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The transient evolution of the bubble-size probability density functions resulting 
from the breakup of an air bubble injected into a fully developed turbulent water 
flow has been measured experimentally using phase Doppler particle sizing (PDPA) 
and image processing techniques. These measurements were used to determine the 
breakup frequency of the bubbles as a function of their size and of the critical 
diameter Dc defined as Dc = 1.26(cr/p)3/'5e~2/'5, where e is the rate of dissipation 
per unit mass and per unit time of the underlying turbulence. A phenomenological 
model is proposed showing the existence of two distinct bubble size regimes. For 
bubbles of sizes comparable to Dc, the breakup frequency is shown to increase as 
{a/pY2/5 e3/5 s/D/Dc — 1, while for large bubbles whose sizes are greater than Í.63DC, 
it decreases with the bubble size as e1/iD~2/i. The model is shown to be in good 
agreement with measurements performed over a wide range of bubble sizes and 
turbulence intensities. 

1. Introduction 
The mass transfer rate occurring in many natural and engineering processes depends 

on the amount of contact surface which is created between two immiscible fluids. For 
example, in liquid-liquid or gas-liquid separators, the absorption rate of a certain 
chemical species depends on the distribution of droplet sizes in which one fluid is 
dispersed into another. In aeration processes such as the ones which occur naturally 
during the interaction of the atmosphere and the oceans, the absorption rate of 
carbón dioxide, or many other water-soluble trace species, depends on the amount of 
air entrained by the wave action, and more importantly on the distribution of bubble 
sizes resulting from the breakup of the entrained air by the underlying turbulence 
existing under the free surface, Melville (1996). 

Central to the development of predictive models of all these engineering and nat-
ural processes is the description of the breakup of an immiscible fluid immersed in 
a turbulent one. Although this problem has been the subject of a continuing investi-
gation beginning with the early work of Kolmogorov (1949), Baranaev, Tevenovskiy 
& Tregubova (1949), and Hinze (1955), and has generated a large bibliography, a 
unified model capable of predicting the probability density function of the droplets 
(or bubbles) resulting from the turbulent breakup does not yet exist. Over the years, 
the chemical engineering community has devoted a considerable amount of work to 



the study of stirred (or agitated) vessels such as those used to produce emulsions, 
Coulaloglou & Tavlarides (1977), Tsouris & Tavlarides (1994), Prince & Blanch (1990), 
Berkman & Calabrese (1988), Konno, Aoki & Saito (1983), among many others. Al-
though these experiments have provided valuable information on the steady-state 
droplet size distribution, they have not been able to produce reliable information on 
the evolution of the droplet sizes during the transient breakup processes, knowledge 
which is essential to the development of the models. Furthermore, due to the complex-
ity introduced by the use of turbine impellers in the agitated tank experiments, the 
nature of the turbulence existing in the tank is difficult to characterize (Cutter 1996; 
Calabrese, Chang & Dang 1986a; Calabrese, Wang & Bryner 1986b; and others), and 
often precludes the interpretation of these measurements. 

Essential to the development of the models is knowledge of both the probability 
(or frequency) of the drop's (or bubble) breakup, and of the resulting probability 
density distribution of the size of the daughter droplets. In the past, there have 
been numerous experimental studies to determine the drop's breakup frequency. For 
example, many attempts have been made to determine this frequency in stirred 
tanks, or in turbulent pipe flows, by measuring the time evolution of the drop-size 
p.d.f.s (Sathyagal, Ramkrishna & Narsimhan 1994; Sathyagal & Ramkrishna 1996; 
Narsimhan, Gupta & Ramkrishna 1979; Narsimhan, Nejfelt & Ramkrishna 1984; 
Nambiar et al. 1992, 1994; and others). As mentioned above, the difficulty in the use 
of stirred vessels is that the turbulence in the vessel is not very well characterized since 
it is not only inhomogeneous throughout the vessel, but more importantly, it is highly 
anisotropic consisting of high-shear regions on the surface of the impeller and strong 
tip vórtices shed by the impeller blades. Furthermore, in these vessel experiments, the 
transient size p.d.f.s are often measured by withdrawing samples over time which are 
later diluted, or stabilized, prior to their measurements. These sampling techniques 
neither guarantee that the droplet-size p.d.f.s are frozen, ñor that they are preserved 
during the sampling. On the other hand, the drop or bubble breakup experiments 
conducted in turbulent pipe flows have had similar difficulties also resulting from the 
anisotropic nature of the turbulence in the pipe which is composed of free-stream 
turbulence and high-shear regions near the walls. These shear regions often cause the 
preferential migration of the bubbles towards the wall making the characterization 
of the turbulence under which the breakup takes place very difficult. 

With these difficulties in mind, the objective of the present study is, therefore, to 
conduct a systematic set of measurements of the bubble breakup frequency under 
well-controlled, and well-characterized turbulent conditions. In order to isolate the 
problem, and to prevent the additional complexity introduced by the use of turbines 
or any other moving surfaces to genérate the turbulence, we selected to study the 
turbulent breakup by injecting air bubbles into the fully developed turbulent región 
along the central axis of a high Reynolds number water jet. Through the use of 
phase Doppler techniques (PDPA) and image processing, we then measured the 
transient p.d.f.s of the bubbles sizes resulting from the turbulent breakup over a wide 
range of initial bubble sizes and turbulent conditions characterized by the turbulent 
kinetic energy (or the dissipation rate) of the underlying turbulence. This approach 
allowed us to minimize the undesirable effects that have plagued previous experiments, 
and to systematically study the turbulent breakup frequency using non-intrusive 
optical techniques under well-defined, nearly homogeneous turbulence conditions. 
Furthermore, it also provided for isolating the turbulent breakup process from the 
effects of buoyancy. 

The organization of the paper is as follows. In §2, we discuss the experimental 
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FIGURE 1. Experimental facility. 

method and measuring techniques used. In §3.1, we present a detailed set of measure-
ments of the transient bubble-size p.d.f. obtained over a wide range of bubble sizes 
and turbulence intensities. The measured breakup frequency as a function of both the 
bubble size and the local valué of the turbulence intensity is discussed in § 3.2. Finally, 
a phenomenological model is proposed in §4, and compared with the experimental 
results. 

2. Experimental setup 
The experimental facility, shown in figure 1, consisted of a submerged water jet 

where air was injected through a small hypodermic needle at a given position along 
its centreline. In order to maximize the accuracy of the phase Doppler and other 
optical measurements, the tank in which the jet discharges was designed with a 
hexagonal cross-section. The water jet nozzle was located at the bottom and the jet 
discharges vertically upwards into the tank. In order to minimize the recirculating 
flow produced in the tank by the high-momentum water jet, the water was allowed 
to overflow from the top of the tank through a set of gutters placed on each side. 
Uniform velocity was achieved at the exit of the nozzle of the submerged water jet 
by using two perforated plates located upstream of a high-contraction-ratio (250 :1) 
nozzle, as seen in figure 2. Although different nozzle exit diameters can be used, in all 
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FIGURE 2. Detail of the water jet nozzle and air injection needle. 

the experiments reported here it was 3mm. The jet Reynolds number, Re = U0Dj/v, 
calculated with the velocity at the exit of the water jet, l/0, the diameter of the 
nozzle, Dj, and the kinematic viscosity of the water, v, can be systematically varied 
in our experiments from 2.5 x 104 to 9 x 104. Air was injected coaxially at a selected 
downstream location on the axis of the submerged turbulent water jet through a 
small hypodermic needle whose cross-sectional área was always less than 60 times 
the cross-sectional área of the exit nozzle of the water jet. To avoid any undesirable 
vibration effects at the air injection point, the needle was supported at the crossing 
points with the two perforated plates, as shown in figure 2. The bubble injection 
point, which determines the valué of the turbulent kinetic energy of the underlying 
turbulence where the bubble breakup process takes place, can be varied along the axis 
of the water jet from 10 to 50 jet diameters by moving the needle vertically. All the 
experiments reported here, however, correspond to injection points located between 
15 and 25 jet diameters downstream from the nozzle exit section. These positions are 
several diameters downstream from the end of the potential cone región of the water 
jet, and our measurements of the energy spectrum indicated that the turbulence is 
fully developed in the scales of interest to our problem in all Reynolds number cases 
studied. 

The water flow rate, Qw, can be varied from 5.83 x 10-5 m3 s_1 to 2.1 x 10-4 m3 s_1 

providing, for the 3mm diameter nozzle, a range of exit velocities, l/0, from 8.25 ms"1 

to 30ms -1 . The flow rate of air, Qa, can be increased from 5.8 x 10_8m3s_1 to 
1.25 x 10_6m3 s_1. From the one-dimensional spectrum of the fluctuating component 
of the axial velocity, and considering the turbulence to be locally homogeneous and 
isotropic, the integral scale, Lx, the dissipation rate of turbulent kinetic energy per 
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FIGURE 3. Downstream evolution of the dissipation rate of TKE, e. X0 « 5.4 Dj indicates the 
virtual origin, the velocity at the exit of the nozzle is U0 = 17ms-1. 

unit mass and per unit time, e, the Taylor microscale, Xu and the Reynolds number 
based in the Taylor scale, R¿t, can be estimated as: 

nEn(ki = 0) 
Lx = -== , e = 1 5 v / kiEn(ki)áki 

2ú2 

A 30i/2v 
RL = 

vé L (2.1) 

where vé is the fluctuating axial velocity, see Hinze (1959), Gibson (1963), Friehe, 
Van Atta & Gibson (1972). We conducted an extensive set of measurements using 
both hot-film anemometry and LDV to characterize the turbulence of the submerged 
water jet used in all our experiments. In all cases, our measurements showed that our 
jet behaved as a well-known high Reynolds number, turbulent, free jet, see Gibson 
(1963), Antonia, Satyaprakash & Hussain (1980), Hussein, Capp & George (1994). 
Furthermore, by conducting the water velocity measurements with and without air 
injection, we were also able to confirm that the evolution of our free jet was totally 
unaffected by the presence of the very small void fraction occupied by the bubbles. 

The behaviour of the water jet as a free jet is a result of the following design 
features: 

(a) our small diameter water jet discharged into a very large water tank whose 
cross-sectional área is 50000 times larger than that of the jets nozzle; 

(b) the height of the tank was 600 times the jet diameter; 
(c) the momentum carried out by the water jet upon reaching the free surface of 

the tank was removed from the system by a carefully designed overflow drainage; 
(d) the running time of all our measurements from the starting time of the water 

jet, to achievement of the steady-state condition, to injection of the air jet, and to 
completion of the bubble size measurements always took fewer than 10 s. Thus, no 
measurable recirculation flow was created in the tank by entrainment flow of the 
submerged jet. 

Consequently, since the turbulent characteristic of a high Reynolds number, free, 
axisymmetric jet are well known, there is no need to provide further details. 

In order to measure the breakup frequency of the bubbles as a function of their size 
and of the turbulent kinetic energy (TKE) of the underlying turbulence, we conducted 



a number of experiments in which we varied systematically both the initial bubble 
size and the valué of the TKE of the underlying turbulence at the location of the air 
injection point. By varying the location of the injection point, the Reynolds number 
of the water jet, and the diameter of the air injection needle, we were able to vary 
not only the dissipation rate of the turbulent kinetic energy of the surrounding water, 
but also the initial size p.d.f. of the bubbles. In our experiments, we measured this 
initial bubble size distribution within the first measuring window and subsequently 
followed its evolution. With our experimental set-up, while we may not have had 
complete a priori control of the initial bubble size p.d.f, we could produce different 
initial bubble p.d.f.s and then could follow their subsequent breakup as they were 
convected into regions of known turbulence characteristics. 

All experiments were performed in the following way. The desired initial valué of 
the turbulence kinetic energy was selected by positioning the air injection needle at a 
given downstream distance from the nozzle of the water jet. In all cases, the selected 
downstream distances were greater than or equal to í5Dj to ensure a región of fully 
developed turbulence. After injecting the air bubbles, we followed the evolution of 
their breakup as they were convected downstream by the mean axial velocity of the 
jet to regions of lower and lower turbulent kinetic energy. During this evolution, 
buoyancy effects can be shown to be negligible since the terminal velocities of all 
the bubbles were always an order of magnitude smaller than the mean velocity of 
the jet, and the time needed for the bubbles to reach their terminal velocity was one 
order of magnitude larger than the residence time in the región of interest. Since in 
the water jet the turbulence kinetic energy (or the dissipation rate, e) decays with 
the downstream distance as shown in figure 3 (our measurements, performed for all 
flow conditions, agreed with those reported in the literature, i.e. Antonia et al. 1980; 
Friehe et al. 1972), we performed measurements of the transient bubble-size p.d.f.s 
in 15 discrete downstream regions (or windows) as indicated in figure 4. Notice that, 
since we knew both the residence time and the valué of the underlying turbulent 
kinetic energy in each window, we therefore could measure all the parameters needed 
in each experiment in order to be able to calcúlate the bubble breakup frequency 
as a function of the bubble's size and e. The length of each window along the axial 
direction was chosen such that e varied a máximum of 10% along its length and, 
thus, it could be assumed to be nearly constant. Furthermore, the cross-stream width 
of the window was always selected to be large enough to include all the región where 
the bubbles resulting from the breakup were dispersed by the turbulence. A summary 
of the various flow conditions selected for our measurements is given in table 1. Note 
that in our experiments, in addition to varying e by changing the location of the 
injection point, we also varied both the diameter of the injection needle, Da, and the 
air injection velocity, Ua, resulting in a variation of the initial bubble diameter D0. 

Since bubble sphericity is a necessary condition for the use of phase Doppler 
techniques, the evolution of the bubble-size probability density function in the región 
of interest in our experiments, where bubbles are not spherical, was always measured 
by means of digital image analysis. Only when the breakup was finished, and the 
bubbles were nearly spherical, with their turbulent Weber number less than unity, 
was phase Doppler anemometry (PDA) used to measure the bubble-size p.d.f.s. 

The images were taken by illuminating the flow with uniform, diffused white light 
and capturing the image with a Sony XC-77R CCD camera placed in front of the light 
source using a short exposure time of 1/80 000 s. The 768(H) x 493 (V) images were 
captured with a 640 x 480 pixel resolution frame grabber and stored in a computer 
for later processing. To maximize the resolution of our measurements, the camera 



FIGURE 4. Discretization of the flow región where the bubble breakup takes place, (a) Section 1, 
windows 1-5. (b) Section 2, Windows 6-10. (c) Section 3, Windows 11-15. The downstream length 
of each measuring window indicated by arrows is 7.14 mm. Experimental Set 3a. Flow goes from 
left to right in each picture. 

was focused on a small región of 2.3 cm x 1.7 cm, and to resolve the entire breakup 
región while maintaining the desired resolution, the camera was traversed vertically 
to three positions 2.3 cm apart. Each image was then divided into five windows of 
equal size as indicated in figure 4. Each window consisted of a 7.14 mm x 16.25 mm 
rectangle of the flow and was digitized with a resolution of 200 x 455 pixels. This 
digitization allowed a pixel-size resolution of 30 um, which resulted in a minimum 
measurable bubble diameter of 83 um composed by approximately 6 pixels. Although 
the resolution obtained for the smallest bubble size is not very high, it does not 
affect the results presented in this paper. As it will be shown later, the bubbles used 
in this work to measure the breakup frequency were always larger than 1 mm, and 
therefore, their images consisted always of more than 870 pixels. To increase the 



Da 

(mm) 

0.394 
0.394 
0.394 
0.584 
1.194 

U0 

(ms-1) 

17.0 
17.0 
17.0 
17.0 
17.0 

V 

51000 
51000 
25 500 
25 500 
25 500 

Va 

(ms-1) 

8.88 
9.84 
9.84 
4.48 
1.07 

Injection 
X/D. 

25 
15 
15 
15 
15 

TABLE 1. Experimental conditions. Re has been calculated based on the exit velocity, U0, and the 
open section at the exit of the nozzle, D). This open section was kept constant in the three cases of 
Set3. 

spatial resolution of the discretization, the measuring windows were overlapped 50% 
of their length as indicated in figure 4. 

At all vertical positions of the CCD camera, we recorded 1000 frames. Each frame 
was first subtracted from the background illumination and subsequently an edge 
detection threshold operation was applied. From this, binary images as shown in 
figure 5 were produced. From the binary images, we computed the projected área 
of the bubbles. Since the underlying turbulence is isotropic, the mean shape of the 
projection of the bubble on any given plañe is assumed to be statistically the same 
and independent of its orientation, thus allowing the calculation of an equivalent 
bubble diameter. Using this method, a bubble-size histogram was measured from 
each of the 15 windows. From each histogram, the bubble-volume probability density 
function, V.p.d.f, was then calculated. The above described digital image processing 
method was first calibrated against well-known bubble geometries in the range of 
bubble diameters produced in our experiments and found to be accurate within 
10%, see Martínez-Bazán (1998). For the very low air void fraction generated in our 
experiments, and the small depth of the field used to acquire our images, we are 
confident that the equivalent size measured is within the above estimated accuracy. 

Before beginning the discussion of the measurements, it is important to emphasize 
that in all our experiments the bubbles broke up under the action of fully developed, 
isotropic turbulence, which was spatially nearly uniform. The air was always injected 
at the jet's centre axis, and during their breakup, the bubbles remained at the centre of 
the jet, being transported laterally by the action of the turbulence to radial distances 
always smaller than 30% of the width of the jet. A schematic of the flow conditions 
under which all the breakup experiments were conducted, showing all the important 
dimensions of interest in our experiments, is given in figure 6. In all cases, the 
characteristic width of the jet in the región of interest, Dwp was always three to five 
times larger than the lateral dimensión of the measuring window, k, which in turn was 
always larger than the máximum radial distance where the bubbles were dispersed 
by the turbulence. Within this central región of the jet, the turbulent kinetic energy 
was measured to be nearly uniform, a result consistent with early measurements 
by Hussein et al. (1994). In agreement with measurements of high Reynolds number 
axisymmetric jets, i.e. Wygnanski & Fiedler (1969), Hussein et al. (1994), the measured 
r.m.s. of the axial and transversal components of the jet velocity, u', v', were always 
nearly uniform throughout the volume of interest within 3% to 5%. 

Furthermore, in all our experiments, owing to the very short residence time of the 
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FIGURE 5. Binary images corresponding to the flow conditions shown in figure 4. 
(a) Section 1. (b) Section 2. (c) Section 3. 

bubbles in the breakup región, neither buoyancy effects ñor the dynamics of bubble 
oscillations play any role in the bubble breakup. 

3. Experimental results 
3.1. Evolution of the bubble-volume p.d.f.s 

Let us begin considering the cases of air injection at X/Dj =15 and Uo = 17 ms - 1 , 
which correspond to a Reynolds number of the water jet Re = 25 500 (Set 3 in 
table 1). Under these conditions, we investigated three different air injection diameters, 
Dai = 0.394 mm, Dai = 0.584 mm, Dm = 1.194 mm. In each of the three diameter 
cases, the injection velocity of the air was adjusted to give always the same flow 
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FIGURE 6. Schematic representation of conditions used for the turbulent breakup measurements. 
Characteristic water jet diameter, DWj, the width and length of all measuring windows was respec-
tively \\ = 16.25mm and Lw = 7.14 mm. In all experiments h/Dw. < 0.3. 
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FIGURE 7. Evolution of the bubble V.p.d.f, Da = 1.194 mm. Experimental Set 3c. 

rate, Qa = 72mlmin_ 1 . For the case of the largest needle diameter, the air injection 
velocity was selected to be equal to the mean velocity of the water jet at the point 
of injection. Thus, when the air exits the needle it is only exposed to the turbulent 
stresses resulting from the fluctuating component of the water velocity. In other 
words, the bubbles only see the nearly homogeneous, isotropic turbulent flow existing 
on the jet's centreline at the injection point. The evolution of the bubble-volume 
p.d.f. resulting from the turbulent breakup of the air as it is convected to regions of 
decaying dissipation rate, e, is shown in figure 7. For clarity we have only plotted 
four measuring locations (windows). 



When the air is injected into the water, the velocity fluctuations of the underlying 
turbulence of the jet results in deformation forces that are much greater than the 
confinement forces due to surface tensión and the bubble breaks. However, the 
probability of breakup depends on the characteristic size of the bubble, D, and on 
the valué of the turbulent kinetic energy (or dissipation rate, e) of the underlying 
turbulence. For each valué of e, a critical capillary length, Dc, exists such that, 
in the mean, the turbulent stresses are equal to the surface tensión forces. This 
critical capillary diameter, Dc is given by Dc = 1.26(<r/'p)3/5 e~2/5. In this particular 
experiment the valué of the critical capillary length was Dc « 264 |im at the point 
of injection of air. Note that, since initially D > Dc, the bubble begins to break at 
a certain frequency right at the injection point, and at the first measuring location, 
X/Dj = 16.06, the volume p.d.f. already shows a large peak at D « 1.7 mm with 
relatively wide tails. The shape of the V.p.d.f. appears to be almost a symmetric 
distribution confined between 0.5 mm and 2.5 mm. As the bubbles are transported 
downstream by the mean motion of the water jet to the next measuring location, 
they continué breaking at a rate determined by the local valué of the intensity of the 
turbulent kinetic energy (or dissipation rate). Thus, at X/Dj = 19.44 (window number 
4), the measured bubble-volume p.d.f. is observed to have evolved considerably to 
a new shape which has resulted from the rapid decay in the number of large sized 
bubbles and the associated increase in the number of smaller ones. This breakup 
process continúes while the bubbles are convected downstream to regions of lower 
and lower dissipation rate, e, until eventually we observed that the V.p.d.f. reaches a 
frozen or unchanged shape, shown in figure 8(a). The existence of a frozen state is 
expected, since, as the bubbles are broken by the turbulence stresses from the liquid, 
their size monotonically decreases with the downstream distance. In each case the 
rate of decay of the bubbles' size is obviously associated with the local valué of e 
at the injection point and the convective velocity at which they are transported to 
regions of decaying e. As e decays with the downstream distance (e oc {X/DJYA), see 
figure 3, the critical diameter, Dc, also increases as (X/Dj)&/5. As a result of these 
combined effects, a downstream distance exists where all the bubbles become smaller 
than Dc, at which point no further breakup takes place, and the p.d.f. will remain 
frozen from that point on. In the above described experiment, this frozen p.d.f. is 
achieved at X/Dj « 26. Note in figure 8(a) that the bubble-volume p.d.f.s measured 
at the last three measuring stations are almost identical. 

A statistical description of the bubble distribution can be obtained by using the 
distribution function p(D,x,v,t)dDdxdv which is defined as the probable number of 
bubbles with diameters in the range dD about D, located in the spatial range dx about 
the position x, with a velocity range dv about v, at time t. A Boltzmann-type equation 
often referred to as the population balance equation can be written to describe the 
time rate of change of the distribution function p, 

d-l+vx-(vp) + vv-(Fp) = ~ ( R P ) + Q'b + Q'c + r, (3.1) 

where the rate of change of p with time due to the bubble breakup and coalescence 
are denoted by Q'b and Q'c respectively. The forcé per unit mass acting on a bubble 
is denoted by F, and the rate of change with time of the diameter of the particle 
due to evaporation, condensation, or dissolution is given by R. r represents the rate 
of change of the distribution function caused by collisions which do not result in 
coalescence. In the case of interest here of very diluted systems, and immiscible fluid, 
coalescence and changes in p due to bubble/bubble collisions can be neglected on the 
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FIGURE 8. (a) Evidence of the existence of a frozen V.p.d.f, which remains unchanged in the last 
three measuring windows. (b) Evolution of the flux of bubbles per window. The valué refers to 
the total flux, Nt U/Lw, obtained in each measuring window. Observe that after a frozen V.p.d.f. 
is achieved, the flux remains unchanged, « 4 x 104 bubbles/s, indicating the termination of the 
breakup process. Lw is the length of the measuring window. Da = 1.194 mm, experimental Set 3c. 

time scales studied, and the above equation reduces to 

dp 

dt 
+ Vx'{vP) + Vv'{FP) = Q:h 

Integrating over the whole velocity space one obtains 

dn 
+ Vx-(vn) f 

JD 

m(D0)f(D, D0)g(D0)n(D0) dD0 - g(D)n, 

(3.2) 

(3.3) 

where n(D,x,t) = f pdv is the number of bubbles per unit volume with size D at a 
location x and time t, and v is the mean velocity of all bubbles of size D a t a location 
x and time t. g(D) is the bubble breakup frequency, m(D0) is the mean number of 
bubbles resulting from the breakup of a mother bubble of size D0, and f(D,D0) is the 
size distribution of daughter bubbles formed from the breakage of a mother bubble 
of size D0-



In our steady-state, quasi-one-dimensional experiments, equation (3.3) reduces to 

^ = / m(D0)f(D,D0)g(D0)n(D0)dD0-g(D)n, (3.4) 
8* JD 

where x is the coordínate along the axis of the jet and v is the streamwise velocity of 
bubbles of size D. Furthermore, our PDPA measurements indicated that v was always 
approximately equal to the local mean velocity of the liquid U(x). 

One can use equation (3.4) to calcúlate the rate of change of the total number of 
bubbles of all sizes per unit volume, nt = Nt/A L„, 

8-^ = Bt- De, (3.5) 
ex 

where Nt is the total number of bubbles measured in the entire volume of the 
measuring window which has a length Lw and cross-sectional área A, U is the 
convective velocity (which in our experiments was measured to be the same for all the 
bubbles regardless of their size and equal to the local velocity of the water jet), and 
Bi = f f™m(Do)f(D,Do)g(Do)n(Do)dD0dD and De = Jg{D)ndD stand for the rate 
of birth and death of the bubbles respectively due to breakup. In our experiments 
the residence time of the bubbles in the measuring región is so small that dissolution 
effects can be shown to be negligible. Furthermore, the bubble void fraction is always 
less than 10~5, and coalescence effects can also be neglected. A detailed discussion of 
the effect of the bubble coalescence and the lack of relevance to our experiments can 
be found in Martínez-Bazán (1998). 

When the bubble breakup process is finished, Bt = De = 0. Since we are looking 
at the steady-state problem (8Nt/8t = 0), the end of the breakup is marked by 
the downstream location where 8[Nt(x) U(x)]/8x = 0, or equivalently, the location 
where Nt(x) U(x) becomes constant. Figure 8(fr) shows the downstream evolution 
of the total flux of bubbles of all sizes, Nt(x) U(x)/L„, indicating the existence of 
a frozen state. Observe that, near the injection point, while the bubbles reside in 
regions of high dissipation rate of turbulent kinetic energy, Nt(x) U(x)/Lw sharply 
increases until reaching, further downstream, an asymptotic valué of about 4 x 104 

bubbles/s, at which point no more breakup occurs. It is important to recall that 
the width of our measuring window spans the entire small radial región where the 
bubbles are dispersed by the turbulence. Thus, dispersión effects are not influencing 
our measurements, and, indeed, we are measuring all the bubbles resulting from the 
breakup at each downstream location. 

The measurements corresponding to the same flow conditions but with a needle 
injection diameter of Dai = 0.394 mm and Dai = 0.584 mm are shown in figures 9 and 
10 respectively. To maintain the injection rate of air equal to the previous case while 
varying the needle's diameter, the air injection velocity was increased to 4.48 m s_1 and 
9.84 ms - 1 respectively. In these cases, the air exiting the needle is quickly decelerated 
to the mean velocity of the water jet in approximately 1 mm, a length which is always 
an order of magnitude smaller than the dimensión of the first measurement window. 
Thus, as was the case with the largest diameter needle, the bubbles breakup only 
under the effect of the underlying fully developed turbulence existing on the axis of 
the water jet. 

Qualitatively, the measured evolution of the bubble-volume p.d.f. in these two cases 
appears to be similar to that described for the largest injection needle. However, it 
should be pointed out that the initial bubble p.d.f. (measured at the first window) is 
narrower as the needle diameter is decreased. This also results in a decrease in the 
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FIGURE 9. (a) Evolution of the bubble V.p.d.f. (b) Evolution of the flux of bubbles per window. After 
a frozen V.p.d.f. is achieved, the flux remains at « 2.7 x 104 bubbles/s, Da = 0.394 mm, experimental 
Set 3a. 

total number of bubbles measured at the location of the frozen p.d.f. Note that the 
asymptotic valué of the bubbles' flux, NtU/Lw, reached at the location of the frozen 
p.d.f. has decreased from 4 x 104 bubbles/s in the case of Dfl3 = 1.194 mm to 2.7 x 104 

bubbles/s for the case of Dai = 0.394 mm. This decay is a consequence of the apparent 
increase of the peak in the frozen V.p.d.f., indicating that for the largest injection 
needle the bubble breakup has produced a larger number of smaller bubbles. 

Using the smallest needle (Dai = 0.394 mm), we conducted additional experiments 
by injecting the air at X/Dj = 25, but into a water jet of a much larger Reynolds 
number, Re = 51000, corresponding to U0 = 17 m s - 1 . These results are shown in 
figure 11. From the shape of the initial bubble-volume p.d.f., it can be seen that this 
case resulted in a much broader initial distribution with tails extending up to 5 mm. 
Qualitatively, the evolution of the V.p.d.f. is also similar to that described above. 
However, since the valúes of the dissipation rate are now much smaller, the bubble 
breakup frequency appears to be much smaller. Thus, even though we begin with 
much larger bubble sizes, the máximum asymptotic total flux of bubbles measured in 
this case, 1.05 x 104 bubbles/s, is the smallest of all the cases studied. 
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FIGURE 10. As figure 9 but for Dfl = 0.584 mm. Experimental Set 3b. 
In (b) the flux reaches « 3 x 104 bubbles/s. 

To obtain additional information on the dependence of the bubble breakup fre-
quency on e and on the bubble size D, we conducted a third set of experiments 
injecting the air at the máximum e allowed by our experimental techniques, fig-
ure 12. This corresponds to the case of U0 = 17 m s - 1 , Re = 51 000, injection point at 
X/Dj = 15, and Da = 0.394 mm (Set 2 in table 1). As expected from the fact that the 
dissipation rate of the underlying turbulence is the largest of all our experiments, this 
case resulted in the máximum asymptotic total flux of bubbles, « 7.4 x 104 bubbles/s, 
as shown in figure I2(b). 

3.2. Rate of decay of the number of bubbles of a certain class size 

In our experiments, since v(D) = U, the rate of change of the number of bubbles of 
a certain bubble-size bin is given by 

d(Un) 

dx -i 
JD 

m(D0)f(D, DOMDOMDQ) dD0 - g(D)n. (3.6) 

To measure the breakup frequency we discretized all the measured bubble size 
p.d.f.s in 10 size bins. If Dm is the size representing the largest bin in the distribution, 
and nm is the number density of bubbles of this máximum size, applying the above 
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FIGURE 11. As figure 9 but for Da = 0.394 mm. Experimental Set 1. 
In (¿i) the flux reaches « 1.05 x 104 bubbles/s. 

equation to the class sized Dm gives 

d(Unm) 

dx 
= -g(e,Dm)nf (3.7) 

Note that the first term in the right-hand side of equation (3.6) is zero, a consequence 
of the fact that there are no bubbles larger than Dm in the system. Therefore, the 
breakup frequency can be simply calculated as 

1 d(Unm) 

nm dx g(e,Dm) (3.8) 

Since, nm = Nm/(ALW), where Nm is the number of bubbles of size Dm measured in 
the entire volume of our window of length Lw and cross-sectional área A: 

1 d(UNm) 
g(e,D) = -

Nn dx 
(3.9) 
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Case DM 

Set 1 
Set 2 
Set 3a 

b 
c 

2.75 
1.67 
1.91 
2.0 
2.08 

2.95 
1.89 
2.06 
2.15 
2.23 

2.55 
1.55 
1.76 
1.85 
1.93 

TABLE 2. Mean valúes of the largest bubble size bin for each experimental Set. D^ is the upper 
limit and Di is the lower limit. 

For each experimental condition we have different valúes of Dm. The valúes of Dm 

for the five different experiments with the corresponding upper and lower boundaries 
of the bins are given in table 2. The selection of the bins was done such that in the 
first measuring window we measured at least Nm = 1000 bubbles over the selected 
number of measurements performed. The downstream gradient of the flux of bubbles 
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FIGURE 13. Downstream evolution of number of the largest class-size bubbles. The number shown 
indicates the number of bubbles measured in each position corrected by the ratio of velocities 
between the measuring window and the first window measured, Nci = NmiUi/Ui. 

oí this máximum size, given by equation (3.7) was then measured for each of the five 
experimental conditions reported. 

The measured downstream evolution of U Nm(D) corresponding to the largest size-
class bin, in all the experiments discussed above, is given in figure 13. In each case, the 
data have been normalized by the velocity at the first measuring location, U\. From 
the measurements of the dissipation rate, e, along the jet's axis, we then calculated 
the breakup frequency as a function of the dissipation rate, e, and the bubble size, D, 
figure 14. Note that in all cases shown in figure 14, the breakup frequency increases as 
a power function of the dissipation, with the exponent being approximately constant 
and equal to 0.3 (from 0.37-0.39). The dependence on D as indicated by the factor in 
front of the power is not readily apparent, and will be discussed later. In the following 
section we will discuss a phenomenological model for the bubble's breakup frequency, 
g(e,D), and compare it to the above results. 

4. A phenomenological model for the bubble breakup frequency 
Consistent with the experimental evidence, we will assume that the bubbles are 

injected into a turbulent water flow which is locally homogeneous, isotropic and 
nearly in equilibrium. Furthermore, the initial size of the bubbles, D0, is assumed to 
be in the inertial subrange, r¡ < D0 < Lx, where r¡ is the Kolmogorov microscale of 
viscous dissipation of the underlying turbulence. Since the one-dimensional energy 
spectra measured at the bubble injection point show in all cases a k~5/3 dependence 
on the wavenumber, k, we will also assume that the turbulence is fully developed in 
the scales of interest, and that local isotropy can be applied as the best approximation 
to describe the underlying turbulence under which the breakup takes place. We will 
further assume that the bubble void fraction is always very small (< 10~5), and that 
there is no two-way coupling between the two phases, i.e. the presence of the air 
bubbles does not affect the evolution of the turbulence in the water. This assumption 
is strictly valid for the very small void fraction used in our experiments. However, 
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FIGURE 14. Bubble breakup frequency. (a) Experimental Set 1. (b) Set 2. (c) Set 3. 

at large void fractions, the two-way coupling effects may become significant, see 
Martínez-Bazán (1998). 

The basic premise for our model is that for the bubble to break, its surface has to 

file:///j.yb


deform, and this deformation energy is provided by the turbulent stresses produced 
by the surrounding water. The minimum energy necessary to deform a bubble of size 
D is 

ES(D)= naD2. (4.1) 
Thus, the surface restoring pressure is 

Tí(D) = - ^ = 6 £ . (4.2) 
KÜi D 

In the case of an air bubble submerged in a turbulent water flow, the Ohnesorge 
number is very small, Oh < 10~2 (note that Oh = fia/^/pa<J D = 2 x 10~2 for 
D = 10|im), and the internal viscous deformation forces are negligible compared to 
the surface tensión forces. Thus, we will assume that the confinement forcé is given 
only by equation (4.2). 

One can estimate the average deformation forcé per unit surface produced by the 
turbulent stresses resulting from the velocity fluctuations existing in the liquid between 
two points separated a distance D as 

xt(D) = \ pA^(D), (4.3) 

where p is the density of the water. 
When TÍ(D) > TS(D), the bubble deforms and eventually breaks up. The equality, 

it{D) = TS(D), defines a critical diameter, Dc, such that bubbles with D < Dc are stable 
and will never break. A bubble of size D > Dc has a surface energy smaller than 
the deformation energy and, thus, it will break. Following Kolmogorov's universal 
theory, in the homogeneous and isotropic turbulence conditions of interest here, the 
mean valué of the velocity fluctuations between two points separated a characteristics 
distance D can be estimated as 

Aw2(D) = \u{x + D,t) - u(x, i) |2 = p {eD)2'\ (4.4) 

where, as stated above, D is within the inertial subrange. Equation (4.4) is obtained 
by integrating over the whole range of turbulent scales, Batchelor (1956). 

The critical diameter, Dc = {\2a/{fi p))3/5 e~2/5, is then defined by the crossing point 
of the two curves shown in figure 15. Note that for a bubble of size D > Dc, any two 
points on the surface of the bubble separated a distance D' such as Dmin < D' < D will 
experience stresses from the surrounding turbulence with sufficient energy to produce 
the breakup of the bubble. The valué of Dmin can be calculated by simply equating 
the surface energy of a bubble of size D to the deformation energy between points a 
distance Dmin apart: 

\P^IZ^1 = ^- (4-5) 
Thus, 

The fact that a range of dimensions exists between D and Dmin along which the 
bubble may break, leads to the conclusión that when it breaks, it may result in a wide 
distribution of daughter bubble sizes. The determination of the p.d.f. of the daughter 
bubbles is a complex issue which until now has precluded the development of a 
unified theory (model) to describe the turbulent breakup. However, without addressing 
here the problem of determining the p.d.f. of the daughter bubbles (presented in a 
companion paper, Martínez-Bazán, Montañés & Lasheras 1999), one can determine 
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the frequency, g(e,D), at which a bubble of size D will break under turbulence 
characterized by a dissipation rate, e. 

As is the case in any mechanical process, we postúlate that the rate at which the 
breakup process takes place is inversely proportional to the difiference between the 
deformation and confinement forces which produce the deformation of the interface. 
In other words, we postúlate that the larger the difiference between the gradient 
of pressure produced by the turbulent fluctuations on the surface of the bubble 
(\ pÁu2(D)), and the restoring pressures caused by surface tensión, 6cr/D, is, the 
larger the probability that the bubble will break in a certain time. On the other hand, 
the breakup frequency should decrease to a zero limit valué as this difiference of 
pressures vanishes. Thus, the bubble breakup time can be estimated as 

D 
th GC — = 

D 

Au2(D)-\2a/(pD) 
(4.7) 

where uh is the characteristic velocity of the bubble breakup process. 
The breakup frequency g(e,D) is then given by 

g(e,D) Kt 

y/Au2(D)-12 <r/(pD) y/P(eD?" -

D =K* D 
12<T/(pD) 

(4.8) 

where the constant /? = 8.2 was given by Batchelor (1956), and Kg = 0.25 has been 
found experimentally.t 

The dependence of the breakup frequency, given by equation (4.8), on the bubble 
diameter is shown in figure 16. The breakup frequency is zero for bubbles of size 
D < Dc, and it increases rapidly for bubbles larger than the critical one, D > Dc. 
However, it is important to note that after reaching a máximum at Dgmax = 1.63 Dc, 
the breakup frequency decreases monotonically with the bubble size. The máximum 

t The valué of Kg = 0.25 has been obtained by best fitting the transient V.p.d.f.s while solving 
the inverse problem of calculating the daughter p.d.f., see Martínez-Bazán et al. (1999). 
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breakup frequency, achieved at Dgmax, is given by 

gmaX(e)rx(a/p)-2'5e3'5. (4.9) 

The measured bubble breakup frequency corresponding to the three sets of ex-
periments discussed in §3 are plotted in figure 17. As discussed in §3, the breakup 
frequencies have been calculated from the data corresponding to the largest bubble-
size bin which contains enough samples to ensure statistically meaningful results. Due 
to the discretization needed in our experiments, this bubble-size bin, corresponding 
to the largest diameters, contains bubbles of sizes between two valúes, Du

m and Dl
m. 

Thus, in order to test the accuracy of our model given in equation (4.8), we have 
plotted, jointly with the experimental data, the calculated valúes of g(e,D^) and 
g(e,Dl

m) corresponding to the breakup frequencies of the upper, Du
m, and lower, Dl

m, 
boundaries of the largest bubble-size bin shown in table 2. 

It should be noted that the model not only describes the qualitative trends, but more 
importantly, it agrees remarkably well with the measured frequencies. The agreement 
is within the 10% máximum experimental error shown by the error bars in figure 17. 
Although in our experiments we were only able to vary slightly the bubble's diameter 
at the point of injection, the experimentally measured dependence of the breakup 
frequency on the bubble size also appears to be in excellent qualitative agreement 
with the model. In the experiments shown in figure 17, the characteristic bubble 
size D0 varied from D0 = 2.7 mm in figure 17(a) to D0 = 1.67 mm in figure 17(c). 
Notice that, since in all cases D0 > Dgmax, consistent with the model, the breakup 
frequency decreases as the bubble diameter is increased. Observe that the breakup 
frequency decreased from 250 s_1 for D0 = 2.0 mm to 200 s_1 for D0 = 2.7 mm when 
e is 230m2s~3 . Similarly, for e = 950m2s~3, the breakup frequency decreased from 
540 s"1 for D0 = 1.67 mm to 450 s"1 for D0 = 2.0 mm. 

The dependence of the breakup frequency on the bubble diameter is worthy of 
further discussion since it appears to have been a source of controversy with previous 
investigators, see Tsouris & Tavlarides (1994), Prince & Blanch (1990) and many 
others. In the limit of very large bubbles, D/Dc > 1, the surface tensión forces 
become very small and the breakup frequency can be approximated by 

g ( e , D ) « €Í/3D~2/3. (4.10) 
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This is indeed the dependence that we have measured, since in all our experiments 
D/Dc was always greater than 1.63. Furthermore, it is important to point out that the 
diameter for which the breakup frequency is máximum depends only on Dc, 

D„ = 1.63 Dc = 1.63 f - ^ ] 
V fip ) 

3/5 
-2/5 (4.11) 

and that the máximum breakup frequency increases proportionally to e3/5 and decays 



with the interfacial tensión as a 2/5, 

gmaÁe) oc ( - J 63/5. (4.12) 

On the other hand, for small bubbles of sizes smaller than Dgmax, but comparable 
to the critical diameter, Dc < D < Dgm¡x, the turbulent stresses dominate, and the 
asymptotic dependence of g(e,D) valid for D/Dc « 1 can be written as 

« C D l c c Q " " ' ^ ^ . (4.13, 

This is, by the way, the regime in which most of the previous investigations have been 
conducted. Previous work conducted in turbine mixers generally was done at low e, 
and in the size range Dc < D < Dgmax. Thus, their reported increase of the breakup 
frequency with the diameter is also consistent with our present model. 

The residence time of the bubbles in our experiments was always shorter than 
0.01 s. In the bubble size range for which we have measured the breakup frequency, 
the time that it takes the bubbles to reach their terminal velocity is about 20 to 30 
times larger than their residence time in the breakup región (the time it takes for the 
bubble p.d.f. to reach a frozen state). Thus, buoyancy eífects do not play a role in 
the breakup process studied here. Similarly, the dynamics of the bubble oscillations 
also appears to play no role in our bubble breakup. In our experiments, the residence 
time of the bubbles in the turbulence is shorter than the response time of the bubbles. 
This assumption is consistent with the measured breakup times which are always one 
order of magnitude shorter than the characteristic response time of the bubbles to 
transient excitations. 

In summary, the breakup process that we have studied is only controlled by 
turbulence, and the simplified phenomenological model appears to retain all the 
important eífects since neither buoyancy ñor the bubble dynamics should play an 
important role for the small residence time involved in our experiments. Of course, 
this effect can be dominant in cases where the residence time of the bubbles in the 
turbulence is much larger than the response time of the bubble, as has been shown 
by Risso & Fabre (1998). 

5. Conclusions 
We have conducted a series of well-controlled experiments where the transient 

evolution of the bubble size p.d.f. resulting from the breakup of air bubbles of known 
diameters injected into a fully developed turbulent water flow has been systematically 
measured using non-intrusive optical techniques. These measurements have been used 
to calcúlate the bubble breakup frequency in nearly homogeneous and isotropic 
turbulent conditions, as a function of their size and of the valué of the turbulent 
kinetic energy of the underlying turbulence. 

Experiments performed over a wide range of bubble diameters and turbulent 
intensities show that the breakup frequency always increases with the valué of the 
dissipation rate of turbulent kinetic energy, e. However, they also show a non-
monotonic dependence of the breakup frequency on the bubble size. 

In the past, numerous models have been proposed for the breakage frequency which 
assumed that the breakup of the drop (or bubble) occurs through the interaction of 
the drop (or bubble) with an imaginary array of turbulent 'eddies' which are assumed 



to make up the turbulence, see Tsouris & Tavlarides (1994), Prince & Blanch (1990), 
Konno et al. (1983) among others. For example, Tsouris & Tavlarides (1994) assumed 
that the drop (or bubble) breakup frequency is equal to the product of a 'drop-eddy' 
colusión rate and a breakage efficiency. These models, which are derived from an 
extensión of the classical kinetic theory of gases (Prince & Blanch 1990), have the 
drawback that they require the use of physically questionable closures for the collisions 
between the particles and the 'eddies', involving assumptions for the eddy-particle 
colusión cross-section, the number of 'eddies' with a certain energy, etc. Furthermore, 
all these models predict only a monotonic increase of the breakup frequency with 
both the bubble size and the dissipation rate of turbulent kinetic energy, e. 

In this paper we have proposed a phenomenological model for the bubble breakup 
whose premises are radically different from those used in the past, and do not 
require invoking the use of an imaginary array of 'eddies' of unknown number and 
colusión cross-section. Our model is based on the premise that the breakup frequency 
is proportional to the difference between the non-inertial forces which produce the 
bubble deformation and confinement. This model is shown not only to describe the 
observed qualitative trends, but also to be in excellent agreement with the measured 
valúes. For small bubbles, whose diameters are comparable to the critical diameter, 
the breakup frequency is shown to increase with the bubble size as ^/D/Dc — 1, while 
for large bubbles it decreases as D~2/i. Furthermore, we have shown the existence 
of a characteristic bubble size, Dgmax, for which the breakup frequency is máximum. 
This máximum frequency increases as e3/5 and decreases with the interfacial surface 
tensión as <r~2//5. 
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