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w 1. Introduction 

The phenomenologieal Cahn-Hilliard equation 

0u ~*u 029(u ) 
"}-7 + 7 ~x'* ~x 2 , 0 < x < L, 0 < t (1-I a) 

~o(u) = y 2 u  3 + ? , lu  2 - -  u (1-1 b) 

where y, Yl and )'2 are constants with y > 0, arises in the study of phase separa- 
tion in cooling binary solutions such as alloys, glasses and polymer mixtures; see 
CAHN & HILLIARD [1958], NOVICK-COHEN & SEGEL [1984], NOVICK-COHEN [1985] 
and the references cited therein. Here u(x, t) is a perturbation of the concentration 
of one of the phases and (1-1 a) is the equation of conservation of mass with the 
mass flux J being 

0 [ 02U] 
or-- Ox 9(u) -- y~--~x2j. (1-2) 

Clearly critical points of the Landau-Ginzburg free energy form, 

? {H(u) + [~u\2 '  
o o-3 ) 

u 
H(u) ---- f ~o(s) ds, (1-3b) 

o 

with appropriate side conditions are steady state solutions of (1-1). See CARR, 
GURTIN & SLEMROD [1984] for the study of (1-3) for small 7 and subject to the 
constraint of prescribed mass, 

L 
1 f u(x)  d x  = M .  (1-4) 
L o  
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Equation ( l - l )  is supplemented by the zero mass flux boundary condition 

~qJ(u) 03u 
Ox ~- 7 -0~5"x3 ]x=0,L = 0 '  (1-5a) 

the natural boundary condition for (1-3), 

9u 
I = 0 (1-5b) 

~X ]x=O,L 

and the initial condition 

u(x, o) = ,o(X) o < x < L .  (1-5c)  

It follows from (1-5b) and (1-1 b) that (1-5a) can be replaced by 

OZu 
I = 0. (1-5d) 

~X3 x=O,L 

A solution of (1-1) and (1-5) satisfies 

-'~d Lf-- d /  Ou-~ / O J_~x .# u(x, t) dx : (x, t) dx = -- dx = 0 
o o o 

and hence the total mass remains constant, 

/ ' /  1 u(x, t) dx ---s Uo(X) dx M, t > 0. (1-6) 
L o  

Equation ( l - l )  has been considered in other contexts in order to generate spatial 
pattern formation. COHEN & MURRAY [1981] derive it, in an ecological context, 
as a generalization of  Fickian diffusion. HAZEWINKEL, KAASHOEK & LEYNSE 
[1985] obtain the equation as a limit of THOM'S river basin model. 

In this paper we consider the global existence or blow up in a finite time of 
the solution to the initial boundary value problem ( l - I )  and (1-5) and its related 
finite element Galerkin approximation. We have found that the sign of 72 in 
(1-1 b) is crucial. If  72 > 0, then there is a unique global solution for any initial 
data Uo E H 2 and satisfying (1-5b). I f  72 < 0, then the solution must blow up 

L 2 
in a finite time for large initial data. On the other hand, if 7 > ~ -  and the initial 

data is small, no matter what the sign of  72 is, there is a unique global solution 
which decays to the constant M as t - ~  oo. We also extend these results to the 
multidimensional problem. 

0u 
~'-~ @ 7 z~2U = A~0(U) X6 X2, t > 0 (1-7a) 

9u 
_ _ _  _ ,  _ _ _  ~v O, O~ ~T Au q~(u)) 0 xE I ~, t > 0 

u(x, O) = Uo(X), x c 

(1-7b) 

( 1 - 7 0  
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0 
where F is the smooth boundary of a bounded domain Q in R" (n ~ 3) and 

is the exterior normal derivative to F. The global existence theorems are proved in 
section 2 and finite time blow up is obtained in section 3. 

In the remaining section we study a finite element Galerkin approximation 
to the initial boundary value problem and obtain existence results and optimal 
order error bounds. 

0 
Throughout the paper we use D to denote ~ and Qr to denote s • (0, T). 

The norms of L~(t2), L2(s and HS(s are denoted by []-1[~, 11.1[ and [l'l[s- The 
semi-norm 1[ DSv [I is denoted by [ v Is. 

We note the Friedrichs inequality 

t l,, . = 1 
< f vv c Ho'(s (1-8) 

Ilvl[ : [C(s I, n ~ 2 

the Poincar6 inequality 

fL 2 / L \2 liLtS =.x), n = l  

c(s I vll + ,,(x) , n ~ 2, 

and the Nirenberg inequality (see ADAMS [1975]) 

IlZ~Jvll,p < cx IlOmvll~,llvll~ a + C2 Ilvll,~, (1-a0a) 

J < a < l ,  1 J - P - a ( +  - ~ - ) + ( 1  a) 1 (1-10b) 
m p n q 

Finally, we use the notation H~(s v E H2(s = 0 on F and note 
the inequality 

Ivli_-< Ilvll IIAvll v vE H~(.Q) (1-11) 
which follows from the equality 

0 = f V ( u V u ) d x  = f{IVul 2 + u A u } d x .  
gl t~ 

w 2. Global Existence 

In this section we are going to prove the global existence of solutions to the 
following initial-boundary value problem: 

Ou 
~---[ + ~, D4u = D29(x) 0 < x < L, 0 < t < T, I = (0, L) (2-1 a) 

Du(0, t) = Du(L, t) = 0, D3u(0, t) = D3u(L, t) = 0, t > 0 (2-1b) 

u(x, O) = Uo(X), 0 < x < L (2-1 c) 
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where 

~ ( u ) = - u + 9 , ~ u Z + 9 , 2 u  s (2 -2) 

with 9,, 9'2 and 9,2 being constants and 9, being positive. We can easily obtain local 
in time existence and uniqueness results. It is sufficient to apply the standard 
Picard iteration scheme. Therefore in order to obtain existence on [0, T] for any 
T > 0 we need a priori estimates on u. 

Theorem2.1.  I f  9,2 > 0, then for any initial data UoE Hi(I)  and T >  0 there 
exists a unique global solution H43(Qr). Moreover, i f  Uo E H6(I) f~ Hi ( / )  and 
D2uo E H~(I), then the solution is a classical one. 

Proof. Multiplying equation (2-1 a) by u and integrating with respect to x we 
obtain 

d L 
�89 ~ [ [ u l l  = + 9, [ID=ull z + f qr 2 d x  = O. 

0 
(2-3) 

Since 72 > 0, a simple calculation shows that 

~o'(U) = 39,2U 2 Jr- 29,1U -- 1 ~ --Co -- 1, Co > 0. (2-4) 
39,2 

Thus it follows from (2-3) that 

d 
�89 ~-Ilut[ 2 + 9, I[OZul[ ~ ~ Co IlOull 2 

Co HD2uI[ I[ult 

< 7' [iO=ul? + Co 2 
= 5 -  7 II u I1~, (2-5) 

where we have used the inequality (1-11). By the Gronwall inequality, (2-5) implies 
that 

Ifu(t)[I 2 ~ fluol[ z e c2T/e, 0 --< t --< T (2-6a) 

' IlUol? co~/~ 
f II D2ull ~ & ~ ~ e , 0 ~ t -<  T .  ( 2 - 6 b )  
0 7 

In the following we use Cr generically to denote constants depending on T but 
independent of the solution u. 

Defining 

H(u) = ~ 99(s)ds = ~3. u 4 + ~_u  3 _ �89 2 (2-7a)  
0 "-r , 3  
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and 

we have 

L( -7 ) 
F(t)---- f H(u) § (Du) z dx, 

0 
(2-7b) 

and 

By Young's inequality 

/,/2 ~ eU 4- .q_ Cle, IRa[ ~ eu 4 _~ C 2  e (2-11) 

we have from (2-7b), (2-10) and (2-6a) that 

-~--IIDuIL2 + u'* dx + f u 2 ~ Ca § F(O)= C. (2-12) 
0 

By Sobolev's imbedding theorem it follows from (2-6a) and (2-12) that 

Ilu(/)l[~ =< c ' ,  v tE [0, Z]. (2-13) 

Next we multiply equation (2-1a) by D4u and integrate with respect to x, 
obtaining 

d L 
�89 IIO2u[12 § r IID'ull 2 = f O2q~(u) O4u dx. (2-14) 

0 

Note that 

D2~o(u) = (p'(u) D2u § qJ'(Du) 2 

= (3)'2 u2 § 2y1 u -- 1) D2u § (6y2 u § 271) (Du) 2 . (2-15) 

By the Nirenberg inequality (1-10), 

[I Du]l ~ ~ C(I[ D4u 113/8 I] U I1518 § ]l U 1[), (2-16) 

dF (u) -~  + 7 Du D dx. (2-8) 
dt o 

Integrations by parts and equations (2-1a, b) yield 

dF L 
~-  = of [qg(u) (--~, D'*u + D2~) -- 7 D2u(--Y D4u + DEep)] dx 

L 

= - f [y2(Dau)2 -- 2~' Dau D~o + (O~) 2] dx 
0 

L 
= -- f [y Dau -- Dqo] 2 dx ~ O, (2-9) 

0 
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f (x ,  t) ~ D3cp(u(x, t)), 

f (x ,  t) ~ D'~e(u(x, t)), 
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we obtain, using (2-12) and (2-13), the inequality 
I 

IID4ull 

<~ CT(IID4u[I 3is + 1)IID4ult 

< ~----[[D4utl 2 + Cr. (2-17) 
--- 4 

It follows from (2-14), (2-15), (2-17) and (2-13) that 

�89 2 §  IID4ull = ~ cp'(u) D2uD4u § ~"(u)(Du)ZD4udx 

< & [IO'uI? + CT IIO=ull 2 (2-18) = 2  

and by Gronwall's inequality, 

IlO2uft)]l 2 ~ Cr, u tE [0, T] (2-19a) 

t 

f ]lD4ull 2 d~ ~ Cr, u tE [0, T]. (2-19b) 
0 

The a priori estimates (2-6), (2-12), (2-13) and (2-19) complete the proof  of 
global existence of  a u E H4'l(Qr). 

Further regularity of  the solution is obtained by the use of  a bootstrap argu- 
ment. Since u E H4'I(Qr) we have 

Du E L~ D2u E L2(O, T; L~ (2-20) 

from which it follows, by a direct calculation, that 

f (x ,  t) ~ D2qj(u(x, t)), D f  E L2(Qr), D2f E L2(Q~-). (2-21) 

It is well known (LIONS & MAGENES [1972]) that if f E  L2(0, T; L2(/)) and 
vo E 1-12(1) then the initial boundary value problem 

Ov 
c3"~ § ~' D4v = f '  (2-22a) 

Dvlx=o,L = D3VIx=0,L = 0, vit=o ----- Vo (2-22b) 

v E H43(QT). Now it is easy to see that taking 

Vo = Duo yields v = Du E H4a(QT), (2-23 a) 

Vo = D2uo yields v = D2u E H43(QT). (2-23 b) 
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0 
Furthermore, (2-23) implies that f = ~ D2cp E Lz(ar)  

DSuolx=0,/5 = 0 we have that Vo = - - y  D4uo q- DZ~(uo) E 1-12(1). Hence 

Ou 
v : ~--~-E H4:(QT) 

and by interpolation theory, (2-23) and (2-24) imply that 

Du, D4u E C(Qr). 

This completes the proof of the existence of a classical solution. [ ]  

and assuming that 

(2-24) 

(2-25) 

We turn now to the proof of global existence for Y sufficiently large and 
Ir Uo IIz sufficiently small. Note that integration of (2-1) yields 

If  we set 

so that 

1 L 1 /5 
f u(x' t) dx --~ / Uo(X) dx ~ M .  

L o  

v(x, t) = u(x, t) - -  M ,  

(2-26) 

(2-27) 

/5  

f v(x, t) dx = O, (2-28) 
0 

the problem (2-1) is converted into 

8v 
8,"-[ q- ~ DaY = DZ~fv)' 

Dvlx=o,L = Davlx=O,L = O, 

(2-29 a) 

(2-29b) 

where 

v(x, O ) = u o ( x ) - - M ,  (2-29 c) 

~(v) = y2v 3 q- (3yzM q- y~) v 2 q- (3y2M 2 + 2 y x M  --  1) v. (2-30) 

Theorem 2.2. I f  y > L2/z~ z, Uo C H2(I)  and [I Uo Ih is sufficiently small, then there 
exists a unique global solution u E Ha'I(QT) to (2-1). Moreover, it holds that 

lim [Iu(t)  - -  M [ I ~  = l i m  [ [ O u ( t ) l [ ~  = l i m  IlD2u(t)l[ = 0 .  ( 2 - 3 1 )  
t---~ o o  t---~ o o  

Proof. It is easy to see that problem (2-1) is equivalent to (2-29). As previously 
noted we have local in time existence and uniqueness of a solution so that for 
global existence it is only necessary to obtain a priori estimates of v. In what 
follows Cj, j = 1, 2 , . . .  denote constants which are independent of v and t. 
I f  we set 

Yo = 372 M2 + 2 y ~ M - -  1, Yl. = 3 y 2 M  + ) ' l ,  (2-32) 
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equation (2-29a) may be rewritten as 

8v 
8"--[ + y D•v -- Yo 0 2 V  = f ~ D2(y2/ga -1- ~1.D2) �9 

Since [[Uo[[2 is assumed to be sufficiently small, we may assume that 

(2-33) 

17o[ < 7zr2/L 2. (2-34) 

Now, for any fixed t ~ 0, define 

t 

N(t) ---- sup II v(v)I1~ + f II v(~)ll~ dr. 
0 < ~ < t  0 

(2-35) 

Our goal is to show that N(t) can be bounded, independently of t, by the initial 
data. This is achieved in the following steps. 

Since 

Step 1. Multiplying (2-33) by v and integrating with respect to x, we obtain 

d L 
�89 Ilvll~ + ~' IID2vll2 + ~'o IIDv[I ~ = f Iv dx. (2-36) 

0 

Dv E Hi(l), Friedrichs' inequality (1-8) implies that 

d L 
�89 = + C, IlD2v[I z < f i r  dx (2-37) 

0 

where 

Since 
0 

(1-8) we have 

C~ = y -- ]Yo [L21 ~r2 > O. (2-38) 

L 

f v(x, t) dx = 0, by Poincar6's inequality (1-9) and Friedrichs' inequality 

so that (2-37) yields, 

Ilvll ~ ~ C~ IIO2v[I ~, (2-39) 

d 
�89 II v 112 + C3 [1 v I[ 2 ~ C4 Ilfll m, (2-40) 

Step 2. Multiplying (2-33) by av/St and integrating with respect to x, we obtain 

I vll 2 . 
~7 + r-d-T I[o2vll~ + 7 ~  IIDv[[~ ~ Ilfl[2" (2-41) 

Integrating (2-41) with respect to t, using Friedrichs' inequality (1-8) and noting 
(2-38) yields 

f -~  .~ + c~ IID~vll ~ ____ ~ IID~vol? + I~o[ IIDvol[ ~ + Ilfll ~ d~. 
0 0 

(2-42) 
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It follows from (2-40) and (2-42) that 

N(t)-< C4 {llvoll~ + /Ilfl[ ~ dr}. 
0 

Since 

(2-43) 

and 

f I[fll2dr ~ Cs sup Ilvll~ 1 § sup Iivll~ f Ilvl[~ dr, (2--45) 
0 ~E[O,t] ~[O,t] 0 

Taking (2--43) and (2-45) together yields 

N(t) ~ C9 (11Vol[~ + N(t) 2 + Net) 3} v t > o. (2-46) 

By considering the graph of  the function F(N) = Cg(l[v011~ § N 2 -t- N 3) -- N 
and following the argument of KLAXNERMAN & PONCE [1983] it is clear that if 
Ilvoll2 is sufficiently small then there is a constant C~o such that 

N(t) <: Cl0 IIv01[~, v t > 0. (2-47) 

This proves the global existence of  a weak solution in H2'I(Qr). To complete 
the proof  of  global existence in H4.1(QT) we observe that multiplying (2-33) by 
--D2v and D4v yield, after calculations similar to the above, the inequalities 

IlDvll 2 + f IIDSvl[ 2 dr ~ CH [IVol[~ + f [Ifll 2 dr (2-48a) 
0 0 

:' I / I I[D2vll 2 § [ID%II z d~ ~ C12 Ilvo[l~ § Ilfl[ 2 dT . (2-48b) 
0 

Thus a priori bounds in H4'I(Qr) follow from (2-48), (2-46) and (2-45). 
In order to prove that v tends to zero as t ~ ~ we notice that, since (2-47) 

holds for all t, 

IIf[l 2 ~ 8 IIO~vl[ ~ (2-49) 

where e is sufficiently small provided IlvoIl~ is sufficiently small. It follows from 
(2-40) that 

d 2 
�89 ~ -  II v II + (C3 -- ~C4) II v I1~ < 0 (2-50) 

f~-~ D2(y2v s + ~tv 2) = (3~'2v 2 + 2~1v) D2v + (6y2v + 2~1) (Dr) 2, 

we have 

Ilfll 2 ~ C~ ((llvll~ + Ilvl[~)IlO2vl[ 2 + (llvll~ IlOvll 2 + IlOvl[~)IlOvll=}. (2-44) 

Sobolev's inequality for one dimension and Poincar6's inequality (1-9) yield 

Ilvll~ ~ c6 IlOvll, IlOvll~ < C7 IID2vll 

and from (2--44) we have that 

Ilfll 2 =< G(I1020 [: + II D2v l[ e) 
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which implies for e([I Vo [12) sufficiently small that I[ vii decays exponentially to zero. 
Similarly, we obtain II vlh ~ 0 as t - +  oo f rom the differential inequalities corre- 
sponding to (2-48). Thus we have also that II v lloo and II Dv Iloo also tend to zero as 
t ---> o o .  [ ]  

R e m a r k  1. If  the initial data is close to a constant M and ]q~'(M)] < ~9"(,2/L 2 
then we have similar results. In particular consider the Sivashinsky equation 
modelling a planar solid-liquid interface for a binary alloy (SIvASmNSKY [1983]) 

0U 
" ~  -~ D ' u  -~- ~ u  - -  D 2 ( 2 u  - -  �89 u 2) = O, o~ > O, (2-51) 

with the same initial boundary values (2-1 b, c). I f  zr z > 2L 2 or o~ > 1 then 
problem (2-51, 2-1 b, c) has a unique global solution provided the initial data is 
small. 

R e m a r k  2 (Multidimensions n ~ 3). The corresponding problem for n -- 2, 3 is 

0U 
0--7 + ~ A2u = Aq~(u), (2-52a) 

~u 
-~v = ~ v  A u  = 0, on / '  (2-52b) 

ult=o = Uo, (2-52c) 

where s is a bounded domain in R" (n = 2, 3) with a smooth boundary / '  
and v is the unit exterior normal t o / ' .  For  uo C HeZ(g2) there exists a unique global 
solution u E H4' I (Qr) .  The proof  is the same as that of Theorem 2.1 with minor 
changes. Since under the translation 

v = u - -  M ,  M = f Uo(X) dx/I $21 (2-53) 
t2 

the value of  Y2 does not change, we may, without loss of  generality, assume that 

f uo(x) dx = 0 --- f u(x, t) dr. (2-54) 
0 D 

Now as before in (2-6) and (2-12) we have 

t 

Ifu(t)lll + f [uI~d~G-, v t ~ ( 0 ,  Z] .  (2-55) 
0 

It can be seen from (2-14) that the crucial term to estimate is IlA~0(u)l[. By the 
boundary conditions, (2 -54)and  the Poincar6-Friedrichs inequalities IIA2ull is 
equivalent to Ilull,. By Sobolev's imbedding theorem and (2-55) we have 

1[ u IlL q ~ Cr for any q < oo (n : 2), (2-56 a) 

IlUlIL~ ~ Cr (n = 3). (2-56b) 
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By the Nirenberg inequality (1-10), we have 

Hullo~ _-< C IIA2uII a IIull~ ~ where a = (1 § 3q/2) -1 

1 5 

Ilull~o _-< CIIA2ulI-~IlulI~ (n = 3) ,  
1 5 

IlVulIL, < c I[A2ul[gllVu[l -g (n = 2), 
I 3 

IIVulIL, =< c IIA2ul[ ~'llvull v (n ---- 3) 

and 
1 2 

[IAull G C llA2u[I ~- IlVull T 
1 1 

IIAu]l _--< C IlA2u[I 2 IlVull 2 

From these inequalities we finally arrive at 
i l  

Ilu2au[l <= Ilull 2 I[AuH _--< Cr IlA2ull "~ +2, 
5 

Ilu2 Aull <= CTI[A2ull "g (n = 3) 

and 

Since 

(n = 2), 

(n : 3). 

2 ~ Ilu IVu[211 G Ilu[l~ IlVull 2, G CT [IA nil 
2 

Itu IVul21l < CrHA2u[I ~ (n = 3). 

A~(u) = ~'(u)au + q;'(u) IVul 2, 

applying Young's inequality to the right-hand side of  

d 
�89 IIAull 2 + ~, [IA2ull 2 

using (2-61), we obtain 

t 

Ildu(t)ll 2 -/- f Ila2ull ~ dr  G Cr, 
0 

This completes the proof  of  global existence. 

= fAqJ(u)A2u dx 
Ig 

(n = 2), 

(n = 2), 

(n = 2), (2-57a) 

(2-57b) 

(2-58a) 

(2-58b) 

(2-59 a) 

(2-59b) 

(2-60a) 

(2-60b) 

(2-61 a) 

(2-61 b) 

V t C [0, T]. (2-61) 

w 3. Blow up in finite time when 7'2 ~ 0 

In the previous section we proved that if Yz ~ 0  then (2-1) and (2-5b) admit 
unique global solutions. On the other hand numerical experiments in one space 
dimension (HAZEWINKEL, KAASHOEK & LE'ZNSE [1985]), indicate that if Y2 < 0, 
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then, in general, the solution will blow up in finite time. In this section we give 
a rigorous proof of that. 

then the solution u of(2-51) (n  =< 3) blows up in finite time: there is a T* > 0  
such that 

lim I[u(t)[12 ---- + o~. (3-1) 
t-+T* 

Proof. Without loss of generality we consider initial data such that (2-54) holds, 
i.e. f Uo(X) dx - o. As in the proof of Theorem 2.1, 

D 

2 f H ( u ) d x  -- 2F(0) ~ --~, lul~ 2 (3-2) 
Q 

where 

~' [VUoJQdx. F(O) = f n(uo) + T 

Let w(x, t) be the unique solution of 

~ W  = U, 

ew f w dx = O. 
~ = 0 ,  on F, o 
8v 

It follows that 

(3-3) 

(3 -4) 

I w[~ ~ c Ilull z. (3-5) 

Now multiplying (2-52 a) by w and integrating with respect to x, using (3-4), we 
obtain 

d 
~ l w l f  = - 2  f~(u)  u dx -- 2~, l ul, ~ 

/2 

4 f H(u) dx -- 4F(01 -- 2 f qXu) u dx 
Q 

= - 9 ' 2  f u4 dx + ~ 7, f u3 dx  -- 4F(O) 
O t2 

and using (3-5), 

> - ~ f u* dx - 4F(0) -- C, 

- y 2  { r 2 ~ 
~ t j u dx] --  4F(O) -- C, 

d --9,2 Iwl 4 _ 4F(0) -- C1 (3-6) z~ ~ I w 12 ~ 2 [ ~1--------~ 
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where Ct is a constant depending only on 7a, Y2 and $2. Thus (3-6) yields, when 

--F(O) > C~/4, (3-7) 

that [ w 12 must blow up in a finite time T*. Hence by (3-5) we have that (3-1) holds. 
An inspection of the dependence on Uo of F(0) shows that given any g E H~Z(g2) 
choosing Uo = kg yields (3-7) for k large enough. 

w 4. Finite element Galerkin approximation 

Let S~ be the piecewise polynomial spline space 

S ~ = ( z E c t ( I ) : z I , , E H , _ I ( I i ) ,  i =  1, 2, 3, ... N} (4-1) 

where r and lare integers, --1 _< l_< r -- 1, 0 = xo '<  x t <  x2 < ... < xN = L ,  
Ii -~ (xi-1, xi), IIil E (Oh, h) for some 0 > 0 and IIr-a(Ii) denotes the set of all 
polynomials on Ii of degree less or equal to r -- 1. Let k ->- 1 and r ~ 4 so 

~ r that S~ Q H2(/) and let Ss Q Hi( / )  denote (Z : DZ(0) = Dz(L) ---- 0} ~ S~. 
The following approximation property is assumed for all v E H i ( I ) A  W:,(I) 
with 2 _ < s ~ r ,  

2 
inf ~] h j [[DS(v - -  X)[ILP(I ) ~ Ch ~ llvll~z). (4-2) 

A natural Galerkin approximation to (2-1) is: find u h : [0, T] ~ S~ such that 

0uh) o 
"~, X %" ~( D2uh, D2Z) = (~(uh), D2Z) V Z e N ( 4 - 3  a) 

uh(O) = U~ (4-3b) 

where uho E S~ is a suitable approximation to Uo. We note that since Z = 1 
o 

belongs to S~, (4-3a) implies 

1 (uh(t) ' 1) 1 h -~- ----- ~ (Uo, 1). (4-4) 

The global existence theorems of section 2 can be extended to the Galerkin 
approximation (4-3). 

Proposition 4.1. 
(a) I f  Y2 > 0 then for any initial data uho E Sf, and T > 0 there exists a unique 

global solution u h E H2a(Qr) to (4.3). 

(b) I f  ~ > LZ/~r z and the initial data u~ C S:, is sueh that ]I ~ ll2 is sufficiently 
small, then there exists a unique global solution uh E Hz,I(QT) to (4-3). 

Proof. Local existence and uniqueness is proved using Picard iteration. Global 
existence will follow from a priori bounds. 
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(a) Taking Z - - - -  uh(t) in (4-3a) leads to the estimates, as in the derivation of (2-6), 

l[ uh(t) ]l ~ CT II U~ ]l, (4-5 a) 

t 
f llD=uh(z)l[: dz-%<_ Cr Iluohll :. (4-5b) 
0 

Since S~ is a finite-dimensional space (4-5a) also implies that, for fixed h, 
]] uh(t)[[oo is uniformly bounded on [0, T] which is sufficient to deduce global ex- 
istence for the ordinary differential equations (4-3) since ~v(.) is continuously differ- 
entiable. 

(b) Setting 

] h vh(t) = uh(t) -- --~ (U0, 1) (4--6) 

and following the arguments leading up to inequality (2.47) of Theorem 2.2 
yields the desired assertion. [ ]  

Associated with S[ is the elliptic projection p h : H ~ ( I ) ~  S~ defined by: for 
v E H i ( l )  then Phv satisfies 

(D2Phv -- D2v, D2Z) : 0 V Z E Sf~ and (•, 1) = 0, (4-7a) 

(phv --  V, 1) : 0. (4-7 b) 

The existence of a unique Phv satisfying (4-7) follows from the Lax-Milgram 
theorem and the Friedrichs-Poincar6 inequality 

II~lh =< C{Iwh + I(w, 0IL v~c  H~(1). (4-8) 

Theorem 4.1. Suppose that the solution u(t) o f  (2-1) is sufficiently regular for  a 
given T > 0 and that the solution o f  (4-3) satisfies 

]] uh(t) I[oo ~ CT, 0 ~ t ~ T. (4-9) 

I f  the initial data satisfy 

IlUo -- Uholl ~ Ch" and (Uo h, 1) : M, (4-10) 

then 
1 

t ~ [[ u(t) -- uh(t)[[oo + H u(t) -- uh(t)[[ ~ Cr(u) h" u t E (0, T]. (4-11) 

I f  u~ : Pnuo then 
2 

sup ~ M[u(t)  -- uh(t)[j ~ C~(u) h r, (4-12a) 
tE(O,T) j=O 

- -  - -  < C~(u) h', (4-12b) 

II u(t)  - z?(t)H~ <= Cr(u) h ~ v t e  [0, :iv]. (4-12c) 
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Proof. Our method of proof is based on the error decomposition 

U - -  U h = Oh -[- e h, O h =--- u - -  Phu, e h ~- Phu - -  u h (4-13) 

(cf. WHEELER [1973], THOM~E [1974] and WAHLmN [1975] for linear parabolic 
equations) and the following proposition regarding the projection ph. 

Proposition 4.2. For  

and  i f  v E H2(I ) ,  then 

v ~ H~r H%r), 

2 

E hJ] l) - -  ehv]j ~ Chr I Iv I [ ,  
j = 0  

(4-14a) 

llv - ehvlloo ~ Chr Ilvllwgo<z) []  (4-14b) 

We assume Proposition 4-2 for the moment and postpone its proof to the end 
of this section. It follows from (4-14) and the assumption concerning the regularity 
of u that 

2 

sup ~ hJlOh(t)b <= Cr(u) h" (4-15a) 
tE(O,T) j = 0  

~oh < h r 
11 ~t IIL~(0,r;z2(~)) = Cr(u) (4-15 b) 

I[Oh(t)[l~ <- Cr(u) h" 0 <-- t <-- Z. (4-15c) 

We obtain (4-15b) by applying proposition 4.2 with v = ~u/~t. 
Hence it remains to obtain the corresponding appropriate bounds for e h. 

o 
Observe that, by (4-7a) and (4-3a), for all ZE S~ and (Z, 1) = 0 

( O e h ~  ( O O h ~  
"-ff]-, Z] + ~( Dzeh, D2Z) = - -  --~-, Z]  + (q~(u) - -  ~(uh), D2Z). (4-16) 

Taking Z = eh in (4-16) we obtain the inequality 

�89 II + ~ ' l : l ~  < - f f  [Idl[ + CIlu--u"ll [ehl~ (4-17) 

where the continuous differentiability of ~(.) and the a priori  L ~ bounds on u and 
u h have been used. It follows from (4-17) that 

�89 2 + T I : I 2  =< c []ehl[ 2 -k [10hll = + --~ 

and by Gronwall's inequality that 

t 

I[ eh(t) II 2 + f I:(r)I~ a~ _< [I :(0)ll~ + CT(U)h 2r 
o (4-18) 

=< Cr(u) h 2" 
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where we have used (4-15a, b) and the observation that 

[leh(0)ll G IlUo - Uo~l[ 3- I[phuo -- Uo[[ 

with (4-10) and (4-14a) holding. Of course in the case u~ = Phuo we have that 
eh(O) -~ O. 

3e h 
Taking Z : - - ~ -  in (4-16), we obtain 

8ehll 2 7 d  ~[80h~Oeh][ ( ~ t )  
-fill + T 77 lehl~ - II ot II II~-II + ~(u) - ~(uh), D ~ 

and after integrating with respect to t, 

�89 -fll dv 3- T l eh(t) [~ ~ T ]eh(q) [~ 3- & - f  dv 

t d 

t l  

(4-19) 

-- efl'(U) -~ -- eft (U ) -~ ,  O2e h aT;. 
t l  

Label the last two terms on the right-hand side of  (4-19) as I1, and 12. Then 
using the boundedness of  u h and u, 

li1 [ ~ C([[ eh(t)I[ 2 3- l] Oh(t)[[z 3- [[ eh(t,)[i 2 3- ][ Oh(h)[I z) 3- -~" ([ eh(t) [2 3- [ eh(q)]~) 

Y 2 Y 
G C~(u) h 2" 3- T L eh(t) ]2 3- T ] eh(t,)]2 (4-20a) 

where the bounds (4-18), (4-10) and (4-15a) have been used. Turning to I2 we 
find that 

0 

'{ II 0'lr �88 -~- dv + G(u) o f [[eh[[2 3- ]]0h][2 + II-~/-II + 

8e h 2 
< �88 - f  & + C~(u) F" (4-20b) 

where we have used the differentiability of  ~0(.), the boundedness of  u h and Ou/Ot 
and the error bounds (4-18), (4-10) and (4-15). It follows from (4-19) and (4-20) 
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that 

In the case 

Ileh(t)ll 2 + ]eh(t)] 2 § --~ <: Cr(u) h 2". 

Otherwise (4-21) and (4-18) imply that 

t 

),t leh(t)12,2=r < f {I eh(7)[~ + Cr(u) F r} dv 
0 

<= rCr(u) F'. 
Since 

and 

t/II•ehll 
2 

H § 7 [ e h ( t ) ] 2 < r l e h ( t ' ) l ~  q- Cr(u)h2"" (4-21) 

uho = phu o we have from (4-18) and (4-21) (taking tl = 0) that 

l eh(t) 12 ~ l eh( t ) 15 l[ eh( t ) I[ 

(4-22) 

(4-23) 

D2(Z -- (Z, l) -[- (v, 1)L -- v) = Dz(Z -- v), (4-24) 

together with the approximation (4-2) (p = 2, s = t) we obtain 

Iv - Phvh <= Ch "-2 Ilvllr. (4-25) 

The L2-norm of the error is bounded by use of the usual duality argument. 
For any r/E L2(I), let z E H~(I)  be the unique solution of  

(D2z, D2~) -~ (rl, ~) V ~ E H~(I), (~, 1) = 0 (4-26a) 

(z, 1) = 0. (4-265) 

It follows from (4-26) that 

Ilzll, < C(lzl2 + Izl,) < c I[~ll. (4-27) 

Equations (4-7a) and (4-26a) yield 

(v - -  Pay, ~7) : (D2( v - -  ph V), 027,) 

= (D2( v -- Phv), D2( z - -  s u Z E S~ and (X, 1) = 0 

and noting that 

Proof of Proposition 4.2. The projection property of  ph yields 

I v - - p h v 1 2 = <  inf Iv--z12 
( x - v , l ) = 0  

II eh(t) H oo ~ C II eh( t ) []1, 

it follows from (4-18), (4-22), (4-23) and (4-15) that (4-11) and (4-12) hold. 
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and, hence using (4-24), (4-27) and (4-2) we obtain 

(13 - ~ h v ,  ~) =< [13 - P~131~ 1-" - z l ~  

=< c h '  [ lol l , /Izl l ,  

<: Ch" [lv[[, [[r/[I, 

so that 

1Iv - -  Phv]l ~ Ch" Ilvll,- (4-28) 

Therefore, noting the inequality (1-11), we have proved (4-14a). 
I t  remains to prove the L ~ bound. First observe that by (4-7a) 

r--2 (D2phv - -  0213,  rl)  : -  0 V r I E S~-2,  (% 1) : 0 (4-29) 

and since 

(D2phv - -  D2v, 1) = 0 

we have that D2Phv is the L z projection of D2v in ,-2 S~_z. It  follows from the L ~176 
error bound for the L z projection, due to DOUGLAS, DUPONT & WAHLmN [1975], 
that 

[[ DZ(v - -  P~v)1[oo ~ C f f  - z l[ DZv[[wL-2(1 ). (4-30) 

Using the dual problem (4-26) with ~ 6 L I ( I )  so that 

' < c II~[[L,<o, f 4 - 3 1 )  [[zl[w4(/) = 

we have 

(v - -  Phv, ~) = (D2(v - -  ph  v), D2z) 

= (D2( v - -  Phv), D2( z - -  Z)) (4-32) 
o 

1102( v - -  Pnv)lI~o liD2( z - -  Z)a[L'C1) V Z E  Sb (Z, 1) = O. 

I t  follows from (4-24), (4-2) with p = 1 and s = 4, (4-30), (4-31) and (4-32) 
that 

Itv - Phvlloo <= Chr [[131]wr(I )" [ ]  

R e m a r k s .  1. The assumption (4-9) is not a restriction. By a standard argument 
(see THOM~E [1984; p. 154]) we may use the error bounds (4-11) or (4-12) in order 
to justify (4-9) a pos ter ior i  for any T > 0 such that (2-1) has a solution. 
2. The smoothing property of  the linearized differential operator is responsible 
for the L ~176 error bound in (4-11) for any t > 0 despite there being no assumption 
on the initial L ~ error. 
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