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Abstract
We show that the moduli stackMh of canonically polarized complex manifolds with
Hilbert polynomial h is Brody hyperbolic. Hence if Mh denotes the corresponding
coarse moduli scheme, and if U→ Mh is a quasi-finite morphism, induced by a
family, then there are no nonconstant holomorphic mapsC→ U.
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0. Introduction
Given a polynomialh, letMh be the moduli functor of canonically polarized complex
manifolds with Hilbert polynomialh. By [31], there exists a coarse quasi-projective
moduli schemeMh for Mh, but in generalMh will not carry a universal family. Except
for curves, there are no known natural level structures that can be added to enforce the
existence of fine moduli schemes. However, C. S. Seshadri and J. Kollár constructed
finite coveringsZ → Mh which are induced by a universal family inMh(Z) (see
[31, Th. 9.25]). Moreover, if a general element inMh(Spec(C)) has no nontrivial
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104 VIEHWEG and ZUO

automorphism, then there exists an open subschemeM0
h ⊂ Mh which carries a uni-

versal family. It is the aim of this article to show that both the coveringsZ and the
open subschemeM0

h are Brody hyperbolic. More generally, we show that the moduli
stackMh is Brody hyperbolic in the following sense.

THEOREM 0.1
Assume that for some quasi-projective variety U there exists a family f: V → U ∈
Mh(U ) for which the induced morphismϕ : U → Mh is quasi-finite over its image.
Then U is Brody hyperbolic; that is, there are no nonconstant holomorphic maps
γ : C→ U.

Assume that the varietyU in Theorem0.1 is an open subvariety of a projectiver -
dimensional manifoldY with B = Y \ U a normal crossing divisor. We conjecture
that the quasi-finiteness ofϕ implies that�1

Y(log B) is weakly positive over some
open dense subset ofU (see Def.3.1) and thatκ(�r

Y(log B)) = r . Paper [33] gives
an affirmative answer if, for all the fibres ofV → U , the local Torelli theorem holds
true, and Theorem0.1adds some more evidence.

An algebraic version of Theorem0.1 (saying that, for abelian varietiesA or for
A = C∗, all algebraic morphismsγ : A→ U have to be constant) has been shown
by S. Kov́acs in [15] and [16] (see also [23]).

The nonexistence of abelian subvarieties of moduli stacks presumably can also
be deduced from the bounds for the degree of curves in moduli spaces (see [3], [32],
[17]) by following the arguments used to prove [7, Th. 2.1].

Our arguments do not imply that the varietyU in Theorem0.1 is hyperbolic in
the sense of S. Kobayashi, except of course ifU is a compact manifold and hence the
Brody hyperbolicity equivalent to the Kobayashi hyperbolicity. We do not speculate
about possible Diophantine properties of moduli schemes which conjecturally are
related to hyperbolicity (see [18]).

A question similar to Theorem0.1 can be asked for moduli of polarized mani-
folds, that is, for the moduli functor of pairs( f : V → U,H ) where f is a smooth
projective morphism withωF semiample for all fibresF of f , and whereH is fibre-
wise ample with Hilbert polynomialh. HencePh(U ) is the set of such pairs, up to
isomorphisms and up to fibrewise numerical equivalence forH . By [31, Sec. 7.6],
there exists a coarse quasi-projective moduli schemePh for Ph.

In [32] we have shown that, forU an elliptic curve or forU = C∗, there are
no nonisotrivial smooth familiesV → U with ωV/U relative semiample. Being opti-
mistic, one could ask the following.
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QUESTION0.2
Does the existence of some( f : V → U,H ) ∈Ph(U ), for which the induced mor-
phismϕ : U → Ph is quasi-finite over its image, imply that U is Brody hyperbolic?

The methods used in this paper give an affirmative answer to Question0.2only under
the additional assumption that, for someν > 0 and for all fibresF of f , the ν-
canonical mapF → P(H0(F, ωνF )) is smooth over its image. Except ifωνF = OF ,
this additional assumption is by far too much to ask for, and we do not consider this
case in our paper.

An outline of the content of this paper and a guide to the proof of Theorem0.1
are given at the end of Section 1.

1. A reformulation
Theorem0.1 follows immediately from the next proposition. In fact, if there is a
holomorphic mapγ : C→ U , we can replaceU by the Zariski closure ofγ (C), and
the proposition tells us that the Zariski closure must be a point, and hence thatγ is
constant.

PROPOSITION1.1
Assume that for some f: V → U ∈Mh(U ) the induced mapϕ : U → Mh satisfies

dimU = dimϕ(U ) > 0.

Then there exists no holomorphic mapγ : C→ U with Zariski-dense image.

Proposition1.1 is formulated in such a way that, given a proper birational morphism
U ′ → U , the assumptions allow us to replacef : V → U by the fibre product
f ′ : V ′ = V ×U U ′ → U ′. We call such a pullback familyf ′ a smooth birational
model for f .

By the next lemma, the conclusion in Proposition1.1is compatible with replacing
f by any smooth birational model.

LEMMA 1.2
Let τ : U ′ → U be a projective birational morphism between quasi-projective va-
rieties. Then a holomorphic mapγ : C → U with Zariski-dense image lifts to a
holomorphic mapγ ′ : C→ U ′.

Proof
LetU0 ⊂ U be an open set withτ |τ−1(U0)

an isomorphism. The imageγ (C)meetsU0;
henceγ ′ exists on the complement of a discrete subsetA ⊂ C. Let1 be a small disk
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in C, centered ata ∈ A. The projective morphismτ factors throughU ′ → U × PM

for someM , and the composite pr2 ◦γ
′
|1∗ : 1

∗
→ PM is given by meromorphic

functions. Obviously, it extends to a holomorphic map on1, and the image of the
induced map1→ U × PM lies inU ′.

Using Lemma1.2, we assume in the sequel that the quasi-projective varietyU in
Proposition1.1 is nonsingular.

For the proof of Proposition1.1, we first gather and generalize some methods
of an algebraic nature, in particular, the weak semistable reduction theorem of D.
Abramovich and K. Karu (see [2]) and the positivity results for direct images of cer-
tain sheaves (see [12], [14], [28], [29]). In Section 4 both are applied to certain product
families, and the main result, Proposition4.1, is quite similar to the one obtained by
Abramovich in [1]. It allows us to replace the familyf : V → U by a smooth bira-
tional model of ther -fold product f r

: V r
→ U and to assume the stronger positivity

properties stated in Corollary4.3and Proposition4.4. Whereas the results of Section
2 hold true for arbitrary smooth projective morphisms, those of Section 3 and 4 use
the semiampleness ofωF for all fibresF of f .

Starting with Section 5, we assume that, contrary to Proposition1.1 or Proposi-
tion 4.4, there exists a holomorphic mapγ : C→ U with dense image. In order to use
covering constructions, as we did in [32] for dim(U ) = 1, we choose a hyperplaneH
on V whose discriminant locus overU is in a general position with respect toγ (C).
At this point the ampleness ofωF is needed.

In Section 6 we use the cyclic covering, obtained by taking a root out ofH
to compare and to study certain Higgs bundles and their pullback toC. The main
properties are gathered in Lemma6.5. Finally, Section 7 contains some curvature
estimates that show that the existence ofγ , encoded in Lemma6.5, contradicts the
Ahlfors-Schwarz lemma. The content of this section is influenced by the work of J.-P.
Demailly [7], S. S.-Y. Lu and S.-T. Yau [22], Lu [21], and Y.-T. Siu [27] on hyperbol-
icity.

2. Mild reduction
Let f : X→ Y be a morphism between projective manifolds with connected general
fibre. Abramovich and Karu constructed in [2] a generically finite proper morphism
Y′ → Y and a proper birational mapZ′ → (X ×Y Y′)˜ such that the induced mor-
phismg′ : Z′→ Y′ is weakly semistable. Here˜ denotes the main component, that is,
the component dominant overX. We do not recall the definition of weak semistability
but just list the main properties needed later.
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Definition 2.1
A morphismg′ : Z′→ Y′ between projective varieties is called mild if
(a) g′ is flat, Gorenstein with reduced fibres;
(b) Y′ is nonsingular andZ′ normal with at most rational singularities;
(c) given a dominant morphismY′1 → Y′, whereY′1 has at most rational Goren-

stein singularities,Z′ ×Y′ Y′1 is normal with at most rational singularities;

(d) givenY′0 an open subvariety ofY′ with g′−1
(Y′0)→ Y′0 smooth, a nonsingular

curveC′, and a morphismπ : C′ → Y′ whose image meetsY′0, the fibred
productZ′ ×Y′ C′ is normal, Gorenstein with at most rational singularities.

In [2] the definition of a mild morphism uses just the first three conditions, and by [2,
Lems. 6.1 and 6.2], those hold true for weakly semistable morphisms. As pointed out
by Karu in [11, proof of Lem. 2.12], the proof of property (c) carries over word for
word to show (d). Hence (d) holds true for weakly semistable morphisms as well.

Hence, starting withf : X → Y, over someY′, generically finite overY, one
can find a mild model of the pullback family, that is, a mild morphismg′ : Z′ → Y′

birational toX ×Y Y′ → Y′. However, it might happen that one has to blow up the
general fibre, and the smooth locus ofg′ would not be the pullback of the smooth
locus of f . Nevertheless, the existence ofg′ will have strong consequences for direct
images of powers of dualizing sheaves.

LEMMA 2.2
Let g′ : Z′→ Y′ be mild.
(i) If Y ′′→ Y′ is a dominant morphism between manifolds, then

pr2 : Z′ ×Y′ Y
′′
−→ Y′′ is mild.

(ii) Let g′′ : Z′′→ Y′ be a second mild morphism. Then

(g′, g′′) : Z′ ×Y′ Z′′ −→ Y′ is mild.

(iii) For all ν ≥ 1 the sheaf g′∗ω
ν
Z′/Y′ is reflexive.

Proof
(i) Property (a) in Definition2.1 is compatible with base change, and in (c) one en-
forces the compatibility of (b) with base change as well.

(ii) SinceZ′′ has rational Gorenstein singularities, property (c) forZ′ implies that
Z′ ×Y′ Z′′ has at most rational Gorenstein singularities. The other properties asked
for in (a) and (b) are obvious. For (c), remark thatZ′′ ×Y′ Y′1 is normal with rational
Gorenstein singularities, and hence

(Z′′ ×Y′ Y
′

1)×Y′ Z′ = (Z′′ ×Y′ Z′)×Y′ Y
′

1
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has the same property. The same argument withY′0 replaced byC′ gives (d).
The sheafg′∗ω

ν
Z′/Y′ is torsion free and hence locally free outside of a closed

codimension-two subvarietyT of Y′. SinceZ′ is normal and equidimensional over
Y′, for U0 ⊂ Y′ open and forV0 = g′−1

(U0) one has

H0(V0, ω
ν
Z′/Y′) = H0(V0 \ g′−1

(T), ωνZ′/Y′
)
,

and thereby
H0(U0, g

′
∗ω

ν
Z′/Y′) = H0(U0 \ T, g′∗ω

ν
Z′/Y′).

Sog′∗ω
ν
Z′/Y′ coincides with the maximal extension ofg′∗ω

ν
Z′/Y′ |Y′\T to Y′.

Let V → U be any smooth projective morphism between quasi-projective manifolds.
We choose forY and X projective nonsingular compactifications, withY \ U and
X \ V normal crossing divisors, in such a way thatV → U extends to a morphism
f : X → Y. If g : Z′ → Y′ denotes the weak semistable reduction, we choose a
birational morphismε : Y1→ Y such that the main componentY′1 = (Y

′
×Y Y1)˜ is

finite overY1. Let1(Y′1/Y1) denote the discriminant locus inY1 of Y′1→ Y1, and let
B1 = Y1 \ ε

−1(U ) be the boundary divisor. Blowing up a bit more, we can assume
thatY1 is nonsingular and that1(Y′1/Y1)+ B1 is a normal crossing divisor.

By Y. Kawamata’s covering construction (see [31, Cor. 2.6]), there exists a non-
singular projective manifoldY′2, finite over Y′1. In particular, there is a morphism
Y′2→ Y′, and by Lemma2.2(i) the pullback ofZ′→ Y′ is again mild.

Let us choose a desingularizationψ : X1→ X ×Y Y1 such that

(pr2 ◦ψ)
∗
(
B1+1(Y

′

1/Y1)
)

is a normal crossing divisor.
Changing the smooth birational model, we may replaceU by its preimage inY1

and by abuse of notation rename pr2 ◦ψ : X1→ Y1 as f : X → Y. We also writeY′

instead ofY′2 andZ′ instead ofZ ×Y′ Y′2. Doing so, we reach the following situation.

LEMMA 2.3
Any smooth projective morphism with connected fibres has a smooth birational model
V → U which fits into a diagram of morphisms of normal varieties

V
⊂ //

��

X

f
��

X′
τ ′oo

f ′

��

Z
σoo

g

��

X′′
ρoo

f ′′

��

Z′
δoo

g′

��
U

⊂ // Y Y′
τoo Y′

=oo Y′
=oo = // Y′

(2.3.1)

with the following properties:
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(i) Y , Y′, X, Z, and X′′ are nonsingular projective varieties;
(ii) τ is finite, and X′ is the normalization of X×Y Y′;
(iii) ρ andδ are birational, andσ is a blowing up with center in the singular locus

of X′;
(iv) for B = Y \U, the divisors B+1(Y′/Y) and f∗(B+1(Y′/Y)) are normal

crossing divisors;
(v) g′ : Z′→ Y′ is mild.

COROLLARY 2.4
Conditions (i) – (v) stated in Lemma2.3 imply that
(vi) X′ has rational singularities;
(vii) for all ν ≥ 1 there exist isomorphisms

g′∗ω
ν
Z′/Y′

'
−−→ f ′′∗ ω

ν
X′′/Y′

'
←−− g∗ω

ν
Z/Y′;

in particular, g∗ωνZ/Y′ is a reflexive sheaf;
(viii) for all ν ≥ 1 there exists an inclusion

ι : g∗ω
ν
Z/Y′ −→ τ ∗ f∗ω

ν
X/Y,

which is an isomorphism over U;
(ix) for all ν ≥ 1 there exists some Nν and an invertible sheafλν on Y with

τ ∗λν ' det(g∗ω
ν
Z/Y′)

Nν .

In Corollary 2.4(ix) the determinant ofg∗ωνZ/Y′ is i∗ det(g∗ωνZ/Y′ |Y\T ), whereT is
any codimension-two subvariety withg∗ωνZ/Y′ |Y\T locally free andi : Y \ T → Y
the inclusion.

Proof
Since1(X′/X) ⊂ f ∗1(Y′/Y) are both normal crossing divisors, one obtains (vi).

Z′ is normal with rational Gorenstein singularities; henceδ∗ωZ′/Y′ ⊂ ωX′′/Y′ and
ωνZ′/Y′ = δ∗δ

∗ωνZ′/Y′ ⊂ δ∗ω
ν
X′′/Y′ . The sheaf on the left-hand side is invertible, the

one on the right-hand side is torsion free, and both coincide outside of a codimension-
two subvariety. Hence they are equal, and one obtains the first isomorphism in (vii).
For the second one, one repeats the argument forρ instead ofδ. By Lemma2.2(iii),
all the three sheaves in (vii) are reflexive. Part (viii) has been shown in [28, Lem. 3.2]
(see also [24, Th. 4.10]).

Let Bν denote the zero divisor of det(ι); hence

det(g∗ω
ν
Z/Y′)⊗ OY′(Bν) = τ

∗ det( f∗ω
ν
X/Y).
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In order to show thatBν is the pullback of aQ-divisor onY, we have to show that the
multiplicities of two components ofBν coincide whenever both have the same image
in Y. To this end, given any componentB̃ of Y \U , consider a general curveC which
intersectsB̃ in some pointq. ReplacingC by a neighborhood ofq, we assume that
this is the only intersection point.

Let us writeTC = T×Y C, whereT stands for any of the varieties in the diagram
(2.3.1). Similarly, if h : T → T ′ is any of the morphisms in the diagram (2.3.1), hC

denotes the restriction ofh to TC.
By Definition 2.1(d), the varietyZ′C is again normal, Gorenstein with at most

rational singularities, and, forC sufficiently general,XC andX′′C will be nonsingular.
Applying part (viii) with Y replaced byC, one obtains a natural inclusion

ιC : g
′

C∗ω
ν
Z′C/Y′C

−→ τ ∗C( fC∗ω
ν
XC/C), (2.4.1)

and the zero divisor of det(ιC) is the restriction ofBν to Y′C. In order to show (ix), we
just have to verify thatBν is the pullback of aQ-divisor onC.

By [13], there exists a finite morphismC′ → C, totally ramified inq, such that
XC ×C C′ has a semistable modelS→ C′.

By Definition 2.1(d), the pullback ofZ′C to some nonsingular covering ofC re-
mains normal with rational Gorenstein singularities. By flat base change, (2.4.1) is
compatible with further pullbacks. Hence we may as well assume for a moment that
Y′C → C factors throughC′. Then

pr1 : S
′
= S×C′ Y

′

C −→ Y′C and g′C : Z′C −→ Y′C

are two flat Gorenstein morphisms,S′ andZ′C are birational, and both are normal with
at most rational singularities. Therefore, repeating the argument used to prove (vii),
one obtains

g′C∗ω
ν
Z′C/Y′C

= pr1∗ ω
ν
S′/Y′C

,

and the divisorBν |Y′C is the pullback of a divisor5 on C′. SinceC′ → C is totally
ramified inq, the divisor5 is itself the pullback of aQ-divisor onC.

3. Positivity of direct image sheaves
As in [28] and [29], we use the following convention: IfF is a coherent sheaf on a
quasi-projective normal varietyY, we consider the largest open subschemei : Y1→

Y with i ∗F locally free. For

8 = Sµ, 8 =

µ⊗
, or 8 = det,

we define
8(F ) = i∗8(i

∗F ).
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Definition 3.1
Let F be a torsion free coherent sheaf on a quasi-projective normal varietyY, and let
H be an ample invertible sheaf. LetU ⊂ Y be an open subvariety.
(a) F is globally generated overU if the natural morphism

H0(Y,F )⊗ OY −→ F

is surjective overU .
(b) F is weakly positive overU if the restriction ofF to U is locally free and if

for all α > 0 there exists someβ > 0 such that

Sα·β(F )⊗H β

is globally generated overU .
(c) F is ample with respect toU if there exists someµ > 0 such that

Sµ(F )⊗H −1

is weakly positive overU .

The basic properties of weakly positive sheaves are listed in [31, Sec. 2.3]. In partic-
ular, the definition ofweak positivity over Udoes not depend on the ample sheafH

(see [31, Lem. 2.14]), and, ifF is weakly positive overU andF → G surjective
overU , thenG is weakly positive overU (see [31, Lem. 2.16]). Moreover, weak pos-
itivity is a local property. If for each pointu ∈ U there is a neighborhoodU0 with F

weakly positive overU0, thenF is weakly positive overU .
By definition, most of the properties of weakly positive sheavesF carry over to

sheaves that are ample overU .

LEMMA 3.2
Let H be an ample invertible sheaf on Y . ThenF is ample with respect to U if
its restriction to U is locally free and if and only if for someη > 0 there exists a
morphism ⊕

H −→ Sη(F ),

surjective over U.

Proof
If F is ample with respect toU , for all β sufficiently large and divisible,

S2·β(Sµ(F )
)
⊗H −2·β

⊗H β

is globally generated overU , as is its quotient sheaf

S2·β·µ(F )⊗H −β .
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We may assume thatH β−1 is very ample, and we obtain the morphism asked for in
Lemma3.2. On the other hand, if there is a morphism⊕

OY −→ Sη(F )⊗H −1,

surjective overU , the sheafSη(F ) ⊗H −1 as a quotient of a weakly positive sheaf
is weakly positive overU .

The basic methods for studying positivity properties of direct images are contained in
[28], [29], [30], and [31]. Unfortunately, in [28] and [29] we used “weak positivity”
without specifying the open set, whereas in [31] we mainly work with smooth families
or families without nonnormal fibres. So we have to recall some definitions in this
section, and we have to make the arguments carefully enough to keep track of the
open setU .

Let f : X → Y be a surjective projective morphism of quasi-projective mani-
folds. We want to extend the constructions from [32, Sec. 2] to the case of dim(Y)>1.

For an effectiveQ-divisor D ∈ Div(X), the integral part[D] is the largest divisor
with [D] ≤ D. For an effective divisor0 on X, and forN ∈ N − {0}, the algebraic
multiplier sheaf is

ωX/Y

{
−0

N

}
= τ∗

(
ωT/Y

(
−

[0′
N

]))
,

whereτ : T → X is any blow-up with0′ = τ∗0 a normal crossing divisor (see, e.g.,
[8, Def. 7.4], or [31, Sec. 5.3]).

Let F be a nonsingular fibre off . Using the definition given above forF , instead
of X, and for a divisor5 on F , one defines

e(5) = Min

{
N ∈ N \ {0}; ωF

{
−5

N

}
= ωF

}
.

By [8] or [31, Sec. 5.4],e(0|F ) is upper semicontinuous, and there exists a neigh-
borhoodV of F with e(0|V ) ≤ e(0|F ). If L is an invertible sheaf onF with
H0(F,L ) 6= 0, one defines

e(L ) = Max
{
e(5); 5 an effective divisor andOF (5) = L

}
.

PROPOSITION3.3
Let U ⊂ Y be an open subscheme, letL be an invertible sheaf, let0 be a divisor on
X, and letF be a coherent sheaf on Y . Assume that, for some N> 0, the following
conditions hold true:
(a) V = f −1(U )→ U is smooth with connected fibres;
(b) F is weakly positive over U (in particular,F |U is locally free);
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(c) there exists a morphism f∗F → L N(−0), surjective over V ;
(d) none of the fibres F of f: V → U is contained in0, and for all of them,

e(0|F ) ≤ N.

Then f∗(L ⊗ ωX/Y) is weakly positive over U.

Proof
By [31, Lem. 5.23], the restriction of the sheafE = f∗(L ⊗ ωX/Y) to U is locally
free. The verification of the weak positivity is done in several steps. Let us first show
the following.

CLAIM 3.4
In order to prove Proposition3.3, we are allowed to assume thatF is ample with
respect to U.

Proof
Let H be a very ample sheaf onY, and letρ : Y → PM be an embedding. For a
general choice of the coordinate planesH0, . . . , HM , the intersectionHi ∩ (Y \ U )
is of codimension two inY. We choose a codimension-two subschemeT with T ⊃
Hi ∩ (Y \U ) for i = 0, . . . ,M . By definition, in order to show thatf∗(L ⊗ωX/Y) is
weakly positive overU , we may replaceY by Y\T and assume thatHi ∩(Y\U ) = ∅.
Moreover, forT large enough,f will be flat. By the local nature of weak positivity,
it is sufficient to show thatf∗(L ⊗ ωX/Y) is weakly positive over

U0 = U \
M⋃

i=0

Hi .

In fact, one can coverU by such open sets for different choices of the coordinate
planes.

Givenα > 0, we choosed = 1+ 2 · α and consider thedth power map

θ : PM
−→ PM with θ(x0, . . . , xM ) = (x

d
0 , . . . , xd

M ).

Let Y′ be the normalization ofθ−1(Y), and letτ : Y′ → Y be the induced map. For
the pullbackH ′ of OP1(1) to Y′, one obtainsτ ∗H =H ′d.

Leaving out codimension-two subschemes inY not meetingU0, we may assume
thatY′ is nonsingular. ThenX′ = X ×Y Y′ is nonsingular. In fact,f ′ : X′ → Y′ is
smooth overτ−1(U ), andτ ′ : X′→ X is smooth over

X \
M⋃

i=0

f −1(Hi ).
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Let us chooseF ′ = τ ∗F ⊗H ′N andL ′ = τ ′∗L ⊗ f ′∗H ′. The sheafF ′ is ample
with respect toU ′0 = τ−1(U0). Applying Proposition3.3 to F ′ instead ofF , one
finds

f ′∗(L
′
⊗ ωX′/Y′) = f ′∗(τ

′∗L ⊗ ωX′/Y′)⊗H ′

to be weakly positive overU ′0. By flat base change, this sheaf is isomorphic to

τ ∗ f∗(L ⊗ ωX/Y)⊗H ′
= τ ∗(E )⊗H ′.

Hence for allβ sufficiently large and divisible, the sheaf

S(2·α)·β
(
τ ∗(E )⊗H ′

)
⊗H ′β

= τ ∗
(
S2·α·β(E )

)
⊗H ′(2·α+1)·β

= τ ∗
(
S2·α·β(E )⊗H β

)
is globally generated overU ′0. We obtain morphisms⊕

OY′ −→ τ ∗(S2·α·β(E )⊗H β),

surjective overU ′0, and ⊕
τ∗OY′ −→ S2·α·β(E )⊗H β ,

surjective overU0. Forβ large enough,τ∗OY′ ⊗H β is generated by global sections,
and henceSα·(2·β)(E )⊗H 2·β is globally generated overU0.

Claim 3.4 allows us to assume thatF is ample with respect toU . Then the sheaf
L N·η(−η · 0) will be globally generated overV for someη � 0. ReplacingN by
N · η and0 by η · 0, we may assume thatL N(−0) itself has this property as well.
From now on, this assumption replaces conditions (b) and (c) in Proposition3.3.

Leaving out a codimension-two subset ofY not meetingU , we continue to as-
sume thatf is flat. Let us fix some nonsingular compactificationȲ of Y and a very
ample invertible sheaf ¯A onȲ such that ¯A dimY+1

⊗ωȲ is ample. We writeA = ¯A |Y
andH = A dimY+1

⊗ ωY.

CLAIM 3.5
E ⊗A dimY+1

⊗ ωY is globally generated over U.

Proof
Let us choose a compactification̄X of X such thatf extends to a morphism̄f : X̄→
Ȳ. Moreover, we chooseL̄ and 0̄ such thatL̄ N(−0̄) is again globally generated
over V . Let τ : X′ → X̄ be a blow-up such thatτ ∗0̄ = 0′ is a normal crossing
divisor, and letf ′ = f̄ ◦ τ . Assumption (d) in Proposition3.3 implies that

E ′ = f ′∗

(
τ ∗L̄ ⊗ OX′

(
−

[0′
N

])
⊗ ωX′/Ȳ

)
−→ f̄∗(L̄ ⊗ ωX̄/Ȳ)
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is an isomorphism overU . Hence it is sufficient to show that

E ′ ⊗ ¯A dimY+1
⊗ ωȲ

is globally generated overU . Blowing up a bit more, and enlarging0′ by adding
components supported inX′ \ τ−1(V), we can assume thatτ ∗(L̄ )N ⊗ OX′(−0

′) is
globally generated overX′ as well. Under this assumption, Claim3.5has been shown
in [31, Cor. 2.37, part 2]).

To finish the proof, we consider for anyα > 0 theα-fold product

Xα = X ×Y · · · ×Y X (α-times)

and f α : Xα → Y. Letσ : X(α)→ Xα be a desingularization, and letf (α) = f α ◦σ ,

L (α)
= σ ∗

( α⊗
i=1

pr∗i L
)
, and 0(α) = σ ∗

( α∑
i=1

pr∗i 0
)
.

The morphismf (α) : X(α) → Y and the sheafL (α) again satisfy assumption (a) in
Proposition3.3. Moreover, we assumedL N(−0) to be globally generated overV ;
henceL (α)N (−0(α)) is globally generated overV r

= V ×U · · · ×U V . Assumption
(d) holds true for0(α) by the following.

CLAIM 3.6
We have e(0(α)|Fr ) = e(0|F ).

Proof
The proof, similar to the one of [31, Cor. 5.21], is by induction onr . Obviously,
e(0(α)) ≥ e= e(0). Let C be the support of the cokernel of the inclusion

ωFr

{
−0(α)|Fr

e

}
−→ ωFr .

Applying [31, Prop. 5.19], to thei th projection pri : Fr
→ F , one finds subschemes

Ci of F with C = pr−1
i (Ci ). Since this holds true fori = 1, . . . , r , C must be

empty.

By Claim 3.5, the sheaff (α)∗ (L (α)
⊗ ωX(α)/Y) ⊗H is globally generated overU .

Hence Proposition3.3follows from the next claim.

CLAIM 3.7
There exists a morphism

f (α)∗ (L (α)
⊗ ωX(α)/Y) −→ Sα

(
f∗(L ⊗ ωX/Y)

)
,
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surjective over U.

Proof
The natural morphismσ∗ωX(α) → ωXα induces a morphism

f (α)∗ (L (α)
⊗ ωX(α)/Y) −→ f α∗

(( α⊗
i=1

pr∗i L
)
⊗ ωXα/Y

)
,

which is an isomorphism overU . By flat base change, the right-hand side is nothing
but

α⊗
f∗(L ⊗ ωX/Y).

Therefore Proposition3.3 is proved.

COROLLARY 3.8
Let f : X → Y be a projective surjective morphism between quasi-projective mani-
folds with connected general fibre. Assume that, for some open subscheme U⊂ Y ,

V = f −1(U ) −→ U

is smooth and thatωFu is semiample for all fibres Fu = f −1(u) with u ∈ U. Then
f∗ωνX/Y is weakly positive over U.

Proof
Using Proposition3.3 (with 0|V = 0), one can copy the arguments presented in
[31, proof of Cor. 2.45] to obtain Corollary3.8as a corollary to Proposition3.3. We
leave this as an exercise since Corollary3.8 has been shown under less restrictive
assumptions in [30, Th. 3.7], using different (and more complicated) arguments.

Remark 3.9
By [19], the assumption “ωFu is semiample for all fibresFu with u ∈ U ” is equivalent
to the f -semiampleness ofωV/U . Hence for allν sufficiently large and divisible, the
natural morphism

f ∗ f∗ω
ν
X/Y −→ ωνX/Y

is surjective overV . In particular, Corollary3.8 implies thatωX/Y is weakly positive
overV .

Let us end this section by stating a stronger positivity result. Although it holds true
by [14] for arbitrary families of manifolds of general type, we formulate it just for
families with a semiample canonical sheaf. Recall that in [28], for a projective sur-
jective morphismf : X → Y with connected general fibre, we defined Var( f ) to
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be the smallest integerη for which there exists a finitely generated subfieldK of
C(Y) of transcendence degreeη overC, a varietyF ′ defined overK , and a birational
equivalence

X ×Y Spec
(
C(Y)

)
∼ F ′ ×Spec(K ) Spec

(
C(Y)

)
.

THEOREM 3.10
Under the assumptions made in Corollary3.8, for all ν sufficiently large and divisible,

κ
(

det( f∗ω
ν
X/Y)

)
= Var( f ).

Proof
This has been shown in [29] if the general fibres off are of general type, and in [12]
in general (see also [14] or [30]).

Remark 3.11
Let f : V → U be the morphism considered in Proposition1.1. SinceωF is ample on
the fibres of f , we can replace the varietyF ′ in the definition of Var( f ) by its image
under a multicanonical map and hence assume that it is also canonically polarized.
One obtains a morphismϕ′ : Spec(K )→ Mh, andK must contain the function field
of ϕ(U )red. In particular, the assumption dim(ϕ(U )) = dim(U ) implies Var( f ) =
dim(U ).

4. Products of families of canonically polarized manifolds
Again let f : X → Y be a surjective projective morphism between quasi-projective
manifolds with connected fibres, and letU ⊂ Y be a nonempty open subvariety such
that

f : V = f −1(U ) −→ U

is smooth and such thatωV/U is f -semiample.
In [32, Prop. 2.7], we showed that, for curvesY, the ampleness of det( f∗ωνX/Y)

implies the ampleness off∗ωνX/Y for ν ≥ 2. In [31, Th. 6.22] one finds a similar
statement overU . In order to extend the latter toY, one would like to control the
nonlocal free locus off∗ωνX/Y. This could be done by using natural compactifications
of moduli spaces, but those exist only for curves, for surfaces of general type, or by
[11] under strong assumptions on the existence of minimal models.

Fortunately, the mild reduction of Abramovich and Karu can serve as a substitute,
using, in particular, the reflexivity of the sheaves in Corollary2.4(vii).

We assume in the sequel that dim(U ) = Var( f ) and thatV → U fits into the
diagram considered in Lemma2.3. SinceY′ is finite overY, one finds Var(g) =
Var( f ) = dim(Y′), and Theorem3.10implies that det(g∗ωνZ/Y′) is big for all ν suf-
ficiently large and divisible. We choose suchν ≥ 3, and we assume, in addition,
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that
f ∗ f∗ω

ν
V/U −→ ωνV/U

and the multiplication morphisms

Sβ( f∗ω
ν
V/U ) −→ f∗ω

β·ν
V/U

are surjective for allβ. Define

e= Max
{
e(ωνF ); F a fibre ofV → U

}
.

By Corollary2.4(ix), there is an invertible sheafλν onY and someNν ∈ N with

τ ∗λν = det(g∗ω
ν
Z/Y′)

Nν .

Writing B = Y \ U for the boundary divisor, let us fix an ample invertible sheafA

such thatA (−B) is ample. Since

κ(λν) = κ
(

det(g∗ω
ν
Z/Y′)

)
= dim(Y),

there exists someη > 0 and some effective divisorD with λην = A (D). Replacing
Nν by some multiple, we can assume

det(g∗ω
ν
Z/Y′)

Nν = τ ∗A (D)ν·(ν−1)·e.

Definer0 = rank( f∗ωνX/Y) andr = Nν · r0.

PROPOSITION4.1
Let X(r ) denote a desingularization of the rth fibre product X×Y · · · ×Y X, and let
f (r ) : X(r ) → Y be the induced morphism. Then, for allβ sufficiently large and
divisible, the sheaf

f (r )∗ (ω
β·ν

X(r )/Y
)⊗A −β·ν·(ν−2)

⊗ OY
(
− β · ν · (ν − 1) · D

)
is globally generated over U and

ω
β·ν

X(r )/Y
⊗ f (r )∗

(
A −β·ν·(ν−2)

⊗ OY(−β · ν · (ν − 1) · D)
)

is globally generated over Vr = f (r )−1(U ).

Proof
We again use the notation from Lemma2.3. By Lemma2.2(ii), mildness of a mor-
phism is compatible with fibre products; hence

g′r : Z′r = Z′ ×Y′ · · · ×Y′ Z′→ Y′
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is again mild.
For the normalizationX′(r ) of X(r ) ×Y Y′, we choose a desingularizationZ(r )

with centers in the singular locus ofX′(r ), and we choose a nonsingular blow-up
X′′(r ) which dominates bothZ(r ) andZ′r . We again obtain a diagram

V r ⊂ //

��

X(r )

f (r )

��

X′(r )
τ (r )oo

��

Z(r )
σ (r )oo

g(r )

��

X′′(r )
ρ(r )oo

f ′′(r )

��

Z′r
δ(r )oo

g′r

��
U

⊂ // Y Y′
τoo Y′

=oo Y′
=oo = // Y′

which satisfies the assumptions made in Lemma2.3. One finds, for all integersµ ≥ 0,

g′r∗ω
µ

Z′r /Y′ =

r⊗
g′∗ω

µ

Z′/Y′ . (4.1.1)

In fact, by flat base change and by the projection formula, both sheaves coincide over
the largest subvariety ofY′, whereg′∗ω

µ

Z′/Y′ is locally free. By definition, the right-
hand side of (4.1.1) is the reflexive hull of the tensor product on this subscheme, and
by Lemma2.2(iii) the left-hand side is reflexive; hence both are equal. Corollary2.4
implies the following.

CLAIM 4.2
(a) The sheaf g(r )∗ ω

µ

Z(r )/Y′
is reflexive, and there is an isomorphism

g(r )∗ ω
µ

Z(r )/Y′
'

r⊗
g∗ω

µ

Z/Y′ .

(b) There is an inclusion

g(r )∗ ω
µ

Z(r )/Y′
−→ τ ∗ f (r )∗ ω

µ

X(r )/Y

which is an isomorphism over U′.

Proof
Part (b) and the first part of (a) are nothing but Corollary2.4(viii) and (vii). For
the second part of (a), Corollary2.4(vii) allows us to replace the left-hand side by
g′r∗ω

µ

Z′r /Y′ and the right-hand side by
⊗r g′∗ω

µ

Z′/Y′ , and to apply (4.1.1).

By construction,g(r ) : Z(r )→ Y′ is smooth overU ′ = τ−1(U ), and

g(r )
−1
(U ′) = V ′r = V r

×U U ′.
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Now we play the usual game. For the integerν ≥ 3 chosen above, and forr0 =

rank(g∗ωνZ/Y′), there is a natural inclusion

det(g∗ω
ν
Z/Y′) −→

r0⊗
(g∗ω

ν
Z/Y′) (4.2.1)

which locally splits over the open setY′1, whereg∗ωνZ/Y′ is locally free, in particular,
overU ′. By the choice ofr , one obtains an inclusion

τ ∗A (D)ν·(ν−1)·e
−→

r⊗
(g∗ω

ν
Z/Y′) = g(r )∗ ω

ν
Z(r )/Y′, (4.2.2)

again locally splitting overU ′. In fact, the splitting inclusions in (4.2.1) and (4.2.2)
exist overY′1, and since the sheaves on the right-hand sides are reflexive, they extend
to Y′.

Forω = ωZ(r )/Y′ andA ′ = g(r )∗τ ∗A (D)ν , considerL = ω⊗A ′−1. By (4.2.2),

ων ⊗ A ′−(ν−1)·e has a section whose zero divisor0 does not contain a whole fibre
overU ′, and

L ν·(ν−1)·e
= ων·(ν−1)·e−ν2

⊗ ων
2
⊗A ′

−ν·(ν−1)·e
= ων·(ν−1)·e−ν2

⊗ OZ(r )(ν · 0).

All fibres of V r
→ U are of the form

Fr
= F × · · · × F,

and [31, Cor. 5.21] implies

e(0|Fr ) ≤ e(ωνFr ) = e(ωνF ) ≤ e.

Soe(ν ·0|Fr ) ≤ ν ·e, and forN = ν ·e, assumption (b) in Proposition3.3holds true.
By Corollary3.8, the sheafg∗ων·(ν·(e−1)−e) is weakly positive overU ′. Since

g(r )∗g(r )∗ ω
ν·(ν·(e−1)−e)

−→ ων·(ν·(e−1)−e)
= L ν·(ν−1)·e

⊗ OZ(r )(−ν0)

is surjective overV r , we can apply Proposition3.3 (for L ν−1 instead ofL ) and
obtain the weak positivity of

g(r )∗ (L
ν−1
⊗ ωZ(r )/Y′) = g(r )∗ (ω

ν
Z(r )/Y′)⊗ τ

∗A (D)−ν·(ν−1)

overU ′. Sinceg(r )∗ ω
β·ν

Z(r )/Y′
is reflexive, one has the multiplication morphism

µβ : S
β(g(r )∗ ω

ν
Z(r )/Y′) −→ g(r )∗ ω

β·ν

Z(r )/Y′
.
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By Claim4.2(a), the left-hand side isSβ(
⊗r g∗ωνZ/Y′), whereas the right-hand side is⊗r g∗ω

β·ν

Z/Y′ ; hence the assumption on the surjectivity of the multiplication morphism
carries over, andµβ is surjective overU ′. Since

g(r )∗ (ω
ν
Z(r )/Y′)⊗ τ

∗A (D)−ν·(ν−1)

is weakly positive overU ′, for all β sufficiently large and divisible,

Sβ
(
g(r )∗ (ω

ν
Z(r )/Y′)⊗ τ

∗A (D)−ν·(ν−1))
⊗ τ ∗A β

and
g(r )∗ (ω

β·ν

Z(r )/Y′
)⊗ τ ∗A (D)−β·ν·(ν−1)

⊗ τ ∗A β

will be globally generated overU ′. By Claim4.2(b), one has a morphism

τ∗OY′ ⊗A β·(ν−1)
−→ τ∗τ

∗( f (r )∗ ω
β·ν

X(r )/Y
)⊗A (D)−β·ν·(ν−1)

⊗A β·ν,

surjective overU . Although the sheaff (r )∗ ω
β·ν

X(r )/Y
is not necessarily reflexive, the

finiteness ofτ allows us to apply the projection formula and to obtain thereby a mor-
phism

τ∗OY′ ⊗A β·(ν−1)
−→ f (r )∗ (ω

β·ν

X(r )/Y
)⊗A −β·ν·(ν−2)

⊗ OY
(
− β · ν · (ν − 1) · D

)
,

surjective overU . Forβ large enough, the sheaf on the left-hand side will be generated
by global sections; hence for thoseβ the sheaf on the right-hand side is globally
generated overU . Since we assumed

f (r )∗ f (r )∗ ωνX(r )/Y −→ ωνX(r )/Y

to be surjective overV , the same holds true forν replaced byβ · ν, and

ω
β·ν

X(r )/Y
⊗ f (r )∗

(
A −β·ν·(ν−2)

⊗ OX(r )(−β · ν · (ν − 1) · D)
)

is globally generated overV r .

From now on, we ignore the original morphismf and work only with the morphism
f (r ). To keep notation as simple as possible, we allow ourselves to change it again.
Doing so, we can restate the results of the Sections 2, 3, and 4 in the following way.

COROLLARY 4.3
Let Ũ be a quasi-projective manifold, and let̃f : Ṽ → Ũ be a smooth projective
surjective morphism with connected fibres, withVar( f̃ ) = dim(Ũ ), and withωF̃
semiample for all fibres̃F of f̃ .
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Then there exist a proper birational morphism U→ Ũ , a projective compacti-
fication Y of U, a projective morphism f: X → Y , an invertible sheafA , and an
effective divisor D on Y , such that for allν sufficiently large and divisible one has the
following:
(a) f : V = f −1(U )→ U is smooth with connected fibres;
(b) X and Y are projective manifolds, and X\ V and B= Y \ U are normal

crossing divisors;
(c) A is ample, and D≥ B;
(d) f∗(ωνX/Y)⊗A (D)−ν is globally generated over U;
(e) ωνX/Y ⊗ f ∗A (D)−ν is globally generated over V .

Proof
By Lemma2.3, we find a smooth birational modelf : V → U of f̃ : Ṽ → Ũ which
fits into the diagram (2.3.1) in Lemma2.3. We may replaceV → U by V r

→ U and
apply Proposition4.1. Properties (a) and (b) obviously hold true. Since we assumed
A (−B) to be ample andν ≥ 3, for the invertibleA ′ = A ν−2(−B) and for the
divisor

D′ = (ν − 1) · D + B,

one obtains property (c) and, by Proposition4.1, (d) and (e).

If one starts with any smooth morphism in Proposition1.1, one knows by Remark
3.11that the variation is maximal. Lemma1.2 allows us to blow up the base; hence
Corollary4.3allows us to replace the original morphism by a new one, satisfying as-
sumptions (a) – (e). Therefore Proposition1.1and hence Theorem0.1are immediate
consequences of the next proposition, which is shown at the end of Section 7.

PROPOSITION4.4
Given U, let f : X → Y be a projective surjective morphism satisfying conditions
(a) – (e) in Corollary4.3 for someν, A , and D. Assume moreover that n= dim(F)
is even, that r= dim(U ) ≥ 1, and thatωνF is very ample for all fibres F of V→ U.
Then there exists no holomorphic mapγ : C→ U with dense image.

5. Construction of cyclic coverings
Starting from a morphismf : X → Y satisfying the assumptions in Proposition4.4
for an invertible sheafA , a divisorD, and a natural numberν, let us consider

L = ωX/Y ⊗ f ∗A (D)−1.

Blowing up X with centers outside ofV , we may assume that the global sections of
L ν generate an invertible sheafH . If E denotes the divisor onX with H (E) = L ,
thenE has support inX \ V and hence it is a normal crossing divisor.
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Let us assume there exists a holomorphic mapγ : C → U with dense image,
contrary to Proposition4.4. In this section we choose some divisor and some cyclic
covering ofX, depending onγ , and finally this construction helps to show that such
a holomorphic map cannot exist.

By Corollary4.3(d), we have for somè a morphism
⊕`+1 OY → f∗L ν , sur-

jective overU , and by Corollary4.3(e), the induced morphisms

`+1⊕
OX −→ f ∗ f∗L

ν
−→ L ν

are both surjective overV . By assumption, one obtains embeddings

V −→ P = P( f∗L
ν
|V ) −→ P` ×U.

The projection toP` extends to the morphismπ : X → P`, defined by the sections
of the sheafH . For all hyperplanesH in P`, one has

L = OX
(
π∗(H)+ E

)
.

Let P̌` denote the dual projective space. For a hyperplaneH ⊂ P`, we write
[H ] ∈ P̌` for the corresponding point. For eachu ∈ U and forFu = f −1(u), the set
of all [H ] ∈ P̌` with Fu ∩ H nonsingular and not equal toFu is open. LetSu denote
the complement. By [6, exp. 17, Sec. XVII, Prop. 3.2], for general pointsu of (`−1)-
dimensional components ofSu, the intersectionFu ∩ H will have just one ordinary
double point of typeA1, that is, a singularity given locally analytic as the zero set of
the equationx2

1 + · · · + x2
n in Cn. Hence the locusTu, consisting of hyperplanesH

with Fu ∩ H having other types of singularities or withFu ⊂ H , is of codimension at
least two inP̌`.

As in [6, exp. 17, Sec. XVII, Sec. 6.1], those properties can also be considered in
families, and the corresponding sets depend algebraically on the parameter. In partic-
ular,

S=
{
([H ],u); Fu ⊂ H or Fu ∩ H singular

}
is a closed subset of̌P` × U . Let us choose a codimension-two closed subschemeT
of P̌` × U , contained inS such thatS\ T is nonsingular, of pure codimension-one,
and

S\T ⊂
{
([H ],u); Fu 6⊂ H and Fu∩H has one ordinary double point of typeA1

}
.

Given [H ] ∈ P̌`, let SH and TH be the intersections of{[H ]} × U with S and T ,
respectively.
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LEMMA 5.1
There exists some[H ] ∈ P̌` such that TH ∩ γ (C) = ∅, such that SH meetsγ (C)
transversally, and such thatπ∗(H) is nonsingular andπ∗(H)+ E a normal crossing
divisor.

Here “SH meetsγ (C) transversally” means that for a local sectionσ of OU with zero
set(SH )red, the holomorphic functionγ ∗(σ ) has zeros of order one.

Proof
The given mapγ : C→ U induces a holomorphic map

γ̃ : P̌` × C −→ P̌` ×U.

Sinceγ̃ is holomorphic,1(1) = γ̃−1(T) is a complex subspace ofP̌` × C. Let1(2)

be the complex subspace ofγ̃−1(S) given locally by the following condition. Letσ
be a local equation ofS on P̌` ×U . Then1(2) is the analytic subspace of the zero
set ofγ̃ ∗σ , where the multiplicity ofγ̃ ∗σ is larger than or equal to two. We choose
1 = 1(1) ∪1(2).

By [9, p. 172],1 has a decomposition

1 =
⋃
i∈I

1i

in irreducible components. The index setI is countable since each pointp ∈ C has
a small neighborhoodU (p) such thatP̌` × U (p) meets only finitely many of those
components. As usual,

dim(1) = Max
{

dim(1i ); i ∈ I
}
.

CLAIM 5.2
We havedim(1) ≤ `− 1.

Proof
If γ is not an embedding of a small neighborhood of a pointp ∈ C, then

P̌` × {p} ∩1(2)

consists of all hyperplanesH passing throughp, and its dimension is̀− 1. The set
of those points is discrete. For all other pointsp and for all components1i of 1(2),
one has

dim
(
P̌` × {p} ∩1i

)
≤ `− 2.
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In fact, letU (p) denote a sufficiently small neighborhood ofp. A general[H ] ∈ P̌`

does not pass throughγ (p), and for those that do, the intersection is transversal,
except for all[H ] in a codimension-two subset ofP̌`.

If 1i is one of the components of1(1), then for allp ∈ C,

dim
(
1i ∩ P̌` × {p}

)
= dim

(
T ∩ P̌` × {γ (p)}

)
≤ `− 2.

In both cases, if1i is a component of1with1i ⊂ P̌`×{p}, we are done. Otherwise,
choose forj = 1,2 two pointsp j ∈ C with

P̌` × {p j } ∩1i 6= ∅.

ThenP̌`×{p1}∩1i is not dense in1i . Obviously, the dimension of̌P`×{p1}∩1i is
larger than or equal to dim(1i )− 1, and by Ritt’s lemma (see [9, p. 102]), both must
be equal. Hence

dim(1i ) = dim
(
P̌` × {p1} ∩1i

)
+ 1≤ `− 1.

CLAIM 5.3
The imagepr1(1) does not contain an open analytic subset W⊂ P̌`.

Proof
We show Claim5.3by induction oǹ , using Claim5.2but not the definition of̌P` as
a dual projective space. If̀= 1, the set pr1(1) is countable.

In general, ifW ⊂ pr1(1), we choose a pointp ∈ C such that none of the
countably many components of1 is contained iňP`×{p}. Moreover, for eachi ∈ I ,
we choose a pointqi ∈ pr1(1i ). Let H ' P̌`−1 be a hyperplane, passing throughp
but not containing any of the pointsqi . Then, for each component1i , the intersection
1i ∩ H × C cannot be dense in1i and

dim(1i ∩ H × C) < l − 1.

Hence
dim(1 ∩ H × C) ≤ `− 2= dim(H)− 1,

and sinceW ∩ H is an open analytic subset ofH , contained in pr1(1 ∩ H ×C), this
contradicts the induction hypotheses.

Recall that we assumed that the global sections ofL generate the invertible subsheaf
H of L . In particular,

H0(X,H ) = H0(X,L ν) = H0(P`,OP`(1)
)
,
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and for[H ] in some Zariski-open subschemeP̌`0 of P̌`, the preimageπ∗(H) will be
nonsingular andπ∗(H) + E a normal crossing divisor. By Claim5.3, we can find
points[H ] in P̌`0 \ pr1(1), and for all of them the properties asked for in Lemma5.1
hold true.

From now onH is fixed, and we writeT = B∪ TH andS for the closure ofSH in Y.
We do not use anymore the fact thatTH is of codimension-one, and in the next step
we replaceY by a blow-up with the centers partly contained inTH .

LEMMA 5.4
Assume that, contrary to Proposition4.4, there existsγ : C→ U with a dense image.
Then we may assume, in addition to Corollary4.3(a), (b), (d), and (e), that there exists
a general section ofL ν

= ωνX/Y⊗ f ∗A (D)−ν with zero divisor H+E, and divisors
S and T in Y such that
(i) S∩U is dense in S, and S+ T and f∗(S+ T) are normal crossing divisors;
(ii) X→ Y and H→ Y are both smooth over U0 = Y \ (S∪ T);
(iii) the fibres of H→ Y over Y0 = Y \ T are reduced with at most an ordinary

double point;
(iv) γ (C) ∩ T = ∅;
(v) H is nonsingular, and f(E) is contained in B;
(vi) A is semiample, ample with respect to Y0, and D≥ B.

Proof
All this can be done by blowing upY in centers not contained inγ (C) and replacing
f : X→ Y by a desingularization of the pullback family.

The section ofL ν with zero divisorH + E gives rise to a cyclic coveringψ ′ : Z′→
X (see, e.g., [8, Sec. 3]). Condition (ii) of Lemma5.4 implies that

g : Z0 = ψ
′−1 f −1(U0) −→ U0

is smooth; hence it gives rise to a variation of Hodge structuresV0 = Rng∗CZ0.

LEMMA 5.5
The monodromy ofV0 = Rng∗CZ0 around the components of S is finite.

Proof
Here we use the assumption, that the dimensionn of the fibres off is even. A general
curveC meetsS transversally. ReplacingC by some open subset, we can assume that
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for a given componentSi of S,

C ∩ (S∪ T) = C ∩ Si = {p}.

The restriction
ψC : ZC = Z′ ×Y C >> XC = X ×Y C

of the finite morphismψ ′ : Z′ → X is a cyclic covering of orderν, totally ramified
alongHC = H ×Y C. By the definition ofSandT , the fibreHp = HC ∩ Fp has one
singular pointq, and we can choose locally analytic parameterst in a neighborhood
of p ∈ C andt, x1, . . . , xn in a neighborhood ofq ∈ XC such thatHC is the zero-set
of

∑n
i=1 x2

i + t nearq. Then locally nearψ−1
C (q) the coveringZC is given by the

equation
n∑

i=1

x2
i + t + zν .

Sog−1(p) has one isolated singularity, a double point of typeAν−1. As is well known
(see, e.g., [20, p. 132]), in even dimension the local monodromy group of anAν−1

singularity is finite, and as in [6] or [20, p. 41], one obtains the same for the global
monodromy.

6. Higgs bundles

Notation 6.1
In this section we assume thatf : X → Y satisfies the conditions stated in Propo-
sition 4.4, except possibly thatA is not ample but only semiample and big. For the
given holomorphic mapγ : C → U , we assume, moreover, the existence of the
divisorsS, T , H , andE satisfying the conditions in Lemma5.4.

We define1 = f ∗(T) and6 = f ∗(S). Recall that the original boundary divisor
B is contained inT . So the nonreduced components of1 or the components of1+6,
mapping to codimension-two subvarieties ofY, are all supported inf −1B.

Let δ : X′→ X be a blow-up ofX with centers in1+6 such thatH ′+1′+6′

is a normal crossing divisor, where1′ = δ∗1, 6′ = δ∗6, and H ′ is the proper
transform ofH . For L = ωX/Y ⊗ f ∗A (D)−1, we write L ′ = δ∗L . For E′ =
δ∗(H + E)− H ′, one findsL ′ν = OX′(H ′ + E′).

Let g : Z0→ U0 be the fibre space (considered at the end of Sec. 5) obtained by
restricting the cyclic coveringψ ′ : Z′ → X, given by the divisorH + E in Lemma
5.4. We chooseZ to be a desingularization of the normalization of the fibre product
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X′ ×X Z′. Let us denote the induced morphisms by

Y

=

��

Z
goo

ψ

��

δ′ // Z′

ψ ′

��
Y X′

f ′oo δ // X

Finally, we write5 = g−1(S∪ T), and we identifyZ0 with Z \5.
In the sequel we writeT∗(− log•) for the dual of�1

∗(log•).

By [5], for all k ≥ 0 the local constant systemRkg∗CZ0 gives rise to a local free sheaf
Vk onY with the Gauss-Manin connection

∇ : Vk −→ Vk ⊗�
1
Y

(
log(S+ T)

)
,

where we assume thatVk is the quasi-canonical extension of

(Rkg∗CZ0)⊗C OY\(S∪T),

that is, that the real part of the eigenvalues of the residues around the components of
S+ T lie in [0,1).

By [25], Vk carries a filtrationF p by coherent subsheaves. If the monodromies
around the components ofS+ T are not unipotent, theF p’s are not necessarily
subbundles. However, this is the case outside of the singular locus ofS+T . By abuse
of notation, we drop the assumption thatY is projective in the first part of this section,
leave out a codimension-two subschemeW, and assume thatf , f ′, andg are flat and
thatS+ T is nonsingular.

So the induced graded sheavesEp,k−p are locally free, and they carry a Higgs
structure with logarithmic poles alongS+ T . Let us denote it by

(
grF (Vk), grF (∇)

)
= (E, θ) =

( k⊕
q=0

Ek−q,q,

k⊕
q=0

θk−q,q

)
.

As in [32], we consider a second system of sheaves related toZ and to the pair(X, H).
We define

F p,q
= Rq f ′∗

(
δ∗(�

p
X/Y(log1))⊗L ′

(−1))
/torsion.

Here, forη = 0, . . . , ν − 1, the invertible sheavesL ′(−η) are defined as

L ′
(−η)
= L ′

−η
⊗ OX′

([η · (H ′ + E′)

ν

])
= L ′

−η
⊗ OX′

([η · E′
ν

])
.

As is well known (see, e.g., [10, p. 130]), the bundlesEp,q have a similar description:

Ep,q
= Rqg∗�

p
Z/Y(log5).
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Let

τp,q : F p,q
−→ F p−1,q+1

⊗�1
Y(logT)

and

θ̃p,q : E
p,q
−→ Ep−1,q+1

⊗�1
Y

(
log(S+ T)

)
be the edge morphisms of the tautological exact sequences

0→ f ′∗�1
Y(logT)⊗ δ∗

(
�

p−1
X/Y(log1)

)
⊗L ′

(−1)

→ δ∗
(
gr(�

p
X(log1))

)
⊗L ′

(−1)
→ δ∗

(
�

p
X/Y(log1)

)
⊗L ′

(−1)
→ 0 (6.1.1)

and

0→ g∗�1
Y

(
log(S+ T)

)
⊗�

p−1
Z/Y(log5)→ gr

(
�

p
Z(log5)

)
→ �

p
Z/Y(log5)→ 0, (6.1.2)

respectively, where

gr
(
�

p
X(log1)

)
= �

p
X(log1)/ f ∗�2

Y(logT)⊗�p−2
X/Y(log1)

and

gr
(
�

p
Z(log5)

)
= �

p
Z(log5)/g∗�2

Y(log S+ T)⊗�p−2
Z/Y(log5).

The Gauss-Manin connection is the edge morphism of

0→ g∗�1
Y

(
log(S+ T)

)
⊗�•−1

Z/Y(log5)→ gr
(
�•Z(log5)

)
→ �•Z/Y(log5)→ 0;

henceθp,q = θ̃p,q.

LEMMA 6.2
Let• stand either forSpec(C) or for Y . Then the groupZ/ν acts onψ∗�

p
Z/•(log(5+

ψ∗H ′)) and onψ∗�
p
Z/•(log(5)). One has a decomposition in sheaves of eigenvectors

ψ∗�
p
Z/•

(
log(5+ ψ∗H ′)

)
∼=

ν−1⊕
η=0

�
p
X′/•

(
log(1′ +6′ + H ′)

)
⊗L ′

(−η)

and

ψ∗�
p
Z/•(log5) ∼= �

p
X′/•

(
log(1′ +6′)

)
⊕

ν−1⊕
η=1

�
p
X′/•

(
log(1′ +6′ + H ′)

)
⊗L ′

(−η)
,

compatible with the tautological sequences.
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Proof
By [8, Lems. 3.21 and 3.22], there are natural inclusions

ψ∗�
p
X′/•

(
log(1′ +6′ + H ′)

)
−→ �

p
Z/•

(
log(5+ ψ∗H ′)

)
andRβψ∗�

p
Z/•(log(5 + ψ∗H ′)) = 0 for β > 0. In fact, in [8] this is just stated for

• = Spec(C), but the general case follows by induction, considering the tautological
sequences. SinceZ/ν acts onψ∗OZ with

ψ∗OZ =

ν−1⊕
η=0

L ′
(−η)

as the decomposition in sheaves of eigenvectors, one obtains the first decomposition
in the lemma.H ′ is totally ramified inZ. Hence there is an exact sequence

0→ ψ∗�
p
Z/•(log5)→ ψ∗�

p
Z/•

(
log(5+ ψ∗H ′)

)
→ �

p−1
H ′/•

(
log(1′ +6′)|H ′

)
,

and the two sheaves on the right-hand side differ only in theZ/ν invariant part.

LEMMA 6.3
Using the notation introduced above, let

ι : �1
Y(logT) −→ �1

Y

(
log(S+ T)

)
be the natural inclusion. Then there exist morphismsρp,q : F p,q

→ Ep,q such that
(i) the diagram

Ep,q θp,q
−−−−→ Ep−1,q+1

⊗�1
Y(log(S+ T))xρp,q

xρp−1,q+1⊗ι

F p,q τp,q
−−−−→ F p−1,q+1

⊗�1
Y(logT)

commutes;
(ii) there is an invertible sheafA , semiample and ample with respect to Y\ T ,

an effective divisor D′, and an injectionA (D′)→ Fn,0, which is an isomor-
phism over Y\ T ;

(iii) τn,0 induces a morphism

τ∨ : TY(− logT) =
(
�1

Y(logT)
)∨
−→ Fn,0∨

⊗ Fn−1,1,

which coincides over Y\ (S∪ T) with the Kodaira-Spencer map

TY(− logT) −→ R1 f∗TX/Y(− log1);

in particular, this morphism is injective;
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(iv) the morphismsρn−m,m are injective, for all m;
(v) the pair ( n⊕

q=0

En−q,q,

n⊕
q=0

θn−q,q

)
is a Higgs bundle with logarithmic poles along S+ T , induced by a variation
of Hodge structures with finite monodromy around the components of S.

Remark 6.4
Instead of Lemma6.3(iii) and (iv), we later use just the injectivity ofτ∨ and ofρn−m,m

for m= 0 andm= 1.

Proof
The proof is similar to [32, proof of Lem. 3.2]. It is well known that the bundle in (v)
is the Higgs bundle for the variation of Hodge structures onRng∗CZ0. The condition
on the monodromy follows from Lemma5.5. By Lemma6.2, the sheaf

Rq f ′∗
(
�

p
X′/Y(log(H ′ +1′ +6′))⊗L ′

(−1))
is a direct factor ofEp,q. The morphismρp,q is induced by the natural inclusions

δ∗�
p
X/Y(log1)→ δ∗�

p
X/Y

(
log(1+6)

)
→ �

p
X′/Y

(
log(1′ +6′)

)
→ �

p
X′/Y

(
log(H ′ +1′ +6′)

)
. (6.4.1)

OverY \ (S∪ T), the kernel ofρn−m,m is a quotient of the sheaf

Rm−1( f ′|H ′)∗(�
n−m−1
H ′/Y ⊗L ′

−1
|H ′).

Since the relative dimension ofH ′ overY is n− 1 and sinceL ′ is fibrewise ample,
the latter is zero by the Akizuki-Kodaira-Nakano vanishing theorem. Soρn−m,m is
injective, as claimed in (iv).

The injective morphism in (6.4.1) also exists forY replaced by Spec(C), and the
exact sequence (6.1.1) is a subsequence of

0→ f ′∗�1
Y

(
log(S+ T)

)
⊗�

p−1
X′/Y

(
log(H ′ +1+6)

)
⊗L ′

(−1)

→ gr
(
�

p
X′(log(H ′ +1+6))

)
⊗L ′

(−1)

→ �
p
X′/Y

(
log(H ′ +1+6)

)
⊗L ′

(−1)
→ 0. (6.4.2)

Finally, by Lemma6.2this sequence is obtained by taking the sheaves of eigenvectors
in the direct image of the exact sequence (6.1.2) underψ : Z→ X′. One obtains (i).
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By definition,Fn,0
= f ′∗

(
δ∗(�n

X/Y(log1))⊗L ′(−1)). Comparing the first Chern
classes for the tautological sequence forf , one finds

Fn,0
= f ′∗

(
δ∗(ωn

X/Y(1red−1))⊗L ′
(−1))

.

Recall that f is smooth overY \ B, for the divisorB considered in Corollary4.3(c).
Hence

f ∗B ≥ −1red+1,

and�n
X/Y(log1) containsωX/Y(− f ∗B). Moreover, by Corollary4.3(c), D′ = D−B

is effective. By definition,L = ωX/Y ⊗ f ∗A (D′ + B)−1 and

L ′
(−1)
= L ′

−1
⊗ OX′

([ E′

ν

])
.

Thereforeδ∗(�n
X/Y(log1))⊗L ′(−1) containsωX/Y(− f ∗B)⊗L ′(−1) and hence the

sheaf

f ′∗
(
A (D′)

)
⊗ OX′

([ E′

ν

])
,

and (ii) holds true. For (iii), recall that overY \ (S∪ T) the sheafL ′(−1) is nothing
but

L ′
−1
= δ∗(L −1).

SinceRµδ∗OX′ = 0, by the projection formula the morphism

(τn,0⊗ idA (D′)−1)|Y\(S∪T)

is the restriction of the edge morphism of the short exact sequence

0→ f ∗�1
U ⊗�

n−1
V/U ⊗ ω

−1
V/U → gr(�n

V )⊗ ωV/U
−1
→ �n

V/U ⊗ ω
−1
V/U → 0.

Since f |V is smooth withn-dimensional fibres, the sheaf on the right-hand side isOV

and the one on the left-hand side isf ∗�1
U ⊗ TV/U . Tensoring with

f ∗TU = f ∗(�r−1
U ⊗ ω−1

U )

and dividing by the kernel of the wedge product

f ∗�1
U ⊗ f ∗(�r−1

U ⊗ ω−1
U ) −→ OV

on the left-hand side, one obtains an exact sequence

0−→ TV/U −→ G −→ f ∗TU −→ 0, (6.4.3)

whereG is a quotient ofgr(�n
V )⊗ ωV

−1
⊗ f ∗�r−1

U . By definition, the restriction to
Y \ (S∪ T) of the morphism considered in (iii) is the first edge morphism in the long
exact sequence, obtained by applyingR• f∗ to (6.4.3).
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The wedge product induces a morphism

�n
V ⊗ ωV

−1
⊗ f ∗�r−1

U −→ �n+r−1
V ⊗ ω−1

V = TV .

Since r = dim(U ), this morphism factors throughG . Hence the exact sequence
(6.4.3) is isomorphic to the tautological sequence

0−→ TV/U −→ TV −→ f ∗TU −→ 0. (6.4.4)

The edge morphismTU → R1 f∗TV/U of (6.4.4) is the Kodaira-Spencer map. Since
we assumedU to be generically finite over the moduli space, this morphism is injec-
tive.

Let us return to the case of “Y projective.” We choose forEp,q andF p,q the maximal
coherent extension of the sheaves defined above outside of a codimension-two subva-
riety of Y. Of course, the morphismsθp,q, τp,q, andρp,q extend, and the properties
(i) – (v) in Lemma6.3remain true.

By [26, p. 12],θ ∧ θ = 0; hence the image of the composite

θn−q+1,q−1 ◦ · · · ◦ θn,0 : E
n,0
−→ En−q,q

⊗

q⊗
�1

Y

(
log(S+ T)

)
factors through

θq
: En,0

−→ En−q,q
⊗ Sq�1

Y

(
log(S+ T)

)
.

By Lemma6.3(ii), A (D′) is a subsheaf ofFn,0 and hence ofEn,0, and one obtains a
morphism

A (D′) −→ ρn−q,q(F
n−q,q)⊗ Sq�1

Y(logT)
⊂
−−→ En−q,q

⊗ Sq�1
Y(logT)

Sm(ι)
−−−−→ En−q,q

⊗ Sq�1
Y

(
log(S+ T)

)
and thereby a morphism

τ ′
q
: Sq(

TY(− logT)
)
−→ En−q,q

⊗A (D′)−1.

The pullback ofτ ′q, via γ : C −→ Y \ T −→ Y, composed with theqth tensor
power of the differential ofγ ,

dγ q
: Tq

C −→ γ ∗
(
SqTY(− logT)

)
,

gives
τ̃q
: Tq

C −→ γ ∗
(
En−q,q

⊗A (D′)−1).



134 VIEHWEG and ZUO

We choose
m= Min

{
q ∈ N; τ̃q+1(Tq+1

C ) = 0
}

and putτ = τ ′m andτ̃ = τ̃m.
The morphismτ ′1 factors as

TY(− logT) −→ Fn−1,1
⊗A (D′)−1 ρn−1,1

−−−−→ En−1,1
⊗A (D′)−1.

By Lemma6.3(iii), the first of those morphisms is injective, and by Lemma6.3(iv),
the second one is as well. Thereforeτ ′1 is injective. Since we assumedγ (C) to be
dense, the pullback of an injective morphism of sheaves underγ remains injective.
Henceτ̃1 is injective, andm> 0.

Altogether, starting from the morphism in Proposition4.4 and from a holomor-
phic mapγ : C → U with dense image, we constructed divisorsS andT with the
properties stated in Lemma5.4, and we constructed Higgs bundles that satisfy prop-
erties (a) – (d) given in the following lemma.

LEMMA 6.5
For some m> 0 there exist an invertible sheafA , an effective divisor D′, and a
morphism of sheaves

τ : SmTY(− logT) −→ En−m,m
⊗A (D′)−1

−→ En−m,m
⊗A −1,

such that the composite

τ̃ = γ ∗τ ◦ dγm
: Tm

C −→ γ ∗
(
SmTY(− logT)

)
−→ γ ∗(En−m,m

⊗A −1)

satisfies
(a) τ̃ is injective;
(b) τ̃ (Tm

C ) ⊂ N ⊗ γ ∗(A −1) for a sub–line bundleN of

Ker
(
γ ∗(θn−m,m) : γ

∗(En−m,m) −→ γ ∗(En−m−1,m+1)⊗�1
C(logγ−1(S))

)
;

(c) the pair

(E, θ) =
( ⊕

p+q=n

Ep,q, θp,q

)
is the Higgs bundle, corresponding to the quasi-canonical extensionV of
V0 ⊗C OY\(S∪T) for a geometric variation of Hodge structuresV0, with fi-
nite monodromies around the components of S;

(d) γ (C) does not meet T ;
(e) A is ample.
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At the end of Section 7 we show that those properties lead to a contradiction to the
Ahlfors-Schwarz lemma. Hence the holomorphic mapγ cannot exist.

Proof
All properties hold true, for the Higgs bundles constructed above, withA semiample
and big. Choose someη > 0 such thatA η contains an ample invertible sheafA ′, and
consider the Higgs bundles

(E′, θ ′) = (E⊗η, θ ′) and (F ′, τ ′) = (F⊗η, τ ′).

Again, we first consider them onY−W, whereW is the singular locus ofS∪ T , and
then we take the maximal extension toY. By [26, p. 70], the morphism

θ ′ : E⊗η −→ E⊗η ⊗�Y
(

log(S+ T)
)

is given by

θ ′ = θ ⊗ idE ⊗ · · · ⊗ idE + idE ⊗ θ ⊗ · · · ⊗ idE + · · · + idE ⊗ · · · ⊗ idE ⊗ θ,

and similarly forF ′ andτ ′. The decomposition as a direct sum is⊕
p+q=k

E′ p,q and
⊕

p+q=k

F ′ p,q,

with

E′ p,q =
⊕ η⊗

i=1

Epi ,qi and F ′ p,q =
⊕ η⊗

i=1

F pi ,qi ,

where the direct sums are taken over allp1, . . . , pη,q1, . . . ,qη with

η∑
i=1

pi = p and
η∑

i=1

qi = q.

Again, we have morphisms

ρ′p,q =
⊕ η⊗

i=1

ρpi ,qi : F ′ p,q −→ E′ p,q,

compatible withθ ′p,q andτ ′p,q. In particular,ρ′nη,0 is theηth tensor product ofρn,0,
and hence injective. The same holds true forρ′nη−1,1, which is the direct sum of mor-
phisms of the form

ρn,0⊗ · · · ⊗ ρn−1,1⊗ · · · ⊗ ρn,0.
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Properties (i) and (v) in Lemma6.3 remain true, withE and F replaced byE′ and
F ′, for nη instead ofn in (v). In (ii) one has an injection

A ′ −→ A (D′)η −→ F ′nη,0 = (Fn,0)⊗η.

The morphism

τ ′nη,0 : Fn,0⊗η
−→

(
Fn−1,1

⊗ Fn,0
⊗ · · · ⊗ Fn,0

⊕ Fn,0
⊗ Fn−1,1

⊗ · · · ⊗ Fn,0

⊕ · · · ⊕ Fn,0
⊗ Fn,0

⊗ · · · ⊗ Fn−1,1)
⊗�1

Y(logT)

is a direct sum of morphisms of the form

idFn,0 ⊗ · · · ⊗ θn,0⊗ · · · ⊗ idFn,0;

hence it induces the diagonal morphism

⊕
τ∨ : TY(− logT) −→ F ′nη,0

∨

⊗ F ′n−1,1
=

η⊕
Fn,0∨

⊗ Fn−1,1.

In particular, the injectivity of the morphisms in Lemma6.3(iii) carries over.
As noted in Remark6.4, the injectivity of

⊕
τ∨, ρ′nη,0, andρ′nη−1,1 is sufficient

to perform the constructions withE′ andF ′ instead ofE andF , and to obtain some
m > 0 and the morphismsτ andτ̃ satisfying properties (a) and (b), withA replaced
by A η. The latter contains the ample sheafA ′; hence (e) holds true.

Finally, the Higgs bundle(E′, θ ′) comes from the locally free extensionV ′ =
V ⊗η of V⊗η0 ⊗C OY\(S∪T). The eigenvalues of the residues of the induced connection
lie in R≥0; henceV ′ is contained in the quasi-canonical extensionV ′′. ReplacingV ′

by V ′′, we enlarge the sheavesE′p,q, which is allowed without changing properties
(a) and (b).

7. Curvature estimates and the Ahlfors-Schwarz lemma
Let T be the normal crossing divisor in Lemma6.5, and letT =

∑`
i=1 Ti be its

decomposition in irreducible components. Letsi be the section ofLi = OY(Ti ) with
zero setTi . We choose a Hermitian metricgi onLi and define

r i = − log ||si ||
2
gi

and r = r1 · . . . · r`.

Given any constantc > 1, by rescaling the sectionssi , that is, by replacingsi by ε · si

for ε sufficiently small, one may assume thatr i ≥ c.
On the ample invertible line bundleA in Lemma6.5, we choose a metricg

such that the curvature form2(A , g) is positive definite. For a positive integerα, we
define a new metricgα = g · r α onA |Y\T .

Recall that a Hermitian formωα on TY(− logT) is continuous and positive defi-
nite if each point inY has a neighborhoodU with local coordinatesz1, . . . , zn, such
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thatT ∩U is the zero set ofz1 · . . . · zk and such that, writingι1 = · · · = ιk = 1 and
ιk+1 = · · · = ιn = 0,

ωα =
√
−1

∑
1≤i, j≤n

ai, j
dzi

zιii
∧

dz̄ j

z̄ j
ι j

for a continuous and positive definite Hermitian matrix(ai j )1≤i, j≤n.

LEMMA 7.1
Rescaling the si , if necessary, there exists a continuous and positive definite Hermitian
formωα on TY(− logT) with

r 22(A |Y\T , gα) ≥ ωα.

Proof
We recall the formula for the curvature calculation of a line bundle with a metric
(L , g) (see, e.g., [7, Def. 7.1]). Let

L |U ' U × C

be a local trivialization ofL , and letsU be a holomorphic section ofL |U which does
not vanish in any point ofU . ThensU corresponds to a holomorphic functionhU on
U, and the metricg is given by

||su||
2
g = |hU |

2e−φ .

The curvature2(L , g) is given by

2(L , g) =

√
−1

2π
∂∂̄φ.

Applying this formula (see also [21, proof of Prop. 3.1]), one finds

2(A , gα) = 2(A , grα) = 2(A , ge−(−α logr )) = 2(A, g)−

√
−1α

2π
∂∂̄ logr

= 2(A , g)−
∑̀
i=1

√
−1α

2π
∂∂̄ logr i = 2(A , g)−

∑̀
i=1

√
−1α

2π
∂
∂̄r i

r i

= 2(A , g)−
∑̀
i=1

α2(L i , gi )

r i
+

√
−1α

2π

∂r i ∧ ∂̄r i

r 2
i

.

Rescaling the sectionssi , one can assume that ther i are larger than a large constant
c > 1 and hence that

2(A , g)−
∑̀
i=1

ω′α :=
α2(L i , gi )

r i
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is a continuous and positive definite (1,1)-form onY. Moreover,

2(A , gα) = ω
′
α +

∑̀
i=1

√
−1α

2π

∂r i ∧ ∂̄r i

r 2
i

≥ ω′α +

√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i

r 2
.

The (1,1)-form
√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i

is clearly positive semidefinite onY \ T .

CLAIM 7.2
Assume again that T∩U is the zero set of z1 · . . . · zk for local coordinates z1, . . . , zn

on U. Then in a small neighborhood of T∩U the form

√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i

is positive definite on the subspace of TY(− logT)|U spanned by

{z1∂z1, . . . , zk∂zk}.

Proof
NearTi the sectionsi can be expressed as

si = zi ti , ||si ||
2
gi
= zi z̄i ||ti ||

2
gi
= zi z̄i fi ,

whereti is a local basis ofL i and wherefi is a positive function. So

r i = − log ||si ||
2
gi
= − logzi − log z̄i − log fi ,

∂r i = −
dzi

zi
−

1

fi

n∑
j=1

∂ fi
∂z j

dzj ,

and

∂̄r i = −
dz̄i

z̄i
−

1

fi

n∑
j=1

∂ fi
∂ z̄ j

dz̄ j .

So the leading term in
√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i

nearT ∩U is
√
−1α

2π

k∑
i=1

dzi

zi
∧

dz̄i

z̄i
.
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Obviously, this form is positive definite on the subspace spanned by

{z1∂z1, . . . , zk∂zk}.

Since we assumed thatr ≥ 1,

r 22(A|Y\T , gα) ≥ r 2ω′α +

√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i ≥ ω
′
α +

√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i .

By Claim 7.2, the (1,1)-form

ωα = ω
′
α +

√
−1α

2π

∑̀
i=1

∂r i ∧ ∂̄r i

is continuous and positive definite onTY(− logT).

Let γ : C → Y \ T be the holomorphic map with Zariski-dense image considered
in Lemma6.5, and lett be the global coordinate onC. We take the ample bundleA
on Y with the metricgα on Y \ T and the Hermitian metricωα on TY(− logT) from
Lemma7.1. Writing again

dγ : TC→ γ ∗TY(− logT)

for the differential, one finds

γ ∗ωα =
√
−1||dγ (∂t )||

2
γ ∗ωα

dt ∧ dt̄,

and Lemma7.1 implies the following corollary.

COROLLARY 7.3
We haveγ ∗r 22(A |Y\T , gα) ≥

√
−1||dγ (∂t )||

2
γ ∗ωα

dt ∧ dt̄ .

Let us return to the morphism of sheaves in Lemma6.5:

τ : SmTY(− logT) −→ En−m,m
⊗

(
A (D′)

)−1
↪→ En−m,m

⊗A −1,

τ̃ := γ ∗τ ◦ (dγ )m : Tm
C −→ γ ∗SmTY(− logT) ↪→ γ ∗(En−m,m

⊗A −1).

By Lemma6.5(c), En−m,m is a subquotient of the quasi-canonical extension of a
geometric variation of Hodge structuresV0 onY\S∪T . By Kawamata’s construction
(see [31, Lem. 2.5]), one finds a finite morphismπ : Y′ → Y with Y′ nonsingular
andS′ + T ′ = π∗(S+ T) a normal crossing divisor such that the local monodromies
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of the pullbackπ∗V0 aroundS′ + T ′ are unipotent. For the discriminant1(Y′/Y) of
π : Y′→ Y, both

1(Y′/Y)+ S+ T and π∗(1(Y′/Y)+ S+ T)

are normal crossing divisors. Moreover, for a componentTi of S+ T , there exists
someµi with

π∗Ti = µi · (π
∗Ti )red.

Since we assumed the local monodromy ofV0 around the components ofS to be of
finite order, the local monodromy ofπ∗V0 around the components ofS′ = π∗(S) is
trivial; henceπ∗V0 extends to a variation of Hodge structuresV′0 acrossS′. Let h and
h′ denote the Hodge metrics onV0 andV′0, respectively. We use the same notation
for the induced metric on the Higgs bundles

⊕
Ep,q and

⊕
E′ p,q, where the latter

is given by subquotients of the canonical extension ofV′0 acrossT ′ = π∗T. We have
an inclusion of sheaves

ι : (π∗En−m,m, π∗h) ↪→ (E′n−m,m
, h′)

such thatπ∗(h) = ι∗(h′) onY′ \ S′ ∪ T ′.
Consider the diagram of morphisms of analytic spaces

C′
γ ′

−−−−→ Y′

π ′

y π

y
C

γ
−−−−→ Y

(7.3.1)

whereC′ is obtained as a normalization of the fibre product. Hence ifU ⊂ C is a
sufficiently small neighborhood oft0 ∈ γ−1(S), then for eacht ′0 ∈ π

′−1
(t0) there

exists a connected componentU ′ ⊂ π ′−1
(U ) and a coordinate functiont ′ on U ′ for

which the mapπ ′ : U ′→ U is given by

t − t0 = π
′(t) = (t ′ − t ′0)

µ0 for someµ0 ∈ N− {0}. (7.3.2)

By Lemma6.5(b), τ̃ (Tm
C ) is contained in an invertible line bundleN ⊗ γ ∗(A −1),

whereN is a sub–line bundle of the kernel ofγ ∗(θn−m,m). If

θ ′n−m,m : E
′n−m,m

−→ E′n−m−1,m+1
⊗�1

Y′
(

logπ∗(T)
)

denotes the Higgs structure onY′, we have a commutative diagram

γ ′
∗E′n−m,m γ ′

∗
(θ ′n−m,m)

−−−−−−−→ γ ′
∗E′n−m−1,m+1

⊗�1
C′(log S′)

γ ′
∗
(ι)

x⊂ γ ′
∗
(ι)⊗π ′

∗

x⊂
γ ′
∗
π∗En−m,m γ ′

∗
π∗(θn−m,m)

−−−−−−−−→ γ ′
∗
π∗En−m−1,m+1

⊗ π∗�1
C(log S)
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Soι induces an inclusion

π ′
∗ker

(
γ ∗(θn−m,m)

) ⊂
−−→ ker

(
γ ′
∗
(θ ′n−m,m)

)
;

hence there exists a sub–line bundle

N ′
⊂ ker

(
γ ′
∗
(θ ′n−m,m)

)
with

π ′
∗
τ̃ (Tm

C ) ⊂ π
′∗(N )⊗ γ ′

∗
(π∗A −1) ⊂ N ′

⊗ γ ′
∗
(π∗A −1). (7.3.3)

As in [32, Lem. 1.1], usingθ ′n−m,m(N
′) = 0 and P. Griffiths’s estimates for the

curvature of the Hodge metric (see [10, Chap. II]), one obtains the following lemma.

LEMMA 7.4
The curvature2(N ′, h′|N ′) of the restricted Hodge metric onN ′ is negative semi-
definite on Y′ \ T ′.

The Hodge metrich defines a metrich⊗ g−1
α on En−m,m

⊗A −1
|Y\S∪T . By Lemma

6.5(a), τ̃ 6= 0, and sinceγ (C) is Zariski dense inY, we may define a nonzero positive
semidefinite K̈ahler form

√
−1c(t)dt ∧ dt̄ onC \ γ−1(S) by choosing

c(t) =
∣∣∣∣τ̃ ((∂t )

m)
∣∣∣∣2/m

γ ∗(h⊗g−1
α )
.

LEMMA 7.5
Letµ denote the lowest common multiple of all the ramification orders of components
of π∗(S) over Y . Then there exists an effective divisor5 on C (i.e., a locally finite
sum

∑
βi Pi with βi ≥ 0) and a line bundleN (µ) onC with

τ̃ (Tm
C )

µ
⊗ OC(5) = N (µ)

⊗ γ ∗A −µ and π ′
∗
N (µ)

= N ′µ.

Proof
By (7.3.3), π ′∗τ̃ (Tm

C ) is a subsheaf ofN ′
⊗ γ ′

∗
(π∗A −1). Using the description of

π ′ in (7.3.2), we choose for a given pointt ′0 ∈ π
′−1
γ−1(S) a small neighborhoodU ′

and someρ ∈ N with

π ′
∗
τ̃ (Tm

C )|U ′ ⊗ OU ′(ρ · t
′

0) = N ′
⊗ γ ′

∗
(π∗A −1)|U ′ .

The numberρ/µ0 is determined by the monodromy ofV0 around the component
of S containingγ (t0); hence it is independent of the pointt ′0 ∈ π

′−1
(t0). Since the

ramification orderµ0 in (7.3.2) dividesµ, we may choose5 to be the effective divisor
with 5|U = (ρ · µ/µ0) · t0 and

N (µ)
= τ̃ (Tm

C )
µ
⊗ OC(5)⊗ γ

∗A µ.
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Outside ofπ ′∗5, the metricsγ ′∗h′µ andπ ′∗γ ∗hµ on N ′µ coincide; henceγ ∗hµ

extends to a metrich(µ) onN (µ) and

c(t) =
∣∣∣∣τ̃ ((∂t )

m)µ
∣∣∣∣2/(m·µ)

h(µ)⊗γ ∗g−µα
.

In particular,
√
−1c(t)dt ∧ dt̄ defines a semidefinite K̈ahler form onC. The induced

metric F is a singular metric in the sense described in [7, Def. 7.1] or [22, Sec. 2].
The curvature current ofTC is then defined to be the closed (1,1)-current

2(TC, F) = −

√
−1

2π
∂∂̄ logc(t).

LEMMA 7.6
There exists someε′ > 0 with

−2(TC, F) ≥ ε′γ ∗2(A |Y\T , gα)

in the sense of currents.

Proof
Let [5] denote the current of integration over the divisor5. As in [7, proof of Prop.
7.2], one defines a singular metric|s|2 on sections ofOC(5) by taking the square
of the modulus ofs viewed as a complex-valued function. By the Lelong-Poincaré
equation,[5] is the curvature current of this metric. One finds

2(Tm·µ
C , Fm·µ)+ γ ∗2(A µ

|Y\T , gα·µ)+ [5] = 2(N
(µ), h(µ)).

By [22, Sec. 2], the curvature current of a singular metric on a holomorphic line
bundle on a complex manifold is compatible with pullback under holomorphic maps.
Hence

π ′
∗
2(N (µ), h(µ)) = 2(N ′µ, h′µ) = µ ·2(N ′, h′).

By Lemma7.4, the latter is negative semidefinite; hence2(N (µ), h(µ)) ≤ 0. More-
over,[5] ≥ 0 in the sense of currents; hence

−2(TC, F) = −
1

m · µ
2(Tm·µ

C , Fm·µ) ≥
1

m
γ ∗2(A |Y\T , gα).

LEMMA 7.7
For α � 1 there exists someε > 0 with

γ ∗2(A |Y\T , gα) ≥ ε
√
−1c(t)dt ∧ dt̄ .
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Proof
We use the notation from Lemma7.5, in particular, the metrich(µ) on N (µ). Recall
that

c(t) =
∣∣∣∣τ̃ ((∂t )

m)µ
∣∣∣∣2/(m·µ)

h(µ)⊗γ ∗g−µα

and that by7.3, for all α > 0,

γ ∗2(A |Y\T , gα) ≥
√
−1γ ∗r−2

||dγ (∂t )||
2
γ ∗ωα

dt ∧ dt̄ .

Hence, in order to show Lemma7.7, it remains to verify that forα � 1 there exists
someε > 0 with

γ ∗r−2
||dγ (∂t )||

2
γ ∗ωα
≥ εγ ∗r−α/m

∣∣∣∣τ̃ ((∂t )
m)µ

∣∣∣∣2/(m·µ)
h(µ)⊗γ ∗g−µ

= ε
∣∣∣∣τ̃ ((∂t )

m)µ
∣∣∣∣2/(m·µ)

h(µ)⊗γ ∗g−µα
. (7.7.1)

Given a pointp ∈ Y, choose a small polydiskU with coordinatesz1, . . . , zn in such
a way that the divisorsT ∩U andS∩U are defined by the equations

z1 · . . . · zk = 0 and zk+1 · . . . · zk+k′ = 0.

Let π : Y′ → Y be the cover ramified alongS+ T which we considered in (7.3.1).
ChoosingU small enough, we may assume that the connected componentU ′ ⊂
π−1(U ) are polydisks with coordinates{w1, . . . , wn} and thatπ is defined by

π(w1, . . . , wn) = (z
µ1
1 , . . . , z

µn
n ).

Hence forS′ = π∗(S)red andT ′ = π∗(T)red, the restrictions toU ′ are the zero sets
of

w1 · . . . · wk and wk+1 · . . . · wk+k′,

respectively.
Consider, as above, the Higgs bundle

⊕
E′ p,q obtained from the canonical ex-

tension ofV′0 alongT ′, and let{e′1, e′2, . . .} be a basis forE′n−m,m
|U ′ .

CLAIM 7.8
For U and U′ sufficiently small, there exist someβ ′ � 1 and a real number c> 0
with

h′
(
e′i (w),e

′

j (w)
)
≤ c

(
(− log |w1|) · (− log |w2|) · . . . · (− log |wk|)

)β ′
for all w = (w1, . . . , wn) ∈ U ′ \ T ′.
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Proof
By [4, Th. 5.21],U ′0 = U ′ \ T ′ can be decomposed into

U ′0 =
⋃

U ′ I0,K ,

where the open subsetU I
0,K depends on the index of the filtration of the mixed Hodge

structure (see [4, Sec. 5.7]), so that

h′
(
e′i (w),e

′

i (w)
)
∼ (− log |w1|)

l1/2 · (− log |w2|)
(l2−l1)/2 · . . . · (− log |wk|)

(lk−lk−1)/2,

for all w ∈ U ′ I0,K , where(l1, l2, . . . , lk) is the multi-index of the weight filtration of
the mixed Hodge structure. Since this index set is finite, there exist someβ ′ � 1 and
somec > 0 such that

h′
(
e′i (w),e

′

i (w)
)
≤ c

(
(− log |w1|) · (− log |w2|) · . . . · (− log |wk|)

)β ′
for all w ∈ U ′ I0,K and for all I . Hence

h′(e′i (w),e
′

i (w)) ≤ c
(
(− log |w1|) · (− log |w2|) · . . . · (− log |wk|)

)β ′
for all w ∈ U ′ \ T ′. By the Cauchy-Schwarz inequality, we obtain

h′
(
e′i (w),e

′

j (w)
)
≤ c

(
(− log |w1|) · (− log |w2|) · . . . · (− log |wk|)

)β ′
for all w ∈ U ′ \ T ′.

Y is compact; hence there is a finite covering{U } of Y such that, for allU and each
of the finitely many connected componentsU ′ of π−1(U ), Claim7.8holds. We may
even assume that Claim7.8 remains true, for the sameβ ′, for all points in a small
neighborhood of the closurēU ′ not lying onT ′.

We choose someα � 1 such that for all the open setsU ′ and for the constantβ ′

given by Claim7.8, one has
α ≥ β ′ + 2m.

In order to prove (7.7.1), it is sufficient to show that on eachU ′ there is someε > 0
with∣∣∣∣π ′∗dγ (∂t )|γ ′−1(U ′)

∣∣∣∣2
π ′∗γ ∗ωα

≥ επ ′
∗
γ ∗(r−α/m+2)

∣∣∣∣τ̃ ((∂t )
m)|

γ ′−1(U ′)

∣∣∣∣2/m
π ′
∗
γ ∗(h⊗g−1)

.

(7.7.2)
Let us return to diagram (7.3.1). As in the beginning of this section, for each

componentTi of T we considerLi = OY(Ti ) with the Hermitian metricgi , and
π∗L i with the pullback metricπ∗gi . Let si be a section ofLi with zero locusTi ,
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where we assume thatsi has been rescaled as needed in Corollary7.3for the constant
α, chosen above.

For the sections′i = π
∗si , define

r ′i = − log ||s′i ||π∗gi

andr ′ = r ′1 · . . . · r
′

`. Obviously, one hasr ′i = π
∗r i andr ′ = π∗r .

Proof of inequality (7.7.2)
Let {φ1, φ2, . . .} be an orthonormal basis forTY(− logT)|U with respect toωα. Then

{φi1 ⊗ · · · ⊗ φim; i1 ≤ · · · ≤ im}

is an orthonormal basis forSmTY(− logT)|U with respect toωα and

{γ ∗(φi1 ⊗ · · · ⊗ φim); i1 ≤ · · · ≤ im}

is an orthonormal basis forγ ∗SmTY(− logT)|γ−1U with respect toγ ∗ωα. Then, using
the morphisms in (7.3.1),

{γ ′
∗
π∗(φi1 ⊗ · · · ⊗ φim); i1 ≤ · · · ≤ im}

is an orthonormal basis forγ ′∗π∗SmTY(− logT)|
γ ′−1U ′ with respect toγ ′∗π∗ωα.

For the map

dγm
: Tm

C |γ−1(U )→ γ ∗
(
SmTY(− logT)|U

)
, (7.7.3)

write
dγm(

(∂t )
m
|γ−1(U )

)
=

∑
ci1,...,imγ

∗(φi1 ⊗ · · · ⊗ φim).

Then ∣∣∣∣dγ (∂t )|γ−1(U )

∣∣∣∣2
γ ∗ωα
=

( ∑
|ci1,...,im|

2
)1/m

.

Let
π ′
∗dγm

: π ′
∗Tm

C |γ−1(U )→ π ′
∗
γ ∗

(
SmTY(− logT)|U

)
be the pullback of the morphism (7.7.3). By the commutativity of (7.3.1), one obtains

π ′
∗dγm(

(∂t )
m)∣∣

γ ′−1π−1(U ) =
∑

π ′
∗
(ci1,...,im)γ

′∗π∗(φi1 ⊗ · · · ⊗ φim)

and ∣∣∣∣π ′∗dγ (∂t )|γ ′−1π−1(U )

∣∣∣∣2
π ′∗γ ∗ωα

=

( ∑
π ′
∗
|ci1,...,im|

2
)1/m

.

Next, we consider the second map

γ ∗τ : γ ∗
(
SmTY(− logT)|U

)
→ γ ∗(En−m,m

⊗A −1
|U )
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and its pullback

π ′
∗
γ ∗τ : γ ′

∗
π∗

(
SmTY(− logT)|U

)
→ γ ′

∗
π∗(En−m,m

⊗A −1
|U )

↪→ γ ′
∗
(E′n−m,m

⊗ π∗A −1
|U ′).

For the connected componentU ′ of π−1(U ), let a′−1 be a local generator of
π∗A −1

|U ′ . Then{e′1⊗ a′−1
, e′2⊗ a′−1

, . . .} is a basis ofE′n−m,m
⊗π∗A −1

|
γ ′−1(U )

and the morphism

π∗τ : π∗SmTY(− logT)|U ′ → E′n−m,m
⊗ π∗A −1

|U ′

is given by
π∗τ

(
π∗(φi1 ⊗ · · · ⊗ φim)

)
=

∑
b j

i1,...,im
e′j ⊗ a′−1

and one finds

π ′
∗
γ ∗τdγm(

(∂t )
m
|
γ ′−1(U ′)

)
=

∑
π ′
∗
(ci1,...,im)γ

′∗(b j
i1,...,im

)γ ′
∗
(e′j ⊗ a′−1

).

Since the metricπ∗g−1 onπ∗A −1 is regular onU ′, Claim7.8 implies∣∣γ ′∗(h′ ⊗ π∗g−1)
(
γ ′
∗
(e′i ⊗ a′−1

), γ ′
∗
(e′j ⊗ a′−1

)
)∣∣

≤ cγ ′∗
(
(− log |w1|) · (− log |w2|) · . . . · (− log |wk|)

)β ′
.

Here and later we allow ourselves to replace the constantc by some larger constant
whenever necessary.

For the ramification orderµi of π overTi , and for some positive functiondi on
U ′, one has

|wi | = di
∣∣∣∣s′1/µi

i |U ′
∣∣∣∣
π∗gi

.

This description extends to the compactificationŪ ′ of U ′. SinceŪ ′ is compact,di is
bounded away from zero, and one finds∣∣γ ′∗(h′ ⊗ π∗g−1)

(
γ ′
∗
(e′i ⊗ a′−1

), γ ′
∗
(e′j ⊗ a′−1

)
)∣∣ ≤ cγ ′∗r ′β

′

= cπ ′∗γ ∗r β
′

.

On the compact set̄U ′, all b j
i1,...,im

are bounded above. Hence allγ ′∗(b j
i1,...,im

) are
also bounded above, and the Cauchy-Schwarz inequality implies∣∣∣∣π ′∗τ̃ ((∂t )

m)|
γ ′−1(U ′)

∣∣∣∣2
π ′∗γ ∗(h⊗g−1)

≤ cπ ′∗γ ∗r β
′
∑

π ′
∗
|ci1,...,im|

2

= cπ ′∗γ ∗r β
′ ∣∣∣∣π ′∗dγ (∂t )|γ ′−1(U ′)

∣∣∣∣2m
π ′∗γ ∗ωα

.

(7.7.4)



BRODY HYPERBOLICITY OF MODULI SPACES 147

Since we assumedr ≥ 1 andα − 2m ≥ β ′, the right-hand side in (7.7.4) is smaller
than

cπ ′∗γ ∗r α−2m
∣∣∣∣π ′∗dγ (∂t )|γ ′−1(U ′)

∣∣∣∣2m
π ′∗γ ∗ωα

;

hence we obtain the inequality∣∣∣∣π ′∗dγ (∂t )|γ ′−1(U ′)

∣∣∣∣2
π ′∗γ ∗ωα

≥
1

c
π ′
∗
γ ∗(r−α/m+2)

∣∣∣∣π ′∗τ̃ ((∂t )
m)|

γ ′−1(U ′)

∣∣∣∣2/m
π ′∗γ ∗(h⊗g−1)

,

as stated in (7.7.2).

Therefore Lemma7.7 is proved.

Proof of Proposition4.4
It remains to contradict the existence of the ample sheafA and of the Higgs bundles
having the properties stated in Lemma6.5. Those led to the estimates in this section.

Recall the Ahlfors-Schwarz lemma, as stated in in [27, Lem. 1.1.1] (see also [7,
Lem. 3.2]).

LEMMA 7.9
Let c be a real-valued nonnegative function onC which locally is of the formϕ| f |2,
whereϕ is a local smooth positive function and f is a local holomorphic function.
Then there cannot exist any positive numberρ such that

∂t∂t̄ logc(t) ≥ ρ · c(t)

onC in the sense of currents.

Using the inequalities obtained in Lemmas7.6and7.7, one has for suitable constants
ε andε′,

√
−1

2π
∂t∂t̄ logc(t)dt ∧ dt̄ =

√
−1

2π
∂∂̄ logc(t) = −2(TC, F)

≥ εγ ∗2(AY\T , gα) ≥ ε · ε
′
√
−1c(t)dt ∧ dt̄

in the sense of currents. Hence

∂t∂t̄ logc(t) ≥ 2π · ε · ε′ · c(t),

contradicting Lemma7.9.
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75 (1992), 5 – 95.MR 94d:32027 133, 135

[27] Y.-T. SIU, “Hyperbolicity problems in function theory” inFive Decades as a
Mathematician and Educator, World Scientific, River Edge, N.J., 1995,
409 – 513.MR 97f:32032 106, 147

[28] E. VIEHWEG, “Weak positivity and the additivity of the Kodaira dimension for certain
fibre spaces” inAlgebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv.
Stud. Pure Math.1, North-Holland, Amsterdam, 1983, 329 – 353.MR 85b:14041
106, 109, 110, 112, 116

[29] , “Weak positivity and the additivity of the Kodaira dimension for certain fibre
spaces, II: The local Torelli map” inClassification of Algebraic and Analytic
Manifolds (Katata, Japan, 1982), Progr. Math.39, Birkhäuser, Boston, 1983,
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