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ON THE BREAKING OF WATER WAVES ON A SLOPING BEACH
OF ARBITRARY SHAPE*

By MORTON E. GURTIN (Carnegie-Mellon Universily)

Summary. Greenspan [1] considered water waves of finite amplitude on a beach
of constant slope. He proved that: (G,) A wave of elevation with nonzero slope at the
front propagating shoreward into quiescent water always breaks before the shore.!
(G;) Under the same conditions a wave of depression never breaks.

In this note we do not assume that the beach has constant slope, but rather we allow
the depth to be an arbitrary smooth function of position. We show that the appropriate
generalizations of Greenspan’s results are: (G,’) In the above circumstances a wave of
elevation always breaks; in particular, it breaks at the shore when the amplitude is
sufficiently small, otherwise it breaks before the shore. (G,’) A wave of depression breaks
if and only if a certain integral (involving only the depth function) is finite, and it
never breaks away from shore.

Analysis. The conservation equations for mass and momentum in the (nonlinear)
theory of shallow water are (see Stoker [3]):

nt + {v(ﬂ + h)}z = 0; vl + vv: + gﬂz = 0) (1)

where h(z) + 7(z, t) is the depth of the water, h(z) is the undisturbed depth ahead of
the wave, v(z, t) is the (particle) velocity, and ¢ is the gravitational acceleration. We
assume, in what follows, that h(z) is continuously differentiable.

We now consider a wave front which at time ¢ = 0 occupies the position z = 0 and
which is propagating in the direction of increasing . We assume that across the front:

(a) v and 7 are continuous;

(b) the first and second derivatives of » and # suffer (at most )jump discontinuities.
We assume further that the region ahead of the wave is quiescent, so that

(c) v(x, t) = n(z,t) = 0for0 <t < i(x),
where #(r) is the time at which the wave passes the point z. Note that conditions (a)
and (b) assert that the front is an acceleration wave.

Given a function f(z, t), we write

f @) = lim f(z, 1) )

t1i(z)

for the value of f immediately behind the wave. Then (a) and (c) imply that

v =19 =0, 3)

* Received December 6, 1973.
t Cf. Carrier and Greenspan [2], who established the existence of waves of elevation with zero slope
at the front which do not break.
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while (a)-(c) and Maxwell’s Theorem (see, e.g., Truesdell and Toupin [4], Sec. 175)
yield the compatibility relations

c.) = —@), cm) =—(), €))
where
= () ®

is the velocity of the front. If we evaluate (1) just behind the wave, we conclude, with
the aid of (3), that

()" = —h@)", (@) = —g)" (6)

If we assume that (.)” # 0, then (4) and (6) yield the following well-known formula
for the velocity c:

¢ = (gh)""”. @)
Our next step will be to establish an explicit expression for the amplitude
a=a() = (1) ®)
By (4), (6), and (8),
@) = —ga, ()" = ga/c. 9)

If we differentiate (1), with respect to z and (1), with respect to ¢, and evaluate the
resulting relations immediately behind the wave, we find, using (3) and (7)-(9), that

2 2
0. — 0 + a4 20 < 0, (10)

Next, by (2) and (5),

L) = 0 10, ) = G e

80 that
2 @ - _ i - _ 2 - _ -
c dx (vz) 4 dx (1),) =C (vzz) (vu) . (11)
Eqgs. (7) and (9)-(11) yield the following differential equation for a:
da  3h . 3 . _
atmetogs =0 (12)

To solve this equation one notes that the substitution @ = b™' yields a linear differential
equation for b. This equation is easily solved; the solution in terms of the amplitude a is

its)”

= + I(x) ’

Ao

(13)

where a, = a(0) and h, = h(0) are the initial amplitude and the initial depth, and
3/4 z

I(z) = She [ B, (14)
[\]
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Results. We now assume that the front is propagating up a sloping beach with
shore at x = [, so that h(x) > O for0 <z < land

hd) = 0. (15)

We use the following terminology: the front corresponds to a wave of elevation
(respectively, depression) if a, < 0 (respectively, a, > 0); the wave breaks if a(x) becomes
infinite at some point z. It is clear from (14) and the assumption containing (15) that
I(l) = o« is a distinct possibility; when this is the case we define 1/I(l) = 0. We are
now in a position to state our main result; in the statement of this theorem conditions
(a)-(c) are tacitly assumed to hold.

A wave of elevation always breaks. In particular, the wave breaks before the shore when
|ao] > 1/1(l), at the shore when |ao| < 1/I(1).

A wave of depression propagating up a beach for which I(l) < « always breaks, but at
the shore. On the other hand, when I(l) = « a wave of depression never breaks. '

This theorem is an immediate consequence of (13) and (14). Indeed, by the assump-
tion containing (15) the numerator in (13) is strictly positive on [0, I) and tends to
infinity as ¢ — I. The results for waves of elevation are consequences of this remark and
the following facts: the denominator is strictly negative at x = 0 and increases monotoni-
cally as x increases; the denominator vanishes for x < [ if and only if |a] > 1/I(]).
On the other hand, for a wave of depression the denominator is strictly positive at z = 0,
increases as x increases, and is finite on [0, I). Thus a(z) is finite for0 < z < LIf I(l) < o,
then a(z) — « asz — [ and the wave breaks at the shore. If I(l) = « both the numerator
and the denominator tend to infinity as x — [, but an application of L'Hospital’s rule
shows that

a(x) > —1h.(l) as z—1,

and the wave does not break. This completes the proof.
Assume now that near the shore h behaves like ho(1 — z/0)%; i.e.,

lim —hﬁ“’—)— =1 (forsomep > 0).
z—l xT
W -3)

Then the integral I, defined in (14), is convergent or divergent according as p < 3 or
p > 5. Thus in the present circumstances the second portion of the theorem can be
restated as follows: a wave of depression breaks if and only if the beach is sufficiently
deep near shore.

In view of the above remarks, I(l) = o when the beach has constant slope; thus
as a corollary of our theorem we have Greenspan’s [2] result: for a linear beach a wave
of elevation always breaks before the shore, a wave of depression never breaks.
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