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Abstract. We give a geometric criterion for the breakdown of an Einstein

vacuum space-time foliated by a constant mean curvature, or maximal, foli-

ation. More precisely we show that the foliated space-time can be extended
as long as the the second fundamental form and the first derivatives of the

logarithm of the lapse of the foliation remain uniformly bounded. We make
no restrictions on the size of the initial data.

1. Introduction

This paper is concerned with the problem of a geometric criterion for breakdown
of solutions (M,g) of the vacuum Einstein equations.

Rαβ(g) = 0. (1)

To describe the problem we assume that a part of space-time M∗ ⊂M is foliated
by the level hypersurface of a time function t, monotonically increasing towards
future, with lapse n and second fundamental form k defined by,

k(X,Y ) = −g(DXT, Y ), n =
(
− g(Dt,Dt)

)−1/2 (2)

where T is the future unit normal to Σt, D is the space-time covariant derivative
associated with g, and X,Y are tangent to Σt and . Let Σ0 be a fixed leaf of the t
foliation, corresponding to t = t0. We shall refer to Σ0 as initial slice. We assume
that the space-time regionM∗ is globally hyperbolic, i.e. every causal curve from a
point p ∈M∗ intersects Σ0 at precisely one point. We also assume that the initial
slice verifies the following assumption.

A 1. There exists a finite covering of Σ0 by a finite number of charts U such that
for any fixed chart, the induced metric g verifies

∆−1
0 |ξ|2 ≤ gij(x)ξiξj ≤ ∆0|ξ|2, ∀x ∈ U (3)

with ∆0 a fixed positive number.

We consider the following two situations:
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(1) The surfaces Σt are asymptotically flat and maximal.

trk = 0.

(2) The surfaces Σt are compact, of Yamabe type −1, and of constant, negative
mean curvature. They form what is called a (CMC) foliation .

trk = t, t < 0

Though our methods apply equally well to both situations we shall only consider
here the latter case, which is somewhat easier to treat due to the compactness of
the level surfaces Σt. We shall thus assume in what follows that the region M∗ is
equal to ∪t∈[t0,t∗)Σt, with t∗ < 0. We can also assume that the initial hypersurface
Σ0 corresponds to t0 = −1.

Remark. In the second case the CMC conjecture asserts that it should be possible
to extend the foliation, in a smooth manner, to all values of trk = t < 0, see [And]
and references therein.

Given p ∈ M∗ we can define a point-wise norm |Π(p)| of any space-time tensor Π
via decomposition

X = −X0T +X, X ∈ TM, X ∈ TΣt

We denote by ‖Π(t)‖Lp the Lp norm of Π on Σt. More precisely,

‖Π(t)‖Lp =
∫

Σt

|Π|pdvg

with dvg the volume element of the metric g of Σt. The main result of this paper
is the following theorem.

Theorem 1.1 (Main theorem). Let (M,g) be a globally hyperbolic development of
Σ0 foliated by the CMC level hypersurfaces of a time function t < 0, such that Σ0

corresponds to the level surface t = t0. Assume that Σ0 verifies A1. Then the first
time T∗ < 0, with respect to the t-foliation, of a breakdown is characterized by the
condition

lim sup
t→T−∗

(
‖k(t)‖L∞ + ‖∇ log n(t)‖L∞

)
=∞ (4)

More precisely the space-time together with the foliation Σt can be extended beyond
any value t∗ < 0 for which,

sup
t∈[t0,t∗)

‖k(t)‖L∞ + ‖∇ log n(t)‖L∞ = ∆0 <∞ (5)

Condition (5) can be reformulated in terms of the deformation tensor of the future
unit normal T, π = (T)π = LTg. By a simple calculation, expressed relative to an
orthonormal frame e0 = T, e1, e2, e3, we find,

π00 = 0, π0i = n−1∇in, πij = −2kij . (6)

Consistent with the statement of the main theorem we assume that T is an ap-
proximate Killing vectorfield in the following sense,
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A2. There exists a constant ∆0 such that,

sup
t∈[t0,t∗)

‖π(t)‖L∞ ≤ ∆0 (7)

In addition to the constant ∆0 in A1, A2 we introduce another constant R0 which
plays an important role in the proof, which bounds the L2 norm of the spacetime
curvature tensor R on Σ0,

‖R(t0)‖L2(Σ0) ≤ R0 (8)

To prove our main theorem we have to show that if assumptions A1 and A2 are
satisfied then the space-timeM∗ can be extended beyond t∗. We want to emphasize
that theorem 1.1 is a large data result; indeed we make no smallness assumptions
on the constants ∆0 and R0.

Our theorem is connected and partially motivated by the following three earlier
breakdown criteria results:

1. The first is a result of M. Anderson, [And], who showed that a breakdown can
be tied to the condition that

lim sup
t→t−∗

‖R(t)‖L∞ =∞.

Our result can be viewed as complimentary. It is clear however that the condition
(4) is formally weaker as it refers only to the second fundamental form k and the
lapse n which requires one degree less of differentiability. Moreover a condition
on the boundedness of the L∞ norm of R exhausts all the dynamical degrees of
freedom of the equations. Indeed, once we know that ‖R(t)‖L∞ is finite, one can
find bounds for n, ∇n and k on Σt purely by elliptic estimates. This is certainly
not true in our case.

2. Our result can be also compared to the well known Beale-Kato-Majda, [BKM],
criterion for breakdown of solutions of the incompressible Euler equation

∂tv + (v · ∇)v = −∇p, div v = 0,

with smooth initial data at t = t0. A routine application of the energy estimates
shows that solution v blows up if and only if∫ t∗

t0

‖∇v(t)‖L∞dt =∞. (9)

The Beale-Kato-Majda result improves the blow up criterion by replacing it with
the following condition on the vorticity ω = curl v:∫ t∗

t0

‖ω(t)‖L∞dt =∞. (10)
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To relate ∇v and ω one observes that

div v = 0, curl v = ω

forms an elliptic system for v in terms of ω. Thus ∇v can be expressed in terms ω
via a singular integral operator, i.e. a zero order pseudodifferential operator:

∇v = P 0(ω). (11)

Although P 0 does not define a bounded map L∞ → L∞ it can be shown that (11)
is sufficient to reduce the breakdown condition (9) to the more satisfying one (10),
in terms of the vorticity alone.

Similarly, in the case of the Einstein equations energy estimates, expressed relative
to a special system of coordinates ( such as wave coordinates), show that breakdown
does not occur unless ∫ t∗

t0

‖∂g(t)‖L∞dt =∞.

This condition however is not geometric as it depends on the choice of a full coor-
dinate system. Observe that both the spatial derivatives of the lapse ∇n and the
components of the second fundamental form, kij = − 1

2n
−1 ∂tgij , can be viewed as

components of ∂g.

Note however that after prescribing k and ∇n we are still left with many more
degrees of freedom in determining ∂g. The fundamental difficulty that one needs
to overcome is that of deriving bounds for R using only bounds for ‖∇ log n(t)‖L∞+
‖k(t)‖L∞ and geometric informations on the initial hypersurface Σ0. Clearly this
cannot be done by elliptic estimates alone. Thus, as opposed to both the results of
M. Anderson and Beale-Kato-Majda, it is far less obvious that a condition such as
(4) can cover all dynamic degrees of freedom of the Einstein equations. Despite the
formal similarity with the previous results mentioned above, the proof of Theorem
1.1 requires a conceptually different treatment.

3. Finally, the result whose proof is closest in spirit to ours and which has played
the main motivating role in developing our approach, is the proof of global regularity
of solutions of the Yang-Mills equations in R3+1 by Eardley and Moncrief, see [EM1],
[EM2]. To explain the connection of their result to ours we review below its main
ideas.

Recall that the curvature tensor Fαβ of a Yang Mills connection λαdxα, with values
in the Lie algebra su(N) is a critical point of the Yang-Mills functional

YM [F] =
∫

R3+1
Tr
(
?F ∧ F

)
and verifies the wave equation,

�(λ)F = F ? F, (12)

where �(λ) denotes the covariant wave operator,

�(λ)F = DαDαF = �F + [λ, ∂F] + [∂λ,F] + [λ, [λ,F]],
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� denotes the usual D’Alembertian in R3+1 and Da = ∂α + [λα, ·] the gauge co-
variant derivative. Since the Minkowski space-time metric

m = −dt2 + δijdx
idxj

is static (in particular n = 1 and k = 0) the energy of F associated with the
energy-momentum tensor Q[F]αβ = F λ

α Fβλ + ?F λ
α
?Fβλ and vectorfield T = ∂t is

conserved. In particular, the flux of energy Fp through the null boundary N−(p)
of the domain of dependence J−(p) of an arbitrary point p can be bounded by the
energy of the initial data which we denote by I0. We assume that smooth data for
F is prescribed at t = 0 and restrict J−(p) and N−(p) to t ≥ 0. We recall that
the flux has the form, Fp =

( ∫
N−(p)

Q[F](L,T)
)1/2 with L = −∂t + ∂r the null

geodesic generator of N−(p) normalized by the condition < L,T >= 1.

The proof of the global regularity of solutions of the Yang-Mills equations is based
on the boundedness of the flux Fp ≤ I0 < ∞. Here are a summary of the main
steps.

1. Rewrite (12) in the form �F = F ? F − (�(λ) − �)F. Using the explicit rep-
resentation, in R3+1, of solutions to the inhomogeneous wave equation, we deduce,
for all points p, with t > 0,

F(p) = (4π)−1

∫
N−(p;δ)

r−1F ? F + F(0)(p; δ) (13)

− (4π)−1

∫
N−(p;δ)

r−1(�(λ) −�)F.

Here N−(p, δ) represents the portion of the null cone N−(p) included in the time
slab [t(p) − δ, t(p)), with t(p) the value of the time parameter at p. Also r is the
distance, in euclidean sense, to the vertex p and F(0)(p; δ) represents an homoge-
neous solution to the wave equation whose initial data at t = t(p)− δ coincide with
those of F.

2. Ignore, for a moment, the presence of the third term on the right hand side of
(13). Using the explicit form of the nonlinear term F ? F one notices that at least
one component of the product can be estimated by the flux Fp of F through the null
hypersurface N−(p). Denoting |F| =

∑
αβ |Fαβ |, we have by a simple estimate1,

|(F(p)− F(0)(p; δ)| . Fp
( ∫
N−(p;δ)

r−2
)1/2 ‖F‖L∞(J−(p;δ))

. δ1/2Fp‖F‖L∞(J−(p,δ))

where ‖F‖L∞(J−(p,δ)) denotes the sup- norm of |F| for all points in the domain
of dependence J−(p) of p intersected with the slab t(p) − δ, t(p)]. Therefore, we
deduce that if δ1/2 · Fp is sufficiently small, then for any t ≥ 0,

‖F(t)‖L∞ . ‖F(t− δ)‖L∞ + ‖DF(t− δ)‖L∞ (14)

1Here and throughout the paper the notation F . G means F ≤ cG with c a universal constant.
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3. Arguing recursively and using the standard local existence theorem for the
Yang-Mills system2, one can find bounds for all components of the curvature tensor3

F(p) depending only on the fact that Fp is uniformly bounded and the initial data
data F(0) is smooth.

4. One can show that (14) remains true even as we take into consideration the
presence of the third term in (13). Consider for example what could be, potentially,
the most dangerous term, ∫

N−(p;δ)

r−1λ · ∂F.

Here we have to hope that we can integrate by parts to transfer the derivative
from F to λ. This can only be done if λ · ∂ is tangential to the light cone N−(p).
Miraculously, this can be achieved by taking λ in the Cronström gauge, that is one
assumes that the connection 1-form λ satisfies

(x− y)αλα = 0, (15)

where xα are the space-time coordinates of p and yα those of a point q ∈ N−(p).
With this choice, after the integration by parts, one can treat all the remaining
terms in (�(λ)−�)F roughly in the same way as the main term F ?F . To show this
one has to observe that the value of λ at any point q in the domain of dependence
of p can be estimated by ‖F‖L∞(J−(p,δ)). This leads to the same estimate (14) as
stated in the Lemma above.

5. In [Kl-Ma] the global regularity result was reproved by strengthening the clas-
sical local existence result to λ ∈ H1(R3) and E ∈ L2(R3), which is at the same
regularity level as the energy norm. That required, instead of the pointwise esti-
mates (14), a new generation of L4 type estimates, called bilinear. The premise of
the [Kl-Ma] approach was the fact that, once we have a local existence result which
depends only on the energy norm of the initial data, global existence can be easily
derived by a simple continuation argument.

6. In [Kl-Ro5] we have developed a gauge independent approach to the proof of the
Eardley-Moncrief result. The approach is based on a Kirchoff-Sobolev parametrix
for �(λ), similar to the one we use in this paper, which replaces (13) by a gauge
invariant formula depending, implicitly4, only on the values of F along N−(p).

This paper was motivated in part by the desire to adapt the Eardley-Moncrief
argument5 to General Relativity. The above discussion indicates that the Eardley-
Moncrief proof relies on two independent ingredients: conservation of energy and
pointwise bounds on curvature, which depend only on the flux and initial data.
Since the analogue of the Yang-Mills energy in General Relativity (the Bel-Robinson
energy) is not conserved one can only hope to reproduce the second part of the

2In a given gauge such as the Coulomb or the Lorenz gauge
3Once bounds are established for F (p) one can proceed in the same manner to derive bounds

for derivatives of F at p.
4Through transport equations along the null boundary of the causal past of p
5Adapting [Kl-Ma] to General Relativity is the goal of the bounded L2-curvature conjecture,

see [Kl].
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Eardley-Moncrief argument and prove a conditional regularity result which states,
roughly, that smooth solutions of the Einstein equations, in vacuum, remain smooth,
and can therefore be continued, as long as an integral quantity, we call the flux of
curvature, remains bounded. A possibility of such a result first became apparent
to us in a discussion with V. Moncrief6. Such a result could also be deduced, in
principle, from the stronger bounded L2-curvature conjecture, according to which
the initial value problem is well posed for initial data sets with L2 bounds on its
curvature. In this paper we actually take a step closer to implementing the full
analogue of the Eardley-Moncrief result. Rather then imposing a direct condition
on the finiteness of the Bel-Robinson energy and curvature flux we formulate con-
ditions (perhaps more natural albeit more restrictive) which control the extent to
which the energy is not conserved. These conditions, which form our breakdown
criterion, involve uniform bounds on the second fundamental form k and derivatives
of the lapse n.

In what follows we give a short summary of how the main ideas in the proof of the
Eardley-Moncrief result for Yang-Mills can be adapted to GR.

1. The curvature tensor R of a 3 + 1 dimensional vacuum spacetime (M,g), see
(1), verifies a wave equation of the form,

�gR = R ?R (16)

where �g denotes the covariant wave operator �g = DαDα.

2. The Bel-Robinson tensor has the form

Q[R]αβγδ = RαλγµRλ µ
β δ + ? Rαλγµ

? Rλ µ
β δ .

and verifies, DδQαβγδ = 0. It can thus be used to derive energy and flux estimates
for thee curvature tensor R. As opposed to the case of the Yang-Mills theory,
however, in General Relativity the background metric is a dynamic variable itself
and thus does not admit, in general, Killing fields (and in particular a time-like
Killing field). This means that we can not associate conserved quantities to a
divergence free Bel-Robinson tensor. It is at this point where we need crucially
our approximate Killing condition A2. Indeed that condition suffices to derive
bounds for both energy and flux associated to the curvature tensor R. Using the
Bel-Robinson energy momentum tensor Q the energy associated to a slice Σt is
defined by the integral

E(t) =
∫

Σt2

Q[R](T,T,T,T) (17)

while the flux, through the null boundary N−(p) of the domain of dependence (or
causal past) J−(p) of a point p, is given by the integral

F−(p) =
( ∫
N−(p)

Q[R](L,T,T,T)
) 1

2 (18)

6V. Moncrief has been independently pursuing the analogy between the Einstein and Yang-Mills
equations by developing an integral representation of the curvature tensor in General Relativity

based on the Hadamard-Friedlander method (as in [Fried]), see [M].
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where L is the null geodesic generator of N−(p) normalized at the vertex p by
< L,T >= 1.

As in the case of the Yang-Mills equations it is precisely the boundedness of the
flux of curvature that plays a crucial role in our analysis. In General Relativity the
flux has even more fundamental role as it is also needed to control the geometry
of the very object it is defined on, i.e. the boundary of the causal past of p. This
boundary, unlike in the case of Minkowski space, is not determined a-priori but
depends in fact on the space-time we are trying to control.

3. In the construction of a parametrix for (16) we cannot, in any meaningful way,
approximate �g by the flat D’Alembertian �. To deduce a formula analogous to
(14) one might try to proceed by the geometrics optics construction of parametrices
for �g, as developed in [Fried]. Such an approach would require additional bounds
on the background geometry, determined by the metric g, incompatible with the
limited assumption A2 and the implied finiteness of the curvature flux. We rely
instead on a geometric version, which we develop in [Kl-Ro5], of the Kirchoff-
Sobolev formula, in the spirit of that used by Sobolev in [Sob] and Y. Choquet-
Bruhat in [Br]7. Applying that formula to equation (16) we obtain the following
analogue of the formula (14):

R(p) = −
∫
N−(p;δ)

A · (R ?R) + E +
∫
N−(p;δ)

Err ·R (19)

where A is a 4-covariant 4-contravariant tensor defined as a solution of a transport
equation along N−(p, δ) with appropriate (blowing-up) initial data at the vertex
p, N−(p; δ) denotes the portion of the null boundary N−(p) in the time interval
[t(p) − δ, t(p)] and the error term Err depends only on the extrinsic geometry of
N−(p; δ). The term E depends, in principle, only on the properties of the space-time
in the interval [t(p)− δ, t(p)− δ/2].

4. As in the Yang-Mills setting the structure of the term R ? R allows us to
estimate one of the curvature terms by the flux of curvature:

|
∫
N−(p,δ)

A · (R ?R)| . F−(p) · ‖R‖L∞(N−(p,δ)) · ‖A‖L2(N−(p,δ)) (20)

. δ1/2 · F−(p) · ‖R‖L∞(N−(p,δ)),

provided that,

‖A‖L2(N−(p;δ)) . δ
1/2. (21)

Neglecting, for a moment, the third integral in (19) we can thus expect to prove a
result analogous to that in (14), see proposition 5.11.

Theorem 1.2. There exists a sufficiently small δ > 0 and a large constant C,
depending only on ∆0 in assumptions A1 and A2 as well as R0 in (8) such that

7It is extremely important that the error term generated by our parametrix depends only on
the geometry of the boundary of the causal past of a point. This feature is absent in all previous

constructions. A similar feature is also present in the recent work of Moncrief, see [M].
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for all t0 ≤ t < t∗,

‖R(t)‖L∞ . δ−1C sup
t−2δ≤t′≤t−δ/2

(
‖R(t′)‖L2 + ‖DR(t)‖L2 + ‖D2R(t)‖L2

)
(22)

5. The proof of (20) depends on verifying (21). In addition, to estimate the third
term in (19), we need to provide estimates for tangential derivatives of A and other
geometric quantities associated to the null hypersurfaces N−(p). In particular, it
requires showing that N−(p) remains a smooth (not merely Lipschitz) hypersurface
in the time slab (t(p)− δ, t(p)] for some δ > 0 dependent only on the constants ∆0

and R0. Thus to prove the desired theorem we have to show that all geometric
quantities, arising in the parametrix construction, can be estimated only in terms
of the flux of the curvature F−p along N−(p) and our main assumption A1. Yet,
to start with, it is not even clear that we can provide a lower bound for the radius
of injectivity of N−(p). In other words the congruence of null geodesics, initiating
at p, may not be controllable8 only in terms of the curvature flux. Typically, in
fact, lower bounds for the radius of conjugacy of a null hypersurface in a Lorentzian
manifold are only available in terms of the sup-norm of the curvature tensor R along
the hypersurface, while the problem of short, intersecting, null geodesics appears
not to be fully understood even in that context. The situation is similar to that
in Riemannian geometry, exemplified by the Cheeger’s theorem, where pointwise
bounds on sectional curvature are sufficient to control the radius of conjugacy but
to prevent the occurrence of short geodesic loops one needs to assume in addition
an upper bound on the diameter and a lower bound on the volume of the manifold.

In a sequence of papers, [Kl-Ro1]–[Kl-Ro3], see also [Wang]9 we have proved lower
bounds on the geodesic radius of conjugacy of null hypersurfaces. The methods
developed in those papers can be adapted to also prove lower bounds on the radius
of conjugacy with respect to the time parameter10 t. It may however be possible
that the radius of conjugacy of the null congruence is bounded from below and yet
there are past null geodesics from a point p intersecting again at points arbitrarily
close with respect to the time parameter t), to p. In [Kl-Ro4] we have shown that
this cannot happen in a space -time verifying our conditions A1 and A2. Thus
the combined results of [Kl-Ro1]-[Kl-Ro4] allow us to derive a lower bound on the
radius of injectivity of N−(p) depending only on ∆0.

6. As in the case of Yang-Mills equations one can use the result of Theorem 1.2,
together with the classical local existence result for the Einstein equations, such as
that in [C-K], to show that solutions can be extended as long the bounds on (T)π
hold true.

8Different null geodesics of the congruence may intersect, or the congruence itself may have

conjugate points, arbitrarily close to p.
9In [Kl-Ro1]-[Kl-Ro3] we have considered the case of the congruence of outgoing future null

geodesics initiating on a 2-surface S0 embedded in a space-like hypersurface Σ0. The extension

of our results to null cones from a point forms the subject of Qian Wang’s Princeton 2006 PhD
thesis, see [Wang].

10The results in [Kl-Ro1]-[Kl-Ro3] and [Wang] were proved with respect to the geodesic folia-
tion. In this paper, as well as in [Kl-Ro4], we rely on an extension of these results to the foliation

on N−(p) induced by the space-like foliation Σt.
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Finally we would like to point out possible refinements of our main theorem 1.1.
We expect that one should be able to replace the pointwise condition A2 with the
integral condition, ∫ t∗

t0

‖π(t)‖2L∞dt <∞ (23)

Moreover it may be possible to improve the result even further by eliminating the
term ∇ log n in (4) or (23) and requiring instead only a pointwise bound on n.

2. Constant Mean Curvature foliations

As described in the introduction (M∗,g) denotes a Lorentzian manifold of the form
M∗ = I×Σ, where Σ is a three dimensional, compact, connected, orientable smooth
manifold foliated by a CMC foliation Σt with lapse n and second fundamental k,

n =
(
− g(Dt,Dt)

)−1/2
, k(X,Y ) = g(DXT, Y )

where T denotes the future unit normal to Σt. The time interval I = [t0, t∗), where
t0 = −1 and t∗ < 0.

We decompose a space-time vectorfield X relative to the unit timelike T,

X = X0T +X, < T, X >= 0, (24)

We define the positive definite Riemannian metric,

h(X,Y ) = X0 · Y 0 + g(X,Y ). (25)

where g denotes the metric induced on Σt. We can also write (25) in the form,

hαβ = gαβ + 2TαTβ . (26)

Given a space-time tensor U we denote by |U | its norm with respect to the metric
h. More precisely, if U is a m− covariant tensor,

|U |2 = hi1j1 · · ·himjmUi1...imUj1...jm (27)

The following bound follows immediately from our main assumption (5),

|DT| . ∆0 (28)

Since Dγhαβ = 2(DγTαTβ + TαDγTβ) we have |Dh| ≤ 4|DT|. Therefore,

|Dh| . ∆0 (29)

Also, since the components of the deformation tensor π = (T)π = LTg are given
by,

π00 = 0, π0i = n−1∇in, πij = n−1∂tgij = −2kij ,

we have,

| (T)π| . ∆0 (30)

Given two tensors U, V we shall denote by U ·V any tensor which is obtained from
the tensor product of U and V by taking contractions with respect to the space-time
metric g. Clearly,

|U · V | ≤ |U | · |V |.
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For any coordinate chart O, with coordinates x = (x1, x2, x3), we denote by (x0 =
t, x1, x2, x3) the transported coordinates on I×O obtained by following the integral
curves of T. In these coordinates the metric g takes the form

g = −n2dt2 + gijdx
idxj , (31)

Relative to these coordinates t, x we have the equations,

∂tgij = −2nkij (32)
∂tkij = −∇i∇jn+ n(Rij + trgkkij − 2kiaka j) (33)

with Rij the Ricci curvature of of the induced metric g on Σt. We also have the
constraint equations,

R− |k|2 + (trk)2 = 0 (34)

∇jkij = ∇itrk. (35)

In view of the constant mean curvature condition on the foliation Σt we can always
reparametrize t so that

trgk = t. (36)

As mentioned in the introduction we can assume that the initial hypersurface Σ0

corresponds to the value t = t0 = −1. In view of (33), (34) and (36) we deduce the
lapse equation,

∆n = |k|2n− 1 (37)

At a point p of minimum for n we must have |k|2n − 1 ≥ 0. Therefore, at p
n ≥ |k(p)|−2. On the other hand, since |k|2 = |k̂|2 + 1

3 (trk)2, at a point of maximum
we have, |k̂|2n+ 1

3 (trk)2n− 1 ≤ 0. Therefore,

1
‖k(t)‖2L∞

≤ n ≤ 3
t2
. (38)

Observe also that, since ∂t log(det g) = −2ntrk = −2nt,

d

dt
|Σt| =

d

dt

∫
Σ0

√
det gdx = −

∫
Σ0

nt
√

det gdx.

where |Σt| denotes the volume of the compact manifold Σt. Thus,

0 ≤ d

dt
|Σt| ≤ 3|Σt||t|−1

As a consequence of (36) the ratio of the volumes of |Σt| and |Σ0| can be estimated
by,

1 ≤ |Σt|
|Σ0|

≤ |t0|
3

|t|3

Therefore, since t0 = −1, we have proved,

Proposition 2.1. For all −1 = t0 ≤ t < t∗ < 0 we have the bounds,
1

‖k(t)‖2L∞
≤ n ≤ 3

t2
(39)
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Moreover, if |Σt| denotes the volume of Σt and Σ0 = Σt0 ,

|Σ0| ≤ |Σt| ≤
1
|t|3
|Σ0| . |t|−3 (40)

2.2. Coordinate estimates. We recall the following lemma, see lemma 2.2 in
[Kl-Ro4].

Lemma 2.3. If Σ0 is compact and verifies A1 of the introduction, there must exist
a number ρ0 > 0 such that every point y ∈ Σ0 admits a neighborhood B, included
in a neighborhood chart U , such that B is precisely the Euclidean ball B = B

(e)
ρ0 (y)

relative to the local coordinates in U .

Proof : See the proof of Lemma 2.2. in [Kl-Ro4].

Next we recall the result of proposition 4.1. in [Kl-Ro4].

Proposition 2.4. If assumptions A1 and A2 are verified, then there exists a large
constant C = C(∆0) such that in the region M∗,

C−1|ξ|2 ≤ gij(t, x)ξiξj ≤ C|ξ|2, ∀x ∈ U (41)

Proof : For convenience we reproduce the proof given in [Kl-Ro4]. We fix a
coordinate chart U and consider the transported coordinates t, x1, x2, x3 on I ×U .
Thus ∂tgij = −2nkij . Let X = X be a time-independent vector on M tangent to
Σt. Then,

∂tg(X,X) = −1
2
nk(X,X).

Clearly,

|nk(X,X)| ≤ |nk|g|X|2g ≤ ‖nk(t)‖L∞ |X|2g
with |k|2g = gacgbdkabkcd and |X|2g = XiXjgij = g(X,X). Therefore, since ∂t|X|2g =
∂tg(X,X),

−2‖nk(t)‖L∞ |X|2g ≤ ∂t|X|2g ≤ 2‖nk(t)‖L∞ |X|2g.
Thus,

|X|g0e
−2

R t
t0
‖nk(τ)‖L∞dτ ≤ |X|2gt ≤ |X|g0e

2
R t
t0
‖nk(τ)‖L∞dτ

from which (41) immediately follows.

2.5. Sobolev inequalities. The properties of local transported coordinates estab-
lished in the previous section can be used to prove the following Sobolev inequality
for scalar functions.

Proposition 2.6. Assume assumptions A1 and A2 verified. There exists a con-
stant C depending only on ∆0 such for every smooth scalar function on Σt, t0 ≤
t < t∗ such that

‖f‖
L

3
2 (Σt)

≤ C
(
‖∇f‖L1(Σt) + ‖f‖L1(Σt)

)
(42)
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Proof : By a partition of unity we may assume that f has compact support in a
local chart V = Σt ∩ (I × U) of transported coordinates t, x = (x1, x2, x3). Then,
writing

f(x) =
∫ x1

−∞
∂1f(y, x2, x3)dy =

∫ x2

−∞
∂2f(x1, y, x3)dy =

∫ x3

−∞
∂1f(x1, x2, y)dy,

|f(x)|3/2 ≤
(∫ x1

−∞
|∂1f(y, x2, x3)|dy ·

∫ x2

−∞
|∂2f(x1, y, x3)|dy

∫ x3

−∞
|∂1f(x1, x2, y)

∣∣dy)1/2

Thus, by Hölder, ∫
V

|f(x)|3/2dx ≤ (
∫
V

|∇f(x)|dx)3/2

Therefore, since in view of (41) we have C−3/2 ≤
√
|g| ≤ C3/2,( ∫

V

|f(x)|3/2
√
|g|dx

) 1
2 .

∫
V

|∇f(x)|
√
|g|dx.

which proves (42) as desired.

Corollary 2.7. For any smooth tensorfield F on Σt and any 2 ≤ p ≤ 6,

‖F‖Lp(Σt) ≤ C
(
‖∇F‖3/2−3/p

L2(Σt)
‖F‖3/p−1/2

L2(Σt)
+ ‖F‖L2(Σt)

)
(43)

Proof : We have,

‖F‖2p/3Lp = ‖|F |2p/3‖L3/2 ≤ C
(
‖∇|F |2p/3‖L1 + ‖|F |2p/3‖L1

)
≤ C

(
‖∇F‖L2 + ‖F‖L2

)
· ‖|F |2p/3−1‖L2

≤ C
(
‖∇F‖L2 + ‖F‖L2

)
· (‖F‖

L
4p−6

3
)

4p−6
6

In the particular case when p = 6 we derive,

‖F‖4L6 ≤ C
(
‖∇F‖L2 + ‖F‖L2

)
· ‖F‖3L6

Therefore,

‖F‖L6 ≤ C
(
‖∇F‖L2 + ‖F‖L2

)
Similarly, for p = 3,

‖F‖2L3 ≤ C
(
‖∇F‖L2 + ‖F‖L2

)
· ‖F‖L2

and thus,

‖F‖L3 ≤ C
(
‖∇F‖L2 + ‖F‖L2

)1/2 · ‖F‖1/2L2

The general case follows by interpolation.

Here is another useful simple calculus inequality which we will make use of.

Lemma 2.8. Let F be a tensorfield on a compact Riemannian manifold. Then,

‖∇F‖L4 ≤ 2‖∇2F‖1/2L2 ‖F‖1/2L∞
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Proof : After an integration by parts and Hölder,∫
Σ

|∇F |4 ≤ 4‖∇2F‖L2‖∇F‖2L4‖F‖L∞

Hence,

‖∇F‖2L4 ≤ 4‖∇2F‖L2‖F‖L∞

Remark. We cannot use transported coordinates to derive a Sobolev inequality
of the form,

‖f‖L∞ . ‖∇2f‖L2 + ‖f‖L2

even in the case of a scalar function f . Indeed, the standard Sobolev inequality in
a coordinate chart U provides,

‖f‖L∞(U) .
3∑

i,j=1

‖∂i∂jf‖L2(U) + ‖f‖L2(U)

On the other hand ∇i∇jf = ∂i∂jf − Γlij∂lf and therefore we cannot derive the
desired estimate without a bound for the L3 norm of Γ. Unfortunately, the only way
to estimate Γ is by differentiating the equation ∂tg = −2nk from which we could
only bound its L2 norm. To get around this difficulty we need a better system of
coordinates. In [Kl-Ro4] we have a proved a slightly more general version of the
following:

Theorem 2.9. Assume thatM∗ is globally hyperbolic and verifies the assumptions
A1 and A2 as well as (8). Then, for any ε > 0, there exists r0 > 0, depending
only on ε,∆0,R0, t∗, such that on any geodesic ball Br ⊂ Σt, r ≤ r0, centered at
a point pt ∈ Σt, there exist local coordinates relative to which the metric gt verify
conditions

(1 + ε)−1δij ≤ gij ≤ (1 + ε)δij (44)

r

∫
Br(p)

|∂2gij |2dvg ≤ ε. (45)

As a corollary we derive the following version of the Sobolev inequality

Corollary 2.10. Given a smooth scalar function f on Σt we have,

‖f‖L∞(Σt) ≤ C
∥∥∇2f‖L2(Σt) + ‖f‖L2(Σt)

)
(46)

with C > a universal constant, i.e. depending only on the fundamental constants
∆0,R0, t∗.

3. Basic Curvature energy estimates

3.1. General procedure. We recall the general procedure to derive energy esti-
mates for R, see section 7.1 in [C-K]. First let W denote a Weyl field, i.e a four
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covariant tensor traceless tensor Wαβγδ verifying all the algebraic symmetries of
the curvature tensor R. Let,

Q[W ]αβγδ = WαλγµW
λ µ
β δ + ?Wαλγµ

?W λ µ
β δ (47)

Given a vectorfield X we denote Pα = Q[W ]αβγδXβXγXδ. By a straightforward
calculation,

DαPα = DivQ[W ]XβXγXδ +
3
2
Qαβγδ

(X)παβXγXδ

where (X)π is the deformation tensor of X Therefore, integrating on the slab
∪t′∈[t0,t]Σt′ we derive the following.

Proposition 3.2. Let Q = Q[W ] be the Bel-Robinson tensor of a Weyl field W .
Then,∫

Σt

Q(X,X,X,T) =
∫

Σ0

Q(X,X,X,T) +
∫ t

t0

∫
Σt′

DivQ(X,X,X)ndvg

+
3
2

∫ t

t0

∫
Σt′

Qαβγδ
(X)παβXγXδndvg (48)

with dvg denoting the volume element on Σt.

The following proposition is an immediate consequence, see also section 5 in [Kl-Ro4]
for a proof. One simply needs to apply the proposition above for X = T together
with the positivity of Q(T,T,T,T) and the uniform bounds for (T)π and n.

Proposition 3.3. Under assumption A2 There exists a constant C = C(∆0, t∗)
such that, for any t0 ≤ t < t∗ < 0,

‖R(t)‖L2 ≤ CR0. (49)

where R0 is the constant defined by (8).

Definition 3.4. In what follows we extend the usual notation A . B to include
inequalities A ≤ cB where c = c(t∗,∆0,R0) is a constant which depends on our
fundamental constants t∗, ∆0 and R0, see also footnote following (14).

In particular, in view of proposition 3.3 we can write

‖R(t)‖L2 . R0 . 1.

3.5. Wave equation for the curvature tensor. Recall the Bianchi identities,

D[σRαβ]γδ = 0 (50)

or, equivalently since Rαβ = 0,

DδRαβγδ = 0 (51)

Differentiating (50) once more and taking the trace we derive,

2Rαβγδ + DσDαRβσγδ + DσDβRσαγδ = 0



16 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Now, in view of (51), commuting covariant derivatives,

DσDαRβσγδ = R µσ
β αRµσγδ + R µσ

γ αRβσµδ + R µσ
δ αRβσγµ

DσDβRασγδ = R µσ
α βRµσγδ + R µσ

γ βRασµδ + R µσ
δ βRασγµ

Hence,

DσDαRβσγδ + DσDβRσαγδ = Rµσγδ

(
R µσ
β α −R µσ

α β

)
− Rασγµ

(
R µσ
δ β + R σµ

β δ

)
− Rασµδ

(
R σµ
β γ + R µσ

γ β

)
Thus introducing the notation,

(R ?R)αβγδ = −Rµσγδ

(
R µσ
β α −R µσ

α β

)
+ Rασγµ

(
R µσ
δ β + R σµ

β δ

)
(52)

+ Rασµδ

(
R σµ
β γ + R µσ

γ β

)
we derive,

�R = R ?R (53)

Clearly W = R ?R is a Weyl field, i.e. it satisfies all the algebraic symmetries of
the curvature tensor plus the traceless condition W µ

α µβ = 0.

3.6. Energy estimates for higher derivatives. To estimate the first derivatives
of R we shall use the covariant wave equation (53). Recall the positive definite
space-time metric h defined by (25). Given a tensor-field Uα1...αm we write, for
simplicity,

hIJUIUJ = hα1β1 . . . hαmβmUα1...αmUβ1...βm

UI = Uα1...αm , UJ = Uβ1...βm , hIJ = hα1β1 . . . hαmβm

Consider the energy-momentum type tensor Q(w)
αβ associated with the covariant

wave operator � acting on tensors,

Q(w)[U ]αβ : = hIJDαUIDβUJ −
1
2
gαβhIJgµνDµUIDνUJ (54)

We have,

DβQ(w)[U ]αβ = hIJDαUIDβDβUJ + hIJDβDαUIDβUJ − gαβhIJgµνDβDµUIDνUJ

+ DβhIJDαUIDβUJ −
1
2
gαβDβhIJgµνDµUIDνUJ

= hIJDαUI(�UJ) + hIJ(DβDαUI −DαDβUI)DβUJ

+ DβhIJ
(
DαUIDβUJ −

1
2
gαβgµνDµUIDνUJ

)
Consequently, in view of (29),

|DQ(w)[U ]| . |DU ||2U |+ |R||U ||DU |+ ∆0|DU |2

Therefore since,

Dβ(Q(w)[U ]αβTα) = DβTαQ(w)[U ]αβ + T βDβQ(w)[U ]αβ (55)

we derive,

|Dβ(Q(w)[U ]αβTα)| . |DU ||2U |+ |R||U ||DU |+ ∆0|DU |2 (56)
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On the other hand,

Q(w)[U ](T,T) =
1
2
hIJ
(
D0UID0UJ +

k∑
l=1

DlUIDlUJ
)

=
1
2
|DU |2

Integrating (55) we derive,∫
Σt

|DU |2 = 2
∫

Σt

Q(w)[U ](T,T)

≤
∫

Σt0

|DU |2 +
∫ t

t0

∫
Σt′

|Dβ(Q(w)[U ]αβTα)|

.
∫ t

t0

∫
Σt′

(
|DU ||2U |+ |R||U ||DU |+ ∆0|DU |2

)
. (57)

Applying this to U = R and using the equation (53) we obtain,

‖DR(t)‖2L2 . ‖DR(t0)‖2L2 + ∆0

∫ t

t0

‖DR(t′)‖2L2dt′

+
∫ t

t0

‖DR(t′)‖L2‖R(t′)‖L2‖R(t′)‖L∞dt′

. ‖DR(t0)‖2L2 + ∆0

∫ t

t0

‖DR(t′)‖2L2dt′

+ R0

∫ t

t0

‖DR(t′)‖L2‖R(t′)‖L∞dt′

Therefore in order to get an a-priori estimate for ‖DR(t)‖L2 it suffices to prove an
estimate for the L∞ norm of R. More precisely,

Proposition 3.7. Assume that the assumptions A1, A2 hold true. Then the
following derivative curvature estimates hold true for all t0 ≤ t < t∗,

‖DR(t)‖2L2 ≤ C
(
‖DR(t0)‖2L2 +

∫ t

t0

‖R(t′)‖2L∞dt′
)

(58)

with C a constant depending only on ∆0, R0 and t∗.

To estimate the second derivatives of R we apply (57) to the tensor U = DR.
Thus,∫

Σt

|D2R|2 .
∫ t

t0

∫
Σt′

(
|D2R| |�(DR)|+ |R||DR||D2R|+ ∆0|D2R|2

)
.

.
∫ t

t0

∫
Σt′

(
|R||DR||D2R|+ ∆0|D2R|2

)



18 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Hence,

‖D2R(t)‖2L2 . ‖D2R(t0)‖2L2 + ∆0

∫ t

t0

‖D2R(t′)‖2L2dt′

+
∫ t

t0

‖D2R(t′)‖L2‖DR(t′)‖L2‖R(t′)‖L∞dt′

. ‖D2R(t0)‖2L2 + ∆0

∫ t

t0

‖D2R(t′)‖2L2dt′

+
∫ t

t0

‖D2R(t′)‖L2‖DR(t′)‖L2‖R(t′)‖L∞dt′.

We therefore, deduce the following,

Proposition 3.8. Under the same assumptions as in proposition 3.8 we have,

‖D2R(t)‖2L2 ≤ C
(
‖D2R(t0)‖2L2 +

∫ t

t0

‖DR(t′)‖2L2‖R(t′)‖2L∞dt′
)

(59)

with C a constant depending only on ∆0, R0 and t∗.

4. Past null boundaries

The goal of this section is to review the main result of [Kl-Ro4], concerning the
null boundaries of past causal domains, and show how they apply to our situation.
Starting with any point p in a subsetM∗ = ∪t∈[t0,t∗)Σt of M, we denote by J−(p) =
J−(p;M∗) the causal past of p, relative toM∗, by I−(p) its interior and by N−(p)
its null boundary. In general N−(p) is an achronal, Lipschitz hypersurface, ruled by
the set of past null geodesics from p. We parametrize these geodesics with respect
to the future, unit, time-like vector Tp. Then, for every direction ω ∈ S2, with S2

denoting the standard sphere in R3, consider the null vector `ω in TpM,

g(`ω,Tp) = 1, (60)

and associate to it the past null geodesic γω(s) with initial data γω(0) = p and
γ̇ω(0) = `ω. We further define a null vectorfield L on N−(p) according to

L(γω(s)) = γ̇ω(s).

L may only be smooth almost everywhere on N−(p) and can be multi-valued on
a set of exceptional points. We can choose the parameter s in such a way so that
L = γ̇ω(s) is geodesic and L(s) = 1.

For a sufficiently small δ > 0 the exponential map G = G−p defined by,

(s, ω)→ γω(s) (61)

is a diffeomorphism from (0, δ) × S2 to its image in N−(p). Moreover for each
ω ∈ S2 either γω(s) can be continued for all positive values of s11 or there exists a
value s∗(ω) beyond which the points γω(s) are no longer on the boundary N−(p)
of J−(p) but rather in its interior, see [HE]. We call such points terminal points
of N−(p). We say that a terminal point q = γω(s∗) is a conjugate terminal point

11for which γω(s) stays in M∗
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if the map G is singular at (s∗, ω). A terminal point q = γω(s∗) is said to be a cut
locus terminal point if the map G = G−p is nonsingular at (s∗, ω) and there exists
another null geodesic from p, passing through q.

Thus N−(p) is a smooth manifold at all points except the vertex p and the terminal
points of its past null geodesic generators. We denote by T −(p) the set of all
terminal points and by Ṅ−(p) = N−(p) \ T −(p) the smooth portion of N−(p).
The set G−1(T −(p)) has measure zero relative to the standard measure dsdaS2 of
the cone [0,∞)×S2, as it is a subset of the set {(s∗(ω), ω)ω ∈ S2}. We will denote
by dAN−(p) the corresponding measure on N−(p). Observe that the definition is
not intrinsic, it depends in fact on the normalization condition (60).

Definition 4.1. Given p ∈ M∗ we define i−∗ (p) to be the supremum over all
the values s > 0 for which the exponential map G−p : (s, ω) → γω(s) is a global
diffeomorphism. We shall refer to i−∗ (p) as the past null radius of injectivity at p
relative to the geodesic foliation defined by (60).

We also define i−∗ (p, t) (the null radius of injectivity relative to the t-foliation) to
be the supremum over all the values t(p) − t, t < t(p), for which the exponential
map G = G−p,t,

(t, ω)→ γω(t) = γω(s(t)) (62)

is a global diffeomorphism.

Definition 4.2. We define d−(p, t) to be the distance, measured with respect to
the time parameter t, from p to the past boundary of M∗ ⊂M.

The following theorem is an immediate consequence of the Main Theorem II proved
in [Kl-Ro4].

Theorem 4.3. Assume thatM∗ is globally hyperbolic and verifies the assumptions
A1 and A2 as well as (8). There exists a positive number i∗ > 0, depending only
on ∆0, R0, and t∗ < 0, such that, for all p ∈M∗,

i−∗ (p, t) > min(i∗, d−(p, t)) (63)

Proof : According to the Main theorem II of [Kl-Ro4] and the remark following it,
i∗ depends only on our main constants, ∆0, R0 and a constant N0 which provides
uniform bounds for the lapse n,

N−1
0 ≤ n ≤ N0.

The finiteness of N0, N
−1
0 follows from (38) and the assumption t∗ < 0.

Once we have a lower bound for i−∗ (p, t) it is straightforward to also get a lower
bound for the radius of injectivity i−∗ (p) with respect to the geodesic foliation.
Indeed all we need is to show that s does not vary much (along N−(p)) as a function
of t in a time interval of size 1. This follows immediately from the following.

Lemma 4.4. There exists a constant c > 0, depending only on ∆0, such that,

c−1 ≤ | dt
ds
| ≤ c. (64)
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Proof : We introduce the null lapse,

ϕ−1 = g(T, L) (65)

Observe that ϕ > 0 with ϕ(p) = 1. Moreover

dt

ds
= −(nϕ)−1 (66)

with n the lapse function of the t foliation. On the other hand, we have

L = −ϕ−1(T +N)

with N of length 1 perpendicular to T. Now,

d

ds
ϕ−1 =

d

ds
g(T, L) = g(DLT, L) = −1

2
(T)πLL

=
1
2
ϕ−2( (T)πTN +

1
2

(T)πNN )).

Therefore,

| d
ds
ϕ−1| . ϕ−2∆0

from which,

|ϕ(s)− 1| . ∆0s. (67)

Thus, for an interval in s of size 1 we deduce that 2−1 ≤ φ(s) ≤ 2 and therefore, in
view of the uniform bound for n of proposition 2.1, we infer that there must exist
a constant c > 0, depending only on ∆0, such that (64) holds.

4.5. Geometry of smooth null cones. In this subsection we provide additional
geometric informations for the null boundaries N−(p, δ) with δ < i−∗ (p, t) with
i−∗ (p, t) a lower bound for past null injectivity radius with respect to the t-foliation.
Here N−(p, δ) denotes the portion of N−(p) for t between t(p) and t(p)− δ.

Let St denote the 2 dimensional space-like surfaces of intersection between Σt and
N−(p). At any point of N−(p, δ) \ {p} we can define a conjugate null vector L
with g(L,L) = −2 and such that L is orthogonal to the leafs St. In addition we
can choose (ea)a=1,2 tangent toSt such that together with L and L we obtain a null
frame,

g(L,L) = −2, g(L,L) = g(L,L) = 0,

g(L, ea) = g(L, ea) = 0, g(ea, eb) = δab. (68)

We denote by γ the restriction of g to St i.e. γ(X,Y ) = g(X,Y ) Endowed with
this metric St is a 2 dimensional compact riemannian manifold. We denote by ∇/
the restriction of D to St, Clearly, for all X,Y ∈ T (St),

∇/XY = DXY +
1
2
g(DXY, L)L+

1
2
g(DXY,L)L

We recall, see [Kl-Ro1] the definitions of the following basic geometric quantities:
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Definition 4.6. The null second fundamental forms χ, χ, torsion ζ and the Ricci
coefficient η of the foliation St are defined as follows:

χab = g(DaL , eb), χ
ab

= g(DaL , eb), (69)

ζa =
1
2
g(DaL , L), η

a
=

1
2
g(ea , DLL). (70)

In addition we define trχ = γabχab, χ̂ab = χab − 1
2 trχγab and

ω = −1
4
g(DLL,L), µ = L(trχ) +

1
2

trχtrχ+ 2ωtrχ

We note that

χ
ab

= −ϕ2χab + 2ϕkab,

η
a

= −ζa − (nϕ)−1ea (nϕ) ,

ω = ϕn−1N(n).

Our conventions imply that

∇/XY = DXY −
1
2
χ(X,Y )L− 1

2
χ(X,Y )L (71)

We extend the definition of ∇/ to any covariant S− tangent tensor π by the usual
formula,

∇/Xπ(Y1, . . . , Yk) = Xπ(Y1, . . . , Yk)− π(∇/XY1, . . . , Yk)− . . .− π(Y1, . . . ,∇/XYk)

with X,Y1, . . . Yk S-tangent. Given an S-tangent vector-field X we define ∇/ LX to
be the projection to St of DLX,

∇/ LX = DLX +
1
2
g(DLX,L)L

We extend the definition to any covariant S-tangent tensor π by

∇/ Lπ(Y1, . . . , Yk) = Lπ(Y1, . . . , Yk)− π(∇/ LY1, . . . , Yk)− . . .− π(Y1, . . . ,∇/ LYk)

with Y1, . . . Yk S-tangent.

Given an S-tangent tensor π we write ∇/ π = (∇/ π,∇/ Lπ) and

|∇/ π|2 = |∇/ Lπ|
2 + |∇/ π|2.

4.7. Tangential covariant derivatives of space-time tensors. In this section
we make sense of covariant derivatives of space-time tensors, not necessarily S-
tangent along a fixed surface S = St ⊂ N−(p, δ).

We start by defining a covariant derivative for space-time vector Aµ defined on S.
Thus we view A as a section of a vector bundle T ∗M over S. We interpret the
covariant derivative ∇/A of A along S as a 1-form on S with values in T ∗M. Thus,
for every vectorfield X ∈ TS and any vectorfield Z in TM,

∇/A(X;Z) = ∇/XA(Z) = X
(
A(Z)

)
−A(DXZ) = DXA(Z)

We also write,
(∇/XA)µ = XaDaAµ, ∀X ∈ TS.
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We define ∇/ 2
A, the second covariant derivatives of A along S, by the formula,

∇/ 2
A(X,Y ;Z) = (∇/X∇/A)(Y ;Z) = X(∇/A(Y ;Z))−∇/A(∇/XY ;Z)−∇/A(Y ; DXZ)

or, for simplicity,

∇/ 2
Aµ(X,Y ) = (∇/ Y (∇/XA))µ − (∇/∇/

Y
X
A)µ

These definitions can be easily extended to higher covariant derivatives along S and
to higher order tensors A.

Given a A an S-tangent 1-form on M with values in TM we define

∇/ LA(X;Y ) = L(A(X;Y ))−A(∇/ LX;Y )−A(X; DLY ), ∀X ∈ TS, Y ∈ TM.

This definition extends naturally to higher order tensors A. Note that for a scalar
function A on M we have

∇/ LA = DLA

4.8. Commutation formula. In what follows we will need the following commu-
tation lemma, see [Kl-Ro1].

Lemma 4.9. Let Aµ be a function on M with values in TM verifying the equation

∇/ LA = F (72)

for some TM valued function F . Then,

∇/ L(∇/ aAµ) + χab∇/ bAµ = ∇/ aFµ + (ζa + η
a
)Fµ + R λ

µ La
Aλ. (73)

4.10. Curvature flux.

Definition 4.11. The curvature flux along12 N−(p), is defined as follows.

F(p) =
∫
N−(p)

Q[R](T,T,T, L) =
∫ t(p)

t0

ndt

∫
St

Q[R](T,T,T, L)dAt

with dAt the area element of St. We also let

F(p, δ) =
∫
N−(p,δ)

Q[R](T,T,T, L) =
∫ t(p)

t(p)−δ
ndt

∫
St

Q[R](T,T,T, L)dAt

to be the curvature flux along N−(p, δ) for δ < i−∗ (p, t).

The following is an immediate consequence of the energy estimates of section 3.1,
see also [Kl-Ro4].

Proposition 4.12. Under assumptions A2 as well as (8) the flux of curvature
N−(p) (denoted F(p)), can be bounded by a uniform constant independent of p.
More precisely, for all p with t0 < t(p) ≤ t∗ < 0

F(p) ≤ C(t∗,∆0)R0.

where C is the constant of proposition 3.3

12Given a scalar function f on N−(p) we denote its integral on N−(p) to be,
R
N−(p) f =R t(p)

t0
ndt

R
St
fdAt =

R
N−(p) f dAN−(p). .
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Proof See section 5 in [Kl-Ro4].

We can also introduce the reduced flux, or geodesic curvature flux,

R(p) =
( ∫ t(p)

t0

∫
St

|α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2
)1/2 (74)

as well as

R(p, δ) =
( ∫ t(p)

t(p)−δ

∫
St

|α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2
)1/2 (75)

where α, β, ρ, σ, β, α are the null components of the Riemann curvature tensor rel-
ative to the St foliation (note that the α component of curvature does not appear
in the expression for the curvature flux):

αab = RLaLb , βa =
1
2
RaLLL, ρ =

1
4
RLLLL

σ =
1
4
?RLLLL, β

a
=

1
2
RaLLL, αab = RLaLb (76)

Proposition 4.13. Under the same assumptions as in proposition 4.12 we have,
with a constant C depending only on t∗,∆0,

R(p) ≤ C(t∗,∆0)R0 (77)

Proof We can express L,L in the form,

L = ϕ−1(T +N), L = ϕ(T−N)

where N is unit normal of St on Σt and ϕ the null lapse defined by 65. Also,

T = ϕL+ ϕ−1L (78)

Therefore,

Q(T,T,T, L) = ϕ3Q(L,L,L, L) + 3ϕ2Q(L,L,L, L)
+ 3ϕQ(L,L, L, L) +Q(L,L, L, L)
= ϕ3|α|2 + 3ϕ2|β|2 + 3ϕ(ρ2 + |σ|2) + |β|2

and the result follows from the bound (67) for ϕ.

We can also get additional estimates for the flux associated to the first derivatives
of the curvature tensor. To see that we go back to the derivation of theorem 3.7.
We now integrate (55) in J−(p) and derive,∫
N−(p)

Q(w)[R](T, L) ≤
∫

Σt0∩J−(p)

Q(w)[R](T, L) +
∫
J−(p)

|Dβ(Q(w)[R]αβTα)|.

Similarly,∫
N−(p,δ)

Q(w)[R](T, L) ≤
∫

Σt(p)−δ∩J−(p,δ)

Q(w)[R](T, L) +
∫
J−(p,δ)

|Dβ(Q(w)[R]αβTα)|.

Here J−(p) is the causal past of p and J−(p, δ the portion of J−(p) to the future
of Σt(p)−δ. Now,

Q(w)[R](T, L) = Q(w)[R](ϕL+ ϕ−1L,L)
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and,

Q(w)[R](L,L) = |∇/ LR|2

Q(w)[R](L,L) = |∇/R|2

We introduce the flux quantities,

F (1)(p) =
∫
N−(p)

(|∇/R|2 + |∇/ LR|2),

F (1)(p, δ) =
∫
N−(p,δ)

(|∇/R|2 + |∇/ LR|2) (79)

We can therefore reformulate proposition 3.7 as follows,

Theorem 4.14. Assume that A1, A2 hold true. Then, for any 0 < δ ≤ i∗, with
i∗ > 0 defined by theorem 4.3,

‖DR(t)‖L2 + sup
p∈Σt

F (1)(p, δ) ≤ C

(
‖DR(t− δ)‖L2 +

( ∫ t

t−δ
‖R(t′)‖L∞dt′

)1/2)
(80)

with C a constant depending only on ∆0, R0, t∗.

4.15. Estimates for the Ricci coefficients. In this section we state without
proof a proposition concerning the regularity properties of the Ricci coefficients
trχ, χ̂, ζ and η as well as mass aspect function µ associated to the St foliation.
A similar result was proved for the corresponding quantities associated with the
geodesic foliation in [Kl-Ro1], see also [Wang]. The methods used for the geodesic
foliations can be easily adapted to prove the result below.

Proposition 4.16. For any t ∈ (t(p)−δ, t(p)) with δ < i−∗ (p, t) the Ricci coefficients
trχ, χ̂, ζ, η and µ satisfy the following estimates.

sup
St

|trχ− 2
s(t)
|+ ‖ sup

t∈(t(p)−δ,t(p))
(t(p)− t)|∇/ trχ| ‖L2

ω
≤ C, (81)

sup
ω∈S2

∫ t(p)

t(p)−δ

(
|χ̂|2 + |ζ|2 + |η|2)(t, ω

)
dt ≤ C, ‖µ‖L2(N−(p,δ)) ≤ C

(82)

with a constant C depending only on ∆0, t∗ and curvature flux R(p, δ)). Here
the point N−(p, δ) are parametrized by the coordinates (t, ω) with ω ∈ S2. The
volume forms dAN−(p,δ) on N−(p, δ) and dSt on St are respectively equivalent to
the expressions (t(p)−t)2 dt dσS2 and (t(p)−t)2 dσS2 with dσS2 denoting the standard
volume form on S2. Notation L2

ω above refers to the L2 norm with respect to the
measure dσS2 . Finally, the quantities (t(p)− t) and s(t) are equivalent.

5. Kirchoff-Sobolev Parametrix

Earlier in this paper, see Propositions 3.7, 3.8, we were able to derive L2 estimates
for derivatives of the curvature tensor which depend on the additional assumption
on the boundedness of the L∞ norm of the curvature tensor. To estimate the
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latter we rely on a special version of the Kirchoff-Sobolev parametrix introduced in
[Kl-Ro5].

5.1. Optical function. To make sense of our Kirchoff-Sobolev formula we need
to define an optical function13 u, in a neighborhood of N−(p, δ), 0 < δ < i−∗ (p, t),
such that it vanishes identically on N−(p, δ). Here p is an arbitrary point ofM∗ =
∪t∈[t0,t∗)Σt. We recall that we have assumed that M∗ is globally hyperbolic with
Cauchy hypersurface Σt0 . We define u uniquely relative to the time-like vector Tp

as follows:

Let ε > 0 a small number and Γε : (1− ε, 1 + ε)→M∗ denote the timelike geodesic
from p such that Γε(1) = p and Γ′ε(1) = Tp. From every point q of Γε let N−(q)
be the boundary of the past set of q and N−(q, δ) defined as before.

We now define u to be the function, constant on each N−(q, δ), such that for
q = Γ(t),

u|Ṅ−(q) = t− 1.

This defines a smooth function u which vanishes onN−(p, δ) and verifies the eikonal
equation,

gαβ∂αu∂βu = 0. (83)

Observe that the vectorfield L = gαβ∂βu ∂α is null, geodesic and verifies the nor-
malization condition,

g(L,Tp) = Tp(u) = 1.

Thus L is the same as the vectorfield L defined earlier in section 4.

5.2. Main representation formula. We shall next state a result which was
proved in [Kl-Ro5], concerning tensorial wave equations of the form �Ψ = F , with
Ψ a k-covariant tensorfield. Let p ∈ M∗ and δ < i−∗ (p, t). Let A be a tensor-field
of the same order verifying,

DLA +
1
2
Atrχ = 0, sA(p) = J0 on N−(p, δ) (84)

where J0 is a fixed k-tensor at p, |J0(p)| ≤ 1.

Theorem 5.3. Let p ∈ M∗ and δ < i−∗ (p, t). Let Ψ be a k covariant tensor-field
vanishing identically for t ≤ t(p) − δ. Then, given A a solution to the transport
equations (84) we have14,

4πΨ(p) · J0 = −
∫
N−(p, δ)

(
A�Ψ− 1

2
A ·R(·, ·, L , L) ·Ψ

)
+

1
2

∫
N−(p, δ)

µA ·Ψ

+
∫
N−(p, δ)

(
4/A + ζa∇/ aA

)
·Ψ (85)

13i.e. a function which verifies (83) below.
14Here 4/ denotes the angular Laplace-Beltrami operator on the 2-surfaces St.
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We apply the theorem to the tensor-field Ψ = f(t)R where 0 ≤ f ≤ 1 is a smooth
function supported in the interval [t(p), t(p) − δ] and identically equal to 1 in the
interval [t(p), t(p)− δ/2]. Since R verifies (53) we have,

�(fR) = fR ?R + (�f)R + 2DαfDαR

with R ?R defined in (52). In view of the theorem above we have the formula,

4πR(p) · J0 = I(p) + J(p) +K(p) + L(p) + E (86)

I(p) =
∫
N−(p, δ)

A · f(R ?R)

J(p) = −1
2

∫
N−(p, δ)

A ·R(·, ·, L , L) · fR

K(p) =
∫
N−(p, δ)

(
4/A + ζa∇/ aA

)
· fR

L(p) =
1
2

∫
N−(p, δ)

µA · fR

E =
∫
N−(p, δ)

(
�f(A ·R) + 2Dαf(A ·DαR)

)
(87)

5.4. Estimates for I(p). We consider the orthonormal frame E0 = T, E1, E2, E3

which is well defined everywhere in a neighborhood of the vertex p. Clearly the norm
|U |, of an arbitrary tensorfield U , defined according to definition (27) coincides with
the square root of the sum of squares of all the components of the tensor relative
to this orthonormal frame. It is easy to se that,

|A · (R ?R)| ≤ |A| · |R ?R|.

On the other hand, if e4 = L, e3 = L the null pair (68) and denote by α(R ?
R), β(R ? R), ρ(R ? R), σ(R ? R), β(R ? R), α(R ? R) the null decomposition of
R ?R, as a Weyl field, relative to the null pair e3, e4 we can easily check that,

|R ?R|2 . |α(R ?R)|2 + |β(R ?R)|2 + |ρ(R ?R)|2 (88)

+ |σ(R ?R)|2 + |β(R ?R)|2 + |α(R ?R)|2 (89)

Indeed if we denote the Weyl field R ? R by W and introduce its electric and
magnetic parts Eij = Wi0j0, Hij =? Wi0j0 we have,

|W |2 = |E|2 + |H|2.
Indeed, we have,

Wijk0 = − ∈ s
ij Hsk,

?Wijk0 =∈ s
ij Esk

Wijkl = − ∈ijs∈klt Est, ?Wijkl = − ∈ijs∈klt Hst

On the other hand, in terms of the null decomposition of W , relative to e1, e2, e3, e4,

Eab = 1
4αab + 1

4αab −
1
2ρδab Hab = − 1

4

?
αab + 1

4

?
αab − 1

2σδab
EaN = 1

2 βa + 1
2βa HaN = 1

2
?β

a
− 1

2
?βa

ENN = ρ HNN = σ

Hence,
|W |2 = |E|2 + |H|2 . |α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2 + |α|2
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which proves (88). We now estimate the right hand side of (88). Clearly any
null component of R ? R can be expressed as a quadratic expression in the null
components of R. We observe that no null component of R ?R can be quadratic
in α. This can be easily proved by a signature consideration. Indeed we assign
signature 2 to α(R), signature 1 to β(R) signature 0 to ρ(R) and σ(R), signature
−1 to β(R) and signature −2 to α(R). Similarly we assign signature 2 to α(R?R),
signature 1 to β(R ? R) signature 0 to ρ(R ? R) and σ(R ? R), signature −1 to
β(R ?R) and signature −2 to α(R ?R). It is easy to check that in the algebraic
formula expresses the null components of R ? R in terms of a quadratic form in
the null components of R the total signature of each term must be the same as the
signature of the corresponding null component of R ?R. Thus,

α(R ?R) = (R ?R)a3b3 = Qr[α, (ρ, σ)] + Qr[β, β]

where Qr[ , ] denotes a simple quadratic expression in the null components of R.
Similarly,

β(R ?R) = Qr[α, β] + Qr[β, (ρ, σ)]

ρ(R), σ(R) = Qr[α, α] + Qr[β, β] + Qr[(ρ, σ), (ρ, σ)]

β(R ?R) = Qr[β, α] + Qr[(ρ, σ), β])

α(R ?R) = Qr[(ρ, σ), α] + Qr[β, β])

We now introduce the notation

(|R|†)2 = |α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2 (90)

and deduce the following inequality,

|R ?R| . |R|† · |R| (91)

We are now ready to estimate the term I(p). Using the bounds for R(p) of theorem
4.13 and R(p, δ) ≤ R(p) we derive,

|I(p)| .
∫
N−(p, δ)

|A||R|† · |R|

.
( ∫
N−(p, δ)

|R|†
)1/2( ∫

N−(p, δ)

|A|2|R|2
)1/2

. R(p, δ)
( ∫ t(p)

t(p)−δ
‖R(t)‖2L∞‖A(t)‖2L2(St)

dt
)1/2

. R(p, δ)
( ∫ t(p)

t(p)−δ
‖A(t)‖2L2(St)

)1/2 sup
t(p)−δ<t<t(p)

‖R(t)‖L∞(St)

We therefore have

|I(p)| . R(p, δ) ‖A‖L2(N−(p,δ)) ‖R‖L∞(N−(p,δ)) (92)

5.5. Estimate for J(p). In view of the fact that,∫
N−(p,δ)

|R(·, ·, L , L)|2 . R(p, δ)2,

we deduce, proceeding exactly as for I,
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Therefore,

|J(p)| . R(p, δ) ‖A‖L2(N−(p,δ)) ‖R‖L∞(N−(p,δ)) (93)

5.6. Estimates for L(p). We proceed as follows,

|L(p)| .
∫
N−(p, δ)

|µ| |A| |R| .
( ∫
N−(p, δ)

|µ|
)1/2( ∫

N−(p, δ)

|A|2 |R|2
)1/2

≤ ‖µ‖L2(N−(p,δ)) ‖A‖L2(N−(p,δ)) ‖R‖L∞(N−(p,δ)) (94)

5.7. The term K(p). Integrating by parts (recall that f is a function of t alone)
we rewrite K(p) as follows,

K(p) = −
∫
N−(p, δ)

f ∇/A · ∇/R +
∫
N−(p, δ)

f ζaDaA ·R

We now estimate as follows,

|K(p)| .
∫
N−(p, δ)

(
|∇/A||∇/R|+ |ζ||∇/A| |R|

)
. ‖∇/A‖L2(N−(p, δ))

(
‖∇/R‖L2(N−(p, δ)) + ‖ζR‖L2(N−(p, δ))

)
Therefore,

|K(p)| . ‖∇/A‖L2(N−(p, δ))

(
‖∇/R‖L2(N−(p, δ)) + ‖R‖L∞(N−(p, δ))‖ζ‖L2(N−(p, δ))

)
Going back to (86) and using the estimates for I, J,K,L obtained above we derive,

Proposition 5.8. The following estimate holds for all p ∈ M∗ and 0 < δ <
i−∗ (p, t).

|R(p)| . E + ‖R‖L∞(N−(p,δ))‖A‖L2(N−(p,δ))

(
R(p, δ) + ‖µ‖L2(N−(p,δ))

)
+ ‖∇/A‖L2(N−(p, δ))

(
‖∇/R‖L2(N−(p, δ)) + ‖R‖L∞(N−(p,δ))‖ζ‖L2(N−(p,δ))

)
We now recall that according to (77)

R(p, δ) . R(p) ≤ C(t∗,∆0)R0.

Furthermore, by (82)
‖µ‖L2(N−(p,δ)) ≤ C(t∗,∆0,R0)

and

‖ζ‖L2(N−(p,δ)) =

(∫ t(p)

t(p)−δ
ndt

∫
St

|ζ|2dAt

) 1
2

. δ sup
ω2

S

(∫ t(p)

t(p)−δ
|ζ(t, ω)|2 dt

) 1
2

≤ δC(t∗,∆0,R0).

Finally, in the next section we will establish that

‖(t(p)− t)A‖L∞(N−(p,δ)) ≤ C, ‖∇/A‖L2(N−(p, δ)) ≤ C
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with a constant C = C(t∗,∆0,R0). This in particular implies that

‖A‖L2(N−(p,δ)) ≤ δ
1
2C(t∗,∆0,R0).

Putting this all together we deduce,

‖R(t)‖L∞ . E + δ
1
2 sup
p∈Σt

‖R‖L∞(N−(p,δ)) + sup
p∈Σt

‖∇/R‖L2(N−(p, δ))

On the other hand, according to (80) we have,

sup
p∈Σt

‖∇/R‖L2(N−(p, δ)) ≤ sup
p∈Σt

F (1)(p, δ) . ‖DR(t− δ)‖L2 +
( ∫ t

t−δ
‖R(t′)‖2L∞dt′

)1/2
Therefore,

‖R(t)‖L∞ . E + ‖DR(t− δ)‖L2 + δ
1
2 sup
t′∈(t−δ,t)

‖R(t′)‖L∞ (95)

5.9. Estimates for the error term E. We first observe that,

|�t| . 1, |Dt| . 1.

Therefore, since f ′ and f ′′ vanish for |t− t(p)| ≤ δ/2 and

‖f ′‖L∞ ≤ δ−1, ‖f ′′‖L∞ ≤ δ−2

we derive,

|E| . δ
1
2 ‖A‖L2(N−(p,δ)) sup

t′∈[t−δ,t−δ/2]

(
δ−2‖R(t′)‖L2(S′t)

+ δ−1‖DR(t′)‖L2(S′t)

)
. sup

t′∈[t−δ,t−δ/2]

(
δ−1‖R(t′)‖L2(S′t)

+ ‖DR(t′)‖L2(S′t)

)
. sup

t′∈[t−δ,t−δ/2]

(
δ−1

(
‖R(t′)‖L2(Σt′ )

+ ‖DR(t′)‖L2(Σt′ )

)
+ ‖D2R(t′)‖L2(Σt′ )

)
The last step is a simple trace theorem which can be proven by an integration by
parts argument.

5.10. Final Estimate. Returning to (95), taking a supremum in t over an interval
of size δ and using the Sobolev inequality of corollary 2.10,

‖R(t′)‖L∞ ≤ C
(
‖R(t′)‖L2 + ‖DR(t′)‖L2 + ‖D2R(t′)‖L2

)
,

we obtain,

Proposition 5.11. There exists a positive δ > 0, sufficiently small but depending
only on ∆0,R0, t∗, such that the following estimate holds true,

‖R(t)‖L∞ ≤ Cδ−1 sup
t′∈[t−2δ,t−δ/2]

(
‖R(t′)‖L2 + ‖DR(t′)‖L2 + ‖D2R(t′)‖L2

)
with C a constant depending only on ∆0, t∗, R0.
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We now return to propositions 3.7 and 3.8. Combining them with the proposition
above we deduce,

‖DR(t)‖2L2 ≤ C
(
‖DR(t− δ/2)‖2L2 +

∫ t

t−δ/2
‖R(t′)‖2L∞dt′

)
≤ Cδ−1 sup

t′∈[t−δ,t−δ/2]

(
‖R(t′)‖L2 + ‖DR(t′)‖2L2 + ‖D2R(t′)‖2L2

)
‖D2R(t)‖2L2 ≤ C

(
‖D2R(t− δ)‖2L2 +

∫ t

t−δ/2
‖DR(t′)‖2L2‖R(t′)‖2L∞dt′

)
≤ C‖D2R(t− δ)‖2L2

+ Cδ−2 sup
t′∈[t−δ,t−δ/2]

(
‖R(t′)‖L2 + ‖DR(t′)‖2L2 + ‖D2R(t′)‖2L2

)2
Consequently, for some C depending only on ∆0,R0 and t∗,

‖R(t)‖H2 . Cδ−1 sup
t′∈[t−δ,t−δ/2]

‖R(t′)‖H2 (96)

where,

‖R(t)‖H2 = ‖R(t)‖L2 + ‖DR(t)‖L2 + ‖D2R(t)‖L2 (97)

Iterating the estimate as many times as needed, in steps of size δ/2, we derive,

Theorem 5.12. Assume that (M,g) is a globally hyperbolic extension of Σ0 ver-
ifying the assumptions A1 and A2. Let M∗ = ∪t∈[[−t0,t∗)Σt ⊂ M with t0 = −1.
There exists a constant C > 0 depending only on ∆0, t∗ and initial data ‖R(t0)‖H2

such that,

sup
t∈[t0,t∗)

‖R(t)‖H2 ≤ C (98)

6. Proof of Main Theorem 1.1

Theorem 5.12 established above provides us with global uniform bounds for the
curvature tensor R and L2 bounds for its first two covariant derivatives. Using
elliptic estimates we can also derive L2 bounds for the first three derivatives of the
second fundamental form, see theorem 8.7. To finish the proof of the Main Theorem
we only need to apply the following local existence result

Proposition 6.1. Let (Σ∗, g, k) be initial data for the Einstein vacuum equations
satisfying the constraint equations. We assume that Σ∗ is compact and has constant
mean curvature τ = gijkij = const < 0. Let R denote the Ricci curvature tensor of
g. Then there exists a smooth future Cauchy development of (Σ, g, k) containing the
region ∪t∈[τ,τ+ρ]Σt, where each Σt is a constant mean curvature hypersurface (with
mean curvature equal to t) and Στ = Σ∗. The constant ρ here depends only on the
diameter and radius of injectivity of Σ∗, the strictly negative constant τ (τ < 0)
and the following constant,

R∗ = ‖R‖L2(Σ∗) + ‖∇R‖L2(Σ∗) + ‖∇2R‖L2(Σ∗) (99)

+ ‖k‖L4(Σ∗) + ‖∇k‖L2(Σ∗) + ‖∇2k‖L2(Σ∗) + ‖∇3k‖L2(Σ∗).
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Proof : The proof requires a slight modification of the local existence theorem
10.2.1 in [C-K].

Theorem 5.12 above, combined with the bounds on the second fundamental form
stated in theorem 8.7, proved below in the Appendix, implies that for each hyper-
surface Σt ⊂ M∗ with t0 ≤ t < t∗ the constant R∗, defined in (99), is uniformly
bounded. On the other hand, Theorem 2.9 together with L∞ bounds on curvature
implied by Theorem 5.12 guarantees a uniform bound for both the diameter and
radius of injectivity of Σt for t0 ≤ t < t∗. As a consequence, under assumptions
A1, A2, as long as t∗ < 0 we can construct a smooth globally hyperbolic CMC
development containing the region ∪t∈[t0,t∗]Σt.

7. Estimates for A.

Proposition 7.1. Let A be the tensor defined in (84). Then for all 0 < δ <
i−∗ (p, t),

‖(t(p)− t)A‖L∞(N−(p,δ)) ≤ C(t∗,∆0,R0). (100)

Proof . Recall, see definition 3.4, the convention b . 1 for an inequality of the
form b ≤ C(t∗,∆0,R0). We claim that it suffices to prove the proposition for the
case when Aµ is a vectorfield. The general case can be derived by a simple induction
argument. Recall that we have,

DLA +
1
2

trχA = 0.

with (sA) prescribed to be J0 at the vertex p. In view of the identity dt
ds = −(nϕ)−1

as well as estimate (67), it suffices to prove the inequality

‖sA‖L∞(N−(p,δ)) . 1.

Letting B = sA we have

DLB = −1/2(
2
s
− trχ)B, B|s=0 = J0 (101)

Recall that,

|B|2 = B2
0 + |B|2 = 2|B0|2+ < B,B >

where B0 =< B,T >, B is the projection of B on the foliation Σt and < B,B >=
gµνBµBν . We shall first estimate < B,B > by observing that,

d

ds
< B,B >= −(

2
s
− trχ) < B,B >,

which in turn implies
d

dt
< B,B >= nϕ(

2
s
− trχ) < B,B >,

Therefore, since | < B,B > (0)| . |J(0)| . 1,

| < B(t),B(t) > | ≤ | < B(0),B(0) > | exp
( ∫ t(p)

t

nϕ |trχ− 2
s′
|dt′
)
. 1,
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where the last inequality follows from (67) and (81). Therefore, for all t(p) − δ <
t ≤ t(p),

| < B(t),B(t) > | . 1. (102)

We shall next derive a transport equation for B0 using the fact that B = −B0T+B
d

ds
B0 = < DLB,T > + < B,DLT >

= 1/2(
2
s
− trχ)B0+ < B,DLT >

Observe that,

< B,DLT >= −1
2
ϕ−1

(
< B,DTT + DNT >

)
Therefore, recalling our condition (28),

| < B,DTT + DNT > | . ∆0|B|
Therefore,

d

ds
|B0| . |B0|+ ∆0|B|

On the other hand, from (102), | −B2
0 + |B|2| = | < B,B > | . 1 from which,

|B| .
√

1 +B2
0 . |B0|+ 1

Therefore,
d

dt
|B0| . |B0|+ ∆0(|B0|+ 1)

from which we deduce the estimate

|B0| . 1

Thus, together with (102), we derive,

|B| ≤ |B0|+ |B| . 1 (103)

as desired.

7.2. Estimates for ∇/A.

Proposition 7.3. Let A be the tensor defined in (84). Then,

‖ sup
t(p)−δ≤t≤t(p)

(t(p)− t) 3
2 |∇/A(t)| ‖L2

ω
. 1, (104)

‖∇/A ‖L2(N−(p,δ)) . 1, (105)

Proof In what follows we recall that points on N−(p, δ) are parametrized by the
coordinates (t, ω) with ω ∈ S2. According to to Proposition 4.16 the volume forms
dAN−(p,δ) on N−(p, δ) and dSt on St are respectively equivalent to the expressions
(t(p)− t)2 dt dσS2 and (t(p)− t)2 dσS2 with dσS2 denoting the standard volume form
on S2. Similarly equivalent are the quantities (t(p)−t) and s(t). Notation L2

ω above
refers to the L2 norm with respect to the measure dσS2 .
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We begin by applying the results of lemma 4.9 to the equation DLA + 1
2 trχA = 0.

and derive,

∇/ L(∇/ aAµ) + χab∇/ bAµ = −1
2
∇/ a(trχAµ)− 1

2
(ζa + η

a
)trχAµ + R λ

µ La
Aλ

Therefore,

∇/ L(∇/ aAµ) + trχ(∇/ aAµ) = −χ̂ab∇/ bAµ −
1
2

(∇/ atrχ)Aµ −
1
2

(ζa + η
a
)trχAµ + R λ

µ LaAλ

which we rewrite in the form

∇/ LUaµ + trχUaµ = −χ̂abUbµ + Faµ, U|s=0 = 0 (106)

Faµ = −1
2

(∇/ atrχ)Aµ −
1
2

(ζa + η
a
)trχAµ + R λ

µ LaAλ (107)

with Uaµ = ∇/ aAµ. Observe that

|U|2 = 2|Ua0|2 + UaµU µ
a ,

where, abusing the notation, |Ua0|2 =
∑
a=1,2(Ua0)2.

Then,

∇/ LUa0 + trχUa0 = −χ̂abUb0 + Fa0 +
1
2
φ−1(n−1∇/ jn+ kNj)Uaj

As a consequence,

∇/ L

(
s2Ua0

)
= s2

(
(
2
s
− trχ δab − χ̂ab) ·Ub0 + Fa0 +

1
2
φ−1(n−1∇/ jn+ kNj)Uaj

)
:= s2G

Using that ds
dt = −nϕ and

d

ds

(
s4(Ua0)2

)
= s4g(G,Ua0)

together with boundedness of n and ϕ, we estimate in the range t(p)−δ ≤ t ≤ t(p),

‖ sup
t
s(t)3(Ua0)2‖L1

ω
. ‖ sup

t
s(t)−1

∫ t(p)

t

s(τ)4g(G,Ua0) dτ‖L1
ω

. ‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |G|dτ‖L2

ω
‖ sup

τ
s(τ)3|Ua0|2‖

1
2
L1
ω

. ε−1‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |G|dτ‖2L2

ω
+ ε‖ sup

τ
s(τ)3|Ua0|2‖L1

ω

To control ‖ supt s(t)−1
∫ t(p)
t

s(τ)
5
2 |G|dτ‖L2

ω
we first estimate the integral,

J := ‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |( 2
s(τ)

− trχ δab − χ̂ab) ·Ub0|dτ‖L2
ω
,

as follows,

J . ‖ sup
t

∫ t(p)

t

|( 2
s(τ)

− trχ− χ̂)|dτ‖L∞ω ‖ sup
τ
s(τ)

3
2 |Ua0|‖L2

ω

. ‖ sup
t
s(t)

1
2

∫ t(p)

t

|( 2
s(τ)

− trχ− χ̂)|2dτ‖
1
2
L∞ω
‖ sup

τ
s(τ)

3
2 |Ua0|‖L2

ω

. δ
1
2 ‖ sup

τ
s(τ)

3
2 |Ua0|‖L2

ω
,
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where the last inequality follows from (81) and (82). On the other hand, in view of
(100), (81),(82) for t(p)− δ ≤ t, τ ≤ t(p),

‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |∇/ trχ||A|dτ‖L2

ω
. δ

1
2 ‖ sup

τ
(t(p)− τ)|∇/ trχ|‖L2

ω
. δ

1
2 ,

‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |ζ + η||trχ||A|dτ‖L2

ω
. ‖ sup

τ
(t(p)− τ)|trχ|‖L∞

∫ t(p)

t

|ζ + η|2dτdω . 1.

Moreover, using Proposition 4.13, we have15

‖ sup
t
s(t)−1

∫ (p)

t

s(τ)
5
2 |R λ

µ La||A|dτ‖L2
ω
. ‖ sup

t
s(t)−

1
2

∫ t(p)

t

(t(p)− τ)|R λ
µ La|dτ‖L2

ω

. ‖R λ
µ La‖

1
2
L2(N−(p,δ∗))

. R
1
2
0 .

Note that it is the presence of an L component in the Riemann curvature tensor
R λ
µ La which allows us to express it as a linear combination of the tangential terms

α, β, ρ, σ, β entering into the expression for the curvature flux.

Finally,

‖ sup
t
s(t)−1

∫ t(p)

t

s(τ)
5
2 |ϕ−1(n−1∇/ jn+ kNj)Uaj |dτ‖L2

ω
. ∆0δ‖ sup

τ
s(τ)

3
2 |Ua·|‖L2

ω

Therefore,

‖ sup
t
s(t)3|Ua0|2‖L1

ω
. ε−1

(
1 + s(t)2 +R0

)
+ (ε+ ε−1∆2

0s(t)
2)‖ sup

τ
s(t)3|Ua·|2‖L1

ω

Combining this with the similar estimate on UaµU µ
a we obtain

‖ sup
t(p)−δ≤t≤t(p)

(t(p)− t)3|Ua0|2‖L1
ω
. 1 +R0,

which gives (104). The argument above also provides the inequality

(t(p)−t)‖U‖L2
ω
. (t(p)−t) 1

2 +
1

t(p)− t

∫ t(p)

t

(
(t(p)− τ)‖R λ

µ La‖L2
ω

+ ‖ζ + η‖L2
ω

)
dτ.

Setting
V(τ) = (t(p)− τ)‖R λ

µ La‖L2
ω

+ ‖ζ + η‖L2
ω

and using the L2 maximal function estimate we obtain

‖U‖L2(N−(p,δt)) . 1 +

(∫ t(p)

t(p)−δ
|V (τ)|2 dτ

) 1
2

,

from which we easily conclude that

‖U‖L2(N−(p,δt)) . 1 +R
1
2
0

and hence (105).

15In what follows |R λ
µ La| denotes the norm of a two-tensor Riem(·, L, ea, ·)
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8. Appendix

Recall that the curvature tensor R can be decomposed into its electric and magnetic
parts E,H as follows,

E(X,Y ) =< R(X,T)T, Y >, H(X,Y ) =< ?R(X,T)T, Y >
(108)

with ?R the Hodge dual of R. One can easily check that E and H are tangent,
traceless 2-tensors, to Σt and that |R|2 = |E|2 + |H|2. We easily check the formulas
relative to an orthonormal frame e0 = T, e1, e2, e3,

Rabc0 = − ∈abs Hsc,
?Rabc0 =∈abs Esc (109)

Rabcd = ∈abs∈cdt Est, ?Rabcd = − ∈abs∈cdt Hst

We recall below some of the main formulas involving k,E and H.

Eij −Rij = trk kij − k si ksj (110)
Hij = curl kij (111)

where, for any given symmetric two tensor l of Σt one defines

curl lij =∈ abi ∇albj+ ∈ abj ∇alib.

We also recall the constraint equation for k,

∇jkij −∇itrk = 0 (112)

In the particular case when trk is constant equations (111) and (112) form an elliptic
Hodge system on Σt,

div k = 0 curl k = H (113)

8.1. Elliptic L2- estimates for Hodge systems. Here we recall the following
lemma concerning rank-2 symmetric Hodge systems on a 3 dimensional compact
Riemannian manifold Σ.

Lemma 8.2. The following L2 elliptic estimates hold on a 3 dimensional Riemann-
ian manifold Σ.

i. Let V be a symmetric traceless 2-tensor on Σ verifying,

div V = ρ, curl V = σ (114)

Then, ∫
Σ

(
|∇V |2 + 3RmnV imV n

i −
1
2
R|V |2

)
=
∫

Σ

(|σ|2 +
1
2
|ρ|2) (115)

where Rij is the Ricci curvature of Σ and R its scalar curvature.

ii. For a scalar φ we have,∫
Σ

|∇2φ|2 +
∫

Σ

Rij∇iφ∇jφ =
∫

Σ

|∆φ|2
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Proof . See Proposition 4.4.1 in [C-K].

8.3. A priori estimates for k. We now apply lemma 8.2 to the Hodge system
(113) for k on a fixed hypersurface Σ = Σt, t < 0,∫

Σ

(
|∇k|2 + 3(k2)mn(Emn + (k2)mn − trk kmn)− 1

2
|k|2(|k|2 − (trk)2)

)
=
∫

Σ

|H|2,

where k2
mn = k m′

m km′n and |k|2 = tr(k2). Interpreting k as 3×3 symmetric matrices
we can write

3(k2)mn(k2)mn − 3(k2)mn(k)mntrk − 1
2
|k|2(|k|2 − (trk)2)

= 3tr(k4)− 1
2

(trk2)2 − 3tr(k3)trk +
1
2

tr(k2)(trk)2

Observe that we have the pointwise inequality16, for an arbitrary symmetric matrix
k, tr(k4) ≥ 1

3 |k|
4. Therefore, in the case of a maximal foliation, satisfying the

condition trk = 0, we have∫
Σ

|∇k|2 +
1
2
|k|4 ≤

∫
Σ

|H|2 +
∫

Σ

|E| |k|2 ≤
∫

Σ

|H|2 + |E|2 +
∫

Σ

1
4
|k|4

Similarly, for the constant mean curvature foliation Σt with negative mean curva-
ture trk = t < 0∫

Σ

|∇k|2 +
1
2
|k|4 ≤

∫
Σ

|H|2 +
∫

Σ

|E| |k|2 ≤
∫

Σ

|H|2 + |E|2 +
∫

Σ

1
4
|k|4

This proves the following:

Proposition 8.4. On any leaf Σ of a maximal or a constant negative mean cur-
vature foliation Σt the second fundamental form k verifies the estimate,∫

Σ

|∇k|2 +
1
4
|k|4 ≤

∫
Σ

|H|2 + |E|2 =
∫

Σ

|R|2. (116)

On the other hand In view of the energy estimate of proposition 3.3 we derive,

Corollary 8.5. The following estimates hold true with a constant C depending
only on ∆0 and t∗,

‖∇k(t)‖L2 + ‖k(t)‖L4 ≤ CR0 (117)

8.6. Higher derivatives estimates for k. To derive second derivative estimates
for k we rewrite the curl equation in (113) in the form,

∇ikjm −∇jkim =∈ijs Hsm

Differentiating we obtain,

∇i∇ikjm −∇i∇jkim =∈ijs ∇iHsm

or, symbolically,

∆k = R ? k +∇H

16Indeed diagonalizing k it suffices to prove the inequality for arbitrary real numbers a, b, c,
3(a2 + b2 + c2)2 ≥ a4 + b4 + c4.
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where R ? k is a quadratic expression with respect to the Ricci curvature R of Σt
and k. Thus, since, the Ricci curvature R can be expressed in the form,

Rij − kiakaj + trkkij = Eij

we derive,

|∆k| ≤ |k|3 + |E||k|+ |∇H|
Therefore, ∫

Σt

|∆k|2 ≤
∫

Σt

(
|k|6 + |E|2|k|2 + |∇H|2

)
It is easy to see by a standard integration by parts argument that,∫

Σt

|∇2k(t)|2 .
∫

Σt

|∆k|2 +
∫

Σt

|R|2|∇k|2

Consequently,∫
Σt

|∇2k|2 .
∫

Σt

(
|k|6 + |E|2|k|2 + |∇H|2

)
+
∫

Σt

|R|2|∇k|2

Therefore, since ‖k‖L∞ ≤ ∆0,

‖∇2k(t)‖L2 ≤ ∆2
0

(
‖k(t)‖4L4 + ‖R‖2L2

)
+ ‖∇H(t)‖2L2 (118)

+ ‖R(t)‖L∞‖∇k(t)‖2L2

It is easy to see that ‖∇H(t)‖2L2 . ‖DR(t)‖L2 . Also,

‖R(t)‖L∞ ≤ ‖R‖L∞ + ‖k‖2L∞ . ‖R(t)‖H2 + ∆2
0

Therefore, in view of theorem 5.12 and the bounds for ‖∇k(t)‖L2 and ‖k(t)‖L4 of
corollary 8.5 we derive from (119),

‖∇2k(t)‖L2 ≤ C

with C a constant depending only on ∆0, t∗ and R0.

Differentiating once more the equation for ∆k and proceeding in the same fashion
we can also derive similar bounds for the third derivatives of k. This proves the
following.

Theorem 8.7. The second fundamental form k of the t foliation satisfies the fol-
lowing estimate, for all t0 ≤ t < t∗,

‖∇3k(t)‖L2 + ‖∇2k(t)‖L2 + ‖∇k(t)‖L2 + ‖k(t)‖L4 ≤ C (119)

with C a constant depending only on ∆0, t∗ and R0.
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