On the c-Si surface passivation mechanism by the negativecharge-dielectric Al2O3 Citation for published version (APA): Hoex, B., Gielis, J. J. H., Sanden, van de, M. C. M., & Kessels, W. M. M. (2008). On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. Journal of Applied Physics, 104(11), 113703-1/7. [113703]. https://doi.org/10.1063/1.3021091 DOI: 10.1063/1.3021091 Document status and date: Published: 01/01/2008 Document Version: Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers) ### Please check the document version of this publication: - A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. - The final author version and the galley proof are versions of the publication after peer review. - The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - · Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: openaccess@tue.nl providing details and we will investigate your claim. Download date: 23. Aug. 2022 # On the c-Si surface passivation mechanism by the negative-charge-dielectric Al_2O_3 B. Hoex, ^{a)} J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels^{b)} Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (Received 18 June 2008; accepted 29 September 2008; published online 1 December 2008) Al_2O_3 is a versatile high- κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Q_f of up to 10^{13} cm⁻² present in the Al_2O_3 film at the interface with the underlying Si substrate. The negative polarity of Q_f in Al_2O_3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Q_f^2 , the high Q_f in Al_2O_3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes. © 2008 American Institute of Physics. [DOI: 10.1063/1.3021091] #### I. INTRODUCTION An excellent electrical interface quality is essential for many devices relying on the bulk electronic properties of semiconductors. Electrical losses at a semiconductor interface or surface should be minimized in photonic devices based on group III-V or group IV semiconductors when radiative recombination should be the dominant process.^{2,3} In complementary metal-oxide-semiconductor (CMOS) devices, the channel is in direct contact with the interface between the gate dielectric and the semiconductor, and therefore interface defect trapping should be minimized.⁴ Moreover, electronic losses at the crystalline Si (c-Si) surface have become increasingly important in the field of c-Si solar cells due to the trend toward thinner c-Si wafers used as base material. Consequently, the reduction of recombination losses at semiconductor interfaces is a prime concern for numerous semiconductor applications. Recombination losses at a semiconductor interface or surface can be reduced by two different passivation strategies. As the recombination rate is directly proportional to the interface defect density, the first strategy is based on the reduction in the number of defect states at the interface. The interface defect density can be reduced significantly by the passivation of undercoordinated atoms (dangling bonds) by, e.g., atomic H or by a thin dielectric or semiconductor film. This strategy is commonly referred to as chemical passivation. For example, the midgap interface defect density of c-Si can be as low as 1×10^9 eV⁻¹ cm⁻² after the growth of a high quality thermal SiO₂ film and a subsequent anneal in a H₂ atmosphere, e.g., a forming gas anneal. The second strategy to reach surface passivation is based on a significant reduction of the electron or hole concentration at the semiconductor interface by means of a built-in electric field. As recombination processes require both electrons and holes, the highest recombination rate is obtained when the electron and hole concentration at the interface are approximately equal in magnitude (assuming identical capture cross sections for electrons and holes). In other cases the recombination rate scales with the minority carrier concentration at the surface. In the so-called field-effect passivation, the electron or hole concentration at the semiconductor interface is altered by electrostatic shielding of the charge carriers through an internal electric field present at the interface. This internal electric field can either be obtained by a doping profile below the interface or by the presence of fixed electrical charges at the semiconductor interface. Obviously, the principle of field-effect passivation does not apply for CMOS devices such as field effect transistors. A high fixed charge density is even deleterious for the transistor performance as it influences the threshold voltage and the transport of electron and holes in the semiconductor channel.^{4,7} Consequently, the application areas of field-effect passivation are limited but the effect can be employed successfully in devices such as light emitting diodes and solar cells. Recently it was demonstrated that amorphous Al₂O₃ films synthesized by atomic layer deposition (ALD) yield an excellent level of surface passivation on *c*-Si.⁸⁻¹³ In our previous work, a similar level of surface passivation as state-of-the-art thermal SiO₂ was demonstrated on low resistivity *n*-and *p*-type *c*-Si,⁹ whereas highly doped *p*-type Si surfaces were found to be even more effectively passivated by Al₂O₃ than by thermal SiO₂.¹⁰ Remarkably, the Al₂O₃ films, synthesized by plasma-assisted ALD at a substrate temperature of 200 °C, demonstrated no significant level of surface passivation in the *as-deposited* state.^{9,10} A 30 min postdeposition anneal at 425 °C in N₂ was required to obtain the level of surface passivation reported. A nonspecified thermal treatment was also required for an optimal level of surface passivation in the study of Agostinelli *et al.* for Al₂O₃ films a) Current address: Solar Energy Research Institute Singapore, National University of Singapore, Block E4-01-01, Singapore 117576, Singapore. Electronic mail: bram.hoex@gmail.com. b) Electronic mail: w.m.m.kessels@tue.nl. FIG. 1. Effective lifetime of a 1.9 Ω cm n-type c-Si wafer passivated on both sides by a 26 nm thick Al_2O_3 film. The effective lifetime is presented as a function of the positive charge density $Q_{\rm surface}$ deposited at the Al_2O_3 on one side of the wafer in a corona charging experiment. Field-effect passivation is ruled by the sum of the negative fixed charge density Q_f in the Al_2O_3 film and the positive $Q_{\rm surface}$. The effective lifetime was determined at an injection level of 10^{14} – 10^{15} cm⁻³. synthesized by thermal ALD.⁸ The excellent level of surface passivation that can be achieved by ALD-synthesized Al_2O_3 films was recently also confirmed at the device level. Al_2O_3 applied at the rear of a diffused emitter p-type c-Si solar cells yielded a conversion efficiency of 20.6%, and Al_2O_3 applied at the front side p-type emitter of n-type solar cells yielded a conversion efficiency of 23.2%. In this paper, we will address the underlying mechanism of c-Si surface passivation as obtained by amorphous Al_2O_3 films. From results obtained on Al₂O₃ films synthesized by plasma-assisted ALD, it will be demonstrated that in addition to a satisfactory low interface defect density, the surface passivation is ruled for a large part by a strong field-effect passivation induced by a relatively high negative fixed charge density Q_f in the Al₂O₃ film. On the basis of simulations, it will be discussed that the field-effect passivation scales with Q_f^2 and, consequently, the high Q_f in Al₂O₃ tolerates a higher interface defect density than other passivation films with lower Q_f values. It will be shown that the postdeposition anneal increases the negative Q_f and lowers the interface defect density of the Si/SiO_x/Al₂O₃ system resulting in a significant improvement of the level of surface passivation obtained. The presence of an interfacial SiO_x film between c-Si and the Al₂O₃ appears to play a key role in both the origin of the negative Q_f and the interface defect density. As a negative Q_f in combination with a sufficiently low interface defect density is routinely reported for Al₂O₃ films deposited on c-Si, irrespective of the deposition technique, it is argued that the findings presented in this paper are not limited to Al_2O_3 films synthesized by (plasma-assisted) ALD. # II. AL₂O₃ AS NEGATIVE CHARGE DIELECTRIC The field-effect passivation of c-Si by Al_2O_3 is experimentally demonstrated in Fig. 1. A high quality 1.9 Ω cm n-type c-Si wafer with a thickness of 275 μ m was passivated on both sides by a 26 nm thick Al_2O_3 film synthesized by plasma-assisted ALD. ¹¹ The resulting effective lifetime of the passivated c-Si wafer exceeds 6 ms indicating that the c-Si surfaces are adequately passivated by Al₂O₃. Subsequently a positive charge density Q_{surface} is applied at the Al₂O₃ surface in a corona charging experiment. In this case, the field-effect passivation is ruled by the sum of Q_f and $Q_{ m surface}$. From the figure, it is clear that a positive $Q_{ m surface}$ up to 10^{13} cm⁻² hardly affects the effective lifetime of the c-Si wafer. However, a positive $Q_{\rm surface}$ in the range of $(1.2-1.4)\times10^{13}~{\rm cm}^{-2}$ leads to a strong decrease in the effective lifetime. A minimum effective lifetime of $\sim 100 \ \mu s$ is obtained for a positive Q_{surface} of 1.3×10^{13} cm⁻². At this stage, the positive $Q_{ m surface}$ balances the negative Q_f in the Al₂O₃ film, which nullifies the level of field-effect passivation. ¹¹ For a positive Q_{surface} exceeding the amount of negative $Q_f [Q_{\text{surface}} \text{ in the range of } (1.3-2.0) \times 10^{13} \text{ cm}^{-2}]$ field-effect passivation is provided by the positive charge density at the c-Si surface. Summarizing, Fig. 1 clearly demonstrates the mechanism of field-effect passivation on c-Si, and it reveals that the negative Q_f in this 26 nm thick Al_2O_3 film is $(1.3 \pm 0.1) \times 10^{13}$ cm⁻². Al₂O₃ has extensively been investigated for the application as gate and charge trapping dielectric on c-Si where also high negative Q_f values have been reported. For gate dielectric applications in CMOS, a low interface defect density and a low Q_f are essential, whereas a low interface defect density in combination with a high density of electronically active bulk defects is desired for charge trapping dielectrics such as applied in nonvolatile memory. 14,15° Table I summarizes the bulk and interface electronic properties reported in the literature for Al₂O₃ films deposited on c-Si by various techniques. The sign of Q_f is always negative for the Al_2O_3 films after annealing, irrespective of the deposition technique. ¹⁶ The magnitude of Q_f is typically in the range of 10¹²-10¹³ cm⁻² for annealed Al₂O₃ films, in good agreement with our results in Fig. 1. From thickness dependent capacitance-voltage measurements, it was deduced that the negative Q_f is independent of the Al_2O_3 thickness and is located at the interface with the substrate. 17-19 It is interesting to note that negative fixed charges are detected in Al_2O_3 films deposited on H-terminated c-Si as well as Al₂O₃ films deposited on c-Si covered by a 1-100 nm thick SiO₂ film. Despite the fact that Al₂O₃ is thermodynamically stable on c-Si, Al₂O₃ deposition processes occur under nonequilibrium conditions, and as a result an interfacial SiO_x layer is commonly formed between the Al_2O_3 film and the c-Si substrate. $^{20-23}$ This SiO_x layer can be formed during the Al₂O₃ deposition process but also during the postdeposition annealing treatment. The unintentional formation of an interfacial SiO_x is undesired for the application of Al₂O₃ as gate dielectric in CMOS devices as it lowers the effective dielectric constant of the layer stack. Nevertheless, only a very limited number of studies (e.g., in the work of Gusev et al. 24) report on the absence of an interfacial SiO_x layer between the Al₂O₃ film and c-Si substrate. An interfacial SiO_r film was also detected by high resolution transmission electron microscopy (HR-TEM) in the Al₂O₃ films synthesized by plasma-assisted ALD, both in the as-deposited and annealed state, that demonstrated an excellent level of surface passivation on c-Si.9 TABLE I. Bulk and interface electronic properties for Al_2O_3 films deposited on c-Si as reported in the literature. All films were deposited on H-terminated c-Si unless indicated otherwise. In all cases, Q_f was extracted from the flatband voltage shift determined from capacitance-voltage (CV) measurements of MOS structures. The interface defect density was extracted from CV and/or conductance measurements of MOS structures. Most samples were analyzed after a postdeposition anneal, however, some samples were also measured as-deposited (indicated with "a–d"). | Negative Q_f (10 ¹² cm ⁻²) | $D_{\rm it}$ at midgap $(10^{11} \ {\rm eV^{-1} \ cm^{-2}})$ | Deposition method | Deposition temperature (°C) | Postdeposition thermal treatment | Ref. | |-----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|------| | | | Pyrolysis of Al(C ₃ H ₈ O) ₃ on c-Si | | | | | 0.2-0.5 | ••• | with 23-100 nm thermal SiO_2 | 425 | 30 min FGA ^a at 425 °C | 17 | | | | CVD from AlBr ₃ +NO on c-Si | | | | | 0.2-0.5 | ••• | with 23–100 nm thermal SiO_2 | 910 | 30 min FGA ^a at 425 °C | 17 | | -0.5 (a-d) | 15 (a–d) | Pyrolysis of $Al(C_3H_8O)_3$ on c -Si | | | | | 3.2 | 0.8 | with 1.5 nm native SiO ₂ | 360 | 15 min FGA ^a at 510 °C | 39 | | 10–11 (a–d) | ••• | Pyrolysis of AlCl ₃ in CO ₂ /H ₂ environment ^b | 900 | None | 15 | | 0.6 (a-d) | ~1 | ALD from $Al(CH_3)+H_2O$ | 450 | None | 48 | | \sim 2 | 0.8 | ALD from Al(CH ₃) ₃ and H ₂ O | 350 | Various at 585 °C and 800 °C | 49 | | • • • | 0.3 | Oxidation of evaporated Al | <400 | $800~^{\circ}\text{C}$ in N_2 | 50 | | 7 | 1–3 | ALD from AlCl ₃ and H ₂ O ^c | 370 | None | 19 | | 7 (a-d) | 13 (a-d) | | | FGA ^a at 300-450 °C and | | | 6–7 | 1 | ALD from Al(CH ₃) ₃ and H ₂ O ^b | 350 | anneal in N ₂ at 450 °C | 46 | | 5-10 (a-d) | 2-5 ^d (a-d) | Reactive target sputtering in Ar/O ₂ | 380 | FGA^{a} | 51 | | | 2-10 (a-d) | ALD from AlCl ₃ and H ₂ O | 300-800 | None | 52 | | | 20 | ALD from Al(CH ₃) ₃ and H ₂ O | 300 | 30 min FGA ^a at 400 °C | 53 | | 13 ^e (a-d) | | 2 | | | | | 6 ^e | | ALD from Al(CH ₃) ₃ and O ₃ | 400 | None or 10 min at 800 °C in N ₂ | 54 | | | | Molecular beam epitaxy from Al and | | _ | | | | | N_2O on c-Si with an interfacial layer | | None or anneal at 600 °C | | | 3–9 | ••• | formed from Al and chemical SiO ₂ ^f | 750 | in O2, N2, H2 or air | 55 | | | | ALD from Al(CH ₃) ₃ and H ₂ O on c-Si with | | | | | 3-8 (a-d) | ••• | 7 nm thermal SiO ₂ | 160-350 | None | 56 | | Up to 10 | • • • | ALD from Al(CH ₃) ₃ and H ₂ O ^b | < 300 | Yes, not specified | 8 | | | | Remote plasma enhanced CVD from metal | | 30 s anneal at 800 °C and | | | 7 | ••• | organic ^g and O ₂ on c-Si ^h | 300 | 30 min FGA ^a at 425 °C | 18 | | 0.2-2 (a-d) | | | | | | | 5-8 | | ALD from Al(CH ₃) ₃ and O ₂ plasma | 200 | 30 min anneal at 425 °C | 44 | ^aForming gas anneal, typically 5%–10% H₂ in N₂. The origin of the negative Q_f in Al_2O_3 deposited on c-Si has been attributed to intrinsic and extrinsic defects in Al₂O₃. Matsunaga et al. calculated the energetics of intrinsic vacancies and interstitials in Al₂O₃ from first principles.²⁵ These calculations showed that each intrinsic point defect is most stable in their fully ionized form. Hence, Al vacancies and O interstitials exhibit a negative charge and Al interstitials and O vacancies exhibit a positive charge in good agreement with the ionic nature of the Al₂O₃. ²⁵ Extrinsic H has also been proposed as origin for the negative fixed charges in Al₂O₃. Peacock and Robertson calculated that interstitial H acts as a deep trap site for electrons in Al₂O₃. ²⁶ H is, for example, a common constituent in Al₂O₃ synthesized by ALD because H-containing precursors such as Al(CH₃)₃ and H₂O are used in the deposition process. Hence, Al vacancies, O interstitials, and interstitial H are proposed as the origin of the negative Q_f in Al_2O_3 . Based on the ionic nature of Al₂O₃, Lucovsky postulated that Al₂O₃ consists of tetrahedrally coordinated Al in AlO₄ units and octahedrally coordinated Al³⁺ in a ratio of 3:1 to assure charge neutrality.²⁷ Kimoto *et al.* demonstrated that both tetrahedrally and octahedrally coordinated Al are present in Al₂O₃ grown by thermal ALD on H-terminated c-Si.²⁸ However, tetrahedrally coordinated Al was found to be dominant at the interface. This dominance was attributed to the fact that Si in the interfacial SiO_x film also has a tetrahedral coordination.²⁸ Consequently, the interfacial SiO_x film could fulfill an important role in the origin of the negative Q_f that is found in Al₂O₃ films grown on c-Si by inducing a high density of negatively charged Al vacancies close to the interface. This hypothesis is in good agreement with the location of the negative Q_f extracted from thickness dependent CV measurements by various authors.^{17–19} The polarity of Q_f plays an important role in the surface passivation of c-Si. The most commonly used dielectric passivation films on c-Si, i.e., thermal SiO₂, a-SiC_x:H, and a-SiN_x:H contain a positive Q_f and lead to a high level of surface passivation of lightly doped n- and p-type c-Si and ^bThe pretreatment of the c-Si wafer was not specified. $^{^{}c}$ The defect density could be lowered by the addition of Zr or Si in the $Al_{2}O_{3}$ to values in the mid 10^{10} eV^{-1} cm⁻² range. ^dThe Al₂O₃ films were grown under UV radiation. eThe Al2O3 film was covered with a HfO2 film. ^fPolycrystalline Al₂O₃ was grown in this study due to epitaxy process. $^{^{}g}(CH_{2})_{3}Al_{2}(C_{4}H_{9}O)_{3}$ ^hFilms were grown at H-terminated c-Si and c-Si with 1.0 or 1.6 nm thermal SiO₂ with no significant impact on the amount of negative Q_f . highly doped *n*-type *c*-Si surfaces. ^{29–31} A positive Q_f has, however, been shown to be detrimental for the passivation of highly p-type surfaces such as in p-type emitters on n-type solar cells because the minority electrons are attracted to the c-Si surface and thereby enhance the recombination rate. 10 Positive-charge dielectrics also demonstrate a strong injection level dependence for the surface passivation properties on lightly doped p-type c-Si. $^{31-33}$ The level of surface passivation decreases when going to lower excess carrier concentrations (i.e., lower injection levels), which is, for example, detrimental for the c-Si solar cell efficiency under low illumination conditions.²⁹ This injection level dependence is attributed to additional bulk recombination losses in the inversion layer close to the c-Si surface.³⁴ The inversion layer is created by the shielding of holes, which are the majority carriers in the p-type c-Si bulk, from the c-Si surface by the positive Q_f in the dielectric film. For the negative-charge dielectric Al₂O₃ on the other hand, it has been demonstrated that the level of surface passivation is constant at low injection level for lightly doped p-type c-Si. On the contrary, when the negative-charge dielectric Al₂O₃ is used to passivate lightly doped n-type c-Si, the level of surface passivation decreases when going to lower injection level, whereas positive-charge dielectrics demonstrate a constant level of surface passivation in this case. 32,33 Hence, a similar bulk recombination in the inversion layer could explain this injection level behavior of lightly doped n-type c-Si passivated by the negative-charge dielectric Al₂O₃. Furthermore, the high positive Q_f in a-SiN_x: H causes the so-called parasitic shunting effect when applied at the rear of p-type c-Si solar cells and thereby significantly decreases the short-circuit current of c-Si solar cells.³⁵ This effect is absent when the negativecharge dielectric Al₂O₃ is used at the rear of diffused front side emitter p-type c-Si solar cells, which has resulted in solar cell efficiencies of 20.6%. 12 The negative charge in Al₂O₃ is even more important in the passivation of highly doped p-type c-Si surfaces as the shielding of the minority carriers, the electrons, from the surface by the negative charges leads to a much higher level of passivation than positive-charge dielectrics such as thermal SiO2 and asdeposited a-SiN_x:H.¹⁰ The latter was recently also demonstrated at the device level by an exceptionally high conversion efficiency of 23.2% obtained for an *n*-type solar cell with a front side B-doped p-type emitter passivated by a 30 nm thick Al₂O₃ film. # III. FIELD EFFECT PASSIVATION VERSUS CHEMICAL PASSIVATION It is evident that besides the polarity of the fixed charge, the amount of fixed charge is also important for field-effect passivation. Figure 2 shows the effective surface recombination velocity $S_{\rm eff}$ at an injection level of $5\times 10^{14}~{\rm cm}^{-3}$ (corresponding to approximately 1 sun illumination) as a function of the negative Q_f located at the surface for moderately doped n-type ([P]= $7\times 10^{15}~{\rm cm}^{-3}$) and p-type ([B]= $7\times 10^{15}~{\rm cm}^{-3}$) c-Si. The simulations were performed using the extended Shockley–Read–Hall model as proposed by Girisch et~al. The fundamental recombination velocities of FIG. 2. (Color online) Simulated effective surface recombination velocity $S_{\rm eff}$ at an injection level Δn of $5\times 10^{14}~{\rm cm}^{-3}$ for moderately doped n-type ([P]= $7\times 10^{15}~{\rm cm}^{-3}$) and p-type ([B]= $7\times 10^{15}~{\rm cm}^{-3}$) c-Si as a function of the negative Q_f located at the c-Si surface. the electrons and holes were taken to be energy independent and equal to 100 cm/s. Figure 2 clearly shows that a negative Q_f decreases the S_{eff} at a p-type c-Si surface. On the other hand, Fig. 2 demonstrates that a relatively small negative Q_f up to 5×10^{10} cm⁻² increases the $S_{\rm eff}$ for moderately doped *n*-type c-Si. For higher negative Q_f values, the S_{eff} decreases for *n*-type c-Si, and for a negative $Q_f > 3 \times 10^{11}$ cm⁻² the S_{eff} is practically equal for n- and p-type c-Si. As already mentioned, the surface recombination rate is proportional to the minority carrier concentration at the surface. For a negative Q_f in the range of $5 \times 10^{10} - 1 \times 10^{13}$ cm⁻², electrons are the minority carriers at the surface of both n- and p-type c-Si. The increasing S_{eff} for n-type c-Si up to a negative Q_f of 5×10^{10} cm⁻² can be explained by the fact that for this low negative Q_f holes are still the minority carrier at the n-type c-Si surface and the hole concentration, hence the recombination, is increased by electrostatic interaction by the presence of the negative charge at the surface. A similar effect can be observed for p-type c-Si passivated by positive charge dielectrics as was shown by Aberle et al. 29 For negative $Q_f > 5 \times 10^{11}$ cm⁻², S_{eff} scales with $1/Q_f^2$ for both nand p-type c-Si. This is in good agreement with the results reported by Kuhlmann et al. for inverted p-type c-Si surfaces.37 The Q_f^2 dependence of the field-effect passivation allows us to compare the relative strength of field-effect passivation by Al_2O_3 and other charge containing dielectrics used for c-Si surface passivation. For thermal SiO_2 and a- SiC_x : H, a relatively low positive Q_f around 10^{11} cm⁻² on p-type c-Si is commonly reported, 29,31,34 whereas for a- SiN_x : H, a positive Q_f in the range of 10^{12} cm⁻² is typically found. $^{38-40}$ Consequently, the field-effect passivation provided by Al_2O_3 is up to four orders of magnitude stronger compared to thermal SiO_2 and a- SiC_x : H and up to two orders of magnitude stronger compared to a- SiN_x : H. Besides field-effect passivation, chemical passivation also reduces the recombination losses at c-Si surfaces. For example, the state-of-the-art surface passivation by thermal SiO_2 can mainly be attributed to chemical passivation due to its extremely low interface defect density. A strong field-effect passivation as in the case of Al_2O_3 , however, relaxes 113703-5 Hoex et al. the requirements on the interface defect density. Using the Q_f^2 scaling of the field-effect passivation, we can estimate the relative importance of the chemical passivation for Al₂O₃ compared to thermal SiO₂ for lightly doped c-Si. Assuming similar electron and hole capture cross sections for the dominant defects, the midgap defect density at the c-Si surface is allowed to be as high as 10^{13} eV⁻¹ cm⁻² to yield a similar level of surface passivation compared to thermal SiO₂ with a midgap interface defect density of 10⁹ eV⁻¹ cm⁻². However, from Fig. 1, it can be concluded that the Al₂O₃ film with the interfacial SiO_x film also provides a good level of chemical passivation because the effective lifetime is still relative high at $\sim 100~\mu s$ when the negative Q_f in the Al₂O₃ film is balanced (for a poorly passivated surface the effective lifetime would only be ~ 5 μ s). Hence, the interface defect density between the Al_2O_3/SiO_x film and the c-Si substrate is expected to be reasonably low. As can be seen in Table I, typically interface defect densities in the range of 10¹¹ eV⁻¹ cm⁻² have been reported for annealed Al₂O₃ films on c-Si, which is up to two orders of magnitude higher compared to thermal SiO₂. Similar to thermal SiO₂, the lowest interface defect density is obtained by postdeposition annealing treatments, either an anneal in a H₂ containing atmosphere in the 300–500 °C temperature range or a short high temperature anneal in N₂ below the crystallization temperature of Al₂O₃. Moreover, the interface defect density of dielectrics on c-Si has empirically been related to the average bonding concentration at the interface by Lucovsky et al. 41 Dielectrics with an average bonding concentration above 3 would exhibit a high interface defect density and vice versa. As the average bonding concentration of Al₂O₃ is 3.6, the interface defect density at the c-Si surface could be significantly lowered by the presence of a thin SiO2-like film between the c-Si and the Al_2O_3 because SiO_2 has an average bonding density of 2.8.41 The interface defect density is also of relevance due to the fact that interface defect states can trap charges and thereby could potentially cancel part of the field-effect passivation provided by the Q_f in the passivation film. The influence of the charging of interface defect states on the surface passivation of a-Si:H on c-Si has been reported by Garin et al. 42 and Obilet et al. 43 Nevertheless, the effect of trapped charges becomes only of significance when the interface defect density is of the same order as Q_f . Hence, for Al_2O_3 on c-Si, it is not expected that this effect can be significant because the defect densities are typically at least one order of magnitude lower than the magnitude of the negative Q_f in the film (see Table I). As mentioned, Al₂O₃ synthesized by plasma-assisted ALD provides no significant level of surface passivation of c-Si in the as-deposited state, whereas the level of surface passivation is excellent after a 30 min anneal at 425 °C in N₂. ^{9,10} This difference in surface passivation performance of the Al₂O₃ can partly be related to changes in the negative fixed charge density Q_f after annealing. In Fig. 3, the effective lifetime for c-Si wafers is shown for Al_2O_3 films with a thickness between 6 and 32 nm in the as-deposited and annealed state. The films were deposited on both sides of 275 μ m 1.9 Ω cm *n*-type *c*-Si wafers by plasma-assisted FIG. 3. Measured effective lifetime at an injection level of 5×10^{14} cm⁻³ of a 275 μ m 1.9 Ω cm *n*-type *c*-Si wafer passivated on both sides by a 6, 11, and 32 nm thick Al₂O₃ film plotted as a function of the measured negative Q_f in the Al₂O₃ film. Q_f and the effective lifetime were determined for the as-deposited films and after a subsequent 30 min postdeposition anneal at 425 °C in N₂. ALD at a substrate temperature of 200 °C. The Q_f in the Al₂O₃ films was determined by the contactless optical second-harmonic generation technique (as described in detail in a separate publication⁴⁴), and the effective lifetime was determined by the contactless photoconductance technique The as-deposited Al_2O_3 films already contain a negative Q_f in the range of $(3-20)\times10^{11}$ cm⁻² without demonstrating any level of surface passivation as indicated by the low effective lifetime in the range of 3-5 μ s. After annealing, the negative Q_f has increased for all films and is within the range of $(5-8) \times 10^{12}$ cm⁻². The effective lifetime also increases over more than two orders of magnitude and reaches a value of 1.2 ms for c-Si wafer passivated by the 32 nm thick Al_2O_3 film. Capacitance-voltage (CV) analysis also confirmed the increase in negative Q_f after the postdeposition anneal. It should also be noted that the negative Q_f in the as-deposited 32 nm Al_2O_3 film of 2×10^{12} cm⁻² is significantly higher compared to the negative Q_f of $\sim 3 \times 10^{11}$ cm⁻² that is found in the as-deposited 6 and 11 nm thick Al₂O₃ films. This is possibly related to the significant longer deposition time of the 32 nm Al₂O₃ film, which leads to an annealing effect during the deposition process itself. The difference in effective lifetime between the annealed 11 and 32 nm Al₂O₃ film scales with Q_f^2 and can consequently be attributed to a difference in field-effect passivation. On the other hand, the relative low effective lifetime of the c-Si wafer passivated by the annealed 6 nm thick film indicates a lower chemical passivation and consequently a higher interface defect density compared to the annealed 11 and 32 nm thick Al₂O₃ films. Using the Q_f^2 scaling of the field-effect passivation, it can be argued that the increase in Q_f of the 32 nm Al₂O₃ film only leads in an increase in the level of field-effect passivation by a factor 16 compared to the Al₂O₃ film in the asdeposited state, while the effective lifetime actually increases by more than two orders of magnitude. Consequently the important conclusion can be drawn that the postdeposition anneal also improves the chemical passivation of the 32 nm thick Al₂O₃ film by a reduction of the interface defect density. As a matter of fact, the low effective lifetime in combi- FIG. 4. (Color online) Infrared absorption spectra of a 30 nm thick Al_2O_3 film, which was synthesized by plasma-assisted ALD on both sides of a high resistivity c-Si substrate. Data is presented in the as-deposited and annealed state. Absorption peaks related to Al–O, Si–O, C–H, O–H, and Si–H bonds can clearly be distinguished in the spectra as indicated. For clarity, the differential absorption spectrum is also shown indicating the changes in the Al_2O_3 resulting from the postdeposition anneal (positive and negative peaks with respect to the baseline correspond to the appearance and disappearance of absorbing species). nation with a relative high fixed charge density of 2 $imes 10^{12}~{ m cm}^{-2}$ for the c-Si wafer passivated by the asdeposited 32 nm Al₂O₃ film clearly demonstrates that chemical passivation plays a very important role in the surface passivation mechanism of the annealed Al₂O₃ films. The reduction of the interface defect density between the Al₂O₃ film and the c-Si substrate after the postdeposition annealing treatment was also confirmed by CV measurements, which showed a significant decrease in the parallel conductance.⁴⁵ It should be noted that a postdeposition anneal is routinely employed to improve the electrical quality of the interface between c-Si and dielectric films. This was also demonstrated for the c-Si/Al₂O₃ system in the studies of Hezel and Jaeger³⁹ and Jeon *et al.*⁴⁶ In both studies, the c-Si/Al₂O₃ interface defect density was lowered over more than one order of magnitude (down to $\sim\!1\!\times\!10^{11}~\text{eV}^{-1}\,\text{cm}^{-2})$ by a postdeposition annealing step similar to the anneal applied to the Al_2O_3 films in Fig. 3. Other than changes in the bulk and interface electronic properties, structural changes in the c-Si/Al₂O₃ system are also commonly reported after a postdeposition anneal. 20,23 These structural changes are possibly related to the changes in the Al₂O₃ bulk and interface electronic properties. HR-TEM revealed the presence of an interfacial oxide layer between the amorphous Al₂O₃ film synthesized by plasmaassisted ALD and the c-Si substrate and this layer slightly increased in thickness from 1.2 nm in the as-deposited state to 1.5 nm after a postdeposition anneal. This interfacial oxide layer consists of SiO_x and the presence of Si-O bonds is confirmed by infrared absorbance spectra of as-deposited and annealed Al₂O₃ films, as shown in Fig. 4. Particularly after the postdeposition anneal, the Si-O absorption peak in the infrared absorbance spectrum is very similar to the absorption peak observed for good quality thermal SiO₂. Chowdhuri et al.²⁰ and Kuse et al.²³ also showed a strong increase in Si-O related absorption by infrared spectroscopy and x-ray photoelectron spectroscopy after annealing ALD- FIG. 5. Schematic band diagram of the n-type c-Si/SiO $_x$ /Al $_2$ O $_3$ system (VB denotes valence band energy, CB denotes conduction band energy, and E_F denotes Fermi energy). The HR-TEM image shows the c-Si/SiO $_x$ /Al $_2$ O $_3$ interface (the black line between the SiO $_x$ and c-Si is a TEM artifact). A high negative Q_f is present in the Al $_2$ O $_3$ film at the Al $_2$ O $_3$ /SiO $_x$ interface effectively shields electrons from the c-Si surface. A relative good interface quality is assured by the presence of a thin interfacial SiO $_x$ film between the c-Si substrate and the Al $_2$ O $_3$ film. synthesized Al_2O_3 films on c-Si. ^{20,23} As the absorption intensity of both Si-O and Al-O bonds increase after the postdeposition anneal, it can be argued that the increase in interfacial oxide thickness by TEM can mainly be attributed to a restructuring in the interfacial oxide instead of an additional oxidation of the underlying c-Si substrate. As mentioned, the interfacial SiO_r film could play an important role in the origin of the negative Q_f in the Al_2O_3 film, and hence the changes in the Si-O related absorption could correlate with the change in the magnitude of the negative Q_f in the Al₂O₃ film. The infrared absorbance spectrum in Fig. 4 also confirms the presence of H in the form of O-H groups in the Al₂O₃ film. The O-H density decreases after the postdeposition anneal and this decrease coincides with the formation of both Al-O and Si-O bonds. The H atoms released during the anneal can passivate Si dangling bond defects states at the interface as corroborated by an increase in Si-H related absorbance. ## **IV. CONCLUSIONS** To summarize, it has been demonstrated that the excellent surface passivation of c-Si by Al_2O_3 films synthesized by plasma-assisted ALD can be explained by a satisfactory low interface defect density in combination with a very high negative Q_f in the Al₂O₃ film. As schematically illustrated in Fig. 5, a high negative Q_f strongly reduces the electron concentration at the c-Si interface by means of electrostatic shielding. The negative charges are localized in the Al₂O₃ film close to the interface with the c-Si substrate that is separated from the Al₂O₃ through an interfacial SiO_x layer. The charges most likely originate from Al vacancies resulting from a preferential tetrahedral coordination of Al in the region close to the interfacial SiO_r. The unique negative polarity of Q_f is especially beneficial for the passivation of p-type c-Si, including p-type emitters on n-type solar cells, as the bulk minority carriers are shielded from the c-Si surface. ## **ACKNOWLEDGMENTS** The authors thank W. Keuning, J. L. van Hemmen, M. J. F. van de Sande, J. F. C. Jansen, and J. J. A. Zeebregts for their technical assistance and their help during the experiments. Dr. I. Martin (Universitat Politecnica de Catalunya) and Dr. J. Schmidt (Institut für Solarenergieforschung Hameln/Emmerthal) are acknowledged for the fruitful discussions on the lifetime data. This work is supported by the Netherlands Technology Foundation STW. The work of B.H. is supported by OTB Solar. - ¹H. J. Queisser and E. E. Haller, Science **281**, 945 (1998). - ²M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C. C. Cheng, A. Scherer, R. Bhat, and M. Krames, J. Appl. Phys. **87**, 3497 (2000). - ³M. J. Chen, Y. T. Shih, M. K. Wu, and F. Y. Tsai, J. Appl. Phys. **101**, 033130 (2007). - ⁴G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. **89**, 5243 - ⁵A. G. Aberle, Prog. Photovoltaics **8**, 473 (2000). - ⁶H. Jin, K. J. Weber, N. C. Dang, and W. E. Jellett, Appl. Phys. Lett. **90**, 262109 (2007). - ⁷G. Lucovsky, J. Vac. Sci. Technol. A **19**, 1553 (2001). - ⁸G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, and G. Beaucarne, Sol. Energy Mater. Sol. Cells **90**, 3438 (2006). - ⁹B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006). - ¹⁰B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 91, 112107 (2007). - ¹¹B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **104**, 044903 (2008). - ¹²J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, Prog. Photovoltaics 16, 461 (2008). - ¹³J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. Glunz, Appl. Phys. Lett. 92, 253504 (2008). - ¹⁴M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rosner, M. Grieb, and L. Risch, Solid-State Electron. 49, 716 (2005) - ¹⁵D. A. Mehta, S. R. Butler, and F. J. Feigl, J. Appl. Phys. **43**, 4631 (1972). ¹⁶In the studies of Chin *et al.* (Ref. 50) and Duenas *et al.* (Ref. 52) also positive flatband voltage shifts were reported indicating a negative fixed charge density. - ¹⁷J. A. Aboaf, D. R. Kerr, and E. Bassous, J. Electrochem. Soc. **120**, 1103 (1973) - ¹⁸R. S. Johnson, G. Lucovsky, and I. Baumvol, J. Vac. Sci. Technol. A 19, - 1353 (2001). - ¹⁹S. Y. No, D. Eom, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, F87 (2006). - ²⁰A. Roy Chowdhuri, C. G. Takoudis, R. F. Klie, and N. D. Browning, Appl. Phys. Lett. 80, 4241 (2002). - ²¹S. C. Ha, E. Choi, S. H. Kim, and J. S. Roh, Thin Solid Films 476, 252 (2005). - ²²R. F. Klie, N. D. Browning, A. R. Chowdhuri, and C. G. Takoudis, Appl. Phys. Lett. 83, 1187 (2003). - ²³R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. 94, 6411 (2003). - ²⁴E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000). - ²⁵K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003). - ²⁶P. W. Peacock and J. Robertson, Appl. Phys. Lett. **83**, 2025 (2003). - ²⁷G. Lucovsky, J. Vac. Sci. Technol. **19**, 456 (1981). - ²⁸K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, and A. Toriumi, Appl. Phys. Lett. 83, 4306 (2003). - ²⁹A. G. Aberle, S. Glunz, and W. Warta, J. Appl. Phys. **71**, 4422 (1992). - ³⁰R. Hezel and R. Schorner, J. Appl. Phys. **52**, 3076 (1981). - ³¹I. Martin, M. Vetter, M. Garin, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, J. Appl. Phys. 98, 114912 (2005). - ³²M. J. Kerr and A. Cuevas, Semicond. Sci. Technol. **17**, 166 (2002). - ³³M. J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 35 (2002). - ³⁴S. W. Glunz, D. Biro, S. Rein, and W. Warta, J. Appl. Phys. **86**, 683 (1999). - ³⁵S. Dauwe, L. Mittelstadt, A. Metz, and R. Hezel, Prog. Photovoltaics 10, 271 (2002). - ³⁶R. B. M. Girisch, R. P. Mertens, and R. F. Dekeersmaecker, IEEE Trans. Electron Devices 35, 203 (1988). - ³⁷B. Kuhlmann, A. G. Aberle, and R. Hezel, Proceedings of the 13th European PVSEC, Nice, France (Stephens Bredford, UK, 1995), p. 1209. - ³⁸J. R. Elmiger, R. Schieck, and M. Kunst, J. Vac. Sci. Technol. A 15, 2418 (1997). - ³⁹R. Hezel and K. Jaeger, J. Electrochem. Soc. **136**, 518 (1989). - ⁴⁰S. Dauwe, J. Schmidt, A. Metz, and R. Hezel, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, New Orleans (IEEE, Piscataway, NJ, 2002), p. 162. - ⁴¹G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Appl. Phys. Lett. 74, 2005 (1999). - ⁴²M. Garin, U. Rau, W. Brendle, I. Martin, and R. Alcubilla, J. Appl. Phys. 98, 093711 (2005). - ⁴³S. Olibet, E. Vallat-Sauvain, and C. Ballif, Phys. Rev. B **76**, 035326 (2007). - ⁴⁴J. J. H. Gielis, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. **104**, 073701 (2008). - ⁴⁵E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. **46**, 1055 (1967). - ⁴⁶I. S. Jeon, J. Park, D. Eom, C. S. Hwang, H. J. Kim, C. J. Park, H. Y. Cho, J. H. Lee, N. I. Lee, and H. K. Kang, Jpn. J. Appl. Phys., Part 1 42, 1222 (2003). - ⁴⁷C. T. Kirk, Phys. Rev. B **38**, 1255 (1988). - ⁴⁸G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. **55**, 1963 (1989). - ⁴⁹D. G. Park, H. J. Cho, K. Y. Lim, C. Lim, I. S. Yeo, J. S. Roh, and J. W. Park, J. Appl. Phys. **89**, 6275 (2001). - ⁵⁰A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, Proceedings of the VLSI Symposium, Honolulu (IEEE, Piscataway, NJ, 2000), p. 16. - ⁵¹L. Manchanda, M. D. Morris, M. L. Green, R. B. van Dover, F. Klemens, T. W. Sorsch, P. J. Silverman, G. Wilk, B. Busch, and S. Aravamudhan, Microelectron. Eng. 59, 351 (2001). - ⁵²S. Duenas, H. Castan, H. Garcia, A. de Castro, L. Bailon, K. Kukli, A. Aidla, J. Aarik, H. Mandar, T. Uustare, J. Lu, and A. Harsta, J. Appl. Phys. 99, 054902 (2006). - ⁵³L. Truong, Y. G. Fedorenko, V. V. Afanasev, and A. Stesmans, Microelectron. Reliab. 45, 823 (2005). - ⁵⁴M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwang, J. Jeong, H. S. Kang, and Y. W. Kim, J. Electrochem. Soc. **152**, F49 (2005). - ⁵⁵M. Shahjahan, T. Okada, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys. 43, 5404 (2004). - ⁵⁶J. Buckley, B. De Salvo, D. Deleruyelle, M. Gely, G. Nicotra, S. Lombardo, J. F. Damlencourt, P. Hollinger, F. Martin, and S. Deleonibus, Microelectron. Eng. 80, 210 (2005).