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ON THE BUCHSTABER SUBRING IN MSp∗

M. BAKURADZE

Abstract. A formula is given to calculate the last n number of
symplectic characteristic classes of the tensor product of the vector
Spin(3)- and Sp(n)-bundles through its first 2n number of character-
istic classes and through characteristic classes of Sp(n)-bundle. An
application of this formula is given in symplectic cobordisms and in
rings of symplectic cobordisms of generalized quaternion groups.

Introduction

Let Spin(n) and Sp(n) be classical Lie groups. The main result of this
paper is the formula which, for any Spin(3)-bundle Λ and Sp(n)-bundle
ζn, expresses the last n Pontrjagin characteristic classes of the symplectic
bundle Λ⊗R ζn through its first 2n characteristic classes and through cha-
racteristic classes of the bundle ζn. This formula will be given in §1.

We obtain, as a corollary of the above-mentioned formula, some relations
in the subring in symplectic cobordisms which is associated with universal
Pontrjagin characteristic classes. This ring was introduced in [1] and shown
to be generated by the coefficients of formal series given by the characteristic
classes of the bundle (ζ1 ⊗H ζ2) ⊗R ζ3, where ζi → BSp(1) are universal
Sp(1)-bundles, and by Ray classes. In §2 some relations are established
between the coefficients of these formal series. In particular, as we shall see,
these relations generalize the formula ϕ4

i = 0 for Ray classes proved in [2].
In §3 some corollaries will be given for the rings of symplectic cobordisms

of generalized quaternion groups.

§ 1. On Characteristic Classes of the Bundle Λ⊗R ζn

The result of this section is
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Proposition 1.1. For any Spin(3)-bundle Λ and Sp(n)-bundle ζn the
formula

pf3n−i(Λ⊗R ζn) =
i

∑

k=0

pfn−k(ζn)∆2n−i+k, i = 0, . . . , n− 1,

holds, where ∆j, j = n+1, . . . , 2n, is the determinant of the 2n×2n matrix
obtained from the matrix (aql),

aql =











pfq−l(ζn), l < q ≤ l + n,
1, q = l,
0, q < l or q > l + n

by replacing the j-column by the column




















−pf1(ζn) + pf1(Λ⊗R ζn)
−pf2(ζn) + pf2(Λ⊗R ζn)

...
−pfn(ζn) + pfn(Λ⊗R ζn)

...
pf2n(Λ⊗R ζn)





















.

Proof. Clearly, it is enough to prove the proposition for universal Spin(3)-
and Sp(n)-bundles. Denote them also by Λ and ζn. The proof can be di-
vided into two parts. As we shall see, the first part employs the standard
technique of characteristic classes. The second part requires some calcu-
lations with transfer. The definition and properties of the transfer can be
found in [3, 4, 5].

For the universal Sp(1)-bundle ζ → BSp(1) we shall consider the real
bundle ζ ⊗H ζ∗, where ζ∗ is the symplectic conjugate of ζ. Here the group
Sp(1) acts on H = R4 by the conjugates, i.e., by q(h) = qhq−1, q ∈ Sp(1),
h ∈ H. This action leaves the real numbers fixed and thus we have the
section ζ⊗H ζ∗ = Λ+1 [1], where Λ → BSp(1) = BSpin(3) is the universal
Spin(3)-bundle. The spherical bundle of the bundle Λ is BU(1) → BSp(1).
The real projectivization of Λ coincides with the bundle π : BN → BSp(1)
with the fiber RP 2, where N is the normalizer of the unitary group U(1) in
Sp(1). Thus the canonical splitting

π∗(Λ) = µ + λ

takes place, where µ is the plane and λ is the linear real bundle.
Let π×1 : BN×BSp(n) → BSp(1)×BSp(n). Then we have the bundle

(π × 1)∗(Λ⊗R ζn) = µ⊗R ζn + λ⊗R ζn
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to which we apply the Whitney formula for Pontrjagin’s symplectic charac-
teristic classes. We obtain

(π × 1)∗
(

pf1(Λ⊗R ζn)
)

= pf1(µ⊗R ζn) + pf1(λ⊗R ζn);

...

(π × 1)∗
(

pf2n(Λ⊗R ζn)
)

= pf2n(µ⊗R ζn) +

+pf2n−1(µ⊗R ζn)pf1(λ⊗R ζn) + · · ·+ pfn(µ⊗R ζn)pfn(λ⊗R ζn);

(π × 1)∗
(

pf2n+1(Λ⊗R ζn)
)

= pf2n(µ⊗R ζn)pf1(λ⊗R ζn) +

+pf2n−1(µ⊗R ζn)pf2(λ⊗R ζn) + · · ·+ pfn+1(µ⊗R ζn)pfn(λ⊗R ζn);

...

(π × 1)∗
(

pf3n(Λ⊗R ζn)
)

= pf2n(µ⊗R ζn)pfn(λ⊗R ζn).

It is obvious that from the first 2n equations we can express the char-
acteristic classes of the bundle µ ⊗R ζn through the characteristic classes
(π × 1)∗(pfq(Λ⊗R ζn)), q = 1, . . . , 2n, and the characteristic classes of the
bundle λ⊗Rζn. By substituting these expressions of the classes pfj(µ⊗Rζn),
j = n+1, . . . , 2n, into the other n equations we obtain the expressions of the
characteristic classes (π × 1)∗(pf3n−i(Λ ⊗R ζn)), i = 0, . . . , n − 1, through
the classes (π×1)∗(pfq(Λ⊗R ζn)), q = 1, . . . , 2n, and through the classes of
the bundle λ⊗Rζn. Formally, the expressions for pfj(µ⊗Rζn) coincide with
the determinant ∆j from Proposition 1.1 if in the latter we replace the char-
acteristic classes of the bundle ζn by the classes of the bundle λ⊗R ζn, and
the classes pfq(Λ⊗Rζn) by the classes (π×1)∗(pfq(Λ⊗Rζn)), q = 1, . . . , 2n.

Thus we have

(π × 1)∗
(

pf3n−i(Λ⊗R ζn)
)

=

=
i

∑

k=0

pfn−k(λ⊗R ζn)˜∆2n−i+k, i = 0, . . . , n− 1, (1.1)

where ˜∆j , j = n + 1, . . . , 2n, is the determinant of the 2n × 2n matrix
obtained from the matrix (bql),

bql =











pfq−l(λ⊗R ζn), l < q ≤ l + n,
1, q = l,
0, q < l or q > l + n,
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by replacing the jth column by the column




















−pf1(λ⊗R ζn) + (π × 1)∗
(

pf1(Λ⊗R ζn)
)

−pf2(λ⊗R ζn) + (π × 1)∗
(

pf2(Λ⊗R ζn)
)

...
−pfn(λ⊗R ζn) + (π × 1)∗

(

pfn(Λ⊗R ζn)
)

...
(π × 1)∗

(

pf2n(Λ⊗R ζn)
)





















.

The second part of the proof of Proposition 1.1 is

Proposition 1.2. Let τ(π × 1) be the transfer mapping for the bundle
π × 1. Then

τ∗(π × 1)
(

pfk
i (λ⊗R ζn) · pf l

j(λ⊗R ζn)
)

= pfk
i (ζn)pf l

j(ζ
n)τ∗(π)(1).

Proof. Let η → BZ2 be the universal O(1)-bundle. Since MSp∗(BZ2 ×
BSp(n)) = MSp∗(BZ2)[ [pf1(ζn), . . . , pfn(ζn)] ], the decomposition

pfj(η ⊗R ζn) = pfj(ζn) +
∑

i1...in≥0

a(j)
i1...in

pf i1
1 (ζn) · · · pf in

n (ζn), j = 1, . . . , n,

takes place for some a(j)
i1...in

∈ ˜MSp∗(BZ2).
Let now f : BN → BZ2 be the classifying mapping for the bundle

λ → BN . Consider the mapping f × 1 : BN ×BSp(n) → BZ2 ×BSp(n).
Clearly, (f ×1)∗(η⊗R ζn) = λ⊗R ζn, and in MSp∗(BN ×BSp(n)) we have

pfj(λ⊗R ζn) = pfj(ζn) +
∑

i1...in≥0

f∗(a(j)
i1...in

)pf i1
1 (ζn) · · · pf in

n (ζn).

Thus pfk
i (λ⊗R ζn)pf l

j(λ⊗R ζn) can be rewritten as

pfk
i (λ⊗R ζn)pf l

j(λ⊗R ζn) =

= pfk
i (ζn)pf l

j(ζ
n) +

∑

i1...in≥0

f∗(b(i,j,k,l)
i1...in

)pf i1
1 (ζn) · · · pf in

n (ζn) (1.2)

for some b(i,j,k,l)
i1...in

∈ ˜MSp∗(BZ2).

Next we apply the transfer mapping τ(π × 1) to (1.2). Since τ(π × 1) =
τ(π) ∧ τ(1) = τ(π) ∧ 1 it is clear that Proposition 1.2 can be reduced to
calculating the homomorphism τ∗(π). Thus we have to prove

Proposition 1.3. τ∗(π)f∗(a) = 0 ∀a ∈ ˜MSp∗(BZ2).

This proposition is proved in [2]. Here we give an outline of another proof
(compare with [2]).
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Proof. For the real vector bundles Λ, ζ⊗H ζ∗ = Λ+1, ζ1⊗H ζ∗2 , ζ1⊗H ζ∗2 +1,
consider the associated spherical and projective bundles

S(Λ) = BU(1) → BSp(1), (1.3)

P (Λ) = BN → BSp(1), (1.4)

S(Λ + 1) → BSp(1), (1.5)

P (Λ + 1) → BSp(1), (1.6)

S(ζ1 ⊗H ζ∗2 ) = BSp(1) → BSp(1)2, (1.7)

P (ζ1 ⊗H ζ∗2 ) → BSp(1)2, (1.8)

S(ζ1 ⊗H ζ∗2 + 1) → BSp(1)2, (1.9)

P (ζ1 ⊗H ζ∗2 + 1) → BSp(1)2. (1.10)

Recall from the theory of spherical bundles [6] that the spherical bundle
associated with the Whitney sum of the real vector bundle ξ over the space
B and the trivial linear vector bundle over B is the suspension ΣS(ξ) in the
category of spaces over B. Therefore S(Λ + 1) is the suspension of BU(1)
over BSp(1), i.e., the factor-space of the union

BU(1)× I ∪BSp(1)×
•
I, I = [−1, 1],

•
I = {−1, 1},

where the points (x, t) and (projection of x for (1.3), t), x ∈ BU(1), t ∈
•
I

are identified.
One can easily see that into the above suspension one can embed the

disconnected union BU(1)× (−1, 1) ∪BSp(1)× {−1} ∪BSp(1)× {1}.
The involution that gives the projectivization P (Λ + 1) acts on S(Λ + 1)

in the following manner: on I it changes the sign, on BU(1) it coincides
with the involution giving the projectivization P (Λ) and leaves the points
BSp(1) motionless.

Thus into P (Λ + 1) we can embed the disconnected union

BSp(1) ∪ P (Λ) ∪BU(1)× (0, 1).

Taking the above fact into account and applying the double co-set formula
we split the transfer homomorphism of bundle (1.5) into three homomor-
phisms, of which the first one is the transfer homomorphism of bundle (1.3)
with the minus sign, while the second and the third ones are induced by the
identical mapping of BSp(1) onto itself.

Furthermore, the transfer homomorphism of bundle (1.6) is the sum of
three homomorphisms, of which the first one coincides with the transfer
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homomorphism of bundle (1.3) with the minus sign, the second one coin-
cides with the transfer homomorphism of bundle (1.4), and the third one is
induced by the identical mapping of BSp(1) onto itself.

One can proceed in a similar manner in the case of bundles (1.9) and
(1.10). Namely, S(ζ1 ⊗H ζ∗2 + 1) is the suspension of S(ζ1 ⊗H ζ∗2 ) over
BSp(1)2, i.e., the factor-space of the union

S(ζ1 ⊗H ζ∗2 )× I ∪BSp(1)2 ×
•
I,

where the points (x, t) and (projection of x by (1.7), t), x ∈ BSp(1), t ∈
•
I

are identified.
Thus we can embed the disconnected union

S(ζ1 ⊗H ζ∗2 ) ∪BSp(1)2 × {1} ∪BSp(1)2 × {−1}

into S(ζ1 ⊗H ζ∗2 + 1).
The involution acting on S(ζ1⊗H ζ∗2 +1) and giving the projectivization of

(1.10) acts as follows: on I it changes the sign, on Sp(1)2 it acts trivially, and
on S(ζ1 ⊗H ζ∗2 ) it coincides with the involution giving the projectivization
of (1.8). Thus into P (ζ1 ⊗H ζ∗2 + 1) we can embed the disconnected union

P (ζ1 ⊗H ζ∗2 ) ∪BSp(1)2 ∪ S(ζ1 ⊗H ζ∗2 )× (0, 1).

Applying the double coset formula [7], we see that the transfer homomor-
phism of (1.9) is the sum of three homomorphisms, of which the first one
coincides with the transfer homomorphism of bundle (1.7) with the minus
sign, the second one is identical, and the third homomorphism is induced
by permutation of the factors in Sp(1)2.

Furthermore, the transfer homomorphism of bundle (1.10) is the sum of
three homomorphisms, of which the first one corresponds to the transfer
homomorphism of bundle (1.8), the second one corresponds to the transfer
of bundle (1.7) but with the minus sign, and the third one is identical, since
it is induced by the identical mapping of BSp(1)2 onto itself.

Note that bundles (1.5) and (1.6) are the pullbacks of bundles (1.7) and
(1.8), which enables us to apply the results of calculations for (1.7) and (1.8)
to (1.5) and (1.6). Further, as shown in [2] for the proof of Proposition 1.3,
it is sufficient to prove an analogous proposition for the projectivization
P (ζ2) of the universal Sp(2)-bundle ζ2.

P (ζ2) can be realized as BN , where N is the normalizer of Sp(1)2 in
Sp(2) or as an orbit space S∞ ×BSp(1)×BSp(1)/involution, where the
involution acts on an infinite sphere antipodally and on BSp(1) × BSp(1)
by permuting the factors. Hence we have the obvious inclusion i : BZ2 →
BN and for the above π : BN → BZ2 the composition of i and π is
the identity. Moreover, we have the bundle p : BN → BSp(2) with the
fiber RP 4 with the Euler characteristic 1. Let tr be the reduced transfer
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E(BSp(2)) → E(BSp(2)+) → E(BN+) → E(BN). It is sufficient to
construct a splitting of the suspension spectrum E(BN) of BN of the form
E(BZ2) ∨ E(BSp(2)) ∨ X = E(BN) and to check that in terms of this
splitting the projection E(π) is the projection onto the first summand, and
tr is the equivalence on the second term. First, we shall construct another
splitting. Consider the Puppe cofibration sequence

BN π−→ BZ2 → BZ2 ∪π CBN δπ−→ ΣBN Σπ−−→ SBZ2

Since the composition πi is the identity, we have the splitting

ΣkBZ2 ∨ Σk−1(BZ2 ∪π CBN) Σki∨δπ−−−−−→ ΣkBN

for k ≥ 2. Then we define ρ : ΣkBN → ΣkBZ2 ∨ ΣkBSp(2) to be the
composite

ΣkBN α−→ ΣkBZ2 ∨ Σk−1(BZ2 ∪π CBN) 1∨Σk−1δπ−−−−−−→

ΣkBZ2 ∨ ΣkBN
1∨Σkp−−−−→ ΣkBZ2 ∨ ΣkBSp(2).

where α is the homotopy inverse of Σki ∨ Σkδπ.
Consider the Puppe cofibration sequence for ρ and let Y be the cofiber of

ρ. The composition of Σki∨Σktr and ρ induces an Id homomorphism in ho-
mologies. This follows from the homology structure of BZ2 and BSp(2) and
obviously the composition of tr and E(π) induces the zero homomorphism
in homologies, i.e., Im tr∗ ∈ kerπ∗ = Im δρ∗ . Therefore

ρ∗(i ∨ tr)∗(a⊕ b) = a⊕ p∗tr∗(b) = a⊕ b

in the homologies of BZ2 ∨BSp(2) and the stable Whitehead lemma gives
the self-homotopy equivalence of Σk+1E(BZ2) ∨ Σk+1E(BSp(2)) and the
splitting

Σk+1E(Z2) ∨ Σk+1E(BSp(2)) ∨ E(Y ) = Σk+1E(BN).

After applying Σ−k−1, we obtain the above splitting as needed. Now we can
calculate the transfer homomorphism for (1.10). Next, applying the double
co-set formula and the above arguments, we calculate the transfer homo-
morphism for (1.6). After that we repeat the procedure and calculate the
transfer homomorphism for (1.4), which completes the proof of Proposition
1.3.

We are now ready to complete the proof of Proposition 1.1. By Proposi-
tion 1.3 we have

τ∗(π)
(

f∗(b(i,j,k,l)
i1...in

)
)

= 0,

where b(i,j,k,l)
i1...in

∈ ˜MSp∗(BZ2) from (1.2).
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By these equalities we find from (1.2) that

(π × 1)∗
(

pfk
i (λ⊗R ζn)pf l

j(λ⊗R ζn)
)

=
(

pfk
i (ζn)pf l

j(ζ
n)

)

τ∗(π)(1),

which proves Proposition 1.2.
Next, by Proposition 1.2 we find from (1.1) that

τ∗(π × 1)
(

(π × 1)∗(pf3n−i(Λ⊗R ζn))
)

=

=
i

∑

k=0

pfn−k(ζn)τ∗(π × 1)(˜∆2n−i+k) =
i

∑

k=0

pfn−k(ζn)∆2n−i+k)τ∗(π)(1).

and, on the other hand,

τ∗(π × 1)
(

(π × 1)∗(pf3n−i(Λ⊗R ζn))
)

=

= pf3n−i(Λ⊗R ζn)τ∗(π × 1)(1) = pf3n−i(Λ⊗R ζn)τ∗(π)(1),

Since τ∗(π)(1) is invertible, this completes the proof of Proposition 1.1.

§ 2. On the Buchstaber Subring in MSp∗

In [1], V. M. Buchstaber introduced the subring in symplectic cobordisms
associated with universal Pontrjagin characteristic classes. This ring is de-
fined as a subring in symplectic cobordisms, consisting of the coefficients
of formal series given by Pontrjagin characteristic classes of all symplectic
bundles over the space Y (q, n), where

Y (q, n) = Sq ∧
(

n
∏

BSp(1)
)

, q ≥ 0, n ≥ 1,

if we fix an additive isomorphism MSp∗(Y (q, n)) = MSp∗[ [x1, . . . , xn] ],
where xi = pf1(ζi), ζi → BSp(1) are the universal Sp(1)-bundles.

In the same paper, it was shown that this ring is generated by coefficients
of the series pfj((ζ1⊗H ζ∗2 )⊗R ζ3), j = 1, . . . , 4, from MSp∗(

∏

BSp(1)) and
by the coefficients of pf1(η⊗R ζ) from MSp∗(S1∧BSp(1)), i.e., by the Ray
classes θi.

As one knows, of the Ray classes θi the classes θ1, θ2i are indecomposable
and have order 2 [8]; θ2i−1 = 0, i > 1 [9], so that most of the triple products
of Ray classes are nonzero [10], [11].

We shall show that the formula θ4
i = 0 ∀i ≥ 1 proved in [2] is a corollary of

Proposition 1.1. Indeed, in a particular case with Λ as a universal Spin(3)-
bundle and ζn as a trivial Sp(1)-bundle, Proposition 1.1 implies pf3(Λ⊗R
H) = 0. But, as shown in [2], this formula is equivalent to the formula
ϕi = 0. Note also that in [2] the formula ϕiϕjϕkϕl = 0 ∀i, j, k, l ≥ 1 is
shown, where ϕi = θ2i.
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Now let us consider another particular case of Proposition 1.1. Let Λ be
again the universal Spin(3)-bundle and ζ the universal Sp(1)-bundle. Then
(1.1) takes the form

pf3(Λ⊗R ζ) = pf3
1 (ζ)− pf2

1 (ζ)pf1(Λ⊗R ζ) + pf1(ζ)pf2(Λ⊗R ζ). (2.1)

Using the notation of §1, we write

pfi(x, y) = pfi
(

(ζ1 ⊗H ζ∗1 )⊗R ζ2
)

,

Λ + 1 = ζ1 ⊗H ζ∗1 , ζ2 = ζ, x = pf1(ζ1), y = pf1(ζ2).

We have

Corollary 2.1. 4y3 − 3y2pf1(x, y) + 2ypf2(x, y)− pf3(x, y) = 0.

Proof. By the Whitney formula for characteristic classes we have

pf1(x, y) = pf1(Λ⊗R ζ) + y,

pf2(x, y) = pf2(Λ⊗R ζ) + ypf1(Λ⊗R ζ),

pf3(x, y) = pf3(Λ⊗R ζ) + ypf2(Λ⊗R ζ).

Therefore

pf3(Λ⊗R ζ) = pf3(x, y)− ypf2(x, y) + y2pf1(x, y)− y3.

On the other hand, taking into account that by (2.1)

pf3(Λ⊗R ζ) = y3 − y2(pf1(x, y)− y) + y
(

pf2(x, y)− y(pf1(x, y)− y)
)

=

= 3y3 − 2y2pf1(x, y) + ypf2(x, y)

and equating these expansions for pf3(Λ⊗R ζ), we obtain Corollary 2.1.
Clearly, the coefficients of series pfi(x, y) belong to the Buchstaber ring,

since these series are obtained from the series

pfi(x1, x2, x3) = pfi
(

ζ1 ⊗H ζ∗2 )⊗R ζ3
)

if x1 = x2 = x and x3 = y.
On the other hand, the arguments used in proving Corollary 2.1 im-

ply that the coefficients of the series pfi(x, y) are expressed through the
coefficients of the series pfi(Λ ⊗R ζ) and vice versa. Thus, by equating
the coefficients of the same monomes in the (2.1) or, with equal success, in
Corollary 2.1 we obtain relations between the generatrices of the Buchstaber
ring.

We identify MU∗(BSp(1) × BSp(1) with the subring MU∗(BU(1) ×
BU(1)) by the monomorphism (p × p)∗, where p : BU(1) → BSp(1) is
the canonical bundle (it the spherical bundle Spin(3) of the bundle Λ →
BSp(1)).
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Let η → BU(1) be the universal U(1)-bundle. Since

p!(Λ) = η2
1 + R, p!(ζ) = η2 + η2,

we have

(p× p)!(Λ⊗R ζ) = (η2
1 + η2

1 + C)⊗C (η2 + η2) =

= (η2
1 + η2

1)⊗C (η2 + η2) + (η2 + η2). (2.2)

Recall from [1] that for the homomorphism µU
Sp : MSp∗(·) → MU∗(·) we

have

µU
Sp

(

pf1((η1 + η1)⊗C (η2 + η2))
)

= Θ1
(

e(η1 + η1), e(η2 + η2)
)

,

µU
Sp

(

pf2((η1 + η1)⊗C (η2 + η2))
)

= Θ2
(

e(η1 + η1), e(η2 + η2)
)

,

where Θ1, Θ2 are the coefficients of a two-valued formal group in cobor-
disms, and e is Euler’s class in complex cobordisms.

Therefore

µU
Sp

(

pf1(η2
1 + η2

1)
)

= µU
Sp

(

pf1(η2
1 + η2

1 + C)
)

=

= µU
Sp

(

pf1
(

(η1 + η1)⊗C (η1 + η1)
)

)

= Θ1
(

e(η1 + η1), e(η1 + η1)
)

;

Further,

µU
Sp

(

pf1
(

(η2
1 + η2

1)⊗C (η2 + η2)
)

)

= Θ1
(

e(η2
1 + η2

1), e(η2 + η2)
)

=

= Θ1
(

Θ1(e(η1 + η1), e(η1 + η1)), e(η1 + η2))
)

,

µU
Sp

(

pf2
(

(η2
1 + η2

1)⊗C (η2 + η2)
)

)

=

= Θ2
(

Θ1(e(η1 + η1), e(η1 + η1)), e(η1 + η2))
)

.

By (2.2) we have

µU
Sp(pf1(Λ⊗R ζ)) = Θ1

(

Θ1(x, x), y)
)

+ y,

µU
Sp(pf2(Λ⊗R ζ)) = Θ2

(

Θ1(x, x), y)
)

+ Θ1
(

Θ1(x, x), y
)

· y,

µU
Sp(pf3(Λ⊗R ζ)) = Θ2

(

Θ1(x, x), y)
)

· y.

Thus relation (2.1) in complex cobordisms takes the tautological form

y3 − y2(Θ1(Θ1(x, x), y)) + y
)

+ y
(

Θ2(Θ1(x, x), y) + Θ1(x, x), y) · y
)

=

= yΘ2
(

Θ1(x, x), y
)

.

In symplectic cobordisms, relations obtained from (2.1) are not trivial in the
dimensions where there are elements from the kernel MSp4∗ → MU4∗.
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§ 3. On Rings of Symplectic Cobordisms Classifying Spaces of
Generalized Quaternion Groups

Let, as above, N be the normalizer of the unitary group U(1) in the
symplectic group Sp(1) consisting of U(1) and jU(1), where j is the quater-
nion unit. Define, over BN , the real two-dimensional bundles η(2m) by the
representation [2]

z → z2m, j →
(

0 1
1 0

)

.

The real linear bundle λ → BN from §1 is defined by the representation
z → 1, j → −1, where z ∈ U(1), m = 1, 2, . . . .

Let, further, Hm be a generalized quaternion group. For m = 2 the group
H2 = {±1,±i,±j,±k} is a group of quaternions. In the general case Hm is
defined as a subgroup in Sp(1) generated by two elements

α = exp
(

πi/2m−1) and β = j.

Define, over BHm, the real linear bundles η(m)
1 and η(m)

2 by the repre-
sentations

η(m)
1 : α → 1, β → −1,

η(m)
2 : α → −1, β → 1.

Let, further, ρ(K, L) : BK → BL denote the mapping of the classifying
spaces induced by the embedding of the Lie group K into L. We have

Proposition 3.1. (3.1.a) The bundle ρ(Hm, N) is the projectivization of
the bundle η(2k), k = 2m−2, and

ρ∗(Hm, N)(η(2k)) = η(m)
2 + η(m)

1 ⊗R η(m)
2 , ρ∗(Hm, N)(λ) = η(m)

1 .

(3.1.b) For k = 2n+1, n ≥ 1, the real bundle η(2) + η(k) → BN is MSp∗-
orientated.

(3.1.c) the real bundle η(k) + 3λ is MSp∗-orientated and has the zero
symplectic Euler class.

Proof. To prove (3.1.a), note that from the definition of the bundle η(2m) it
follows that when N acts on the circle S1 for the spherical bundle S(η(2m)),
the isotropy group is isomorphic to the group consisting of the elements
z = πi/m and j. When m = 2n−1, this group coincides with Hn. Clearly,
in that case ρ(Hn+1, N) will be the projective bundle. The remainder of
the proof follows from the definitions.
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(3.1.b) This can be proved in two ways. Firstly, we can calculate Shtiefel-
Whitney characteristic classes ωi of the bundle η(2) + η(k), k = 2n+1, using
the result of [13]

H∗(BN, Z2) = H∗(RP 2, Z2)⊗Z2 H∗(BSp(1), Z2).

This follows from the fact that the Serre spectral sequence for the bundle
BN → BSp(1) with fiber RP 2 is trivial.

When the fiber RP 2 is embedded into BN , the bundle η(k) passes to ν+1,
where ν → RP 2 is a nontrivial linear bundle; the bundle η(2) passes to the
tangent bundle τ → RP 2. But, as is well known, τ +1 = 3ν. The definitions
of η(2) and η(k) imply that det(η(2)) = det(η(k)) = λ and therefore

ω2(η(2)) = ω2
1(η(2)), ω1(η(k)) = ω1(η(2)), ω2(η(k)) = 0.

Thus ω1(η(2) + η(k)) = ω2(η(2) + η(k)) = 0 and hence η(2) + η(k) is a
Spin(4)-bundle. On the other hand, each Spin(4) bundle is MSp-orientated.
Indeed (see, e.g., [14]), for Spin(4)-bundle ψ, to the class of KO-orientation
from KO4(Tψ), where Tψ is the Thom space, there corresponds some
symplectic bundle over Tψ provided that the isomorphism KO4(Tψ) ≈
KS0(Tψ). The first symplectic Pontrjagin class can be taken as the class
of MSp-orientation. This completes the proof.

The second way is as follows. Let ξ → BU(1) be the universal U(1)-
bundle. Consider the 2-covering BU(1) → BN and bundles ξ2i+1

! → BN ,
the images of bundles ξ2i+1 for the Atiyah transfer of this covering [15].
The bundle ξ! is symplectic, since ξ! = π∗(ζ), where as above π : BN →
BSp(1) and ζ → BSp(1) is the universal Sp(1)-bundle. We shall show that
ξ2i+1
! , i ≥ 1, are also Sp(1)-bundles. Since Sp(1) = SU(2), it is enough to

show that ξ2i+1
! has the trivial determinant, i.e., that the first Chern class

c1(ξ2i+1
! ) = 0 in cohomologies with integral coefficients. This can be done

immediately after writing the corresponding representations for ξ2i+1
! [12],

but we shall do this in terms of transfer and characteristic Chern classes.
For the transfer homomorphism τ∗ of the covering BU(1) → BN we have
the formula

τ∗
(

c1(ξ2i+1)
)

= c1(1!) + c1(ξ2i+1
! )

in integral cohomologies. This follows from the corresponding formula for
the case of complex cobordisms [16]. By virtue of equalities c1(ξ2i+1) =
(2i + 1)c1(ξ) and τ∗(c1(ξ)) = c1(1!) we now have

τ∗
(

c1(ξ2i+1
! )

)

= (2i + 1)τ∗(c1(ξ)) = (2i + 1)c1(1!) = c1(1!),

i.e., c1(ξ2i+1
! ) = 0. Further,

η(2) + η(k) = ξk/2+1
! ⊗H ξk/2−1

! ,
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but the tensor product of Sp(1)-bundles over H is MSp-orientated, since
BSpin(4) = BSp(1)2. This proves 3.1.b.

(3.1.c) The bundle η(k) +3λ is a difference between MSp-orientated bun-
dles η(2) + η(k) + 4λ and η(2) + λ and hence is MSp-orientated. On the
other hand, this bundle is a Spin(5)-bundle and each Spin(5)-bundle has
the zero symplectic Euler class [17].

Using this lemma, one can show some relations in rings of symplectic
cobordisms of generalized quaternion groups. We have

Proposition 3.2. The relation

pf1(η
(m)
1 ⊗R H) · pf1(η

(m)
2 ⊗R H) · pf1

(

η(m)
1 ⊗R η(m)

2 ⊗R H
)

= 0

holds in the ring MSp∗(BHm), m ≥ 2.

Proof. For m > 2 we have

ρ∗(Hm, N)
(

η(m) ⊗R H + λ⊗R H
)

=

= η(m)
1 ⊗R H + η(m)

2 ⊗R H + η(m)
1 ⊗R η(m)

2 ⊗R H.

But the real bundle η(m) ⊗R H + λ ⊗R H coincides with the sum of the
MSp-orientated bundles η(m) + 3λ and 3η(m) + λ. By Proposition (3.1.c)
the first bundle has the zero symplectic Euler class. Therefore the Euler
classes of both sides are equal to zero in the above-indicated splitting. This
proves the proposition for m > 2.

For the case m = 2, i.e., for the group of quaternions, the above reason-
ing does not hold, since the bundle η(2) + 3λ is not MSp-orientated. But
according to §1, for the universal Spin(3)-bundle Λ → BSp(1) the Euler
class e(Λ⊗R H) = pf3(Λ⊗R H) = 0. On the other hand, ρ∗(H2, Sp(1)) =
η(2)
1 + η(2)

2 + η(2)
1 ⊗R η(2)

2 so that the proposition is valid in this case too.
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