y and
let c denote an edge of Y which is not an edge of T. Since F is a spanning
tree, the subgraph Yi of Y obtained by adding the edge c to T contains a cycle
Z which is unique since there is a unique path between any two vertices of the
tree T. Suppose there is some edge E in Z with weighty(E) < weighty(c).
Then we could obtain a spanning tree of larger p-weight by deleting the edge
E from Y i . This means that if F is a p-maximal spanning tree for Y, c is
an edge of Y not in T and Z is the unique cycle in the graph T U {c}, then
c is an edge of minimal p-weight in Z .

Let T be the (connected) graph we have associated to the fan A whose cones
all have dimension < 2. Assign weights to the edges Xt-Pij of Y by setting
weight(T(_pí7) = b¡ = |C1(C7T/)| (recall Cl(i/Tj) = Z/b¡ is cyclic from (2)). Let
T be a p-maximal spanning tree for Y. We have labeled the edges of Y not
in T as Ti_pi2, t2 - p22, ... , xe-pe2. We call the set of 2-dimensional cones
{ti , ... , xe) in A a p-minimal set of cones in A. If Y is not connected, then
we can decompose A as a union of fans A, with A, n A7 = {0} when i ^ j
and the graphs Y¡ associated to A, are connected. We define a p-minimal set
of cones in A to be the union of p-minimal sets of cones in each A,.

Theorem 2.10. Let A be a fan on Ar and assume every cone in A has dimension
< 2. Let {xi, ... , xe} be a p-minimal set of cones in A and let \ Cl(Ux¡)\ = b,.
If X = TNemb(A), then B'(TN/X)P 2 [0-=i Z/¿>,]p. This isomorphism is
induced by the epimorphism y/ of (3).
Proof. By Proposition 2.5 and the discussion preceeding the theorem, we can
assume the graph Y associated to the fan A is connected. Let T be a p-
maximal spanning tree for Y.   Continuing the analysis that was begun in
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the proof of Theorem 2.6 we consider the matrix  [Q\C]  defined there.   If
W- 0™ i(Zp,i © Zpi2) -» B'(TN/X) is the epimorphism given in (3) and Zp is
the p-adic integers, we have an epimorphism

m

y/p: 0(Z>n ©Z>/2) -+ B'(TN/X)P.
¡=i

It follows from Lemma 2.7 that {ci, ... , ce} generates coker(a+ß) so {y/p(ci),
... , y/p(ce)} generates B'(TN/X)P. We check

0 = {Vp(Cj)) n (y/p(ci),..., y/p(cj-i), y/p(cj+i),..., y/p(ce))

and y/p(Cj) has order p^fy) for I < j < e by identifying these elements in
B'(TN/X) with their corresponding preimages Cj + image(a + ß) e coker(a + ß)
in (3) and then checking the corresponding statements in coker(a + ß).

Fix j and let n be a permutation of {I, ... , m} with n chosen so 7r(l) = j
where the edge cj = tj-Ps and the cycle in T\J {cj} is

Tj = Tn(\)-Pl-tn(2)-P2- ' • '- ^n(s)-Ps-^n{\) ■

Choose the vertex xn^ as the root node for T. By Lemma 2.7 we know the
columns of [B\C] form a basis for 0™ i(Zp,i ©Zp,2). The column space of B
is a submodule of image(a + ß). Project the submodule Zp/3i H-1- Zpßm of
image(a + ß) onto a Zp-submodule of the column space of C over Zp . Then
coker(a + ß)p is the quotient module.

If s+l < i < m we check the projection of ß„^) on ZpCj is 0. The selection
of xn(S) as the root node for T gives a partial order on the vertices of T. Let
T¡ be the subtree of T with root node pr.{¡)2 • This means the vertices v in
Ti are those for which the unique path from v to xn^ contains pn(¡)2. In
the expression for ßn^ as a linear combination of the columns of [B\C], the
columns of C that appear are those ck which when considered as edges of Y
are incident to some vertex in T¡ (see the proof of Theorem 2.6). But neither
Xj nor ps are in F, since i > s + 1 so the projection of /?„(,■) on c¡ has
coefficient = 0.

If 1 < i < s let the projection of ßn(() on 0£=1 Zpck be Yfk=\ dkiCk • We
say in the proof of Theorem 2.6 that bn^)\dj¡ (where &„(,-) = | Cl(77„(,-))|). The
projections of p\(i), ... , ySK(m) on 0¿=1 Zpcfc are the columns of the e x m
matrix (dki). We have observed above that dj(S+\) = • • • = d¡m = 0. The
definitions of ßj and c¡ imply ßj = b¡c¡ so dki — 0 if k ^ j. Also bn^)\dji
for 2 < i < s and we chose ; with up(¿;) = min{wp(è„(i)), ... , ^(è^))}.
Thus after elementary column operations over Zp the column space of (dki)
is equal to the column space of

"0      di2      •••dxm"

0     4(7-1)2
6,        0        •■•      0
0      4(7+1)2

. 0 é42 • - •      ̂ m .
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Therefore  Ci,...,ce   represents a basis for coker(a + ß)p,   B'(Tn/X)p  =
(Wp(c\)) © • • • © (Wp(ce)) » and (y/p(Cj)) is cyclic of order p"f(*;).   d
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