11

iy

A% .';*-.u:".,ﬁ o
4% *.‘:ﬂv | ARy
b L

A

r.-

r




Reprinted from Tug Jourxarn oF Curmican Prvysics, Vol. 45, No. 4, 1086-1096, 15 August 1966
Printed in U, S. A,

On the Calculation of Autocorrelation Functions of Dynamical Variables*

Bruce J. BErne,t JeaN Prerre Boox,! axp Stuart A. Rice§
Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
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In this paper we develop a formalism for calculating the autocorrelation function of a dynamical variable
in terms of a well-defined memory function. Guided by simple physical sarguments, an ansatz is adopted for
the functionzl form of the memory function, This ansatz asserts that the memory of dynamical coherence

decays exponentially, It is found that:

(a) Despite the monotonic exponential decay of the memory function, the autocorrelation function
deduced can display negative regions in some circumstances and decay monotonically in other circumstances.

(b) The form of the autocorrelation function deduced is identical with that obtained from two other very
different analyses, suggesting that the major properties of the function are of general validity.

(c) The computed linear momentum autocorrelation function and power spectrum for liquid Ar are in
good agreement with the computer experiments of Rahman,

(d) The computed dipolar autocorrelation function reproduces all the features of the experimentally
determined autocorrelation function, though at present insufficient data are available to provide a quantita-

tive test of the theory,

(e) The ansatz used, although obviously not exact, is consistent with the theory of linear regression

(Appendix B).

I INTRODUCTION

ESPITE recent advances in the theory of linear
transport phenomena in dense fluids,'? relatively
little is known about the autocorrelation function of
the linear or angular momentum. In addition, aside
from qualitative arguments, little can be said of the
structure of the few autocorrelation functions which
have been determined.** One of the major difficulties
encountered in developing a theory of the autocorrela-
tion function arises from the fact that there seems to
be, at least at present, no simple way of bypassing the
complex many-body dynamics in a realistic fashion.
Now, Gray®* has shown how a simple statistical model,
in which the divergence of the center-of-mass flux in
the equation of continuity for the pair density is
replaced by a relaxation time term, can lead to both
oscillatory and exponentially decaying time dependence
of the (linear) momentum autocorrelation function.
While it is difficult to determine the full set of impli-
cations of Gray's hypothesis, it is apparent that simple
statistical models may lead to valuable insight into the
behavior of molecules in a liquid. In this paper we
examine a very different and more general statistical
model than that considered by Gray. Starting from a

* Taken in part from a thesis presented by B.JLB. to The Uni-
vcniNt‘y of Chicago, July 1964.
T NATO Postdoctoral Fellow. Present address: Department of
Chemistry, Columbia University.,
b Plesentlg"u the Institute for the Study of Metals, The Uni-
icago.

versi&y of C
§ NSF Senior Postdoctoral Fellow and Visiti
Permanent address: Institute for the Study of Metal
versity of Chicago,

' 1. Prigogine, Nown-Equilibrium Statistical Mechanics (Inter-
science Publishers, Inc., New York, 1962),

1S, A. Rice and P. Gray, The Statistical Mechamics of Simple
Ligquids (John Wiley & Sons, Inc., New York, 1965).

7 A. Rahman, thx Rev. 136, A405 (1964).
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* R. G. Gordon, J. Chem. Phys, 44, 1830 (1966),
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general formulation of linear non-Markoffian response
functions, we show that a simple ansatz relevant to the
decay of the coherence of molecular motions leads to a
form for the momentum autocorrelation function which
is easily interpreted. It is found that:

(a) The assumption that the memory of coherence
decays exponentially leads to an autocorrelation func-
tion which can display negative regions in some
circumstances and decay monotonically in other
circumstances.

(b) The computed linear-momentum autocorrelation
function and power spectrum for liquid Ar are in good
agreement with the computer experiments of Rahman.?

(c) The computed dipolar autocorrelation function
reproduces all the features of the experimentally
determined autocorrelation function,* though at present
insufficient data are available to provide a quantitative
test of the theory,

(d) The ansatz used, although obviously not exact,
is consistent with the requirements of the thermo-
dynamics of irreversible processes® and with simple
notions about the time dependence of interactions in
dense fluid.

II. REVIEW OF THE COHERENCE TIME
CONCEPT’

The role of the dynamical coherence time in deter-
mining the rate of approach to equilibrium is clearly
displayed in the autocorrelation function representation
of the linear transport coefficients.* If it is assumed

*S. R. De Groot and P, Mazur, Non-Lguilibrism Thermody-
namics (North-Holland Publ. Co., Amsterdam, 1962).

TU. Fano, in Lectures on the Many-Body Pr 5B Re
Caianello, Ed. (Academic Press Inc., New York, 1964), Vol. 2,
pp. 217-239,

" M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

9 H. Mori, Phys. Rev. 112, 1820 (1958).
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that, for example, the momentum autocorrelation func-
tion decays as exp(—{/r.), then the correlation time r,
(relaxation time) determines the diffusion coefficient.
What is not explicitly clear, and is indeed only the
subtle end result of the interactions in, and time
evolution of, the N coupled molecules, is how the
coherence time is related to the details of molecular
dynamics. While we certainly cannot offer any analysis
remotely approaching completeness, a few remarks
pertinent to the relationship sought may be made.™

It is, of course, just a restatement of what is well
known, to note that a subsystem, in interaction with a
large reservoir, quickly dissipates the effects of a
disturbance if the interactions between the subsystem
and reservoir and within the reservoir are such that
the disturbance propagates away as fast or faster than
the disturbance is built up in the subsystem. What is
less obvious is how important the history of the evolu-
tion of the disturbance is to the instantaneous rate of
dissipation, i.e., whether the rate of dissipation should
be Markoffian or non-Markoffian. In general, a
Markoffian description will be valid only if it is pos-
sible to neglect effects created within the lifetime of the
dynamical correlations. More explicitly, the Liouville
equation

(1)
(2)

(8/80) fN) =igWf)
LW =i L0/ m) Vi Fy V]

has the solution
fW (1) = exp[i(t—t') LN ] fM (1)
=GN (1, F)f™(r), (3)
and it is clear that GV (¢, ¢') has the group property
GM(t, 1) =G (1, )GV (L, 1), (4)

which defines a Markov process. In the case of the full
N-body system, the Markov process is trivial in the
sense that the transition probability for the motion of
the phase point is a delta function with argument
determined by the N-body dynamics. However, the
transition probability describing the motion of a phase
point in a subspace, for example, the point I'y in the
phase space of a pair of molecules, is not determined
solely by the two-body dynamics and is not a Markov
process. If, however, the quantity

G = / ATy G™ (5)

(which is obtained by expanding the exponential
operator G in its defining power series and inte-
grating term by term with a suitable test function)
can be written in the form

G (t—")>[G™ (7) I, (6)

U The following introductory remarks are based on » discussion
by Fano (see Ref. 7).

AUTOCORRELATION FUNCTIONS OF DYNAMICAL VARIABLES

then the projection G™ defines an approximately
Markoffidn process. Now, Eq. (6) will only be valid,
if at all, provided that r,, the lifetime of the dynamical
correlations build up in the time interval {—¢", satisfies
the inequality 7>7,, where {—t" =mr. It is just because
7. is finite that Eq. (6) can represent only an approxi-
mately Markoffian process. It is clear that the correla-
tions neglected when Eq. (6) is adopted are those
built up in the interval 7, just prior to ¢”. Whether or
not their neglect introduces negligible error depends
on the phenomenon under discussion.

The reader should note that a Markoffian kinetic
equation leads to the same transport coefficients as
obtained from the autocorrelation-function representa-
tion, because of the implicit long time integration
involved in the use of asymptotic cross sections in the
kinetic equation. Thus, for the computation of linear-
transport coefficients from a kinetic equation, it is not
necessary to examine the dynamical behavior of the
system at short times. On the other hand, consideration
of the structure of the autocorrelation function of a
dynamical variable requires just such an examination
of the dynamics. We see that in our formulation of the
problem the calculation of the time dependence of the
autocorrelation function for short times cannot be
carried out using only asymptotic (and Markoffian)
considerations.

It is worthwhile to probe a little more deeply into
the way that the property expressed in Eq. (6) is used
to obtain both a kinetic equation and an autocorrela-
tion-function representation. Consider the derivation
of the singlet kinetic equation for a dilute gas. A
purely formal representation of the time dependence of
the singlet distribution function can be given in terms
of the propagator exp(it€™’) acting on the N-body
distribution function at =0, and an integration over
the phase space of N—1 molecules. The system of N
molecules may be thought of as a subsystem of one
molecule and a reservoir of N —1 molecules, to which
corresponds a decomposition of £ into operators for
the subsystem, the reservoir, and their complete
interaction. If the interaction operator is regarded as
a perturbation, and the formal representation of the
singlet function expanded in a perturbation series with
use of the initial condition that the full distribution
function can be written as the product f4(0)fN-1(0),
then the resulting expansion may be converted to a
kinetic equation as follows. The structure of the per-
turbation series involves multiple time integrations
over products of the interaction representation of the
perturbation operator. Consider some small time inter-
val r, with = chosen so that #>>7,, but also small enough
that the terms in the perturbation series involving
more than two time integrations are small and may be
neglected. Provided that r>>7, as assumed, the time
dependence of the singlet distribution function at long
times may be generated from the truncated perturba-
tion expansion by replacing the actual N-body distri-
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bution function generated from the initial state with
the product function f®(7)f™=2(0). When this condi-
tion is entered into the integrand of the perturbation
expansion and the procedure repeated chainwise, the
resultant f®(¢) is the same as the function that would
be obtained from the integration of a differential
equation on a time mesh of size 7. Thus, the variations
of f(f) obtained satisfy a kinetic equation where the
interval 7 is treated formally as a differential. The
reader should note that the repeated use of the product
function at intervals of length 7 is very close to the
philosophy of time smoothing, where a dynamical event
occurring in an interval 7 is taken to be independent of
prior dynamical events?

How do short time correlations appear in the repre-
sentation of dissipative processes? When 7>7,, it is to
be expected that the coherence imposed by the molecu-
lar dynamics is lost because of propagation of the
disturbance away from the source (the dynamical
event studied) by the coupling with the surrounding
molecules. Then, the average of the products of opera-
tors in the perturbation expansion described in the last
paragraph is expected to approach a product of the
averages of the operators. By introduction of cumulants
representing the difference between an average of
several operators and the product of the averages
taken all possible ways, it may be shown that the
perturbation expansion may be expressed in terms of
the autocorrelation function of the cumulants. But, by
definition, if £57. the cumulants vanish, and therefore
in this representation the effects of short-time correla-
tions in the molecular dynamics are displayed.

Since both representations discussed can be obtained
from perturbation theory, their connection is easily
established in the same formalism. The key point is
that the cumulants vanish rapidly as ! increases, so

yil)= N"/drNU(rv) exp(#Le™) U(Ty) evcp(

AND RICE 1088
that integrals over the cumulants rapidly approach
their asymptotic values and are not sensitive to the
precise value of the upper limit of integration. Under
these circumstances, the neglect of third- and higher-
order cumulant terms leads to a kinetic equation in
which the entire effect of the dissipative interaction
enters through integrals over the pair cumulant func-
tion. Thus, even though the dissipation appears
through the structure of the pair cumulant, an asymp-
totic limit must be used to obtain a kinetic equation.
A much more general and incisive analysis of the
relationship between kinetic equations and the auto-
correlation-function representation has been given by
Resibois.** The preceding simple arguments suffice to
introduce the points of interest to us.

It is indeed a remarkable result in many ways, that
a Markoffian kinetic equation leads to the same linear
transport coefficients as does the autocorrelation-
function representation of the transport coefficients.
Because of the role played by the coherence time in
defining both the autocorrelation function of a dynam-
ical variable and the corresponding kinetic equation,
we are encouraged to pose the following question:
Given a formal, but usable, definition of dynamical
memory, what do simple physical arguments about the
nature of the dynamical memory imply about the
autocorrelation function? In the following sections we
seck to answer this question.

III. EQUATION FOR THE AUTOCORRELATION
FUNCTION®

In this section an equation is derived which describes
the time evolution of the normalized autocorrelation-
function ¥(t) of the phase function U(Ty). ¢() is
defined by

kHT(N)) : %

where Zy is the canonical partition function for the N-molecule system, and £¥, H™) | are the corresponding
Liouville operator, and Hamiltonian function, respectively. The phase function U(Ty) is assumed to have the

following properties:

U)=0, ({U)=1, (8)
where the bracket defines an average in the canonical ensemble,
— g
() =2y~ [aTw a exp( s ) : (9)
If Y(1) is differentiated twice with respect to f,
d’%ﬂ_ -—7~"fdl‘NU( Ix)i€W exp(#e™) LM U (Tw) ] exp( z‘m) ; (10)

2 P, Resibois, in N-Parhde Pirysics, E. Meeron, Ed

. (Gordon and Breach, New York, 1966).

B R, Zwanzig, Lectures in Theorelical Plcytm (lntcrscienoc Publishers, Inc. . New \ork 1961), Vol. 3, pp. 106-141,
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and the right-hand side of this equation integrated by parts, it is found that

—HW
B 2 [araie (1) explite) [i00 (1) exp (=7 )
=—(®(T'y) exp(ite™)®(Ty)), (11)
where -
®(Ty) =iLMU(I'y) =U(Tw), (12)
since the time evolution of the phase function U(Ty) is described by the relation
(d/dt)U(Ty) =iLNU(Ty). (13)

Now, the operator exp(it£™’) is the unitary time-
displacement operator which, when applied to an
arbitrary phase function, displaces it in time according
to the canonical equations of motion. Thus, Eq. (11)
can be rewritten, using the previous notation, in the

form )
ayy(t) /de=—(U0)U(1)). (14)

Equation (14) is to be solved subject to the initial
conditions
v(0) =1

¥(0)=(U(0)U(0) )=0. (15)

The first of Eqs. (15) is merely the second condition
in Eq. (8), whereas the second of Eqgs, (15) follows
from considerations of parity.

Denoting the Laplace transform with respect to f of
the functions ¢(t) and ¢() = (U (0) U (1) ), respectively,
by ¥(s) and é(s), with s the Laplace variable, Eq. (14)
is Laplace transformed as

sY(s) —s=—(s).

From the following identity, for 50,
(s3(s) —)P(s) =[14(1/5) (s (s) —5) J(sF(s) —1),

(17)

and

(16)

and substitution of (16) into (17) yields
—$()P(s) =[1—(1/5)$(s) U(s¥(s) —=1). (18)

For values of s such that 1—(1/s)@(s)#0, Eq. (18)
can be written in the form

sp(s) —1=—[1—(1/5)$(s) ' (s)¥(s), (19)
and by inversion,
dy(1) s
o == feE@wen, @
where
R(s) =[1—(1/5)$(s) ¥ (s). (21)

Consider, now, the function ¢(s). This function may be
written in terms of the resolvent operator (s—ig™)~1,

ie.,
$(s) = (U (s—ie™)~10). (22)
We now define a projection operator @ on a well-

behaved function of the phase 'y, G(T'y), as follows:

6G(I') =U (T)fa™ [dTNU(TN)G(T'y), (23)
where
fua™) = Zy exp(—H®/AT). (24)

Noting that, for the operators @ and @&, there exists
the identity

@' =@ 40 (B—Q) B,
we find that
$(s) = (ULs—i(1—0)£M]0)
+{U[s—ieW™ T UeeN [s—i(1—@)£MTU). (26)
Now, exploiting the definition of ® in Eq. (23) and
integrating by parts,
IPLM[s—i(1—@) LM Uf ™
= —Ufpa™{U[s—i(1—-®) M), (27)
Thus, from Egs. (26) and (27), we find
é(s) = (U[1—i(—0)e™]U)
—(U(s—ie™)U)(Uls—i(1—@) LM TU). (28)
Furthermore, it is easily recognized that
(U (s—ie™) U )= (1/5) (U (s—ie™)=10). (29)

The substitution of (29) into (28), and of the latter
result into Eq. (21) yields

(25)

R(s)=(Uls—i(1-®)e™0),  (30)
which, by inverse transformation, becomes
K (t) = (U exp[it(1—@®) £ ]U). (31)

From the structure of Eq. (31) it is clear that the
kernel K(f) is related to the memory, or dynamical
coherence time, of the system, an interpretation which
is exploited later in this paper.

In a subsequent paper we shall show how Eq. (30)
may be used to generalize the linear trajectory hy-
potheses first used by Helfand,™ thereby permitting

W E, Helfand, Phys, Fluids 4, 681 (1961).
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calculation of the coefficients of shear viscosity and
thermal conductance.

In this paper we are interested in autocorrelation
functions of vector quantities such as Y, (f) defined by

Va(l) = (a(0) - «(r) ). (32)

The analysis necessary can be carried through with
only one minor change: the projection operator in this
case must be defined by its action on an arbitrary
well-behaved vector point function of the phase T,
say G(T'y),

O (Iy) = afu® [al'ya(In)-G(I'y).  (33)

These modifications are easily introduced into the
preceding analysis.

Using a projection operator formalism, Zwanzig" has
derived an equation describing the time evolution of
autocorrelation functions. The equation obtained from
this very elegant formalism is identical with Eq. (20),
with K(r) defined by Eq. (31). By a different pro-
cedure we have obtained Eq. (20) with K(s) defined
by Eq. (21). By exploitation of Zwanzig's projection
operator, Eq. (23), it was possible to demonstrate the
identity of our equations with his. We feel that the
form of K(s) presented in Eq. (21) is useful in gen-
erating new approximations, such as the linear tra-
jectory approximation discussed above. This form of
K (s5) has not been presented before."

IV. APPROXIMATE REPRESENTATION OF
THE MEMORY FUNCTION

In this section we seek a representation of K(7)
since, once this function is known, the autocorrelation
function is determined by solution of Eq. (20) with
the boundary conditions ¢(0) =1 and ¢(0) =0. It is
useful to begin by specializing the discussion to the
case of the normalized velocity autocorrelation function

Vo) = (vi-exp (™) v)/ (vs?), (34)
which is connected to Eq. (7) by setting U=w;((1;*))}
and with the requisite projection operator

PG (Ty) = ((52))7 V1 fu® j dT'yvi-G(I'y).  (35)

Then, since
LWy =Fy/m, (36)
the kernel function becomes
Y N (Fx'ﬁx(-\‘)) e (Fx'ix(J»
R0 = (1- SR BB, o)

where F, is the force on Molecule 1. The value of K (0)

¥ After this paper was submitted for publication, R, Zwanzi
drew to our attention that he was aware of the form of K(s
given in Eq. (21), but that he had never reported it in a publica-
tion. (See Appendix C.)
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is easily determined from the Einstein relation for the
diffusion coefficient. For

kT
D= /: ()

RT ..
= ;hm ’o exp(—st)y(t)dt

= (kT/m)¥(0), (38)
whereupon, using the Laplace transform of Eq. (20),

sV(s) =1—=R(s)¥(s), (39)

it is seen that
D=(kT/m)[K(0) ] =kT/m8. (40)

Thus K (0) is just the translational friction coefficient.
Note that the friction coefficient 8={/m, where { is
the friction coefficient often used in other papers? A
relationship involving K(0) and (6%/0f) s is easily
obtained when it is noticed that

K(0) = ((ie™0)?) = (F2)/m*(vs?),
(1) /ot =— (F1-Fy(1) )/m* (s*). (42)

Finally, it can be shown that the memory function
must be even in the time and have zero derivative at
t=0 (see Appendix A).

The exact relations given above are insufficient to
uniquely determine the form of the kernel function,
and we propose to proceed by introducing a two-
parameter trial function, K (a, v), with the parameters
determined by use of Eqs. (40) and (42). It is now
necessary to consider the functional form for the trial
kernel.

Consider the case of the dilute gas. The probability
that a molecule will travel a distance R without
undergoing collision is proportional to exp(—R/\/),
where Ay is the mean free path. This form indicates
that the sequence of collisions experienced by a mole-
cule forms a Poisson process, and, since each collision
causes partial loss of the persistence of momentum, the
memory of the initial momentum decays as exp(—{/r.),
where 7, is the mean time between collisions.

Consider now the case of a dense fluid. Each mole-
cule may be imagined to be surrounded by a cage of
other atoms, The cage is, of course, not stationary,
and in response to fluctuations in the surrounding
medium undergoes quasirandom alterations as a func-
tion of time. A molecule moving away from the center
of its cage interacts with the moving wall molecules.
Although a strongly repulsive encounter with the wall
molecules is likely to almost reverse the central particle
momentum, the fact that the cage is fluctuating sug-
gests that the sequence of interactions leading to loss
of memory of the initial momentum of the particle can
be approximated as a Poisson process. In the Rice-
Allnatt theory,® successive strongly repulsive binary

(41)
and
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encounters are taken to be independent, and the
present argument suggests that the soft interactions
leading to dissipation of momentum are sufficiently
close to forming a Poisson process that a reasonable
first approximation to the memory function is the
exponential decay exp(—at). Clearly, this form has
the proper regression property, but is inexact since it
has finite slope at ¢=0. The reader should note that a
simple exponential memory function is consistent with
the velocity autocorrelation function having negative
regions, as is shown shortly. We emphasize this point
in advance of demonstration so as to clearly differen-
tiate the time dependence of the memory function
from the time dependence of the corresponding auto-
correlation function. One last point: If the time
sequence of interactions is a Gaussian Markov process,
then the correlation function is, rigorously, exponen-
tially decaying.'® In addition, as shown in Appendix B,
the exponential memory function is derivable from
linear regression theory.®

With the preceding arguments as motivation, we
adopt the two-parameter trial kernel

K(a,v;t) =y exp(—a|1]), (43)

where | £ | is required by the parity of K (¢). However,
in all that follows we consider only the positive time
axis, and the modulus bars on { are therefore dropped.
The degree to which (43) is an adequate approximation
to the true memory function can be tested only a
posteriori.

To obtain the autocorrelation function, K (e, ¥; 1) as
defined in Eq. (43) is Laplace transformed, and the
result is substituted into Eq. (39) to give

v(s) =(ats)/(s—s4) (s—s.), (44)
sie=—}a{1F[1—(4v/a®) J}}. (45)

Equation (44) is inverted to yield
W) =[1/(ss—5-) ILsy explst) —s_exp(sit) ] (46)

This result may be tested against the “experimental”
data of Rahman® after numerical evaluation of « and .
These parameters are determined, as indicated above:
substitution of the Laplace transform of Eq. (43) into
(40) yields
. g § 4.4
b l:x.no sta a’

(47)

and from Eqgs. (42), (45), and (46) it is found that

F?) (B (Vn’V).

o mn?)  3mkT  3m (48)

1 M. S. Bartlett, Stochastic Processes (Cambridge University
Press, London, 1955).

AUTOCORRELATION FUNCTIONS OF DYNAMICAL VARIABLES

V. APPLICATION TO THE AUTOCORRELATION
FUNCTION OF THE LINEAR MOMENTUM

Rahman, using a large digital computer, has solved
the equations of motion for 864 atoms in a cubical box
with periodic boundary conditions. The state of the
system was chosen to correspond to liquid Ar at
T=944°K ‘and p,=1.374 g cm™ The interaction
between the atoms was described by the known Ar-Ar
Lennard-Jones potential.” From the solutions obtained,
Rahman has calculated the velocity autocorrelation
function, the power spectrum, the pair correlation
function, the mean-square displacement of an atom
as a function of time, and the diffusion coefficient. All
of these are of use in our considerations.

Using Rahman’s data, it is found that (V3V)=
11.0X10?* erg cm™. To check the integration over the
radial distribution function, we note that for very
short times the time derivative of the autocorrelation
function is, from Eq. (46),

dyfdl=—s.s t=—afil; s, s 1K1, (49)

Thus, the value of dy/dt for ¢ small also provides a
measure of (Vy#V) [see Eqs. (47) and (48)]. From the
data presented by Rahman we find that (V&V)=
11.0X10* erg cm™®, in perfect agreement with the
determination by direct integration. Using D=243X
10-% cm? sec™?, as computed, and the value of {V3V)
quoted, it is found that a=8.06X10" sec! and af=
6.5X10* sec®. With these values of « and B8, the
roots s, are complex, and

v(1) = exp(—4.03t/ry)
X {cos[4.03V3(t/r0) ]+3 sin[4.03v3 (¢/70) ]},
(50)

In Fig. 1 the theoretical autocorrelation function,
Eq. (50), is plotted along with the Markoffian approxi-
mation, YM(f) = exp(—pBt), and the “experimental”
data of Rahman. As can be seen, the qualitative fea-
tures of the autocorrelation function are reproduced,
but the theoretical function oscillates with somewhat
larger amplitude than does the observed autocorrela-
tion function. Indeed, the agreement between the two
functions is quite good up to (¢/79)=>0.3—-04, and it is
very important to note that the theoretical function
correctly predicts a negative region for ¢(f), despite
the very simple form of the trial memory function.

A somewhat different test of the theory proposed
here can be made by comparing the theoretical and
observed normalized power spectra, defined by

Glw) =B / “d(1) cos(wt).
0

To=10"" sec.

(51)

' Note, however, that the Lennard-Jones potentialis not an ade-
quate representation of the Ar-Ar interaction. For example,
under the conditions descriptive of Rahman’s calculation, the
computed pressure and energy of vng:intion are 51.2 atm and
1335 cal mole™, respectively. The observed values are 160 atm
and 1550 cal mole™,
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Fig. 1. The linear momentum autocorrelation function, (1),
from Rahman's “experiment” (1), the Markoffian approximation
(2), and Eq. (50), (3).

It is easily seen that
G(0)=1,

and for our memory ansatz
G(w) =B Re [ dt exp(—iat)¥(1)
0

" o'
o' +al[1—(28/a) Jo?+et”

With the values of the parameters already cited, we
find

G(w) =0.420/(0.420—6.5 X107 4-10"%w').  (53)

In Fig. 2 is plotted the theoretical power spectrum,
Eq. (53), along with the Markoffian approximation
[GM(w) =B*/(w*+8*) ] and the “experimental” data of
Rahman. Again, the agreement between theory and
experiment is quite good, especially in the matching of
the peak in G(w), which reaches a value of about 1.4.
Before discussing the implications of these results
any further, we examine another application of the
formalism and the exponential memory ansatz.

VI. APPLICATION TO THE STUDY OF
NUCLEAR SPIN-LATTICE RELAXATION

The relaxation of nuclear spins is determined by the
coupling of the spins to the rotational and translational
motions of the molecules in the system. For systems
with nuclei of spin }, the spin-rotation interaction for
a linear molecule leads to an interaction Hamiltonian
of the form

(52)

H=—cI-]J, (54)
where I and J are the angular momenta of the nuclear
spin and molecular rotation, respectively, and ¢ is the
spin-rotation coupling constant. When the interaction
described by Eq. (54) is the only dissipative pertur-
bation, the relaxation to equilibrium is determined by
the time constant 7'y5%,
1 23
—_— = 0)-J(1) )dt
7 = g | GO -J0)a,

a form similar to Eq. (38).

(55)
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An analysis similar to that presented in Sec. IV is
obviously pertinent. Consider the case of a diatomic
molecule (or more generally a symmetric-top molecule).
We assume the existence of a Langevin equation de-
scribing the rotational motion. In writing such an
equation it is important to take advantage of the
symmetry of the molecule, for in general the relation-
ship between, say, the time derivative of the angular
momentum and the angular momentum itself involves
a tensor friction coefficient. For a diatomic molecule
(or symmetric-top molecule) it is possible to choose
the symmetry axis so as to diagonalize the friction
coefficient tensor. We seek to evaluate

ye(t) =(J(0)-J(1) )/{J*)=(J(0)-J(£) )/3IkT, (56)

where I is the moment of inertia of the molecule. The
calculation of Yg(t) ieads to consideration of exactly
the same set of equations as already discussed in Sec.
IV. In the case of rotational motion, the equation
equivalent to Eq. (42) involves the autocorrelation of
the torque on Molecule 1, Ny(#),

Yr (1) /o = — (Ny(0) -Ny(t) )/31kT. (57)

Using the definition of the mean torque acting on
Particle 1,

Ni(t) = —Frons(l), (58)
with {& the rotational friction coefficient and wy the

relative angular diffusion velocity, it is found from
(57) that

[¥n () /08w =—20w"/T". (59)
For the case of the exponential memory,
Kg(t) =vyn exp(—agt), (60)
Eq. (59) leads to the condition
1e=2({a*/I?). (61)

A second relation between the coefficients ag and vz
is needed; this relation is obtained as follows: Yr({—7)
is expanded about r in a Taylor series and the result is
substituted in the rhs of the original equation (20).
The exponential ansatz is then introduced, and the
equation is integrated. In what immediately follows
we are interested in long times; then, since £>az™, the
limits on the integral can be extended to infinity and

L= I T T
1 Vi al
1 ' |
S 7] 116, 2. The power
s P : spectrum G(w) from
3 N ] ahman's “experi -
e Mg 1 ment” (1), the Mark-
. e ] (()ginn approximation
4 i 1 ”;: and Eq. (53),
2 g
P O T N Lot b g .50
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one obtains
dgr(t)  r ’m dyw(t)
S 'I'n(l) + s (62)

Discarding terms of order 13/03" for n2>3 (yx is of the
order of ag* and ag is very large), this equation (after
rearranging the terms) is identified with

Ve (t) =—=2(5r/T)¥e(t) (63)
to yield the second condition
r/I=hawyn/ (an’—n). (64)

Equation (63) is easily derived from the assumed
Langevin equation for the rotational motion, once it
is noted that in an equilibrium ensemble the average
torque on a molecule vanishes.

The rotational friction coefficient was evaluated
following the procedure introduced in the Rice-
Kirkwood small-step diffusion theory'; its estimated
value was found to represent about 25% to 30% of the
central part of the coefficient (when the noncentral
part of the intermolecular potential contributes for
109%-15% to the total potential). It is now easy to
obtain numerical values for the roots 5,® and s %, and
thereby for Yz (¢) [see Eq. (46)7]. In Fig. 3 is displayed
a typical autocorrelation as obtained from Eqgs. (46),
(61), and (64); the shape of the curve (for short
times) as well as the order of magnitude of the relaxa-
tion time is comparable with those from the auto-
correlation calculated by Steele,® though no actual
comparison can be made between both approaches,
since Steele’s is for free rotation (or nearly free
rotators).

VII. APPLICATION TO THE STUDY OF
DIPOLAR RELAXATION

The line shape of rotational transitions in the
infrared spectrum of a molecule is determined by the
rate of randomization of the molecular dipole moment.
Indeed, the line shape can be expressed directly in
terms of the dipolar autocorrelation function,* so that
Fourier transformation of experimental spectra pro-
vides a direct and easily applicable method of deter-
mining this function. One of the remarkable results
of such an analysis is the discovery that, in the gas
phase at low pressures, the autocorrelation function
has a negative portion, whereas at high pressures the
decay of the autocorrelation function is monotonic.
It is the purpose of this section to account for the
major features of the density dependence of the dipole
correlation function.

Let u be a unit vector along the internuclear axis of
a dipolar diatomic molecule. The normalized dipolar
autocorrelation function is

¥o(t) = (u(0) -u(?)), (65)

. G. Kirkwood, J. Chem. Phys. 31,901 (1959).
. Chem. Phys. 38, 2411 (1963).
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. 3, The spin-relaxation autocorrelation function, ¢g(*),
from qu. (46), (58). and (59).

which has the following properties in the limit as (—0:

(d¥n/dl) 4o =0, (66)
(dYn/dP) o= —2kT/I. (67)
Using the exponential memory function,*
Kp(t) =vp exp(—ant), (68)
and Eq. (20), Eqgs. (67) and (68) lead to
yo=2kT/I. (69)
To obtain the roots in the transform we also require
Ap= [: ¥o(t)dt=yn(0), (70)
where, as before,
¥o(0) =[Rp(0) 1. (71)
With some simple algebra we are now led to
R5(0) =yp/an=1/Ap,
ap=vypAp=2ApkT/I, (72)

and Yp(¢) assumes the form
¥o(l) =[1/(s”—35.2) 54" exp(s-Pt) —s.P exp(s:21) ],
(73)
530 = —(ApkT/I) {1F[1— (20 /Ap*%T)]}. (74)

The available experimental data for CO are dis-
played in Fig. 4. At present, they are insufficient to
permit the exact determination of Ap. Nevertheless, it

® The choice of memory function should be such that in the
limit as a—0, the dynamical behavior of the system becomes that
of the free particle. In the case of translational motion, the simple
tial form for K has this property. However, in the case

of the dipolar correlation function, in the zero interaction limit
the autocorrelation function osdllnles. Thus, a better choice for K
would be the free-rotation dipolar correlation function multiplied
b) an cxpomnlhl decay term. Since the analysis cannot be carried
t;imexm‘tly for this choice of K, we have considered the simpler
t K is an exponential, The reader should note, however,

lh:u because of this choice of K our treatment of dipolar correla-
tion is Jess satisfactory than our treatment of translational motion,
and we do not recover simply the free-rotation behavior as o—),
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F16. 4. The dipole correlation function, @p(#*), from Gordon's
caleulation on carbon monoxide: pure liquid (1); pure gas just
above the critical point at 1520 atm (2) and 270 atm (3), and
with argon at room temperature at 850 atm (4) and 270 atm (5);
(6) is a typical curve as obtained from Eq. (73).

is clear that Eqs. (73) and (74) reproduce the striking
dependence of ¢p on the pressure. For, when Ap is
small, 5,2 and s_P are complex and ¥p(f) has positive
and negative portions, whereas when Ay is large, 5,?
and s.? are real, and ¥p(t) decays monotonically.

A qualitative argument can be based on the relative
insensitivity of the positions of the minima in Yp(()
in Fig. 4. Provided that Ap* is small relative to 21/kT,
Eqs. (73) and (74) reproduce this behavior. Physically,
it can be argued that at sufficiently high pressures the
dipole moment is randomized within one period of
rotation; whereas, at low pressures the dipole moment
is randomized after many rotational periods, Clearly,
the autocorrelation function ¥p(t) will oscillate at low
pressures, whereas, it remains positive at high pressure.
Ap will therefore be larger at high pressure. This is
in qualitative accord with observation.

We conclude that, although a quantitative test can-
not presently be made, the exponential memory ansatz
is consistent with the available dipolar autocorrelation
functions.

VIII. DISCUSSION

In this paper we have demonstrated that it is
possible to obtain autocorrelation functions for a
variety of phenomena using a simple ansatz, the
exponentially decaying memory function, within the
framework of an exact non-Markoffian representation
of the integrodifferential equation defining the auto-
correlation function. Although the choice of an ex-
ponentially decaying memory function can be somewhat
motivated by consideration of the effect of as a (nearly)
Poisson process, or by consideration of the effect of
interactions as a Gaussian Markov process for which
the correlation function is an exponential decay, it
must be recognized that the success of the simple
two-parameter kernel K(a, v; {) in reproducing the
observed autocorrelation functions is possibly fortui-
tous. At present we can present no real justification
for the choice of functional form of K («, v; ).
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Putting aside the justification for the ansatz used, it
is important to note that many subtle characteristics
of the autocorrelation functions of dynamical variables
are simultaneously consistent with one simple form for
the memory function. This observation suggests that
the form of the memory function is a more general
characteristic of the dynamics of the system than are
other representations of dynamical coherence. Indeed,
it might be possible to reformulate the representation
of linear transport coefficients to take advantage of
this particular feature of the memory-function analysis.
It is our opinion that such a reformulation would be
fruitful in suggesting new approximation schemes which
might be suitable for the description of dense, strongly
interacting systems.

The general characteristics of the time dependence
of the autocorrelation function can be elucidated by
examining two limiting cases. Consider first the high-
density limit. Since @f is proportional to the mean-
square force acting on a molecule, which increases as
the density increases, while 8 also increases as the
density increases, (48/a) increases as the density in-
creases. Referring to Eq. (45), it is seen that the roots
are complex when (48/a)>1, whereupon the auto-
correlation function displays a negative region which
is more pronounced the higher the density. In the low-
density limit both 8 and « tend to zero in a fashion
such that §/« tends to zero. Referring again to Eq.
(45), it is seen that the time dependence of the auto-
correlation function is now a simple exponential decay,
Both of these limits are in agreement with the available
data, as has been described in Secs. V, VI, and VII.

It is interesting to examine the momentum auto-
correlation function in the high-density limit from still
another point of view. If the negative region of the
momentum autocorrelation function is interpreted as
indicating that, on the average, a displacement of a
molecule towards its near neighbors is followed by a
displacement back towards the original position, the
exponential memory ansatz can be tested for internal
consistency with a simple model. Let the average
distance a molecule with given initial velocity travels
before its momentum is reversed by interaction with a
near neighbor be (AR;).. Now, the average velocity
of a molecule at time /, given that the initial velocity
is v;(0), is approximately v1(0)y(f). The average dis-

placement is then
t 1)
(&Ry(1) = [ ()t = [w(O)p(e)ar. (75)
o 0

We seek the values of (AR;(¢))' corresponding to a
turning point in the motion, i.e., when (v;(¢) )=0. Such
a turning point occurs at the time {4 defined by

y(l) =0, (76)

or

L)
(AR (1) ) = [ Vi (0)y(¢')dr'. (77
0
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For the case that v;(0) is equal to the root-mean-square
velocity, corresponding to the most probable initial
velocity, it is found that (AR;)' has the value 0.25 A,
corresponding to an average internuclear separation of
3.67 A. Since the negative region of the autocorrelation
function is interpreted as arising from the (near)
reversal of momentum resulting from the first inter-
action experienced by a molecule on leaving the centro-
symmetric position at the center of a shell of near
neighbors, the average internuclear separation for
interaction ought to be equal to the equilibrium
average internuclear separation. From the computed
radial distribution function of Rahman,?® this latter
distance is 3.67 A, demonstrating both the internal
consistency of this physical interpretation and the
accuracy of the exponential memory ansatz with
respect to reproduction of the first zero of ¢(¢).

Finally, we note that Mori® has presented a con-
tinued fraction representation of time correlation func-
tions. Mori’s formalism differs from, but is closely
related to, the general analysis of Sec. I1I of this paper.
Indeed, Mori finds that, if the continued fraction is
truncated by assuming that the Laplace transform of
the autocorrelation function of the nth-order random
force is independent of the Laplace variable (see
Mori’s paper for the definitions of these terms), then
the momentum autocorrelation function is identical
with that induced here [see Appendix B; Eqs. (B14),
(B15), and (B16)]. Also, the differential equation for
the linear-momentum autocorrelation function, deduced
with the use of the exponential memory ansatz, is the
same as the differential equation for the momentum
autocorrelation function deduced by Gray from a
model described in the introduction.® The analysis
proposed here is considerably more general than that
of Gray, since the general integrodifierential equation
for the autocorrelation function is exact, and therefore
consistent with many possible kinetic equations. Never-
theless, the deduction of the same autocorrelation func-
tion from three very different points of view suggests
that the features displayed are rather general charac-
teristics of the liquid phase and not anomalies of the
approximations used.
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AUTOCORRELATION FUNCTIONS OF DYNAMICAL VARIABLES

APPENDIX A: SOME PROPERTIES OF THE
MEMORY FUNCTION

In the main text we have stated that K(f) must be
an even function of ¢ and have zero derivative at /=0,
This is easily demonstrated using the expanded form
of the propagator, which converts Eq. (31) to

K(0) =§% (LD -[i(1—F) LM (ieDT) ).

(A1)
Consider the term arising from n=1. This is
((ie™) -[i(1—) N ](ieNT))
= (i£D) [ (i£™D) )
—((ie™0) -[ieeM (ie™0) ]). (A2)

But, by reversal of coordinates and momenta it is
seen that

((ieWU) -[ie™ (i™0) J) =0,

((ieW0) -[i@e™ (ie™U) ])
=((ie™0) -U)(U-[ie™ (i£™0) ])
=—(0-U){(1£MT) - (ieVT) )=0, (A3)

because (U-U)=0. By iteration of these arguments it
can be shown that all terms arising from odd values
of # in Eq. (A1) vanish, and therefore that K(¢) is an
even function of ¢ with zero slope at the origin.

APPENDIX B: AN ALTERNATIVE DERIVATION
OF EQ. (20)

Equation (20) plays such a fundamental role in our
analysis and is so deeply connected with the nature of
the autocorrelation function that it is worthwhile to
derive it from linear regression theory. In the process
of making this derivation, some further insight is
obtained into the nature of the exponential memory.

Consider a system described by two sets of variables.
The sets are defined as follows: « variables are defined
by the condition «(p)=a(—p) (even parity in the
momentum), while § variables satisfy the condition
—B8(p) =B(—p) (odd parity in the momentum). In
terms of the arguments used in Sec. IV, the molecular
velocity is a @ variable, and the force acting on a mole-
cule is an « variable. Let («««)*# refer to an ensemble
average conditional on the initial values a and B
Linear regression theory® then defines the time rate of
change of the average values of « and § variables to be

(9/8t) (@) Ps=Loq* (X)oFot-Log= (Y )5,

(/1) (B)"Po=Lsa* (X)*Ps+Lag- (Y%, (BI)
where the force terms X and Y are defined by
X=9A5/da,
Y=0AS5/a8, (B2)
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where
AS=—lg:ea—im:ef—in:Ba—1ih:3B, (B3)

and g, h, m, n are the usual matrices (dyadics) con-
structed from the derivatives of the entropy with
respect to the variables « and . Noting that g and h
are even on inversion of the sign of 8, while m and n
are odd on inversion of the sign of §, the Onsager
reciprocal relations are obtained. The coefficients Ly
take the form

WS |
l"=_;l:To;-f/Aij(“o'l’o)P(ﬂﬁ;vol“)';l)

Xdudvipgdve; w,v=a,8, (B4)

with P(uo, » | u, »; t) the probability of finding the
system with variables g, v at time 4, given that the
values of these variables were wy, w at time zero,
while f( o, o) is the probability density of finding the
variables to have the values wo, v at time zero.

To obtain the form of the equation for the velocity
autocorrelation function we take

a=F,/m,
B=v.
In the limit as (=0, A= ay, so that

(B3)

lm (A)"%= o= [ AGP (e, G| ,8; ) dad, (B6)
which leads to
Lor=— 7 f o /o, B0 o=
= k L2 ap, =4,

1
Lou = — 2 [ @ o, B d e

s
k

after application of parity arguments. The reciprocal
relation Los= —Lg,'* allows us to write

Lea=(g*) =g, (B8)

where the superscript tr indicates the transpose of the
dyadic, and the second member of Eq. (BS) follows
from the fact that g is a symmetric dyadic. Since Ly, #0,
the use of (X)*#s=—g- (a)*® and (Y )*#e=—h- (3 )o@
leads to

(9/01) (a)Ps=—Laa*g* (@)*#s—g~I+h- (B ),

(/1) ()= (a)*@s, (B9)

from which, by combination of the two equations (B9),
it is found that

(8%/08) (B)Pe=—Laa*g- (3/01) (B)*P+—g"+h- (§ ).
(B10)

(moay)=—g~", (B7)
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Multiplication of Eq. (B10) by 8o and integration over
the initial distribution of values of « and @, leads to
an equation for the autocorrelation function () =

(8(0) () )/{8(0)%). This equation is
(0*/08)s(1) = —Laatg[ N (1) /0t ]—g " :s(1).  (B11)

Equation (B11) is obtained from Eq. (20) when the
memory function is chosen to be an exponential decay.
To show this, let A=L.atg, ¥=g':h. Then, using the
normalization condition ¢3(0) =1, and taking the
Laplace transform of (B11), it is found that

sa(s) —s+A[sPs(s) —1]+Ps(s) =0,

the inverse transform of which, using the convolution
theorem, is

u(t)
at

(B12)

= —7/‘41‘ exp(=Ar)ys(i—7). (B13)
0

Thus, the linear-regression analysis implies Eq. (20)
with the special kernel K(7) =v exp(—»A7), and with
v and A (before called ) just the parameters described
in Sec. IV.

APPENDIX C: CONNECTION WITH THE KUBO,
YOKOTO, NAKAJIMA (KYN) DERIVATION*

Itis interesting to notice the close connection between
the analysis presented in Sec. ITI and Appendix B and
the rigorous version of the KYN derivation by
Zwanzig® The set of equations (41) and (44) of
Ref. 23 is equivalent to the combination of Eqgs. (16)
and (39) of this work, once it is recognized that the
transport coefficients can be expressed in the form

Lih= [ de (T (0)T (1)), (1)
0
with
U=8({8#)),
U=a B#), (C2)
and
kb = (BofBo) (C3)

[with the variables, «, 8, as defined in Appendix B,
(B5), the transport coefficient would be {/m, i.e., the
diffusion coefficient in momentum space]. In our
notation, Zwanzig's result [Eq. (45), Ref. 23] reads

Lh=K(s) = [[R() F/[s+R ()T},  (C4)

which is an exact equation, within the limits of the
fluctuations regression assumption, as applied to the
non-Markoffian transport equation. It is then a matter
of simple algebra to show that Eq. (C4) is equivalent
to Eq. (21) of Sec. III.

# R. Kubo, M. Yokota, and S, Nakajima, J. Phys, Soc. Japan
12, 1203 (1957).
# R, Zwanzig, J. Chem. Phys. 40, 2527 (1964).







