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Based on energy principies, we propose a statistical model to describe the bubble size 
probability density function of the daughter bubbles resulting from the shattering of 
a mother bubble of size Do immersed in a fully developed turbulent water flow. The 
model shows that the bubble size p.d.f. depends not only on Do, but also on the valué 
of the dissipation rate of turbulent kinetic energy of the underlying turbulenee of the 
water, e. The phenomenological model is simple, yet it prediets detailed experimental 
measurements of the transient bubble size p.d.f.s performed over a range of bubble 
sizes and dissipation rates e in a very consistent manner. The agreement between 
the model and the experiments is particularly good for low and modérate bubble 
turbulent Weber numbers, Wet = pAu2(D0)D0/a where the assumption of the binary 
breakup is shown to be consistent with the experimental observations. At larger 
valúes of Wet, it was found that the most probable number of daughter bubbles 
increases and the assumption of tertiary breakup is shown to lead to a better fit of 
the experimental measurements. 

1. Introduction 
The dispersión of an immiscible fluid in a turbulent one is commonly found in 

many engineering as well as natural processes. The size distribution of the drops (or 
bubbles) resulting from the turbulent breakup and the dynamics of their interactions 
with the underlying turbulenee plays a determinant role in the overall performance of 
these processes. For example, in liquid-liquid or gas-liquid chemical separators, the 
absorption rate of a given chemical compound depends not only on the dynamics 
of the motion between the two immiscible fluids, but more importantly on the 
size p.d.f. of the drops (or bubbles) in which one fluid is dispersed in the other. 
Surface-dominated diffusion processes of this nature are also found extensively in 
naturally oceurring phenomena, i.e. air bubbles entrained by the air-sea interaction 
contribute to the exchange of gases and water vapour between the oceans and the 
atmosphere (Thorpe 1982; Farmer & Vagle 1988; Longuet-Higgins 1992; Melville 
1996). A quantitative understanding of drop (or bubble) breakup and coalescence is 
essential to the development of predictive models for the behaviour of these processes. 

Resulting from its widespread use, the problem of the breakup of an immiscible 
fluid immersed in a turbulent flow has been the subject of a continuing investigation 

f With an Appendix by M. S. Longuet-Higgins. 



and has generated a large bibliography (Kolmogorov 1949; Hinze 1955; Coulaloglou 
& Tavlarides 1977; Konno, Aoki & Saito 1983; Cohén 1991; Longuet-Higgins 1992; 
Tsouoris & Tavlarides 1994; Novikov & Dommermuth 1997, among others). 

The framework of the 'population balance equation', given as equation (3.1) of a 
companion paper (Martínez-Bazán, Montañés & Lasheras 1999, referred to hereafter 
as Part 1), has been widely used in chemical engineering, combustión (spray equa-
tion), cloud dynamics etc. to study two-phase processes dominated by breakup and 
coalescence (Coulaloglou & Tavlarides 1977; Williams 1985; Prince & Blanch 1990; 
Tsouoris & Tavlarides 1994; Sathyagal & Ramkrishna 1996; etc). This Boltzmann-
type equation describes the time rate of change of the number density of drops (or 
bubbles) with respect to position and time of a certain size D existing in a time t, at 
a given position x, n(D,x,t), (Williams 1985): 

•£+Vx-(vn) = - — (Rn) + Qb + Qc, (1.1) 

where v is the mean velocity of all the particles of size D, R = dD/dt is the rate of 
change of the size D of a particle due condensation, evaporation and dissolution, Qb 

and Qc are the rate of change of n due to the breakup and coalescence respectively. 
For very dilute systems (negligibly small rate of collisions between particles), and in 
the absence of dissolution (or evaporation) effects, the rate of change of the number 
density of particles can simply be written as the sum of the death rate of particles of 
size D due to their breakup into smaller ones, and the birth rate of particles of size D 
resulting from the breakup of larger ones: 

^ + Vx • (vn) = I m(D0)f(D, D0)g(D0)n(D0) dD0 - g(D)n. (1.2) 

The use of equation (1.2) requires the solution of three closure problems: the first 
involves the breakup frequency, g(D), the second is the average number of daughter 
particles formed from the breakup of a mother particle of size Do, m(D0) and the 
third is the p.d.f. of the daughter particles f(D,D0). Although equation (1.2) applies 
to either drops or bubbles, in this study, we will restrict our analysis to only the case 
of bubbles breaking in a turbulent water flow. 

In Part 1 we have shown that under dilute conditions of air bubbles immersed 
in a turbulent water flow whose turbulence is locally homogeneous and nearly in 
equilibrium, the bubble's breakup frequency is a function of both its size and the 
turbulent kinetic energy (or the dissipation rate, e) of the underlying turbulence, 

í n i r V8-2(^Po)2/3 - 12(T/(pPo) g(e,D0)=Kg , (1.3) 
Do 

where Kg is a constant found experimentally to be equal to 0.25. The above breakup 
frequency, which is based on the simple premise that the breakup time of the bubbles 
is inversely proportional to the sum of the non-inertial forces acting on its surface 
(resulting in deformation and confmement), was found to be in excellent agreement 
with recent experimental measurements (Part 1). In the present study, we will use this 
model for the bubble breakup frequency to solve the remaining two closure problems, 
i.e. to provide models for m(Do) and f(D, Do). 

In the past, three main approaches have been used to model f(D,Do): phenomeno-
logical models based on surface energy considerations (Tsouris & Tavlarides 1994), 
statistical models (Coulaloglou & Tavlarides 1977; Prince & Blanch 1990; Longuet-
Higgins 1992; Novikov 1997), and hybrid models based on a combination of both 



(Konno et al. 1983; Cohén 1991). Among the most widely used phenomenologi-
cal models based on surface energy considerations is the one proposed by Tsouris & 
Tavlarides (1994). They proposed that upon breakup, m(Do) = 2, and only two daugh-
ter droplets of size Di and D2 are formed whose most probable sizes are inversely 
proportional to the amount of surface energy created in the breakup process. This 
gives a minimum probability for the formation of two particles of the same size (since 
their surface energy is máximum), and a máximum probability for the formation of a 
pair made up of a very large particle and a complementary very small one. To avoid 
the singularity present in their model, they also assumed the existence of a minimum 
particle size, Dmin. Their model for the daughter particle p.d.f. gives 

f(DuDo) 
&min \ e?¡ min \ \ymax e(£>i)] 

Bo 
(1.4) 

+ [e max 

where the energy to form a particle of size D\, e{D]), is given by 

e(D1) = KaD2
l+KaDJ naD0 = naD[ Do + 

2/3 

(1.5) 

The máximum energy, emax{Do), corresponding to the formation of two particles of 
diameter Dl = D2 = D0/2

1/3 is 

naD^T" - 1 ] . (1.6) 

As indicated above, equation (1.5) reaches a minimum valué when a particle of 
minimum diameter, Dmin, and a complementary one of máximum size, D„ 
Dmm)1/3» a r e formed. The minimum energy, emin, is given by 

CD 

7i<rDn 

D„ 
Da + 

Dn 

Dn 

2/3 

(1.7) 

The daughter particle's size p.d.f. given by equation (1.4) has a U shape and has 
been shown to lead to results which are radically different from the experimental 
distributions measured in stirred tanks and other turbulent flows (Hesketh, Etchells 
& Russell 1991; Sathyagal & Ramkrishna 1996; Kostoglou & Karabelas 1998; Part 
1; and others). In addition, an important unresolved issue in the above model is the 
need to define a criterion for the valué of Dmin. 

Puré statistical distributions have also been used by Coulaloglou & Tavlarides 
(1977), Prince & Blanch (1990), and others. Coulaloglou & Tavlarides also assumed 
that m(Do) = 2, and that the probability distribution function of daughter droplets 
(or bubbles) is well represented by a normal distribution (as proposed by Valentas & 
Amudson 1966). By selecting the variance so that more than 99.6% of the daughter 
droplets were in the range of volumes between 0 and ^ 
daughter particle size p.d.f. as 

TÍDQ/6, they obtained a 

f(v,v0) 
2.4 

exp -4.5 
(2v - v0)

2 

(1.8) 

where ;;o and v are the volumes of the mother and daughter particles respectively. 
Coulaloglou & Tavlarides showed that this distribution could be adjusted to predict 
some of the experimental results obtained in stirred tanks. 
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Purely statistical studies ha ve been performed by Longuet-Higgins (1992), Novikov 
(1997), and others. Longuet-Higgins proposed a simple mechanism for the breakup 
process by simulating it through a series of a random divisions of a cubical block 
of size unity by a number of planes which are parallel to the faces of the block. In 
studying the p.d.f. resulting from cuts performed in one, two, and three dimensions, 
he obtained an infinite number of possible distributions depending on the number of 
random partitions performed in the initial dimensión. By adjusting the combination 
of the number of cuts performed in each dimensión, he showed that the model could 
fit various experimental results. In the Appendix Longuet-Higgins compares some of 
the measurements described in Part 1 with this model. 

Concerning hybrid models, it is worth noting the model proposed by Konno et al. 
(1980,1983). This model is based on their experimental observations that three daugh-
ter droplets are produced from the breakup of a mother one, m(Do) = 3. They calcu-
lated the probability of obtaining a certain combination of three droplets and weighted 
their probability by a factor proportional to the energy contained in the turbulent 
scales of sizes equal to the size of the daughter droplets. They assumed that the volume 
of a mother droplet, v0, is divided into J units of volume elements ve, so that J = v0/ve. 
Their statistical model then states that the mother droplet breaks into m daughter 
droplets whose volume is given by a random combination of elements ve. The number 
of elements of each daughter droplet formed, numbered by the index i, is given by K¡ = 
Vj/ve, where vt is the volume of the droplet i. All combinations are then derived from 
the different arrangements ofK1,K2,...,Km, which satisfy the conservation of volume, 

Kl+K2 + ---+Km=J. (1.9) 

The combinations of the J elements, taken in m groups satisfying equation (1.9), gives 
all the possible valúes of the non-dimensional combinations of volumes K¡ that can 
be formed. The probability of a certain combination of K¡ elements is then given by 

P oc E(K1)E(K2)E(K3)... E(Km), (1.10) 

where £(K¡) is the spectrum function of the turbulent kinetic energy estimated from 
the Heisenberg energy spectrum as 

where a = 0.51, and v is the kinematic viscosity of the continuous phase. 
To obtain a continuous distribution with this model, one needs to use a large 

valué for J, and Konno et al. used J = 100. Konno's distribution produces a low 
probability for combinations of very large and very small particles and gives a 
máximum probability for combinations of particles of similar sizes. This model 
has the deficiency that the distribution of the daughter droplets is basically neither 
dependent on the size of the mother droplets, ñor on the turbulent kinetic energy of 
the underlying turbulence, two facts which are contrary to experimental observations. 
In fact, Konno's distribution is practically a universal one, and can be approximated 
by a Beta function (Konno et al. 1983): 

*/(D,,»„,=r(D-, = í ^ ( £ ) , ( 1 _ £ ) \ (1.i2, 

where f*{D*) represents the probability density function of the daughter particles 



resulting from the breakup of a mother particle of size D0 using a non-dimensional 
diameter of the daughter particle defined as D* = D/D0. 

Another hybrid model based on energy and entropy considerations has been 
proposed by Cohén (1991). Using entropy arguments, he found that the most probable 
distribution resulting from the shattering of a mother droplet is similar to the Beta 
function proposed by Konno et al. (1983). However, his p.d.f. model incorporated a 
dependence on e. Although Cohen's model is an elegant one, it has the drawback 
of producing an explosive breakup in which a droplet breaks into a very large 
number of daughter droplets (several thousands), which has not been observed in any 
experiments. 

In this paper we will use a detailed set of measurements of the transient evolution of 
n(D, x, t), performed over a wide range of bubble sizes and turbulent kinetic energy of 
the underlying turbulence to test a new phenomenological model for f(D, D0). These 
measurements, first reported in Part 1, were conducted by measuring the transient 
bubble-size p.d.f. resulting from the breakup of a volume of air of a certain size 
injected into the fully developed región along the axis of a high-Reynolds-number 
water jet. Rather than attempting to solve the otherwise intractable inverse problem of 
calculating f(D, D0) from equation (1.2), we propose a new phenomenological model 
for the daughter bubble-size p.d.f. based on a weighted probability model. This model 
is then contrasted to previous ones and compared to the experimental measurements. 

In §2 we formúlate the phenomenological model for the daughter bubble size p.d.f. 
This model is then compared to available experimental evidence and to previously 
formulated theories in §3. Finally, some concluding remarks are presented in §4. 

2. Model formulation 
Consider a mother or parent bubble (mother or parent refers to a bubble before 

breakup) to be spherical with an initial diameter Do. At time t = to, the bubble is 
immersed in a stationary water flow whose turbulence is nearly homogeneous and 
isotropic. The initial bubble diameter is assumed to be in the inertial subrange of the 
underlying turbulence, r\ <€ D0 <€ Lx, where r\ is the Kolmogorov microscale of the 
viscous dissipation, and Lx is the integral length scale. 

When the air bubble is injected into the turbulent water jet, the velocity fluctuations 
of the underlying turbulence result in pressure deformation forces acting on the 
bubble's surface that, when greater than the confinement forces due to surface tensión, 
will cause its breakup. Since the Ohnesorge numbers of the bubbles of interest here 
are always very small (Oh = \ia¡\JpaoD < 10~3), the internal viscous deformation 
forces are negligible compared to the surface tensión forces, and thus will be ignored. 

The average deformation energy per unit volume acting on the surface of the 
bubbles is 

TÉ = yp^
3
D¡

/3
, (2.i) 

where fi = 8.2 is a constant obtained by integrating the difference between the velocity 
fluctuations, AM2(Í>O), of two points separated by a distance Do, over the whole range 
of turbulence scales, Batchelor (1956). The confinement energy per unit volume is 
simply 

T
s = — í ^ 3 ~ =

 6
7 T - (

2
-

2
) 

7t£>o D0 

When it > TS the bubble will break in a certain time tb, with a frequency 
g(e,D0) = í/tb. 
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FIGURE 1. Difference in stresses associated with the formation of a bubble, Di, and its complement, 
D2, AT(I = \p¡HeDi)2^ — 6a/D0 and AT(2 = \pf>(eD2)

2^ — 6o /D0. In this example, the mother bubble 
is of size Do = 1 nim, and e = 1000 m2 s~3. 

In Part 1, we ha ve shown that the breakup time of a bubble of size D0 can be 
estimated from the deformation acceleration, a¡, = u¡,/t¡,, produced by the non-inertial 
forces acting on the surface of the bubble. Here, u¡, is the deformation velocity, and 
tb is the bubble's breakup time given by 

V/^A))2/3-12<r/(pA))' 

As shown in the above equation, the breakup frequency, g(e,Do) = í/tj,, depends 
on both the size of the bubble and the valué of the turbulent kinetic energy (or 
dissipation rate, e) of the underlying turbulence. 

Upon breakup, the bubble is shattered into an array of smaller bubbles whose size 
p.d.f. is denoted by f(D, D0). The first premise of our bubble shattering model is 
that upon breakage, a bubble of size D0 only breaks into two bubbles [m(D0) = 2] 
of complementary masses with diameters Di and D2 (an important point to be 
addressed later on). If the stochastic variable Di were uniformly distributed on the 
segment [0, Do], D* = Di/D0 would be uniformly distributed on the segment [0,1] 
and its probability density would always be p(D*) = 1 (Longuet-Higgins 1992). 
However, since the valúes of the pressure deformation forces, iu are not uniform 
with the distance Di, our bubble splitting phenomenon cannot produce a uniformly 
distributed density function. In fact, for a spherical bubble of size Do, there is a 
minimum distance Dmin, such that the turbulent stresses acting between two points 
separated by this distance, \pfi (eDmi„)2/3, are just equal to the confinement pressure 
due to the surface tensión, 6<r/D0 (see figure 1). Thus, the probability of the splitting 
of a fraction of size Di < Dmin = \2o/{fipDof,2e~l, from a bubble of size D0 should 
be zero. On the other hand, it appears reasonable to accept that the probability of the 
splitting of any portion of size Dmin < Di < Do should be weighted by the difference in 
the stresses, AT^ = ip/?(eDi)2/3 — 6<T/D0, associated with the formation of a bubble of 
size Di. However, associated with the generation of a bubble of size D b there is also 
the formation of a complementary bubble of size D2 = D0[l — (Di/D0)3]1/3, involving 
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FIGURE 2. Difference in stresses associated with the formation of a bubble (solid line) and its 
complement (dashed line) given in equation (2.6). In this particular case, the mother bubble is of 
size D0 = 3mm, and the dissipation rate is e = 1000 m2s~3. 

a difference of stresses ATÍ2 = \pP(eD2)
2/i — 6a/D0. Thus, we postúlate that the 

probability of the formation of a pair of bubbles of sizes Di and D2 from the shattering 
of a mother bubble of size Do is weighted by the product of the two surplus stresses, 

0 for D* < D* P(D1 

P(D') ce p(D*)[Axñ][Axt2] for DV, < D* < D*max, 

P(D1 = 0 for ¿T > D* 

or similarly, 

P(D*)cc yp(eD*D0) 
2/3 6a 

D~o 
yp(eD¡D0) 

2/3 6a 
D~0 

(2.4) 

(2.5) 

in the range D*min < D* < D*max where D* = D1/D0 and D*min = Dmin/D0 = (12<r/03p))3/2 

Do 2e_1. In other words, we postúlate that the probability of a certain sized 
pair to form should be weighted by the product of the excess stresses associated 
with the length scales corresponding to each bubble size. From a simple mass 
balance, and neglecting the compressibility effect in the air inside the bubbles, 
D2=D0[Í- (Di/Do)3]1/3, and 

P(D*) ce (±p/?(eDo)2/3)>*2/3 -A5"} [(1 -D*Y9 -A5% (2.6) 

where A = Dc/Do, and Dc = (12a/{fip))i/5e~2!5 is a critical diameter defined by the 
crossing point of the curves it and TS in figure 1. Our model implies that D ,̂„ < D* < 
D*max or, equivalently, that D 
Dmax =D0[Í- (Dmi„/D0)

3]1/3, provided that D, 
mm ^ Di ^ Dmax where Dmin (Ua/iPpDo^e-1 and 

> r\. Otherwise, Dmin is taken to be 
equal to r¡. 
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FIGURE 3. Probability density functions of the daughter bubbles formed from the breakup of a 
mother one of size D0. (a) Evolution of the p.d.f. for various valúes of e and fixed D0 = 3 mm. 
(b) Influence of D0 on the p.d.f. for a fixed valué of e = 1000 m2 s -3. 

The difference in stresses associated with the formation of a bubble and its comple-
ment given in equation (2.6) are shown in figure 2. Using the normalization condition 
of the density of probability, /0 f*{D*)á{D*) = 1, the daughter probability density 
function of D*, f*(D*), can then be written as 

f(D-) P(DJ_ 

P(D') 
Dl„ 

[D'2/3 _ J5/3] [ ( 1 _ ^3)2/9 _ ^5/3] 

[D«2/3 _ ¿5/3] [(1 _ D.3)2/9 _ ¿5/3] á{D*) 
(2.7) 

The probability density function of the daughter bubbles resulting from the breakup 
of a mother bubble, Do, is then calculated as /(Di, D0) = /*(D*)/D0. The dependence 
of/*(D*) on e and D0 is shown in figure 3. Note that the peak of the distribution is 



always located at D* = (|)1/3 ^ 0.8, which corresponds to the case of two daughter 
bubbles with the same volume, and that the p.d.f.s become wider as either e or D0 

are increased. 
It should first be made clear that we are proposing a statistical model. Clearly 

our phenomenological model represents a simplified view of the bubble by assuming 
sphericity. However, we believe that this assumption does not limit its validity. The 
confinement energy per unit volume is a mínimum if the bubble is spherical, and 
the mínimum necessary energy to deform the bubble is inversely proportional to 
this spherical diameter. We then postúlate that the probability of a certain breakup 
occurring should be proportional to the difference between the deformation energy 
due to the turbulence and this mínimum confinement valué (if the bubbles are not 
spherical the confinement energy should be even larger). 

3. Experimental results and discussion 
A detailed description of the experimental facility and measurement techniques 

used in the experiments reported here can be found in Part 1, and in Martínez-Bazán 
(1998). The reader is referred to these two publications for details. For the purpose 
of our discussion, in this section we will simply summarize the most salient features 
of these experiments. 

The experimental facility used to perform the experiments on the breakup of a 
bubble in a turbulent water flow consists of a submerged turbulent water jet where 
a continuous air jet is injected through a small-diameter hypodermic needle located 
at a given position along the central axis in the fully developed turbulent región of 
the jet. This allowed us to assume that the underlying turbulence where the breakup 
takes place is nearly homogeneous and isotropic in the absence of any moving solid 
surfaces. The evolution of the bubble size p.d.f, as the bubbles are broken by the 
turbulence and transported downstream by the mean convective motion of the jet, 
was measured using digital image processing techniques. These bubble size p.d.f. 
measurements were then discretized into 150 size bins and used to calcúlate the rate 
of change with respect to position of the number of bubbles of a certain size per 
unit volume as the bubble cloud was convected into regions of decreasing valúes of e. 
Several sets of experiments were performed in which both the initial bubble size and 
the initial valué of e at the injection point were systematically changed. A summary 
of the test conditions used for the measurements is given in table 1 in Part 1. 

We will begin by discussing the results of Set 2 in table 1 in Part 1. In this case, the 
air was injected on the jet's centreline at a location 15 jet diameters downstream from 
the jet's exit nozzle. The initial jet velocity was UQ = 17 ms - 1 , and the jet's Reynolds 
number was Re = UQD*J/V = 51000. The air injection velocity was Ua = 9.84 ms_1, 
and equal to the local mean velocity of the water at the air injection point. Thus, 
upon injection into the water, the air bubbles were only subjected to the velocity 
fluctuations of the underlying turbulence of the water flow. These turbulent stresses 
resulted in deformation forces that were much greater than the confinement forces 
due to surface tensión, and the bubble was observed breaking into a set of daughter 
ones. Since the characteristic breakup time of the bubble depends on its size, Do, and 
on the valué of the turbulent kinetic energy (or dissipation rate, e) of the underlying 
turbulence, this breakup process continued while the resulting array of bubbles was 
convected downstream to regions of lower and lower dissipation rate, e, until it was 
observed that the bubble size p.d.f. eventually reached a frozen or unchanged shape 
(Part 1). 
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FIGURE 4. (a) Downstream evolution of the cumulative volume probability density function. 
(b) Downstream evolution of the Sauter mean diameter, D32 = J^NiDf/J^NiDf and D„90%- Exper-
imental Set 2. 

The downstream evolution of the cumulative bubble volume p.d.f. corresponding 
to this experiment is shown in figure 4(a) where, for clarity, we have presented four 
measuring locations only. Note that all the valúes of the characteristics diameters 
and the various moments of the size distribution, i.e. Dv90°/o and D^, decay with 
the downstream distance, X/Dj, due to the breakup process until they all reach 
asymptotic valúes at a downstream distance of approximately 28Dj, at which point 
the cumulative volume p.d.f. is no longer observed to change. 

It is important to emphasize that in all our experiments the bubbles broke up 
under the action of a fully developed, spatially nearly uniform, isotropic turbulence, 
and in the absence of any solid surfaces. The air was always injected at the jet's 
centre axis, and during their breakup, the bubbles remained at the centre of the jet, 
being transported laterally by the action of the turbulence to radial distances always 
smaller than 30% of the width of the jet. Thus, the process can be assumed to be 
one-dimensional. The radial dispersión did not affect the measurements, and indeed, 
we measured only the bubble size p.d.f. resulting from the breakup and convective 

f D32 = E NiDf/ J2 NiDf, Dio = E NÍDÍ/^2 N¡ where N¡ is the number of bubbles of size D¿ 

measured. D„9o% = diameter of a bubble such that 90% of the total volume of air is contained in 
bubbles of smaller diameter. 



transport at each downstream location. As mentioned above, coalescence effects were 
negligibly small in our experiments since the bubble void fraction was always < 10~5. 

3.1. Comparison of the theoretical model with the experimental results 

The phenomenological model for the daughter p.d.f. presented in § 2 was used to solve 
equation (1.2) in order to obtain the evolutions of the bubble size distributions and 
to compare them with the above experimental results. Since the problem of interest 
here is steady state, Bn/Bt = 0, equation (1.2) reduces to 

S-^-= f m(D0)f(D,D0)g(D0)n(D0)dD0-g(D)n, (3.1) 
Bx JD 

where U(x) is the mean centreline velocity of the water jet, which is equal to the mean 
convective velocity of all bubbles v(D, x, t) regardless of their size D. 

In the steady-state experiments described above our measurements show that all the 
bubbles, regardless of their size, are convected at the same mean velocity, equal to the 
mean local velocity of the water jet (Martínez-Bazán 1998). Thus, the term 8{Un)/8x 
in equation (3.1) is simply 8(U(x)n)/8x, where U(x) is now the corresponding mean 
velocity of the water jet measured at each measurement location, and x is the 
downstream location along the axis of the jet, i.e. this term represents the spatial 
downstream evolution of the number density of the bubbles of size D as they are 
transported downstream by the convective velocity of the water jet. When integrating 
the right-hand side of equation (3.1) we used the valué of g(e,D0) calculated from 
equation (1.3), and the experimentally measured valúes of e (figure 3 in Part 1) at 
each downstream location. The initial conditions used to intégrate equation (3.1) 
were taken to be equal to the size p.d.f. measured at the first measurement location, 
X/Dj = 16.1. 

The downstream evolution of the cumulative bubble volume p.d.f. resulting from 
the above calculation performed by integrating equation (3.1) is given in figures 5(á) 
and 5(b), where it is compared to the experimental measurements. Note that the 
agreement with the experimental data is very good, not only concerning the various 
moments of the bubble size distribution (figure 5b), but more importantly, between 
the shape of the measured and the calculated cumulative volume p.d.f.s (figure 5a). 
The same excellent agreement shown between the calculated and the measured p.d.f.s 
was also found for the other cases studied (see figures 6a and 6b corresponding to 
Set 3a, Part 1). 

We will now turn our attention to discussing the assumption of binary splitting. 
Our model is based on the assumption that upon breaking, the bubble is broken 
into two daughter ones, m(D0) = 2. This appears to be consistent with all of our 
measurements performed at low and modérate valúes of the turbulent Weber number, 
Wet = pAu2(Do)Do/a. In these cases, the surface of the mother bubbles is always 
observed to be relatively smooth. A typical sequence of the evolution of a bubble 
during its breakup is shown in figure 7. This sequence was taken at 6000 frames per 
second and shows consecutive steps in the bubble breakup process. Observe that the 
bubble marked Ai breaks into two labelled An and A12. Subsequently A u breaks 
into A m and A112, and later on the bubble A12 breaks into A121 and A122. This binary 
splitting process appears to continué until the breakup is fully finished. However, 
although difficult to characterize, we have also observed that at larger valúes of the 
turbulent Weber number, the mean number of daughter bubbles, m(D0), increases. 
Thus, the assumption of binary breakup appears to be well justified only at low and 
modérate Wet. Regardless of the weakness in the assumption of m(D0) = 2, the reason 
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FIGURE 5. (a) Downstream evolution of the cumulative volume probability density function. (b) 
Downstream evolution of the Sauter mean diameter, D32, and Dv90%. Initial valué of the dissipation 
rate of TKE was e0 = 2000 m2s~3 at the air injection point, X/Dj = 15. The lines represent the 
results obtained from the model integrating equation (3.1) and the symbols are the experimental 
measurements. Experimental Set 2. 

for the excellent agreement observed between the measurements and the model is also 
due to the fact that the shape of the cumulative volume p.d.f. is fairly insensitive to 
the appearance of satellite small bubbles. This is a consequence of the fact that the 
volume fraction contained in the small bubbles is very small. Nevertheless, in most 
diffusion-controlled processes, the important parameter controlling the process is the 
Sauter Mean Diameter, D32, which is an indication of the volume-to-surface ratio 
of the distribution function, and this is always very well predicted with the binary 
breakup assumption, as shown in figures 5(b) and 6(b). 

At larger valúes of the Weber number, the binary breakup assumption needs to be 
revised. To address the possible formation of a larger number of daughter bubbles, 
we can use a simple estimate based on energy arguments. If the energy associated 
with the difference of turbulent velocities existing between two points separated a 
distance equal to the size of the bubbles were the only energy causing the changes in 
the energy associated to surface tensión, and neglecting viscous and compressibihty 
effects, the total energy associated with the dififerences of velocity and surface tensión 
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should remain constant during the breakup process. Thus, 

\pP(eD,)2'3\nDl + noD2 = ^ i p / ? A ^ A ) 2 / 3 ^ A 3 + n^NiD*, (3.2) 
i=\ i=\ 

where Nt is the number of bubbles of size Du and J2i=i NiDf = DQ. Equation (3.2) 
can be rewritten as 

l + ^ = / t ^ J V i D ; 1 1 / 3 + ^ J V i D * 2 , (3.3) 
i=í i=í 

where A = {p/\2o)e2^D5J2> = A~5¡\ and D* = D/D0 is a non-dimensional diameter of 
the resulting daughter bubble. Expressing equation (3.3) as a function of the daughter 
bubble p.d.f.,/*(!>*): 

1 + A = ANt í f(D*)D*n/3 dD* + Nt í f (D*)D*2 áD\ (3.4) 
Jo Jo o 

From conservation of volume, 

1 
**/n*\n*3 J n* *3 — = / f(D')D'¡dD'=Dm (3.5) 

Equations (3.4) and (3.5) can be solved by a trial and error scheme to obtain the 
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number of bubbles resulting from the breakup of a mother bubble Do and the 
daughter-bubble p.d.f, f*{D*), given in equation (2.7). 

For the particular case of e = lOOOm2 s~3 and Do = 2mm, as in the experimental 
Set 3c, we obtain A = 29.7. For such valué of A, substituting the daughter bubble p.d.f, 
f*(D*), predicted by our model given in equation (2.7) into equations (3.4) and (3.5), 
the number of daughter-bubble obtained, for the same valué of A, is approximately 
3. Now, we can use this estimated number of daughter bubble to recalculate the 
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daughter-bubble p.d.f., f*(D*), and obtain a new number of daughter bubbles until 
equations (3.4) and (3.5) in conjunction with equation (2.7) for f (D*) are satisfied. 

Thus, it is reasonable to expect that our assumption of m(D0) = 2 will hold only for 
small valúes of Wet, and that at large valúes of Wet the number of daughter bubbles 
could be greater than two. This increase in the number of daughter bubbles with 
Wet could explain why we obtained a poorer agreement between the p.d.f. calculated 
with our model and the experimental measurements for the case of large Wet (see 
figure 8). Note that, as opposed to the cases where the deformations on the surface 
of the bubbles were relatively small and the agreement was excellent (figures 5a, 6a), 
now although the agreement is reasonable, there is a noticeable difference between 
the calculated p.d.f. and the measured ones. To consider a tertiary bubble breakup 
process, we will further assume, for simplicity, that a bubble is broken into one of 
diameter Di and two bubbles of equal diameters D2, such that 

Do = Do-Dí 
31 1/3 

(3.6) 
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FIGURE 9. Comparison of the daughter-bubble p.d.f. resulting from a binary and a tertiary 
splitting, e = 1000 m2 s~3, D0 = 2mm. 

The daughter-bubble p.d.f. resulting from the breakup of a mother bubble of size D0 

is then given by 
[0*2/3 _ ^5 /3] [ ( 1 ( 1 _ D . 3 ) ) 2 / 9 _ ^ 5 / 3 ] 2 

r ( D , } = 
/ ^max 

/ [D*2/3 - yí5/3] [ ( I ( i _ D*3))2/9 - yí5/3]2 d ( £ r ) 

(3.7) 

where D* = Di/D0, Dmi„ ^ Di ^ Dmax and Dmax is now given by 

D„ 0
 WA 

9/2 n l / 3 

(3.8) 

Equation (3.7) can be used as an extensión of our bubble breakup model for cases 
where the estimated number of bubbles resulting from the breakup is larger than two, 
although a more elabórate model including all the possible combinations of three 
bubbles of diameters Di, D2 and D3 should be considered at larger Weber numbers. 
The daughter-bubble p.d.f. resulting from equation (3.7) is shown in figure 9 where 
it is compared to that obtained using a binary breakup assumption for the same 
flow conditions. Notice that the máximum of the p.d.f. is now shifted to D* ^ 0.7 
which corresponds to three bubbles of the same size, and the probability of formation 
of large bubbles has decreased considerably. Therefore, it is expected to result in 
a more rapid breakup process than that obtained considering a binary breakup. 
The downstream evolution of the cumulative volume p.d.f. obtained by integrating 
equation (3.1) now using the model presented in equation (3.7) is shown, along with 
the experimental results, in figure 10 for the experimental Set 3c. The agreement 
between the model and the experimental results is much better, confirming that the 
number of bubbles created and the shape of the daughter-bubble p.d.f. is strongly 
dominated by the magnitude of the turbulent stresses. 

3.2. Comparison with other models 

A comparison of the daughter bubble size p.d.f. predicted by our model and those 
predicted by previously proposed models is shown in figure 11. It is important to 
emphasize that, as opposed to previously proposed models, the probability density 
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function f*(D*) given by our model is a function of not only the size of the mother 
bubble, Do, but also of e. To illustrate this point we have plotted f*(D*) corresponding 
to three different valúes of e (e = 4.5, 10, and 1000 m2 s~3). As the valué of e increases, 
f*{D*) widens out toward smaller sizes, and therefore, the spectrum of bubble sizes 
resulting from the turbulent breakup of a mother bubble Do is wider, producing 
smaller bubbles. Note that the model given by Tsouris & Tavlarides (1994) has a U 
shape giving a minimum probability for the formation of two daughter bubbles of 
equal volume (D* ~ 0.8), and a máximum probability for the formation of widely 
different volume pairs. 

We have integrated equation (3.1) using Tsouris & Tavlarides' model in the same 
manner as we did for our model. The resulting evolution of the cumulative volume 
p.d.f. is shown in figure 12, where we compare it to the experimental measurements. 
The discrepancy between the experimental results and the results obtained with this 
model is very apparent. It is clear that due to the fact that the daughter-bubble p.d.f. 
is independent of e, this model grossly underpredicts the evolution of the volume 
p.d.f. The large discrepancy between the measured and calculated evolutions of the 
D32 is due to the fact that this model gives the highest probability to the formation 
of a very large and very small pair of bubbles, a fact which brings into question the 
validity of the basic assumptions made in the model. 

The downstream evolution of the cumulative volume p.d.f. obtained by integration 
of equation (3.1), using the daughter-bubble p.d.f. proposed by Konno et al. is shown 
in figure 13. Although the frozen p.d.f, reached at X/Dj = 35, obtained with this 
model seems to be in good agreement with the experimental results, the temporal 
evolution is not very well described. This discrepancy is not surprising since, as shown 

X/DJ = 

X/DJ = 

A X/Dj = 
I I I I I I 
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FIGURE 11. Comparison of the daughter bubble size p.d.f. predicted by the present model and 
previously proposed models by Tsouris & Tavlarides (1994) and Konno et al. (1983). 

in figure 11, the probability of producing bubbles smaller than 0.3D0 after the breakup 
of a mother bubble of size D0 is negligibly small, and independent of the valué of 
both e and D0. Therefore, the size of the daughter bubbles created with this model 
is always in the range of 0.3D0 < Di < D0, and it is more likely to form bubbles of 
similar sizes which translates into a faster evolution of the cumulative volume p.d.f. 
shown in figure 13. Notice also that in figure 11, the probability of forming small 
bubbles predicted by our model increases as the valué of e is increased, resulting in 
a larger amount of small bubbles in the early stages of the breakup process (cióse to 
the point of injection) where the valué of e is the largest. As the bubbles are broken, 
after being injected into the flow by the turbulent stresses of the water jet, they are 
transported further downstream by the mean motion of the flow to locations of lower 
valué of e. This decrease of e and D0 as the bubbles are convected downstream in the 
flow produces an evolution of the daughter-bubble p.d.f., increasing the valué of the 
peak and therefore increasing the probability of forming bubbles of equal size. In this 
evolution, the shape of our daughter-bubble p.d.f. becomes closer to that proposed 
by Konno et al. This explains why although the calculated cumulative volume p.d.f. 
obtained using our model is initially different from that obtained using Konno et a/.'s 
model, the final stage of the frozen p.d.f. appears to be well reproduced by both 
models. 

4. Conclusión 
We have proposed a model for the size p.d.f. of the daughter bubbles produced by 

the shattering of a mother bubble immersed in a fully developed turbulent water flow. 
The model is based on the premise that the probability of a given pair forming is 
proportional to the product of the surplus energy corresponding to the two size scales 
formed. This model has been shown to be in good agreement with recently obtained 
experimental data of the transient bubble size distribution. Contrary to previously 
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FIGURE 12. (a) Downstream evolution of the cumulative volume probability density function. 
(b) Downstream evolution of the Sauter mean diameter and D„9o%. The lines represent the results 
obtained using Tsouris & Tavlarides' (1994) model to intégrate equation (3.1), and the symbols are 
the experimental measurements. Experimental Set 2. 

existing models, our phenomenological model predicts a dependence of the daughter 
bubble size p.d.f. on both the bubble size and the valué of the dissipation rate of 
turbulent kinetic energy of the underlying turbulence. The model, although simple and 
straightforward, predicts, in a consistent manner, the experimental measurements of 
the transient bubble size p.d.f. performed over a range of bubble sizes and dissipation 
rates, e. This agreement was found to be better at small and modérate valúes of 
the mother bubble's turbulent Weber number in which case the binary breakup 
assumption was found to be consistent with the experimental observations. At larger 
turbulent Weber numbers, it was found that the most probable number of bubbles 
increases, and the assumption of tertiary breakup was found to lead to a better 
agreement with the experiments. 
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Appendix. On the initial volume distribution of bubbles injected 
into a turbulent flow 

By M. S. Longuet-Higgins 

Institute for Nonlinear Science, 0402, University of California, San Diego, 
La Jolla, CA 92093, USA 

It may be of interest to compare some of the measurements of bubble distributions 
described in Part 1 with a much simplier theoretical model proposed earlier by the 
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FIGURE 14. Idealized model of the initial bubble breakup. 

present author (Longuet-Higgins 1992). The latter can be expected to apply only to 
the initial distribution of bubble sizes very cióse to the point of injection, and not to 
the subsequent stages of development of the bubble distribution. The argument is as 
follows. 

One would expect that any small spherical cavity in a highly turbulent liquid flow 
would tend to be distorted by the straining of the surrounding flow. In a regime 
where viscous stresses are negligible, the cavity would tend to be elongated in the 
direction of the principal rate of strain which has the greatest positive magnitude, as 
sketched in figure 14(a). If the form of the cavity is idealized as a cylinder of constant 
cross-section, it may be assumed to be broken into a small number of pieces by a 
sequence of m cuts along its length. Figure 14(¿>) sketches the case m = 3, for example. 
If the spacing of the cuts occurs at random, then the volumes of the cuts will be 
approximated by the one-dimensional 'broken-stick' distribution. What is this? 

Let V0 be the initial volume of the cavity and V the volume of an individual bubble 
fragment. Then the p.d.f. of V/V0 which we denote by p(V/V0) is simply 

p(V/V0) = m(l-V/VQr1 (A l ) 

as pro ved for example in Longuet-Higgins (1992). The cumulative distribution of 

7 / 7 0 , which we write P(V/V0) = J0
F/F° p(X) á(X), is thus given by 

P(V/V0) = l-(l-V/V0)
m. (A2) 

The quantity shown in figure 9(a) of Part 1 is 

FID)-*™ (A3) 

where D is the notional diameter of a bubble of volume D that is 

V=^D\ D = (6V/n)í/3. (A 4) 
6 

If we denote by D0 the valué of D corresponding to V0, then we have 

V/V0 = (D/D0)
3. (A 5) 

Writing V/V0 = V* and D/D0 = D* we find from (A 3) that 

^ w ^ dP(F*) dF*dP(F*) 

Since 
d F * 3D*2 (A 7) 

and dP(F*)/dF* = p(V*) we have altogether 

D0F(D) = 3mD*2(l - D*)m~l. (A 8) 



FIGURE 15. The broken-stick volume distribution when m = 1,2,... 5. 

DJD0 

1 
2 
3 
4 
5 

1.0000 

0.7368 

0.6300 

0.5665 

0.5228 

DoF(Dm) 

3.000 
1.954 
2.009 
2.109 
2.213 

DmF(Dm) 

3.000 
1.440 
1.266 
1.195 
1.157 

TABLE 1. Parameters for the mode of the 'broken-stick' distribution, equation (AS 

^igure 

# 

9(a) 

12(a) 

Da 

(mm) 

0.39 

0.39 

Ua 
(ms"

1
) 

9.84 

9.84 

Re 

25,000 

51,000 

Do 
(mm) 

2.55 

2.40 

(mm) 

1.7 

1.3 

D*n 

0.68 

0.54 

m 

2.58 

4.53 

TABLE 2. Parameters of the observed distribution of volume sizes, taken from Part 1. 

This set of curves is shown in figure 15 for m = 1 to 5. For the larger valúes of m 
these curves become roughly symmetric in shape. On the left they vary as D*2, and 
on the right as (1 - D*)m~l. 

To facilítate a comparison with observation, consider the position of the mode of 
each distribution. In table 1 we show the mode D"^ of the distribution (A 8) which is 
easily calculated as 

Di 
1/3 

(A 9) 
3m — 1 

In table 2 are shown some parameters of the observed distribution corresponding 
to figures 9(a) and 12(a) of Part 1. D0 is the estimated máximum bubble diameter, 
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FIGURE 16. The distribution of bubble volumes (a) as shown in figure 9(a) of Part 1, compared with 
the initial distribution given by equation (A 8), when D0 = 2.55 and m = 2.58; and (b) as shown in 
figure 12(A) of Part 1, compared with the initial distribution given by equation (A 8), when D0 = 2.4 
and m = 4.53. 

and Dm the diameter corresponding to the máximum valué of F(D). The next column 
shows the ratio D*m = Dm/D0 and the last column shows the valué of m calculated 
from equation (A 9), i.e. 

m = i ( l+2/D; 3 ) . (A 10) 

Non-integral valúes of m may be taken as corresponding to statistical averages. 
Figures 16(a) and 16(b) show a comparison of the observed functions F(D) with 

the two corresponding theoretical curves. In figure 16(l>), where the observed curve is 
the smoothest, the theoretical curve is a fairly cióse fit to the observations. Note that 
in figures 7 and 10(a) of Part 1 a satisfactory estimate of Do could not be given, and 



in figure 11 (a) the distribution nearest the point of injection is only for the second 
'window', not the first. 

At larger distances from the point of injection the peak of the observed volume 
distribution moves further to the left as does that of the broken-stick distribution for 
larger valúes of m. However it is not to be expected that the broken-stick distribution 
will apply, and in fact it does not do so. Note that in the limit as m —>• oo,P(V) is 
well approximated by 

P(V)~\-Q-v,Vl (A 11) 

where V\ = Vo/m, and henee 

Dl ^ ^ 3(£>/£>i)2eWDl)3 (A 12) 

where Di = D0/m
1/3. On the other hand the limiting distributions shown in Part 1 are 

generally broader, with longer 'tails' on the right. The peak of the distribution (A 12) 
oceurs when D/Dx = (2/3)1/3 = 0.8736 and so DáP/áD = 2e~2/3 = 1.0268. This is 
the limit of the valúes shown in the last column of table 1. The observed valúes of 
DdP/dD lie generally outside this range. 
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