City Research Online

City, University of London Institutional Repository

Citation: Kessar, R., Koshitani, S. and Linckelmann, M. (2015). On the Brauer Indecomposability of Scott Modules. The Quarterly Journal of Mathematics, 66(3), pp. 895903. doi: 10.1093/qmath/hav010

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12853/

Link to published version: http://dx.doi.org/10.1093/qmath/hav010

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

ON THE BRAUER INDECOMPOSABILITY OF SCOTT MODULES

RADHA KESSAR, SHIGEO KOSHITANI, MARKUS LINCKELMANN

Abstract

Let k be an algebraically closed field of prime characteristic p, and let P be a p-subgroup of a finite group G. We give sufficient conditions for the $k G$-Scott module $\operatorname{Sc}(G, P)$ with vertex P to remain indcomposable under the Brauer construction with respect to any subgroup of P. This generalizes similar results for the case where P is abelian. The background motivation for this note is the fact that the Brauer indecomposability of a p-permutation bimodule is a key step towards showing that the module under consideration induces a stable equivalence of Morita type, which then may possibly be lifted to a derived equivalence.

1. Introduction

Throughout this paper we denote by k an algebraically closed field of prime characteristic p. The Brauer construction with respect to a p-subgroup P of a finite group G sends a p-permutation $k G$-module M functorially to a p-permutation $k N_{G}(P)$-module $M(P)$; see e.g. [3, p.402] or [16, pp. 91 and 219]. Following the terminology introduced in [9], the module M is called Brauer indecomposable if the $k C_{G}(Q)$-module $\operatorname{Res}_{C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable or zero for any p-subgroup Q of G. As mentioned in [9], the Brauer indecomposability of p-permutation modules is relevant for the gluing technique used for proving categorical equivalences between p-blocks of finite groups as in Broué's abelian defect group conjecture, see [10], [9] and [17]. For any subgroup H of G there is up to isomorphism a unique indecomposable direct summand of the permutation $k G$-module $k G / H$ which has a Sylow p-subgroup of H as a vertex and the trivial $k G$-module as a quotient. This is called the S cott $k G$-module with respect to H, denoted by $\operatorname{Sc}(G, H)$. If P is a Sylow p-subgroup of H, then $\operatorname{Sc}(G, H)=\mathrm{Sc}(G, P)$ is, up to isomorphism, the unique indecomposable $k G$-module with P as a vertex, the trivial $k P$-module as a source, and the trivial $k G$-module as a quotient. See [14, Chap.4, §8] and [3] for more details on Scott modules. We first prove a criterion for the Brauer indecomposability of Scott modules in terms of the indecomposability of Scott modules of certain local subgroups.

Theorem 1.1. Let P be a p-subgroup of a finite group G. Let $\mathcal{F}=\mathcal{F}_{P}(G)$ be the fusion system of G on P. Suppose that \mathcal{F} is saturated, and that $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$. Then $\operatorname{Sc}(G, P)$ is Brauer indecomposable if and only if

$$
\operatorname{Res}_{C_{G}(Q)}^{N_{P}(Q) C_{G}(Q)}\left(\operatorname{Sc}\left(N_{P}(Q) C_{G}(Q), N_{P}(Q)\right)\right.
$$

is indecomposable for any subgroup Q of P.

It is shown in $[9$, Theorem 1.2] that if P is an abelian p-subgroup of G, and if the fusion system $\mathcal{F}_{P}(G)$ is saturated, then the $k G$-Scott module $\operatorname{Sc}(G, P)$ is Brauer indecomposable. The following result extends this in some cases to non-abelian P.

Theorem 1.2. Let P be a p-subgroup of a finite group G. Let $\mathcal{F}=\mathcal{F}_{P}(G)$ be the fusion system of G on P. Suppose that \mathcal{F} is saturated, and that $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$. Suppose that, for every subgroup Q of P, at least one of the following holds:
(a) $N_{P}(Q)=Q C_{P}(Q)$.
(b) $C_{G}(Q)$ is p-nilpotent.

Then $\operatorname{Sc}(G, P)$ is Brauer indecomposable.
If P is a common subgroup of two groups G and H, we denote by ΔP the 'diagonal' subgroup $\Delta P=\{(u, u) \mid u \in P\}$ of $G \times H$.
Corollary 1.3. Let G be a finite group and P a Sylow p-subgroup of G. Set $M=\operatorname{Sc}\left(G \times N_{G}(P), \Delta P\right)$. Suppose that, for every subgroup Q of P, at least one of the following holds:
(a) $N_{P}(Q)=Q C_{P}(Q)$.
(b) $C_{G}(Q)$ is p-nilpotent.

Then M is Brauer indecomposable.
Remark 1.4. For P abelian, this is Corollary 1.4 of [9], which follows also from [10, Theorem]. Examples of non-abelian p-groups to which the above applies are all groups of order p^{3} and metacyclic p-groups of the form $M_{n+1}(p) \cong C_{p^{n}} \rtimes C_{p}$, see [6, p.190], where C_{m} denotes a cyclic group of order m, for any positive integer m. See the Example 3.2 below for a stable equivalence of Morita type which is constructed making use of Corollary 1.3.

The above results will be proved in section 3 . We adopt the following notation and conventions. All modules over finite group algebras are assumed to be finitely generated unitary left modules. We write $H \leq G$ if H is a subgroup of a group G, and $H \unlhd G$ if H is normal in G. The trivial $k G$-module will be denoted again by k. For G a group, H a subgroup of G, M a $k G$-module and N a $k H$-module, we write as usual $\operatorname{Res}_{H}^{G}(M)$ for the restriction of M from $k G$ to $k H$ and $\operatorname{Ind}_{H}^{G}(N)$ for the induction of N from $k H$ to $k G$. For a subset S of G and an element $g \in G$, we write ${ }^{g} S$ for $g S g^{-1}$, and for $h \in G$, we write ${ }^{g} h=g h g^{-1}$. For $H, K \leq G$ we write $H \leq_{G} K$ when ${ }^{g} H \leq K$ for an element $g \in G$. As mentioned before, given a p-subgroup P of a finite group G and a $k G$-module M, we write $M(P)$ for the Brauer construction with respect to P applied to M; see [4, p.402] or [16, pp. 91 and 219]. We denote by $\mathcal{F}_{P}(G)$ the fusion system of G on P; that is, $\mathcal{F}_{P}(G)$ is the category whose objects are the subgroups of P and whose morphisms from Q to R are the group homomorphisms induced by conjugation by elements of G; see [2, Definition I.2.1] and [11, p.83]. If P is a Sylow p-subgroup of G, then $\mathcal{F}_{P}(G)$ is saturated, see [2, Definition I.2.2]. If $\mathcal{F}_{P}(G)=\mathcal{F}_{P}\left(N_{G}(P)\right)$, then the saturation of $\mathcal{F}_{P}(G)$ is equivalent to requiring that $N_{G}(P) / P C_{G}(P)$ has order prime to p. For any remaining notation and terminology, see the books of [14] and [16], and also [2] and [11] for fusion systems.

2. Lemmas

This section contains some technicalities needed for the proofs of the main results in the section. We start with a very brief review of some basic properties of Scott
modules. Let G be a finite group, H a subgroup of G, and P a Sylow p-subgroup of H. Let M be a p-permutation $k G$-module. In particular, M has a k-basis X which is permuted by the action of P. By $[3, \S 1]$ or $[16$, Proposition (27.6)], the image in $M(P)$ of the subset X^{P} of P-fixed points in X is a k-basis of $M(P)$, and we have a direct sum decomposition of $k N_{G}(P)$-modules $\operatorname{Res}_{N_{G}(P)}^{G}(M)=M(P) \oplus N$, where N is the span of the P-orbit sums of $X \backslash X^{P}$. For any subgroup Q of P we have $X^{P} \subseteq X^{Q}$. In particular, if $M(P) \neq\{0\}$, then $M(Q) \neq\{0\}$ for any subgroup Q of P. By [3, (1.3)], if M is an indecomposable p-permutation $k G$-module, then $M(P) \neq\{0\}$ if and only if P is contained in a vertex of M. By [3, (3.2) Theorem], if P is a vertex of M, then $M(P)$ is the Green correspondent of M. Frobenius' reciprocity implies that $\operatorname{Hom}_{k G}\left(\operatorname{Ind}_{H}^{G}(k), k\right) \cong \operatorname{Hom}_{k H}(k, k) \cong k$. Thus exactly one indecomposable direct summand of $\operatorname{Ind}_{H}^{G}(k)$ has a quotient isomorphic to the trivial $k G$-module. This summand is the S cott module $\operatorname{Sc}(G, H)$. Under the above isomorphism the identity map on k (viewed as a $k P$-module) corresponds to the unique $k G$-homomorphism $\eta: \operatorname{Ind}_{H}^{G}(k) \rightarrow k$ sending each $y \otimes 1_{k}$ to 1 for any $y \in G$. Thus the Scott module $\operatorname{Sc}(G, H)$ is, up to isomorphism, the unique indecomposable direct summand of $\operatorname{Ind}_{H}^{G}(k)$ which is not contained in $\operatorname{ker}(\eta)$. Applying the Brauer construction to η yields a non-zero map $\eta(P):\left(\operatorname{Ind}_{H}^{G}(k)\right)(P) \rightarrow k$, because the element $1 \otimes 1_{k}$ is a P-fixed element of the P-stable basis consisting of the elements $y \otimes 1_{k}$, with y running over a set of representatives of the cosets G / H in G. This shows in particular that $\operatorname{Sc}(G, H)$ has P as a vertex and therefore must coincide with $\operatorname{Sc}(G, P)$. We will use these facts without further reference. The following lemma is essentially a special case of a result of H. Kawai [8, Theorem 1.7].
Lemma 2.1. Let G be a finite group, and let P and Q be p-subgroups of G such that $Q \leq P$. Suppose that for any $g \in G$ satisfying $Q \leq{ }^{g} P$ we have $\left|N_{g_{P}}(Q)\right| \leq\left|N_{P}(Q)\right|$. Let M be an indecomposable p-permutation $k G$-module with vertex P. Set $H=N_{G}(Q)$. Then $\operatorname{Res}_{H}^{G}(M)$ has an indecomposable direct summand X satisfying $X\left(N_{P}(Q)\right) \neq\{0\}$, and any such summand has $N_{P}(Q)$ as a vertex. In particular, $\operatorname{Sc}\left(H, N_{P}(Q)\right)$ is isomorphic to a direct summand of $\operatorname{Res}_{H}^{G}(\operatorname{Sc}(G, P))$ and of $(\operatorname{Sc}(G, P))(Q)$.
Proof. We have $H \cap P=N_{P}(Q)$, and since $M(P)$ is non-zero, so is $M(H \cap P)$. Thus there is an indecomposable direct summand X of $\operatorname{Res}_{H}^{G}(M)$ such that $X(H \cap P) \neq$ $\{0\}$. Let R be a vertex of X containing $H \cap P$. Since P is a vertex of M, it follows that M is isomorphic to a direct summand of $\operatorname{Ind}_{P}^{G}(k)$. The Mackey decomposition formula implies that X is isomorphic to a direct summand of

$$
\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{P}^{G}(k)\right)=\bigoplus_{y} \operatorname{Ind}_{H \cap y P}^{H}(k),
$$

where y runs over a set of representatives of the double cosets $H \backslash G / P$ in G. The indecomposability of X and the Krull-Schmidt theorem imply that there is $y \in$ G such that X is isomorphic to a direct summand of $\operatorname{Ind}_{H \cap{ }_{y P}}^{H}(k)$. Then $H \cap{ }^{y} P$ contains a vertex S of X. Since the vertices of an indecomposable module are conjugate, it follows that there is $h \in H$ such that $S={ }^{h} R$. The element h normalises Q, and hence $Q \leq S \leq H \cap{ }^{y} P$. This implies $S \leq N_{y_{P}}(Q)$. The assumptions imply further that $|S| \leq\left|N_{P}(Q)\right| \leq|R|$. Since R and S are conjugate, they have the same order, whence $R=N_{P}(Q)$ is a vertex of X. For the second statement, suppose that $M=\operatorname{Sc}(G, P)$. That is, M is, up to isomorphism, the unique indecomposable direct
summand of $k G / P$ which is not in the kernel of the $k G$-homomorphism $k G / P \rightarrow$ k sending each coset $y P$ to 1 where $y \in G$. As mentioned at the beginning of this section, the trivial coset P is a P-fixed point of the basis of $k G / P$ consisting of the P-cosets in G, and hence applying the Brauer construction to a non-zero $k G$-homomorphism $M \rightarrow k$ yields a non-zero map $M(P) \rightarrow k$. Then also the map $M(R) \rightarrow k$ induced by a non-zero $k G$-homomorphism $M \rightarrow k$ is nonzero. It follows that $\operatorname{Res}_{H}^{G}(M)$ has an indecomposable direct summand X satisfying $X(R) \neq\{0\}$ such that there is a non-zero $k H$-homomorphism $X \rightarrow k$. By the first statement, R is a defect group of X. Thus $X \cong \operatorname{Sc}(H, R)$. This shows that $\operatorname{Sc}(H, R)$ is isomorphic to a direct summand of $\operatorname{Res}_{N_{G}(Q)}^{G}(M)$. Since R contains Q and Q is normal in H, it follows that Q acts trivially on $\operatorname{Sc}(H, Q)$, and thus $\mathrm{Sc}(H, Q)$ is isomorphic to a direct summand of $M(Q)$.

In fusion theoretic terminology, the hypothesis on the maximality of $\left|N_{P}(Q)\right|$ in the previous lemma is equivalent to requiring that Q is fully \mathcal{F}-normalised. If $\mathcal{F}=$ $N_{\mathcal{F}}(P)$, then every subgroup of P is fully \mathcal{F}-normalised, which explains why this hypothesis is no longer needed in the second statemement of the next lemma. The proof of the first statement of the next lemma is essentially in [9, Theorem 1.2].

Lemma 2.2. Let G be a finite group and P a p-subgroup of G. Set $\mathcal{F}=\mathcal{F}_{P}(G)$. Assume that \mathcal{F} is saturated and that $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$.
(i) Suppose that M is an indecomposable p-permutation $k G$-module with vertex P. Then for any subgroup Q of P and for any indecomposable direct summand X of $\operatorname{Res}_{N_{G}(Q)}^{G}(M)$ satisfying $X(Q) \neq\{0\}$, there is a vertex R of X such that $Q \leq R \leq P$.
(ii) For any subgroup Q of P, the module $\operatorname{Sc}\left(N_{G}(Q), N_{P}(Q)\right)$ is a direct summand of $\operatorname{Res}_{N_{G}(Q)}^{G}(\operatorname{Sc}(G, P))$ and of $(\operatorname{Sc}(G, P))(Q)$.

Proof. (i) Let X be an indecomposable direct summand of $\operatorname{Res}_{N_{G}(Q)}^{G}(M)$ such that $X(Q) \neq\{0\}$. There is a vertex R of X such that $Q \leq R$. Then $X(R) \neq\{0\}$, hence $M(R) \neq\{0\}$, and so R is contained in a vertex of M. Since the vertices of M are conjugate to P, it follows that there is $g \in G$ such that $Q \leq R \leq{ }^{g} P$. Then ${ }^{g^{-1}} Q \leq P$, which implies that the map ${ }^{g^{-1} Q} Q \rightarrow Q$ sending u to ${ }^{g} u$ is an isomorphism in the fusion system \mathcal{F}. The assumption $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$ implies that there is an element $h \in N_{G}(P)$ such that $c=h g^{-1} \in C_{G}(Q)$. It follows that $Q={ }^{c} Q \leq{ }^{c} R \leq{ }^{c g} P={ }^{h} P=P$. Clearly ${ }^{c} R$ is also a vertex of X, whence the statement.
(ii) Let $g \in G$ with $Q \leq{ }^{g} P$. By the argument in the proof of (i), there is an element $h \in N_{G}(P)$ such that $c=h g^{-1} \in C_{G}(Q)$. Then $c g=h$ normalises P. Thus conjugation by c induces an isomorphism $N_{s_{P}}(Q) \cong N_{P}(Q)$; in particular, both groups have the same order. Therefore Lemma 2.1 implies the assertion.

3. Proof of the main result

Let G be a finite group and let M be an indecomposable p-permutation $k G$ module with vertex P. If Q is a p-subgroup of G which is not conjugate to a subgroup of P, then $M(Q)=\{0\}$. The property of $M(Q)$ being decomposable is invariant under conjugation of Q in G. Thus if M is not Brauer indecomposable, then there is a subgroup Q of P such that $M(Q)$ is decomposable as a $k C_{G}(Q)$ module. The key step towards proving the main results is the following lemma.

Lemma 3.1. Let G be a finite group and P a p-subgroup of G. Set $\mathcal{F}=\mathcal{F}_{P}(G)$. Assume that $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$ and that \mathcal{F} is saturated. Set $M=\operatorname{Sc}(G, P)$. Suppose that M is not Brauer indecomposable. Let Q be a subgroup of maximal order in P such that $\operatorname{Res}_{C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is decomposable. Then Q is a proper subgroup of P and setting $R=N_{P}(Q)$, we have

$$
\operatorname{Res}_{R C_{G}(Q)}^{N_{G}(Q)}(M(Q)) \cong \operatorname{Sc}\left(R C_{G}(Q), R\right)
$$

In particular, $\operatorname{Res}_{R C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable with R as a vertex.
Proof. The $k C_{G}(P)$-module $M(P)$ is indecomposable by [9, Lemma 4.3(ii)] (this lemma requires the hypothesis on \mathcal{F} being saturated). Thus Q is a proper subgroup of P, hence a proper subgroup of $R=N_{P}(Q)$, by [6, Chap.1, Theorem 2.11(ii)]. We first show that $M(Q)$ is indecomposable as a $k N_{G}(Q)$-module. By Lemma 2.2 (ii) we have $\operatorname{Res}_{N_{G}(Q)}^{G}(M)=\operatorname{Sc}\left(N_{G}(Q), R\right) \oplus X$ for some $k N_{G}(Q)$-module X, and $\operatorname{Sc}\left(N_{G}(Q), R\right)$ is isomorphic to a direct summand of $M(Q)$. We need to show that $X(Q)=\{0\}$. Arguing by contradiction, suppose that $X(Q) \neq\{0\}$. Then there exists an indecomposable direct summand Y of X such that $Y(Q) \neq\{0\}$. Since \mathcal{F} is saturated and $N_{\mathcal{F}}(P)=\mathcal{F}$, it follows from Lemma 2.2(i) that Y has a vertex S such that $Q \leq S \leq P$. Then $S \leq N_{G}(Q) \cap P=R$. Note that Q is not a vertex of M since $|Q| \neq|P|$. If $Q=S$, then Q is a vertex of Y, and hence Q is a vertex of M by the result of Burry-Carlson-Puig [14, Chap. 4, Theorem 4.6(ii)], a contradiction. Thus Q is a proper subgroup of S. Since Y is an indecomposable p-permutation $k N_{G}(Q)$-module with vertex S, we have $Y(S) \neq\{0\}$, and hence $X(S) \neq\{0\}$. Since R is a vertex of $\operatorname{Sc}\left(N_{G}(Q), R\right)$ and $S \leq R$, it follows that $\left(\operatorname{Sc}\left(N_{G}(Q), R\right)\right)(S) \neq$ $\{0\}$. We have

$$
\left(\operatorname{Res}_{N_{G}(Q)}^{G}(M)\right)(S)=\left(\operatorname{Sc}\left(N_{G}(Q), R\right)\right)(S) \bigoplus X(S)
$$

and both of the two direct summands of the right hand side are non-zero. This implies that $\left(\operatorname{Res}_{N_{G}(Q)}^{G}(M)\right)(S)$ is not indecomposable; in other words, $M(S)$ is not indecomposable as a $k\left(N_{G}(Q) \cap N_{G}(S)\right.$)-module. Since $C_{G}(S) \leq C_{G}(Q) \cap N_{G}(S) \leq$ $N_{G}(Q) \cap N_{G}(S)$, it follows that $M(S)$ is not indecomposable as a $k C_{G}(S)$-module. But this contradicts the assumptions since $|P: S|<|P: Q|$. This shows that $X(Q)=\{0\}$, and hence that $M(Q)$ is indecomposable as a $k N_{G}(Q)$-module. Using Lemma 2.2 (ii), this shows that

$$
M(Q)=\operatorname{Sc}\left(N_{G}(Q), R\right)
$$

Set $L=R C_{G}(Q)$. Since $\mathcal{F}=\mathcal{F}_{P}\left(N_{G}(P)\right)$, it follows that $N_{G}(Q)=\left(N_{G}(Q) \cap\right.$ $\left.N_{G}(P)\right) C_{G}(Q)$. The subgroup $N_{G}(P) \cap N_{G}(Q)$ normalises R, and hence L is a normal subgroup of $N_{G}(Q)$ and we have $N_{G}(Q)=\left(N_{G}(R) \cap N_{G}(Q)\right) L$. In particular, L acts transitively on the set of $N_{G}(Q)$-conjugates of R. Since $M(Q)$ has R as a vertex and $R \leq L$, there is an indecomposable $k L$-module V with vertex R such that $M(Q)$ is isomorphic to a direct summand of $\operatorname{Ind}_{L}^{N_{G}(Q)}(V)$. The Mackey formula, using that L is normal in $N_{G}(Q)$, implies that

$$
\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q))=\bigoplus_{x}{ }^{x} V
$$

with x running over a subset E of $N_{G}(Q) \cap N_{G}(R)$. In particular, all indecomposable direct summands of $\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q))$ have R as a vertex. Thus applying the

Brauer construction with respect to R sends every summand to a non-zero $k N_{L}(R)$ module. Therefore, if the set E has more than one element, then $M(Q)(R)=M(R)$ is decomposable as a $k N_{L}(R)$-module, hence also as a $k C_{G}(R)$-module. This contradicts the assumptions, and hence X consists of a single element, or equivalently, $\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q))$ is indecomposable. Then necessarily $\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q)) \cong$ $\mathrm{Sc}(L, R)$, whence the result.

Proof of Theorem 1.1. Set $M=\operatorname{Sc}(G, P)$. Suppose that M is Brauer indecomposable. Then $M(Q)=\operatorname{Sc}\left(N_{G}(Q), N_{P}(Q)\right)$ by Lemma 2.2 (ii), and $M(Q)$ is indecomposable as a module for any subgroup of $N_{G}(Q)$ containing $C_{G}(Q)$. In particular, setting $M_{Q}=\operatorname{Sc}\left(N_{P}(Q) C_{G}(Q), N_{P}(Q)\right)$, we have $M_{Q} \cong \operatorname{Res}_{N_{P}(Q) C_{G}(Q)}^{N_{G}(Q)}(M(Q))$. By the assumptions, the restriction to $k C_{G}(Q)$ of this module remains indecomposable. Suppose conversely that $\operatorname{Res}_{C_{G}(Q)}^{N_{P}(Q) C_{G}(Q)}\left(M_{Q}\right)$ remains indecomposable for all subgroups Q of P. Arguing by contradiction, suppose that M is not Brauer indecomposable. Let Q be a subgroup of maximal order of P such that $\operatorname{Res}_{C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is decomposable. Set $R=N_{P}(Q)$. By Lemma 3.1, the $k R C_{G}(Q)-$ module $\operatorname{Res}_{R C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable with vertex R, hence isomorphic to $M_{Q}=\operatorname{Sc}\left(R C_{G}(Q), R\right)$ by Lemma 2.2 (ii). Thus $\operatorname{Res}_{C_{G}(Q)}^{R C_{G}(Q)}\left(M_{Q}\right)$ is decomposable, contradicting the assumptions.
Proof of Theorem 1.2. Set $M=\operatorname{Sc}(G, P)$. Arguing by contradiction, let Q be a subgroup of maximal order in P such that $M(Q)$ is not indecomposable as a $k C_{G}(Q)$-module. Set $R=N_{P}(Q)$ and $L=R C_{G}(Q)$. It follows from Lemma 3.1 that Q is a proper subgroup of P, and that $\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q))$ is indecomposable, with R as a vertex, hence isomorphic to $\operatorname{Sc}(L, R)$ by Lemma 2.2 (ii). By the construction of $M(Q)$, the group Q acts trivially on $M(Q)$.

Suppose first that hypothesis (a) holds; that is, $R=Q C_{P}(Q)$. Then $L=$ $Q C_{G}(Q)$. Thus $\operatorname{Res}_{Q C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable. Since Q acts trivially, it follows that $\operatorname{Res}_{C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable, a contradiction.

Thus hypothesis (b) holds; that is, $C_{G}(Q)$ is p-nilpotent. The indecomposable $k N_{G}(Q)$-module $M(Q)=\operatorname{Sc}\left(N_{G}(Q), R\right)$ is in the principal block as a $k N_{G}(Q)$ module, and its restriction to $L=R C_{G}(Q)$ remains indecomposable by the above. Hence we can assume that $O_{p^{\prime}}\left(N_{G}(Q)\right)=1$. Then also $O_{p^{\prime}}\left(C_{G}(Q)\right)=1$. This implies that $C_{G}(Q)$ is a p-group by (b). Hence the groups $C_{G}(Q), C_{G}(R), L=$ $R C_{G}(Q)$, and $Q C_{G}(Q)$ are all finite p-groups. Using that transitive permutation modules of finite p-groups are indecomposable, it follows that

$$
\operatorname{Sc}(L, R)=\operatorname{Res}_{L}^{N_{G}(Q)}(M(Q)) \cong \operatorname{Ind}_{R}^{L}(k) .
$$

The Mackey formula implies that

$$
\begin{aligned}
\operatorname{Res}_{Q C_{G}(Q)}^{N_{G}(Q)}(M(Q)) & =\operatorname{Res}_{Q C_{G}(Q)}^{L} \circ \operatorname{Res}_{L}^{N_{G}(Q)}(M(Q)) \\
& =\operatorname{Res}_{Q C_{G}(Q)}^{L} \circ \operatorname{Ind}_{R}^{L}(k) \\
& =\operatorname{Ind}_{Q C_{G}(Q) \cap R}^{Q C_{G}(Q)}(k),
\end{aligned}
$$

since there is a single double coset here, and so only one term in the Mackey formula. This is again a transitive permutation module of the p-group $Q C_{G}(Q)$,
hence indecomposable. As before, since Q acts trivially on $M(Q)$, this implies that $\operatorname{Res}_{C_{G}(Q)}^{N_{G}(Q)}(M(Q))$ is indecomposable. This concludes the proof.
Proof of Corollary 1.3. Set $H=N_{G}(P)$. The fusion system of $G \times H$ on ΔP is equal to that of ΔH on ΔP, and this is saturated as P is a Sylow p-subgroup of H. Moreover, for Q a subgroup of P, we have $C_{G \times H}(\Delta Q)=C_{G}(Q) \times C_{H}(Q)$. Thus if $C_{G}(Q)$ is p-nilpotent, then so is $C_{G \times H}(\Delta Q)$. The result follows from Theorem 1.2.

Example 3.2. Suppose that $p=3$. Let G be a finite group. Assume that G has a Sylow 3 -subgroup P such that $P \cong M_{3}(3)$, the extraspecial 3 -group of order 27 of exponent 9 . Set $H=N_{G}(P)$. Then the $k(G \times H)$-Scott module $M=$ $\operatorname{Sc}(G \times H, \Delta P)$ induces a stable equivalence of Morita type between the principal blocks $B_{0}(k G)$ and $B_{0}(k H)$. This is trivial if G is 3-nilpotent because both blocks are isomorphic to $k P$ in that case. If G is not 3-nilpotent, then $\left|N_{G}(P) / P C_{G}(P)\right|=$ 2. Let Q be a non-trivial subgroup of P. It follows from Theorem 1.2, results of Hendren [7, Propositions 5.12 and 5.13] and the Z_{3}^{*}-theorem that $M(Q)$ induces a Morita equivalence between $B_{0}\left(k C_{G}(Q)\right)$ and $B_{0}\left(k C_{H}(Q)\right)$. Hence the gluing theorem [4, Theorem 6.3] implies that M induces a stable equivalence of Morita type between the principal blocks of $k G$ and $k H$. Furthermore, by [4, Proposition 5.3], such a stable equivalence of Morita type implies the equality $\mathrm{k}\left(B_{0}(k G)\right)$ $\ell\left(B_{0}(k G)\right)=\mathrm{k}\left(B_{0}(k H)\right)-\ell\left(B_{0}(k H)\right)$, where $\mathrm{k}\left(B_{0}(k G)\right)$ and $\ell\left(B_{0}(k G)\right)$ denote the number of ordinary and modular irreducible characters $B_{0}(k G)$, respectively, with the analogous notation for H instead of G. This yields a proof of a special case of a result of Hendren [7, Theorem 5.14]: if G is not 3-nilpotent, then $\mathrm{k}\left(B_{0}(k G)\right)$ $\ell\left(B_{0}(k G)\right)=8$.
Remark 3.3. Let G be a finite group and P a Sylow p-subgroup of G. The Scott module $\operatorname{Sc}\left(G \times N_{G}(P), \Delta P\right)$ is the Green correspondent of the Scott module $\operatorname{Sc}(G \times G, \Delta P)$, which is isomorphic to the prinicipal block of $k G$ viewed as a $k(G \times G)$-module. One might wonder how to generalise Corollary 1.3 to arbitrary blocks. Let b be a block of $k G$ and let $\left(P, e_{P}\right)$ be a maximal (G, b)-Brauer pair. Set $H=N_{G}\left(P, e_{P}\right)$. The $(G \times H)$-Green correspondent with vertex ΔP of the $k(G \times G)$-module $k G b$ is of the form $M=k G f$ for some primitive idempotent f in $(k G b)^{\Delta H}$ satisfying $\operatorname{Br}_{\Delta P}(f) e_{P} \neq 0$ (see e.g. [1]). Note that $\left(P, e_{P}\right)$ is also a maximal $\left(H, e_{P}\right)$-Brauer pair. For any subgroup Q of P denote by e_{Q} the unique block of $k C_{G}(Q)$ satisfying $\left(Q, e_{Q}\right) \leq\left(P, e_{P}\right)$ and by f_{Q} the unique block of $k C_{H}(Q)$ satisfying $\left(Q, e_{Q}\right) \leq\left(P, e_{P}\right)$. The 'obvious' generalisation of Corollary 1.3 would be the statement that the $k C_{G}(Q) e_{Q}-k C_{H}(Q) f_{Q}$-bimodule $e_{Q} M(\Delta Q) f_{Q}$ is indecomposable. This is, however, not the case in general. In order to construct an example for which this is not the case, we first translate this indecomposability to the source algebra level.

Let $j \in\left(k H e_{P}\right)^{\Delta P}$ be a source idempotent e_{P} as a block of $k H e_{P}$. Then $i=j f$ is a source idempotent of $k G b$ (see e.g. [5, 4.10]). Thus multiplication by f induces an interior P-algebra homomorphism from $B=j k H j$ to $A=i k G i$. In particular, A can be viewed as an A - B-bimodule. Multiplication by a source idempotent, or more generally, by an almost source idempotent, is a Morita equivalence (cf. [15, $3.5]$ and $[12,4.1])$. Moreover, the Brauer construction with respect to a fully \mathcal{F} centralised subgroup Q of P sends the source idempotent i to the almost source idempotent $\operatorname{Br}_{\Delta Q}(i)$ in $k C_{G}(Q) e_{Q}$ (cf. [12, 4.5]). Through the appropriate Morita
equivalences, the $k G b-k H e_{P}$-bimodule $M=k G f$ corresponds to the A - B-bimodule $i M j=i k G j f=A$, and the $k C_{G}(Q) e_{Q}-k C_{H}(Q) f_{Q}$-bimodule $e_{Q} M(\Delta Q) f_{Q}$ corresponds to the $A(\Delta Q)-B(\Delta Q)$-bimodule $A(\Delta Q)$. It follows that for Q a fully \mathcal{F} centralised subgroup of P, the indecomposability of $e_{Q} M(\Delta Q) f_{Q}$ is equivalent to the indecomposability of $A(\Delta Q)$ as an $A(\Delta Q)-B(\Delta Q)$-module.

We construct an example for which this fails. Suppose that p is odd. Let P be an extraspecial p-group of order p^{3} of exponent p. Let Q be a subgroup of order p^{2} in P; we have $C_{P}(Q)=Q$ and in particular, Q is fully centralised (even centric) with respect to any fusion system on P. Set $V=\operatorname{Inf}_{P / Q}^{P}\left(\Omega_{P / Q}(k)\right)$. Thus $\operatorname{dim}_{k}(V)=p-1$, and Q acts trivially on V. Setting $S=\operatorname{End}_{k}(V)$, it follows that $S=S^{\Delta Q} \cong S(\Delta Q)$. By the main result of Mazza in [13], there exists a nilpotent block of some finite group having a source algebra isomorphic to $A=S \otimes_{k} k P$. The Brauer correspondent of such a block has source algebra $B=k P$. We have $A(\Delta Q)$ $\left(S \otimes_{k} k P\right)(\Delta Q) \cong S \otimes_{k} k Q$ and $B(\Delta Q)=k Q$. Thus any primitive idempotent e in $S=S^{\Delta Q}$ determines a nontrivial direct bimodule summand $S e \otimes_{k} k Q$ of $A(\Delta Q)$, and hence $A(\Delta Q)$ is not indecomposable as an $A(\Delta Q)-B(\Delta Q)$-module.

Acknowledgements. A part of this work was done while the second author was visiting the first and the third authors in the University of Aberdeen in February 2012 and in the City University London in October 2013. He would like to thank the Mathematics Institutes for their wonderful hospitality. The second author was supported by the Japan Society for Promotion of Science (JSPS) Grant-in-Aid for Scientific Research(C) 23540007, 2011-2014. The authors would like to thank the referee for her/his comments on the first version.

References

[1] J. L. Alperin, M. Linckelmann, and R. Rouquier, Source algebras and source modules, J. Algebra 239 (2001), 262-271.
[2] M. Aschbacher, R. Kessar, B. Oliver, Fusion Systems in Algebra and Topology, London Math. Soc. Lecture Note Series, Vol.391, Cambridge University Press, Cambridge, 2011.
3] M. Broué, On Scott modules and p-permutation modules: an approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), 401-408.
[4] M. Broué, Equivalences of blocks of group algebras, In: Finite-dimensional Algebras and Related Topics (Ottawa, 1992), Edited by V. Dlab, L.L. Scott, pp.1-26, Kluwer Acad. Pub., Derdrecht, 1994.
[5] Y. Fan and Ll. Puig, On blocks with nilpotent coefficient extensions, Algebras Representation Theory 1 (1998), 27-73.
[6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
[7] S. Hendren, Extra special defect groups of order p^{3} and exponent p^{2}, J. Algebra 291 (2005), 457-491.
[8] H. Kawai, On indecomposable modules and blocks, Osaka J. Math 23 (1986), 201-205.
[9] R. Kessar, N. Kunugi, N. Mitsuhashi, On saturated fusion systems and Brauer indecomposability of Scott modules, J. Algebra 340 (2011), 90-103.
[10] S. Koshitani, M. Linckelmann, The indecomposability of a certain bimodule given by the Brauer construction, J. Algebra 285 (2005), 726-729.
[11] M. Linckelmann, Introduction to fusion systems, in: Group Representation Theory, EPFL Press, Lausanne, 2007, pp.79-113.
[12] M. Linckelmann, Trivial source bimodule rings for blocks and p-permutation equivalences, Trans. Amer. Math. Soc. 361 (2009), 1279-1316.
[13] N. Mazza, Endo-permutation modules as sources of simple modules, J. Group Theory 6 (2003), 477-497.
[14] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1988.
[15] L. Puig, pointed groups and construction of characters, Math. Z. 176 (1981), 265-292.
[16] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Science Publication, 1995.
[17] İ. Tuvay, On Brauer indecomposability of Scott modules of Park-type groups, J. Group Theory 17 (2014), Pages 1071-1079.

City University London, Department of Mathematics, Northampton Square, London, EC1V 0HB, United Kingdom

E-mail address: radha.kessar.1@city.ac.uk
Department of Mathematics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

E-mail address: koshitan@math.s.chiba-u.ac.jp
City University London, Department of Mathematics, Northampton Square, London, EC1V 0HB, United Kingdom

E-mail address: markus.linckelmann.1@city.ac.uk

