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ABSTRACT 

We consider the time dependent neutron diffusion equation for one energy group in cylinder coordinates, assuming 

translational symmetry along the cylinder axis. This problem for a specific energy group is solved analytically applying 

the Hankel transform in the radial coordinate r. Our special interest rests in the build-up factor for a time dependent 

linear neutron source aligned with the cylinder axis, which in the limit of zero decay constant reproduces also the static 

case. The new approach to solve the diffusion equation by integral transform technique is presented and results for sev-

eral parameter sets and truncation in the solution for the flux and build-up factor are shown and found to be compatible 

to those of literature [1,2]. 
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1. Introduction 

Energy production and environmental issues are strongly 

related and even though recent events have put nuclear 

energy on the black list of energy sources, it will recover 

its role in world’s energy production matrices. In this 

sense it remains meaningful to search for progress in 

topics related to nuclear reactor theory, especially by 

virtue of recent efforts in innovative nuclear reactor 

technology. As a contribution in this line we develop an 

analytical method to determine the build-up factor for 

neutrons, the description of neutron distributions inside 

the nuclear reactor core. Note, that other applications 

with this method are possible such as radiation protection, 

nuclear medicine, among others, see the works [3-5]. The 

mathematical model that serves as our starting point is 

motivated by the S2 approximation of the Boltzmann 

equation, i.e. the diffusion equation [6]. This equation 

represents the balance between production and loss of 

these particles, described in the next section. In Sections 

2 and 3 we solve this problem in an analytical fashion 

using the finite Hankel Transform, which is appropriate 

for problems represented in cylindrical coordinates, fol-

lowing the idea of the solution of this kind of problem in 

Cartesian geometry [7,8].  

2. Neutron Diffusion 

We consider the time dependent neutron diffusion equa-

tion for one energy group in cylinder coordinates, as-

suming translational symmetry along the cylinder axis 

    , , Σ ,t r Rr t D r t S r t               (1) 

Here   is the scalar neutron flux, D is the diffusion 

coefficient for neutrons, r  is the radial part of the el-

liptic operator, given by  

1

r rr r
 r                 (2) 

The ΣR  is the macroscopic removal cross section and 

 ,S r t  is the source of the problem, that depends on r 

and t, respectively. Equation (1) is subject to the follow-

ing boundary conditions 

   0, 0; , 0r t R t   

n

           (3) 

This problem for one energy group may be solved ana-

lytically applying the Hankel transform in the radial co-

ordinate r in cylindrical geometry.  

3. Solution by Finite Hankel Transform 

Next, we apply the Finite Hankel transform of order zero 

to (1), making use of some properties of the transform. 

Recalling, that the Hankel transform of order p has the 

definition, 
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Differently, than in other applications, where the trans-

form has an infinite upper limit, here the i

upper limit R due to the assumption that the flux outside 

th

ntegral has an 

e cylinder with radius R is zero and especially 

 , 0R t   holds. Since the neutron flux is related to a 

distribution means that  0, t  is limited. Our special 

interest is in the build-up factor for the unique initial 

condition ,0 0r  . Upon multiplying both sides of (1) 

by  0 nrJ r , and integrat om 0 to the radius R, we 

obtain 

ing fr
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where 

0 d
R

nJ r r

 ,S r t  

sformed

is the source term of the problem. Using 

the tran  quantities (6) can be rewritten 
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The integral containing the spatial derivative

cast into an expression containing transformed quantities 

using integration by parts,  
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which further simplifies due to the choice o

          


f n  such 

that and implies that the first term f the 

righ shes. Therefore, 
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t side in (8) vani
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which by virtue of 
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reduces to 

       2d
, Σ , ,

dt
n n R n nt D t S t         (11) 

This equation is subject to the initial condition  

 ,0 0n    because  ,0 0,r   and has the solution, 
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The inversion may be obtained by the u

nition of the inversion (5) applied to Equati

w

se of the defi-

on (12). Thus, 

e obtain the result 
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and expressed in terms of Equation (12) is 
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that is the solution for the group g. For example,

consider a fixed source, in this case, we have a source 

    

 if we 

without time dependence, and the inversion (15), can be 

written as 
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and therefore, the final expression for the flux is 
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4. Infinite Line Source Distribution 

We consider now as a source a string that coincides with 

nted by the the centre of the cylinder and may be represe

Delta Function  r  (in cylindrical case), which is 

defined to be zero for all values of r except at r = 0. The 

integral of  r  is finite, provided r = 0 lies in the 

range of integration, and the value of the integral is taken 

to be unity. In er to treat the special case, where r = 0 

lies at the border of the interval we recall, that for any 

compact set 

ord

 ,a b  with 0a b  , that is a compact 

support for  ,  .  

    0r r             (19) 
 


,

d
a b

f r f

holds as usual, since r = 0 lies truly in

case where r = 0 lies at the interval li

 the interval. In the 

mit, the following 

limit shall be applied to determine the integral property 

from above. 
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The Hankel transformed expression for the source as 

well as in (13). If we have the source has time depend- 

ence, as for instance the classical example from reference 

[9

 

] 

   0
, e

π
t S r

S r t
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               (21) 

where is the initial value for the source, and 0S    is 

the decay constant, then for b R . 
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Finally, we can express the final solution for the flux, 

making use of the inversion using (22), yields then 
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The integral in the previous equation may be solved, 
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so that the final solution reads 
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The time dependent source solution also includes the

time independent source term upon taking the limit 

R D 

 

0  .  

The bu up factor have been calculated for different 

he design of fuel 

sed in this work 

5. Analysis of Build-Up Factor 

ild-

response functions that have impact on t

element distribution. The composition u

is that used in the Mirror Advanced Reactor Study 

(MARS) design. The build-up factor for the response 

function from an infinite line source is defined as 
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where z  is a unit height of the cylinder. The use of the 

unit length along the cylinder axis is necessary, due to 

the fact that we considered an infinite

case, we will consider the response function being the 

de

 cylinder. In our 

flux insi  the cylinder divided by the decay constant in 

order to render the build-up factor dimensionless 
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Here Σt  is the total macroscopic cross section. There- 

fore, th ild-up factor in this case in terms of the ratio 

of the flux including scattering by the f

tering is 

e bu

lux without scat-
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As the material thickness increases from zero to a

mean free paths, the energy spectra of neutrons ch

considerably. Different build-up factors obtained depend 

on the energy dependence of cross sections for the dif-

fe

 sets and truncation N = 10 in the solution 

build-up factor. The results are compara-

om other authors. 

In

-up factor solution of 

 neutron diffusion problem in cylin-

ing the Hankel transform for a linear 

 

   



  

   
 

(28) 

 few 

ange 

rent response functions. However, after a few mean 

free paths, the neutron spectra assume fixed shapes. This 

stems from the fact that the mean free path for a fission 

source of neutrons is larger than for lower energy neu-

trons, as thermal neutrons for instance. This results in the 

same build-up factor variation with the material thickness 

regardless of the response function. In Figure 1 we show 

the correlation of the build-up factor with the radius of 

our cylinder. 

6. Results 

In this section we present a selection of results for sev-

eral parameter

for the flux and 

ble to those fr

The results for the fluxes depending on the parameter 

choice are shown in Figures 2-5. 

7. Conclusion 

 this work, we established the existence for the time 

dependent neutron flux and build

the time dependent

drical geometry us

source aligned with the cylinder axis. The obtained solu-

tion applies to the time dependent case as well as the time 

independent case if the decay constant is taken in the 

zero limit. Since existence and uniqueness of the solution 
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Figure 1. Build-up factor for different values of t. 

 

 

Figure 2. Flux using D = 1.43, ΣR = 0.39, λ = 0.37, t = [0, 10] 

and truncation at N = 10. 

 

 

Figure 3. Flux using D = 1.13, ΣR = 0.39, λ = 0.58, t = [0, 10] 

and truncation at N = 10. 

 

is guaranteed by the Cauchy-Kovalewsky theorem, that 

includes the present equation as a special case, we

hnique. This procedure allows  

 

showed a new approach to solve the diffusion equation 

by integral transform tec

 

Figure 4. Flux using D = 1.43, ΣR = 0.39, λ = 0.58, t = [0, 30] 

and truncation at N = 10. 

 

 

Figure 5. Flux using D = 1.13, ΣR = 0.39, λ = 0.58, t = [0, 10] 

and truncation at N = 10. 

 

us to generate a function library that efficiently supplies 

with these solutions, where only the physical and geo

antage, that for numerical pur-

oses the solution may be considered quasi exact, once 

-

metrical parameters need to be specified. Furthermore, 

this method has the adv

p

an adequate number of terms of the solution expansion is 

taken into account. An error analysis that will specify the 

truncation index is currently in progress. It is noteworthy, 

that no numerical errors have to be taken care of due to 

the analytical character of the solution. Finally motivated 

by the preliminary good results attained by this method-

ology, in a forthcoming paper we shall present results for 

a heterogeneous problem with regions of different 

physical properties. 
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