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Summary 

Recent interest has arisen in the possibility that changes in the Earth’s 
inertia tensor accompanying earthquakes may provide the excitation for the 
‘ Chandler ’ wobble of the rotation axis. We present a simple procedure for 
calculating these changes based on the elastic reciprocal theorem and 
Volterra’s formula. In particular, if T is the shear stress created in the 
slip direction on a prospective fault surface when a perfect, unfaulted 
sphere is steadily rotated at unit angular velocity about some axis, then 
the change in moment of inertia about that same axis is shown to be 
twice the work of z when carried through the actual slip displacement 
which occurs in faulting. It is shown that changes of products of inertia 
may be computed in a similarly simple way. The method is applied to two 
homogeneous Earth models, the relation to previous treatments is dis- 
cussed, and it is noted that inertia changes accompanying less-catastrophic 
mass movements may be calculated in a similar way. The development in 
the body of the paper is in the context of classical linear elasticity. An 
Appendix extends the reciprocal theorem and Volterra’s formula, and 
hence the basis for similar inertia change calculations, to the linearized 
incremental deformation of self-gravitating, initially stressed elastic 
systems, such as real-Earth models. 

Introduction 

Our paper is concerned with calculating the changes in the inertia tensor of an 
elastic sphere due to mass displacements accompanying slip over an interior surface. 
The calculation is of interest to the theory of the Earth’s rotation, in that sudden 
changes in the Earth‘s inertia accompanying earthquake faulting will alter the 
position and, more importantly, the subsequent motion of the rotation pole relative 
to an Earth-bound observer. In particular, Mansinha and Smylie (1967) and Smylie 
and Manshinha (1968) have re-awakened interest in earthquakes as a possible 
excitation source for the ‘ Chandler ’ wobble of the rotation pole. 

Ben-Menahem & Israel (1970), basing their study on the earlier work of Ben- 
Menahem & Singh (1968), have presented a solution based on classical linear 
elasticity for the inertia changes due to faulting in a non-gravitating, homogeneous 
and isotropic sphere. Also, Smylie & Mansinha (1971a) and Dahlen (1971a) have 
separately extended the calculations to the faulting of ‘ real Earth models ’ of self- 
gravitating spheres, with large initial hydrostatic stresses, radially inhomogeneous 
properties, and fluid cores. These were done according to the linearized theory of 
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small deformations from an initially stressed state. (There are some important 
differences in the core models and core-mantle boundary conditions in the two cases 
(see the discussion by Dahlen 1971b, and reply by Smylie & Mansinha 1971b), but 
these need not directly concern us here.) 

Our purpose is to show that there is a simpler way to the final results. This involves 
a direct application of the elastic reciprocal theorem and requires, for calculation of 
the inertia changes, that one know only the stress distribution which results when the 
elastic earth model in question is steadily rotated about some central axis. This 
brings a remarkable unity to the theory of the Earth's wobble, because this very same 
elasticity solution is (at least in principle) a pre-requisite to deriving the differential 
equations of the wobble, for which the inertia changes are thought to act as an 
excitation source. 

Here we refer to the elastic bulging of the Earth about its rotation axis and the 
consequent effects on the equations of the wobble, including the alteration of the 
10 month rigid-body period to the 14 month Chandler period (see, for example, 
Munk & MacDonald 1960). Such steady rotation solutions, from which our pro- 
cedure allows calculation of inertia changes in faulting, have been given by Chree 
(see Love 1927, art. 174-5) for a homogeneous non-gravitating sphere or spherical 
shell, by Love (art. 177-179) for a homogeneous but incompressible, self-gravitating 
sphere and by Takeuchi (1950) for a radially non-homogeneous real-Earth model, 
with a fluid core, incorporating self-gravitation and large initial hydrostatic stresses. 

The development in the body of the paper is in the context of classical linear 
elasticity. However, both Dahlen (1971a) and Smylie & Mansinha (1971a) have 
shown that the reciprocal theorem and Volterra's formula can be extended to the 
linearized incremental deformation of self-gravitating elastic systems in states of 
large initial hydrostatic stress. We give an elementary derivation of this extension 
of the reciprocal theorem and Volterra's formula in the Appendix, providing also 
their generalization to cases of non-hydrostatic initial stress states. With these 
developments, the procedures given here for calculating the inertia changes are 
applicable as well to real-Earth models. 

J. R. Rice and M. A. Chlnnery 

Reciprocal theorem 
Consider a spherically symmetric distributed mass M, bounded by an outer 

spherical surface and containing an internal surface I: on which slip displacements 
are to be prescribed. The sides of I: are denoted X', I:- and these have opposite 
unit outward normals v', v- [directed so that v- points from the (-) to (+) side]. 
Let u and u denote the additional stress and displacement fields induced when relative 
slip displacements Au = u' - u- are prescribed on I: in such a way that no external 
force layer need be applied to maintain equilibrium; i.e. (v.u)++(v.u)- = 0. The 
changes in the inertia tensor may be calculated as suitable weighted averages of u. 

Now let f* be an arbitrary self-equilibrating field of body force per unit mass, and 
let u* and u* be the stress and displacement fields which result when this is applied 
to the same spherically symmetric distributed mass M, but in the absence of any 
slip on I: (so that both u* and u* are continuous across I:). 

We have thus defined two elastic fields u, u and u*, u* in the region bounded by 
the outer spherical surface and by the internal surface I:. Both leave the outer surface 
traction free, and the former has zero associated body force. Hence, by the reciprocal 
theorem, 

( f*.udm+ \ [(v.cr*.u)++(v.cr*.u)-]dX = [ [(v~cr.u*)'+(v.u.u*)-]dC 
M r r' 

(1) 
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The Earth's inertia tensor 81 

where we write v. a, v. a* for the surface forces of the two fields. 
But since u* is continuous across Z and (v . a)' + (v. a)- = 0, the integral on the 

right side vanishes. Further, since a* is continuous, the integrand on the left side 
may be written -v.a*.(u+-u-) = -v.a*.Au where v = v- = -v+. 

Thus 

1 f*.udm = / v.a*.AudZ. 
M i 

If we now define s as a unit vector in the slip direction at every point of Z, so that 
Au = SAM where AM is the slip magnitude, this becomes 

1 f*.udm = [ z*AudZ. 
M i 

(3) 

Here T* = v.a*.s is the shear stress induced on Z by f *. This last equation is 
Volterra's formula, at least when f * is identified as a unit point force in some direction 
so that the left side is the component of u in the same direction. It is seen in the 
Appendix that the same equation applies in the case of large initial stresses, with 
t* defined as in equation (A10). 

Inertia changes 

The inertia tensor of a distributed mass M is 

J = I [l(x.x)-xxldm 
M 

(4) 

where x is the position vector of the mass element dm, and the moment of inertia 
about an axis having the orientation of a unit vector n is 

J(") = n . J . n  = t2dm 
M 

where 5 is the perpendicular distance from the axis to dm. Thus, when the displace- 
ments u are given to the mass elements of the sphere by slip on Z we have a change in 
moment of inertia 

AJ'") = n.AJ.n = 2 J &dm (6) 
M 

to first order, where ug is the displacement component in the radially outward direction 
from the axis. 

Now, to see how this inertia change is calculated from the steady rotation solution, 
let us suppose that an unslipped sphere is spun at unit angular velocity about the 
axis n. This creates a centrifugal body force having radial component equal to 5 
with all other components vanishing. Thus AJ(") is simply twice the work done by 
this body force on the displacements due to slip. 

We therefore conclude, in view of Volterra's formula (equation (3)) that the 
change in moment of inertia is given by 

where z(") is the shear stress on the fault surface induced by steadily rotating the 
sphere at a unit angular velocity about the axis n. 
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82 J. R. Rice and M. A. Chinnery 

The same formula may also be applied to the oZ-diagonal components of AJ (i.e. 
the products of inertia) by recalling from the laws of tensor transformation in a 
plane that off-diagonal components are expressible as differences between normal 
components at k45". That is, if (xl, x2, xj) are the Cartesian reference axes and if 
directions n and m are defined by 

J2n = (1, l ,O),  J2m = ( 1 ,  -1,O) 

then by direct calculation one has 

AJ(")-AJ(")= n.AJ.n-m.AJ.m = 2AJ12. 

Thus AJ12 is the work done on the slip surface by the difference between the shear 
stress which results from rotating at unit angular speed about the axis n and that 
which results from rotating at unit angular speed about the axis m. 

This is the way in which the elastic stress distribution for steady rotation allows 
a complete determination of the changes in all components of the inertia tensor. A 
somewhat more systematic procedure from the point of view of calculations is as 
follows: Let us write the force field for steady rotation at unit speed about the axis 
n in the form 

f(") = (n.n)x-n(n.x) = V(+n2r2-+x.N.x) (8) 

where n2 = n.n, r2  = x . x  and 
N = nn-$nZ1. (9) 

(Here it is convenient not to take advantage of the fact that n is a unit vector.) The 
first term in the force potential of (8) results in a purely radial force whereas the 
second is readily shown to be a spherical harmonic potential of degree 2. 

Now, this force field is a linear function of n2 and of components of the symmetric, 
deviatoric tensor N. Hence, by elastic linearity, the resulting stress field a(") and the 
associated shear stress z(") must be linear in these same variables, and may therefore 
be expressed in the forms 

(summation on repeated indices) where the coefficients diJ) and dii), which we agree 
to choose so as to be symmetrical in i and j ,  are functions of position in space or, for 
the latter, of position on X only, and are completely independent of the direction 
chosen for n. 

Jf we insert the latter of equations (10) into equation (7), we have in Cartesian 
component form 

(10) ,p = &J) @) = 
i J  3 i J  

AJ@) = ni nj AJ, = 2 n, n, tfii) AudX. 
z I 

Since this must hold for any choice of n, we therefore have the general result 

AJiJ = 2 diJ) AudC. 
z I 

Further, since dij) will be a smooth function of position over size scales very much 
larger than typical fault dimensions, one will generally not have to integrate, but may 
instead write 

where here Au is interpreted as the area average slip displacement and d i j )  is evaluated 
at a representative point of X. 

AJiJ = 2z(in AU X (13) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/29/1/79/625283 by guest on 16 August 2022



The Earth's inertia tensor 83 

Hence we have reduced the calculation of AJi, to the determination of the sym- 
metricized coefficient dij) of the product nin, in an expression for the shear stress 
8" induced on Z by steady rotation at unit speed about the axis n. Alternatively, by 
directly identifying the symmetricized coefficient of n,n, in equation (8) for f("), it 
can be shown that r('l) is simply the shear stress induced by the force field. 

f"" = V[+r26ij-+(xix,-+r26ij)] 

where, as in equation (8), the first term results in a radial force and the second is a 
spherical harmonic potential of degree 2. 

It may be also noted that since only n2 = n12 +nz2 +n,' enters the first term of the 
force potential in equation (8), that term can affect only the computation of the on- 
diagonal components of AJ. The off-diagonal components, which are of interest for 
the Chandler wobble, depend only the 2nd degree spherical harmonic term. Indeed, 
Ben-Menahem and Israel (1970), Dahlen (1971a), and Smylie and Mansinha (1971a) 
have noted that off-diagonal components are similarly dependent only on the 2nd 
degree spherical harmonic terms in their analyses. 

Application to homogeneous Eartb models 
We here calculate the inertia change coefficients z('j) from two simple, homo- 

geneous earth models. First, consider the model studied by Ben-Menahem & Israel 
(1970) of a homogeneous, isotropic, non-gravitating sphere of radius a. From Love 
(1927), the displacement corresponding to the force field f(") of equation (8) is 

V[r*(x.N.x)] 
28(A+2p) 

,,(n) = pa2 nz 
15(1+2p) ( 3A+2p a' 

where L and p are the Lam6 constants. Love's presentation has been followed 
directly, the fist term corresponding to the purely radial force and the last three to 
the 2nd degree spherical harmonic. 

The associated stress state is 

d") = 11(V. U(")) + p[(Vu("') + (VlP)*] 

51 + 4p (a2 - r 2 )  N] 
31+2p 
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84 J. R. Rice and M. A. Chinnery 

and from this we may compute the shear stress d") = v.u(").s at a point on the fault 
plane as 

51 + 4p [ 3A+2p 
+r' s,(e.N.v)- a'+ ___- (a'-rZ) (17) 

Here we have noted that v . s  = 0, have written the position vector x as er so that e 
is a radial unit vector, and have introduced the notations v, = e.v and s, = e.s  for 
the radial components of v and s. 

To obtain the inertia change coefficients diJ), we simply write d") in the form of 
equation (10) by expressing n2 and N in component forms and identifying the 
symmetricized coefficients of n, n,. Thus, recalling that AJi, = 2d") Au Z (at least 
when no integration is necessary) we find that this Earth model leads to the inertia 
changes 

2(41+3p)a2-(51+4p)rZ 
(vi sj + vj si). 191+ 1411 - P  

The result is particularly simple for a strike-slip fault for then v, = s, = 0 and 
only the last term remains. AJ, is then tensorially distributed among its components 
in proportion to (vi s,+ vj si ) ,  the latter having the form of a pure shear if considered 
as a strain. By referring our results to geographic and epicenter co-ordinates, we 
have checked that equation (18) is indeed in agreement with the corresponding result 
of Ben-Menahem & Israel (1970). 

Now, to study the effect of self-gravitation in the simplest possible context, 
consider Love's (1927, art. 177) model of a homogeneous, isotropic, incompressible 
(A + GO), self-gravitating sphere under an initial state of hydrostatic pressure. The 
first term in the force potential of equation (8), corresponding to a purely radial force, 
induces zero displacement, while the remaining 2nd degree spherical harmonic causes 
displacement expressible from Love's solution as 

2pa' 
19P 19P 

-- (x .N.x)x-  ~ V(x.N.x)] 

where g is the gravitational acceleration at the Earth's surface. The bracketed term 
is the limit as 1 + 00 of the displacement field given by equation (15), reflecting the 
well-known result of this model that displacements are simply reduced by the factor 
(1 +2pga/19p)-' from those for the corresponding non-gravitating Earth model. 
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The Earth's inertia tensor 85 

The hydrostatic part of the stress field a(") cannot be directly computed from u(") 
because of incompressibility, but this is of no consequence since only the shear stress 
d") is of interest. In fact, from what has been noted above, it is clear that d") will 
simply be given by the factor (1 +2pga/19p)-' multiplied by the limit of equation (17) 
as 1 --t co. Hence, by taking the same limit in equation (18), the inertia changes 
predicted from this model are 

+ $gpr2 [vr(ei sj + ej s i )  + sr(ei vj + ej vi)l 

That is, the inertia changes are reduced by the factor (1 +2pga/19p)-' from those 
for the corresponding non-gravitating model. 

To estimate the factor let us recall that (1 + 19p/2pga)-' is the elastic Love number, 
according to this model, for the ratio of the tidal bulge of an elastic sphere to that of a 
fluid sphere. If, following Takeuchi's (1950) analysis of a real-Earth model, we take 
a value of 0.29 for the Love number, the factor by which the inertia changes are 
reduced through consideration of self-gravitation is 0.71. 

Our procedure could also be applied to prediction of the inertia changes from a 
real-earth model by adopting Takeuchi's (1950) analysis for the stresses induced by 
steady rotation. We have not carried out the necessary numerical evaluations, 
although this is under investigation as a possible independent check of the conflicting 
results of Dahlen (1971a) and Smylie & Mansinha (1971a) (seeDahlen 1971b). Smylie 
and Mansinha report inertia changes from their real-Earth model which are about 3 
times those obtained for the homogeneous, non-gravitating Earth model of Ben 
Menahem and Israel in the case of the 1964 Alaska earthquake, while Dahlen obtains 
somewhat smaller changes. Our simple assessment of self-gravitation effects suggests 
that it is the elastic inhomogeneity of the real Earth models which is most important 
in creating these differences. 

Inertia changes in general mass re-distributions 

The formalism outlined here for computing inertia changes in faulting can also 
be extended to include the inertia changes arising over longer time scales from sources 
such as creep deformations and progressive sliding along plate boundaries (although 
it is not clear that input data is known with sufficient accuracy to allow numerical 
evaluations). Let us suppose that during some given time period relative slip dis- 
placements Au due to sudden faulting or progressive sliding occur over a number of 
surfaces, denoted collectively by E, within a sphere. If all associated deformation of 
the material outside these slip zones is elastic, equations (7) and (12) apply for the 
inertia changes during this time period, with the understanding that the integral is 
to be carried out over all slipping surfaces. 

More generally, however, the material of the sphere will undergo both elastic and 
inelastic deformations. If E is the total strain accumulated at some material point 
during this time period and G the corresponding change in stress, we may define an 
elastic portion E~ of the strain as that which would occur if the material had responded 
to the stress change G in a purely elastic fashion. An inelastic (or plastic) portion of 
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86 J. R. Rice and M. A. Chinnery 

the strain is then defined as E~ = E - E ~  corresponding to that part of the deformation 
due to creep and/or plastic flow. It is then straightforward to generalize the Reciprocal 
Theorem and obtain in place of (3) 

1 S f * . o d m  = 7* AudX+ 7- IT* : epdm. 
M r. M 

Hence, by following the same argument as presented earlier, the inertia change 
expressions of equation (7) and (12) become 

where d"), d i j ) ,  T("), 7( i j )  are the stresses as defined earlier from the steady rotation 
solution. 
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Appendix 

The reciprocal theorem and Volterra’s formula for incremental deformations of initially 
stressed, self-gravitating elastic systems 

Dahlen (1971a) and Smylie & Mansinha (1971a) have shown that the elastic 
reciprocal theorem and Volterra’s formula may be extended to treat the linearized 
incremental deformations of a self-gravitating, elastioreal-Earth model, with fluid 
core, in an initially stressed state of hydrostatic pressure. Their methods involve a 
detailed proof from the continuum field equations of equilibrium and gravitation in 
coqiunction with an elastic incremental constitutive law. Our purpose here is to 
provide a simple derivation of the extension of the reciprocal theorem and Volterra’s 
formula (and hence also of our method of computing inertia changes) to such self- 
gravitating elastic systems, under general initial stress states. 

The argument parallels a derivation given in the context of elastic structural 
mechanics (Southwell 1936). It is simplest to begin in terms of the statics of a discrete 
particle system with elastic and gravitational forces of internal interaction between its 
respective parts. 

Suppose that such a system is in equilibrium under a set of external generalized 
forces Q1,  Q2,  .. ., Q,, and let ql ,q2,  . . ., q, be the associated generalized displacements, 
defined so that Qidqi  is a work increment. We measure the q’s  from zero when the 
body is in an initial equilibrium state under a set of forces QiO. The work of the 
internal elastic and gravitational forces in any increment of deformation can be 
expressed as -dU and -d  V ,  where U is the elastic potential energy (or ‘ strain energy ’) 
and I/ is the gravitational potential energy. Hence, by the principle of virtual work, 

for any incremental change from one equilibrium state to another. 
Now, since the equilibrium states are fully determined by the forces Qr (at least 

in a sufficiently small neighbourhood of Q:), U, V and qi may be regarded as functions 
of the Q’s Further, if we henceforth consider small incremental deformations from 
the initially stressed state, the q’s may be regarded as linear functions of the force 
differences Qi-Q:. Let qi  be the displacements produced by the force differences 
Qi-Qio and qi* those by the force differences Qi*-Q:. 

Now suppose the forces are increased from Q: to Qi by an increment Qi-Qio ,  
causing the displacements qi and then further increased by the increment Qi*-Q,” 
(to a final set of forces Qr*+ Q, - Q:), causing the further displacements qi*. From 
(Al) and the assumed linearity, the change in U + V due to the first increment is 
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and the further increase in the second increment is 

J. R. Rice and M. A. Chinnery 

Qiqi* +3(Qi*-Qi0)4i*, 

the first terms in each case being the work of the pre-existing forces. Hence, upon 
adding and rearranging terms, the total energy change is 

A(U+ J') = Qi0(4i +4i*) +3(Qi-Qi0,4i +3(Qi*-Qi0)qi* + (Qi-Qi")qi*- (A21 

If instead the increment Qi* - Q: were first applied, the resulting energy change would 
differ only in that the last term would be (Qi*-QiO)qi.  But since U and V are fully 
determined by the forces, the energy change cannot depend on the order of application 
of the force increments and we therefore conclude 

( Q i  - QiO> 4 I* = (Qi*-  QiO> 4 i (A31 

which is the desired extension of the reciprocal theorem. 
The argument is extended at once to a continuous system such as a real-earth 

model. In this case Q i d q i  of (Al) is replaced by the work increment of distributed 
external body and surface forces, whereas V is the total gravitational potential energy 
and U the total strain energy, including that of the solid mantle and compressible 
fluid core. 

It is then important to note that associated forces and displacements must be 
related in the work increment sense. Hence, if the surface integrals over Z in equation 
(1) are viewed as being carried out relative to the position of Z in the initial spherically 
symmetric reference state, the stress Q must be interpreted as the change in ' nominal ' 
stress T (defined so that v.TdI: is the force acting on the area element of initial size 
dZ  and with initial unit normal v). Thus, equation (1) becomes 

I f * . udni + 1 { [v. (T*- To). u]' + [v. (T* -To) .u]-} dI: 
M L 

= 1 {[v.(T-T~).~*]++[~.(T-T~).~*]-} d Z .  (A4) 

Since (v.T0)' and (v.T*)' are the negatives of their values on the (-) side, the 
first surface integral becomes 

- 1 v.(T*-To).AudZ 

I: 

r 

where again v with no superscript denotes v- .  
For the same reason, terms involving To may be deleted from the second integral. 

We cannot, however, assert that (v.T)+ +(v.T)- = 0 since these surface forces of 
the faulted state equilibrate one another at positions which are shifted by Au relative 
to positions in the initial reference state. To simplify the second integral, let A denote 
the surface, after faulting, which was initially Z. If z denotes position in space, a 
material point at z after faulting was initially at x = z-u. If we consider an area 
element d A  of the deformed fault surface, at position z, equilibrium of the (+) and 
(-) forces on it is therefore expressed by 

( V . T ~ ) : = ~  -11+ + ( v . T S )  x = z  -u- = 0. 

Using the symbols F', F- for these force intensities, the second integral may therefore 
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be written as 

89 

1 {F+(z). u*(z-u+) +F-(z). u*(z -u3} dA(z) 
A 

= 1 {F+ . [u*-u+. Vu*] +F- . [u*-u- . Vu*]} dA 
A 

= 1 F - .  [(Au).Vu*]dA = 1 V.T'.(VU*)'.AU~Z. 
A z 

Here in the second step we have written u*(z-u+) = u*(z)-uf .Vu*, in the third 
we have used continuity of u* and the result F+ +F- = 0, and in the fourth we have 
expressed F-dA as v.TodZ, the neglect of higher order terms in the second and 
fourth steps being consistent with a linearized theory for the incremental deformations. 

Hence, the generalization of equation (2) is 

1 f*.udm = v-[T-T~+T~.(VU*)~].AU~Z (A7) 
L s 

M 

Dahlen (1971a) and Smylie & Mansinha (1971a) have worked in terms of the change 
in true (or ' Cauchy ') stress t at a given material point. This is related to the nominal 
stress to first order in the displacement gradients by (e.g. Prager 1961, p. 202, 
equation (4.14)), 

t = T- to(V .u)+ (VU)~. to (A81 

Note that to = To and that t is always symmetric whereas T is so only initially. 
Hence, if E (in Dahlen's notation; z in that of Smylie and Mansinha) denotes the 
change in true stress at a given material point, 

E = T-to-to(V.u)+(V~)T.to (A9) 

and, writing Au = sAu as before, equation (A7) becomes 

J f*.udm = J z*AudZ, 

where (AW 
M L 

t* = V .  [E*+to(V.~*)-(V~*)T.to+to.(V~*)T].~. 

This rigorously generalizes Volterra's formula to circumstances of linearized 
incremental deformations of self-gravitating initially-stressed elastic bodies. In the 
case when the initial stress is hydrostatic, to = -POI and all the additional terms 
dependent on Vu* disappear, by cancellation and because v . I .  s = 0, so that 
7* = v.E*.s. This is the special version of (A10) derived by Dahlen and Smylie and 
Mansinha. The more general version allows calculation of earthquake displacement 
fields and (identifying E* and Vu* as the stress increment and displacement gradient 
due to rotation at unit speed about a central axis) inertia changes in non-hydrostati- 
cally stressed Earth models. 

The incremental linear elastic consitutive law to be used must, of course, be 
consistent with the existence of a strain energy function. This means that E must be 
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given by an equation of the form (Prager 1961, equation (2.6), p. 206 and equation 
(4.13), p. 201) 

E = ~'.(VU)+(VU)~.~'-~'(V.U)++.Y : [(VU)+(VU)~]. (A1 1) 

Here 8,, is the second mixed partial derivative of the strain energy density, per unit 
initial volume, with respect to the Lagrangian strains etj  and ckl, evaluated in the 
initially stressed reference state when E = 0, where 2~ = (Vo) + ( V U ) ~  + (Vo) . ( V U ) ~ .  
For an isotropic material, this may be expressed in the form 

E = AI(V. U) + p [(VU) + ( V U ) ~ ]  

as adopted by Dahlen and Smylie and Mansinha, only when the initial stress state is 
hydrostatic. 
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