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The present paper deals with the classical problem of linear sound propagation in tubes with
isothermal walls. The perturbation technique of the method of multiple scales in combination with
matched asymptotic expansions is applied to derive the first-order solutions and, in addition, the
second-order solutions representing the correction due to boundary layer attenuation. The
propagation length is assumed to be so large that in order to obtain asymptotic solutions which
extend over the whole spatial range the first-order corrections to the classical attenuation rates of the
different modes come into play as well. Starting with the case of the characteristic wavelength being
large compared to the characteristic dimension of the duct, the analysis is then extended to the case
where both of these quantities are of the same order of magnitude. Furthermore, the transmission
line parameters and the transfer functions relating the sound pressures at the ends of the duct to the
axial velocities are calculated. ©2004 Acoustical Society of America.@DOI: 10.1121/1.1639323#

PACS numbers: 43.20.Mv, 43.20.Bi, 43.20.Hq@MO# Pages: 534–555
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I. INTRODUCTION

The subject of linear sound propagation in rigid tub
with isothermal walls has been attracting considerable in
est over the years. The ‘‘exact’’ solution for tubes of circu
cross-sectional shapes derived by Kirchhoff1 ~see also
Rayleigh,2 pp. 319–328! accounts for the effects of shea
viscosity and heat conduction on the attenuation of so
waves. Later Zwikker and Kosten3 ~pp. 25–40! and indepen-
dently also Iberall,4 Daniels,5 and Kraak6 introduced an ap-
proximate theory based on the so-calledlow reduced fre-
quency assumptionsthat enabled the simplification of th
basic equations such that the transmission line parame
could be given in closed form. A thorough discussion of t
applicability of this approach including a comparison w
numerical solutions of Kirchhoff’s general dispersion equ
tions is presented in the 1975 paper by Tijdeman.7 More
recently, Stinson8 considered an alternative treatment of t
problem applying simplifying approximations to the equ
tions that make up the Kirchhoff solution, rather than red
ing the governing equations, and showed the equivalenc
both approaches. These investigations then provided the
sis for developing a general procedure applicable to tube
arbitrary cross-sectional shape. Similar calculations w
also carried out by Kergormard.9

From the point of view of a perturbation analysis t
low reduced frequency assumptions can be interpreted a
fining two scaling parameters that relate the most relev
geometrical scales, i.e., the wavelength, the characteristi
ameter of the duct, and the thickness of the acoustic bou
ary layer, to each other: The spatial range consumed by
boundary layer as well as the diameter are presupposed
small compared to the wavelength. Further simplificatio
are then possible assuming the boundary layer to be e
small or large relative to the tube diameter, which introdu

a!Electronic mail: stefan.scheichl@oeaw.ac.at
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a third scaling parameter and thus two different ordering
lationships for the two other parameters. In the followin
these cases will be called thehigh and thelow frequency
limit, respectively. If, however, such additional constrain
are imposeda posteriorion the solutions given by Zwikke
and Kosten in order to derive approximate series expans
of the transmission line parameters with respect to that th
ratio ~see, e.g., Keefe’s results10 for the cylindrical tube!, it
will remain unclear whether the resulting expressions are
correct asymptotic solutions one would obtain if the two d
ferent ordering relationships were applied to the basic eq
tions themselves.

Moreover, the length of the duct might become so la
that the exponentially growing effects arising from viscos
and heat conduction in the boundary layer do not only aff
the second-order terms of the sound pressure but also
leading order terms. The present study is motivated by
observation that sound propagation in tubes of this type
not yet been systematically studied. Thus, one of its prim
aims is to derive the asymptotically correct solutions for t
involved field quantities including the second-order ter
that extend over a considerably large spatial range, sugg
ing the application of themethod of multiple scales, as pre-
sented, e.g., in Nayfeh11 or Crightonet al.12 ~pp. 209–232!.
By the removal of secular terms, the extra freedom such
approach introduces can be exploited to increase the rang
validity of the asymptotic expansions. Since the followin
calculations proceed from the assumption that the bound
layer is small compared to the tube diameter~high frequency
limit !, the changes in lateral direction will be analyzed usi
the perturbation technique of themethod of matched
asymptotic expansions. A further goal to be pursued is th
derivation of the asymptotically correct expressions for
transmission line parameters and the transfer functions
long tube up to the second-order terms. The investigati
are structured as follows.

As far as the diameter to wavelength ratio is concern
115(2)/534/22/$20.00 © 2004 Acoustical Society of America
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the first part of the analysis deals with long wavelengths
accordance with the low reduced frequency assumptions.
sults for the first-order and the second-order terms of
sound pressure, the velocity components, and the tran
matrix in the case of long circular tubes will be present
Similar solutions derived for the case of long rectangular a
slit-shaped tubes are found in the appendices; these are,
ever, valid only to leading order. In the second part, beg
ning with Sec. V, the long wavelength assumption is th
replaced with the condition that the characteristic wavelen
and the diameter of the tube are of the same order of m
nitude. To demonstrate the utility of the procedure, the tra
fer functions up to the second order of a long circular tu
will again be derived. Since in this case the occurrence
higher order modes has to be taken into account as well
study will confine itself to the case of axisymmetric flow.
should be mentioned that in a similar investigation conce
ing the sound propagation in a slit-shaped waveguide car
out by Anderson and Vaidya13 the authors pointed out tha
the application of the method of multiple scales to the lin
problem requires several observations suggested by re
obtained from the so-called classical analysis that poses
boundary value problem as an eigenvalue problem,
would fail otherwise. However, as it will turn out in th
following investigation, here such difficulties are not e
countered.

II. PROBLEM FORMULATION

A. Transmission line parameters for acoustical four
poles

For the time being, assume that the driving frequenc
sufficiently low that only the fundamental mode is able
propagate in a tube of lengthL regarded as a transmissio
line ~see Fig. 1!. Furthermore, letẐ and Ŷ be the series
impedance and shunt admittance per unit length along tz
axis. The sound pressureps(z,t)5R( p̂s(z)ej vt) and the vol-
ume flowu(z,t)5R(û(z)ej vt) are then given by

dp̂s

dz
52Ẑû,

dû

dz
52Ŷp̂s . ~1!

Hence, the four-pole transfer matrixÂ can be formulated as

Â5F cosh~ ĜL ! Ẑc sinh~ ĜL !

1

Ẑc

sinh~ ĜL ! cosh~ ĜL ! G , ~2!

where

Ẑc5AẐ

Ŷ
, Ĝ5AẐŶ ~3!

FIG. 1. Sketch and notation of an acoustical four pole.
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are the characteristic impedance and the propagation pa
eter of the duct. The values of the sound pressure and
volume flow at the entrance of the tube, in the followin
denoted byp̂s2 and û2 , respectively, can then simply b
calculated from the valuesp̂s1 andû1 at the end of the tube
by employing the relationship

S p̂s2

û2
D5ÂS p̂s1

û1
D . ~4!

B. Low reduced frequency and low Mach number
assumptions

In order to be able to calculate the transmission l
parameters entering the transfer matrix from the basic eq
tions, i.e., the two- or three-dimensional Navier–Stok
equations, the energy equation, the continuity equation,
the equation of state for a perfect gas, the following so-ca
low reduced frequency assumptions~see, e.g., Tijdeman7! are
adopted:

Re5
c0lr0

m0
@1, l 5

D

l
!1. ~5!

Here, the quantitiesc0 , l, r0 , m0 , D, and the parameters R
and l denote the speed of sound, the characteristic wa
length, the density of the fluid, the dynamic shear viscos
the characteristic dimension of the cross section, the acou
Reynolds number, and the reduced frequency, which is of
order of the Helmholtz number He5vD/(2c0). By the sub-
script 0, quantities evaluated at the equilibrium referen
state are indicated.

Since the Prandtl number

Pr5
m0Cp

k0
5O~1!, ~6!

whereCp andk0 represent the specific heat at constant pr
sure and the thermal conductivity, is of orderO(1) for a
wide class of fluid~e.g., Pr'0.7 in case of air!, the thermal
as well as the viscous boundary layer thicknesses are g
by ~see, e.g., Morse and Ingard,14 p. 286!

d;Am0l

c0r0
5

l

ARe
. ~7!

Consequently, from the first restriction in Eq.~5! it follows
that d is small compared to the characteristic waveleng
ensuring that the flow is not dominated by viscous effects
is easily verified that Re@1 holds for the complete range o
audible and even a wide range of ultrasonic frequencies,
vided that the fluid is air. This, together with the long wav
length assumptionl !1 stated in Eq.~5!, then guarantees tha
only a single mode propagates over large distances rela
to the tube diameter and a simplified, one-dimensional
mulation of the problem as in Eq.~1! can be derived.

In the following, it will furthermore be assumed that th
Mach number

M5
W

c0
!1, ~8!
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with W as a characteristic particle velocity in longitudin
direction, is small as well, so that a linear analysis of
problem is possible.

C. Ducts with circular cross sections and isothermal
walls

By imposing the low reduced frequency assumptio
(D52R), evaluation of the linearized basic equations yie
~see Zwikker and Kosten,3 pp. 25–40, but also Refs. 4–7
10!

Ẑ5
j vr0

SS 122A m0

2 j vr0

ĜS RA2 j vr0

m0
D

R
D ,

~9!

Ŷ5

j vSF 112~g21!A k0

2 j vr0Cp

ĜS RA2 j vr0Cp

k0
D

R
G

gp0
,

where

Ĝ~ ĵ !5
J1~ ĵ !

J0~ ĵ !
~10!

and the cross-sectional areaS5R2p. The quantitiesp0 and
g5Cp /Cv are the equilibrium pressure and the ratio of t
specific heats. Worth mentioning is the fact that Eq.~9! can
also be derived by averaging the expressions for the velo
in the direction of the tube axis and the sound pressure g
in Morse and Ingard14 ~pp. 519–522! over the cross section
These solutions were obtained from an axisymmetric tw
dimensional analysis by using assumptions very similar
those Stinson’s generalized theory for tubes of arbitr
cross-sectional shape is based on~see Ref. 8 and Appendix
A!.

High and low frequency limits can now be defined as

LFL: l 2 Re;S R

d D 2

;
vr0R2

m0
5St2!1,

~11!
HFL: St2@1.

Here, the quantity St denotes the so-called Stokes numbe
inverse is sometimes referred to as shear wave numbe
As mentioned earlier, Pr5O(1) and therefore the LFL and
HFL can easily be deduced from Eq.~9! by applying a power
series expansion with respect to St and St21, respectively. In
connection with the HFL, it should be noted that in the lim
as St→`,

Ĝ~ ĵ !→2 j , ~12!

as ĵ is proportional to StA2 j .
Consequently, the expressions~9! reduce to
536 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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LFL: Ẑ5
8m0

R2S
S 11 j

vr0R2

6m0
1O~St4! D ,

~13!

Ŷ5
vS

p0
S j 1

g21

g

vr0R2

8m0

m0Cp

k0
1O~St4! D ,

which corresponds to Rayleigh’snarrow tube solution~Ref.
2, p. 327!, if terms ofO(St2) are neglected as well, and

HFL: Ẑ5
vr0

S F j 1~11 j !A 2m0

vr0R2
1O~St22!G ,

~14!

Ŷ5
vS

gp0
F j 1~11 j !~g21!A 2m0

vr0R2

k0

m0Cp

1O~St22!G ,

which is in accordance with Kirchhoff’swide tube solution.1

Simplified expressions for the limiting values ofẐ can also
be found in the book by Beranek15 ~pp. 135–138!. Equiva-
lent results for the HFL of the series impedance as well
the shunt admittance in case of rectangular or slit-sha
cross sections are given in Appendices A and B.

A completely different method of finding the LFL an
HFL would be an asymptotic analysis of the basic equati
themselves, withM, Re21, l, and either St or St21 used as
~small! perturbation parameters. In the case of the HFL su
an approach then necessitates separate investigations o
acoustic motion in the core region and in the boundary lay
since the scaling of the terms in the basic equations chan
completely, depending on which region is under consid
ation. Such a so-called matched asymptotic analysis, wh
again reproduces the solutions~14!, is presented, e.g., in
Makarov and Vatrushina16 as well as in Qiet al.17 However,
if the evolution of waves over distances of the orderO(Stl)
is taken into consideration, evaluation of the transfer ma
Â as defined in Eq.~2! using Ẑ and Ŷ from Eq. ~14! will
produce results which are valid only to leading order. This
a direct consequence of the fact that the exponential term
the orderO(e(St21l21L)) contained in the transfer matrix wil
then become orderO(1) quantities. In other words, in orde
to calculate asymptotically correct expressions for the le
ing order terms and the correction terms@of orderO(St21)]
of the quantitiesps(z,t) andu(z,t), the above-presented re
sults for the HFL have to be based on the assumption tha
propagation lengthL of the acoustic waves is comparable
the wavelength.

The aim of the following investigations is thus twofold
First, to show that the application of the method of multip
scales ~MMS! in the HFL together with a matche
asymptotic analysis leads to analytical solutions for
sound pressure and the volume flowincluding the second-
order terms that are uniformly valid over a considerab
larger spatial range than that constituted by the wavelen
and, second, to derive the asymptotically correct express
for the coefficients of the transfer matrixÂ. As will further-
more be shown in Sec. V, the MMS can even be applied
the conditionl !1 is relaxed such that the reduced frequen
Stefan Scheichl: Transmission line parameters for long tubes
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is assumed to be of orderO(1) and, consequently, the exc
tation of higher order modes can no longer be disregard

III. BASIC EQUATIONS

A natural nondimensionalization of the governing equ
tions involves the wavelengthl, the radiusR, as well as the
equilibrium quantitiesp0 , r0 , c0 , andm0 introduced above.
Nondimensional variables are then constructed from

z* 5
z

l
, L* 5

L

l
, r * 5

r

R
, t* 5

tc0

l
, v* 5

vl

c0
,

vz* 5
vz

c0
, v r* 5

v r

c0
, u* 5

u

c0S
, p* 5

p

gp0
, r* 5

r

r0
,

~15!

q* 5
q

q0
, Z* 5

Zc0lS

gp0
, Y* 5

Ygp0l

c0S
, h* 5

h0

m0
.

Herevz , v r , p, q, andh denote, respectively, the velocitie
in axial and radial direction, the fluid pressure, the tempe
ture, and the bulk viscosity. Furthermore, the scaling para
eters

e5a
R

l
, a5d

l

RARe
~16!

are introduced wherea andd are arbitrary constants of orde
O(1), which, together with Eqs.~5! and ~11!, leads to the
relationshipse; l;He anda;St21.

In the following analysis it will be assumed that th
variations of the thermal conductivity and the dynamic v
cosities are so small that these quantities can be regarde
constant, i.e.,k5k0 , m5m0 , and h5h0 . However, it
should be emphasized that due to the assumption of a
small Mach number@see Eq.~8! as well as Eq.~26!# the
results derived in the following would remain unchang
even if the commonly used approximative power lawsk
5k0(q/q0)b and m5m0(q/q0)b, where the coefficientb
5O(1), were adopted.

Since the fluid is presupposed to be a perfect gas,
equilibrium sound speedc0 equals (gp0 /r0)1/2 and q0

5c0
2/((g21)Cp). The two-dimensional Navier–Stoke

equations in cylindrical coordinates for axisymmetric flo
the continuity equation, the energy equation, and the eq
tion of state then read

r
]vz

]t
1rvz

]vz

]z
1

a

e
rv r

]vz

]r
2

e2a2

a2d2 S 4

3
1h D ]2vz

]z2

2
a2

d2

1

r

]

]r S r
]vz

]r D2
ea2

ad2 S 1

3
1h D 1

r

]

]r S r
]v r

]z D
1

]p

]z
50, ~17!
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r
]v r

]t
1rvz

]v r

]z
1

a

e
rv r

]v r

]r
2

e2a2

a2d2

]2v r

]z2
2

a2

d2 S 4

3
1h D

3F1

r

]

]r S r
]v r

]r D2
v r

r 2G2
ea2

ad2 S 1

3
1h D ]2vz

]z]r
1

a

e

]p

]r
50,

~18!

]r

]t
1vz

]r

]z
1

a

e
v r

]r

]r
1r

]vz

]z
1

a

e
r

1

r

]

]r
~rv r !50, ~19!

r
]q

]t
1rvz

]q

]z
1

a

e
rv r

]q

]r
2~g21!S ]p

]t
1vz

]p

]z
1

a

e
v r

]p

]r D
2

e2a2

a2d2 Pr

]2q

]z2
2

a2

d2 Pr

1

r

]

]r S r
]q

]r D
2

1

a2d2
~g21!F50, ~20!

qr5gp. ~21!

Here, the superscripts* introduced to indicate nondimen
sional quantities have already been omitted. The quantityF,

F;e2a23maxS S ]vz

]z D 2

,
a2

e2 S ]vz

]r D 2

,HS ]v r

]z D 2

,

a2

e2 S ]v r

]r D 2

,
a

e

]vz

]z

]v r

]r
,
a

e

]vz

]r

]v r

]z D , ~22!

is the so-called dissipation function, which will turn out to b
negligibly small as well.

Equations~17!–~21! will be solved subject to the bound
ary conditions at the tube wall

r 51: vz5v r50, q51, ~23!

and the symmetry conditions at the center of the tube

r 50: v r5
]vz

]r
5

]p

]r
5

]q

]r
50. ~24!

IV. APPLICATION OF THE MMS

Utilizing the parameters introduced in Eq.~16!, the HFL
can now simply be defined as

e!1, a!1 ~25!

since then Re21;e2a2!1, l;e!1, and St21;d/R;a!1,
as required by conditions~5! and ~11!. In order to avoid
nonlinear effects entering the first- and second-order ter
the Mach number is assumed to be of any orderO(e ia j )
such that

M!eman, m1n52 ~26!

holds, suggesting the use ofM, a, and e as perturbation
parameters for an asymptotic analysis. Hence, the velo
components and the relevant thermodynamic quantities
expressed in the form:
537Stefan Scheichl: Transmission line parameters for long tubes



o
in
t

he
s

cu
th

er
ei

or

he
nd
e

n
ra

th
d

w
e

e’s

–

that
ar,
ed.

nic

the
ore
are
vz5M ~vz11evze1avza1e2vze21eavzea1a2vza2

1¯ !1M2~¯ !1¯,

v r5M ~v r11ev r e1av ra1e2v r e21eav r ea1a2v ra2

1¯ !1M2~¯ !1¯,

p5
1

g
1M ~p11epe1apa1e2pe21eapea1a2pa2

1¯ !1M2~¯ !1¯, ~27!

r511M ~r11ere1ara1e2re21earea1a2ra2

1¯ !1M2~¯ !1¯,

q511M ~q11eqe1aqa1e2qe21eaqea1a2qa2

1¯ !1M2~¯ !1¯ .

The sound pressure is then given byps5p21/g.
The investigation of the most significant features

acoustic waves emerging over spatial ranges in longitud
direction of the ordersO(1) andO(a21) requires at leas
the introduction of the length scalesz and, additionally,z1

5az. However, in order to resolve the changes of t
second-order terms, e.g.,vza andvze , over long distances a
well, a third scalez25a2z according to

]

]z
→ ]

]z
1a

]

]z1
1a2

]

]z2
~28!

has to be used, because otherwise the generation of se
terms could not be avoided. Here it should be noted that
application of additional length scales proportional to pow
of e is not necessary since the solutions will retain th
validity even for z as large ase21 or e22. Results of a
simplified study in the case of linear waves in tubes with
rectangularcross section that is restricted to the leading
der terms and thus involves only the two length scalesz and
z1 are presented in the Appendices A and B.

Substitution of the expressions~27! into the system
~17!–~21! leads to a set of equations which is valid in t
entire width of the tube except the boundary region a
therefore, is called theouter expansion. Close to the tub
wall, where the stretched lateral coordinate

s5
12r

a
~29!

is of O(1), viscosity and heat conduction play an importa
role; these effects have to be accounted for by a sepa
investigation of the boundary layer. Consequently, for
inner expansion, the coordinater then has to be replace
with 12as and, furthermore,

]

]r
→2

1

a

]

]s
. ~30!

Please note that in the inner expansion, the density terms
be denoted byC, whereas all other inner quantities will b
written in capital letters, e.g.,Vze . In order to match the
quantities arising from the two expansions, Van Dyk
538 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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asymptotic matching principle~see, e.g., Ref. 12, pp. 173
179! will be applied.

Since the resulting equations, more precisely, those
are relevant to solving the problem, will turn out to be line
a Fourier transform with respect to the time could be us
Equivalently, each unsteady perturbationw or W is decom-
posed into a steady modal amplitude and a time-harmo
function such that

w~z,z1 ,z2 ,r ,t !5R~ŵ~z,z1 ,z2 ,r !ej vt!,
~31!

W~z,z1 ,z2 ,s,t !5R~Ŵ~z,z1 ,z2 ,s!ej vt!.

Evaluation of the continuity equation~19! together with con-
ditions ~23! and ~24! then yields

]V̂r1

]s
5

]V̂r e

]s
5

]V̂ra

]s
5

]V̂r e2

]s
50⇒V̂r15V̂r e5V̂ra

5V̂r e250, ~32!

j vĈ11
]V̂z1

]z
2a

]V̂r ea

]s
50, ~33!

j vĈe1
]V̂ze

]z
2a

]V̂r e2a

]s
50, ~34!

j vĈa1
]V̂za

]z
1

]V̂z1

]z1
2a

]V̂r ea2

]s
1aV̂r ea50, ~35!

and, furthermore,

]

]r
~r v̂ r1!5

]

]r
~r v̂ ra!50⇒ v̂ r15 v̂ ra50, ~36!

j vr̂11
] v̂z1

]z
1a

1

r

]

]r
~r v̂ r e!50, ~37!

j vr̂e1
] v̂ze

]z
1a

1

r

]

]r
~r v̂ r e2!50, ~38!

j vr̂a1
] v̂za

]z
1

] v̂z1

]z1
1a

1

r

]

]r
~r v̂ r ea!50, ~39!

j vr̂ea1
] v̂zea

]z
1

] v̂ze

]z1
1a

1

r

]

]r
~r v̂ r e2a!50, ~40!

j vr̂a21
] v̂za2

]z
1

] v̂za

]z1
1

] v̂z1

]z2
1a

1

r

]

]r
~r v̂ r ea2!50.

~41!

As a consequence of Eqs.~32! and ~36!, the inner and
the outer expansion of the Navier–Stokes equation~18! gov-
erning the radial motion give

] P̂1

]s
5

] P̂e

]s
5

] P̂a

]s
5

] P̂ea

]s
5

] P̂a2

]s
50, ~42!

] p̂1

]r
5

] p̂e

]r
5

] p̂a

]r
5

] p̂ea

]r
5

] p̂a2

]r
50. ~43!

This agrees with the expectation that the pressure in
boundary layer is set by the pressure fluctuations in the c
region, which, due to the long wavelength assumption,
independent of the lateral coordinater.
Stefan Scheichl: Transmission line parameters for long tubes
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The set of equations following from the inner expansi
of Eq. ~21! reads

Ĉ15g P̂12Q̂1 , Ĉe5g P̂e2Q̂e , Ĉa5g P̂a2Q̂a ,
~44!

Ĉea5g P̂ea2Q̂ea , Ĉa25g P̂a22Q̂a2,

which holds for the outer expansion as well.
Substituting the expansions~27! into the Navier–Stokes

equation for the axial direction~17! and using Eqs.~32! and
~36!, one obtains for the inner quantities

j vV̂z12
1

d2

]2V̂z1

]s2
1

] P̂1

]z
50, ~45!

j vV̂ze2
1

d2

]2V̂ze

]s2
1

] P̂e

]z
50, ~46!

j vV̂za2
1

d2

]2V̂za

]s2
1

1

d2

]V̂z1

]s
1

] P̂a

]z
1

] P̂1

]z1
50, ~47!

and for the outer quantities

j v v̂z11
] p̂1

]z
50, ~48!

j v v̂ze1
] p̂e

]z
50, ~49!

j v v̂za1
] p̂a

]z
1

] p̂1

]z1
50, ~50!

j v v̂zea1
] p̂ea

]z
1

] p̂e

]z1
50, ~51!

j v v̂za21
] p̂a2

]z
1

] p̂a

]z1
1

] p̂1

]z2
50, ~52!

where in the last Eq.~52! the relationship] v̂z1 /]r 50 result-
ing from Eqs.~43! and ~48! has already been applied; th
other expansion terms ofv̂z appearing in Eqs.~49!–~52! also
turn out to be independent of the radial coordinater.

Hence, the dissipation functionF defined in Eq.~22! is
of the orderO(M2e2a2) in the core region andO(M2) in
the boundary layer, and the expansions of the energy e
tion ~21! take the form

j vQ̂12 j v~g21!P̂12
1

d2 Pr

]2Q̂1

]s2
50, ~53!

j vQ̂e2 j v~g21!P̂e2
1

d2 Pr

]2Q̂e

]s2
50, ~54!

j vQ̂a2 j v~g21!P̂a2
1

d2 Pr

]2Q̂a

]s2
1

1

d2 Pr

]Q̂1

]s
50,

~55!

q̂15~g21!p̂1 , q̂e5~g21! p̂e , q̂a5~g21! p̂a ,
~56!

q̂ea5~g21! p̂ea , q̂a25~g21! p̂a2.

Upon comparison with the expressions~44! this shows that
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
a-

r̂15 p̂1 , r̂e5 p̂e , r̂a5 p̂a , r̂ea5 p̂ea ,

r̂a25 p̂a2. ~57!

Solving systems~37!–~41! and~48!–~52! for the veloc-
ity components in radial direction subject to condition~24!
gives

v̂ r e5r f̂ e~z,z1 ,z2!, v̂ r e25r f̂ e2~z,z1 ,z2!,

v̂ r ea5r f̂ ea~z,z1 ,z2!, ~58!

v̂ r e2a5r f̂ e2a~z,z1 ,z2!, v̂ r ea25r f̂ ea2~z,z1 ,z2!.

Equation ~32! in combination with Van Dyke’s matching
principle then implies thatf̂ e5 f̂ e250. Thus, the wave equa
tions resulting from Eqs.~37!, ~38!, ~48!, and ~49!, which
determine the evolution of the pressure fluctuationsp̂1

5 P̂1 , p̂e5 P̂e over distances of the orderO(1) ~i.e., dis-
tances comparable to the wavelengths!, are

v2p̂11
]2p̂1

]z2
50, v2p̂e1

]2p̂e

]z2
50. ~59!

Additionally, by applying the matching rules to the e
pressions forV̂z1 and Q̂1 derived from Eqs.~45!, ~53!, and
the boundary condition~23!, one obtains

V̂z15 v̂z1~12e2~11 j !dsA~v/2!!,
~60!

Q̂15 p̂1~g21!~12e2~11 j !dsA~v Pr/2!!.

Precisely the same functional dependence on the boun
layer coordinates is valid for V̂ze and Q̂e as well. As a
consequence, Eqs.~33! and ~34! can be solved to give

V̂r ea5 p̂1

11 j

ad
Av

2 Fg21

APr
~12e2~11 j !dsA~v Pr/2!!

1~12e2~11 j !dsA~v/2!!G ,

~61!

V̂r e2a5 p̂e

11 j

ad
Av

2 Fg21

APr
~12e2~11 j !dsA~v Pr/2!!

1~12e2~11 j !dsA~v/2!!G .

Carrying out the matching procedure with the expans
terms ofv̂ r given by Eq.~58! leads to

f̂ ea~z,z1 ,z2!5 p̂1

j v

a
F̂, f̂ e2a~z,z1 ,z2!5 p̂e

j v

a
F̂,

~62!

where

F̂5
12 j

dA2v
S 11

g21

APr
D , ~63!

and it then follows from Eqs.~39!, ~40!, ~50!, and~51! that
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v2p̂a1
]2p̂a

]z2
522

]2p̂1

]z]z1
22v2p̂1F̂,

~64!

v2p̂ea1
]2p̂ea

]z2
522

]2p̂e

]z]z1
22v2p̂eF̂.

Inspection of the relationships~64! shows that in order to
rule out secular solutions of the formp̂a}z, p̂ea}z, the
resonant forcing terms on the right-hand sides must be a
hilated, generating the wave equations

v2p̂a1
]2p̂a

]z2
50, v2p̂ea1

]2p̂ea

]z2
50,

~65!
]2p̂1

]z]z1
1v2p̂1F̂50,

]2p̂e

]z]z1
1v2p̂eF̂50,

which govern the propagation of the pressure perturbat
p̂a and p̂ea over distances of orderO(1) and, respectively
the propagation of the pressure perturbationsp̂1 and p̂e over
distances of orderO(a21). The imaginary partI(2vF̂) is
thus identified as the leading order decay rate of the so
pressure due to boundary layer attenuation.1 Worth mention-
ing is the fact that the equation forp̂1 represents the multiple
scales equivalent to the model equation that was derived
Pierce18 ~pp. 531–534! from a variational principle.

Proceeding in very much the same way as before, E
~47! and ~55! are solved for the axial velocity and the tem
perature in the boundary layer:

V̂za5 v̂za~12e2~11 j !dsA~v/2!!2 v̂z1

s

2
e2~11 j !dsA~v/2!,

~66!
Q̂a5 p̂a~g21!~12e2~11 j !dsA~v Pr/2!!

2 p̂1~g21!
s

2
e2~11 j !dsA~v Pr/2!.

Substituting these expressions together with the relations
for Ĉa , V̂z1 , and V̂r ea given in Eqs.~44!, ~60!, and ~61!,
respectively, into Eq.~35!, the following result for the inner
quantity V̂r ea2 can be derived:

V̂r ea25 p̂a

11 j

ad
Av

2 Fg21

APr
~12e2~11 j !dsA~v Pr/2!!

1~12e2~11 j !dsA~v/2!!G2 p̂1

g21

2ad2 Pr

3F12e2~11 j !dsA~v Pr/2!1~11 j !dsAv Pr

2

3e2~11 j !dsA~v Pr/2!G2 p̂1

1

2ad2 F12e2~11 j !dsA~v/2!

1~11 j !dsAv

2
e2~11 j !dsA~v/2!G1 p̂1

11 j

ad
A2vF̂

3~12e2~11 j !dsA~v/2!!2 p̂1

j v

a
F̂s. ~67!
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When the matching procedure is again applied to the in
and outer radial velocity components, one then finds tha

f̂ ea2~z,z1 ,z2!5
j v

a
~ p̂aF̂1 p̂1Ĝ!, ~68!

with

Ĝ5
j

2d2v
S 11

g21

Pr D1
12 j

d
A2

v
F̂

52
j

2d2v
S 32

g21

Pr
14

g21

APr
D . ~69!

After substituting v̂ r ea2 from Eqs. ~58! and ~68! into Eq.
~41!, Eq. ~52! can be recast into

v2p̂a21
]2p̂a2

]z2
522

]2p̂1

]z]z2
22

]2p̂a

]z]z1
1v2~ p̂1F̂2

22p̂1Ĝ22p̂aF̂ !, ~70!

where the right-hand side is identified as resonant forci
since it would involve secular terms inp̂a2. This implies that
the quantityp̂a has to satisfy the solvability condition

]2p̂a

]z]z1
1v2p̂aF̂52

]2p̂1

]z]z2
2v2p̂1S Ĝ2

F̂2

2 D . ~71!

In turn, unless this right-hand side is annihilated, it wou
inevitably lead top̂a being proportional toz1 . Thus, the
resulting equations read

v2p̂a21
]2p̂a2

]z2
50,

]2p̂a

]z]z1
1v2p̂aF̂50,

~72!
]2p̂1

]z]z2
1v2p̂1Ĥ50.

Here

Ĥ5Ĝ2
F̂2

2
52

j

d2v
F11

g21

APr
S 12

g

2APr
D G , ~73!

with I(2vĤ) being the correction term to the attenuatio
rateI(2vF̂).

The solutions of the wave equations~59!, ~65!, and~72!
can then be written as

p̂15 ĉ11e
2 j v~z1F̂z11Ĥz2!1 ĉ21e

j v~z1F̂z11Ĥz2!,

p̂e5 ĉ1e~z2!e2 j v~z1F̂z1!1 ĉ2e~z2!ej v~z1F̂z1!,

p̂a5 ĉ1a~z2!e2 j v~z1F̂z1!1 ĉ2a~z2!ej v~z1F̂z1!, ~74!

p̂ea5 ĉ1ea~z1 ,z2!e2 j vz1 ĉ2ea~z1 ,z2!ej vz,

p̂a25 ĉ1a2~z1 ,z2!e2 j vz1 ĉ2a2~z1 ,z2!ej vz.

A. Results

The goal pursued in the study presented here is to de
the asymptotically correct expressions for the series imp
anceẐ and the shunt admittanceŶ, which were introduced
in Eq. ~1!, or, equivalently, the expressions for tube para
Stefan Scheichl: Transmission line parameters for long tubes
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etersẐc and Ĝ defined in Eq.~3!. In order to calculate the
volume flow û, the axial Navier–Stokes equation~17! is
averaged over the cross-sectional area and expanded
respect to the perturbation parameterse anda, giving

j vvC z11
] p̂1

]z
50,

j vvC ze1
] p̂e

]z
50,

j vvC za1
2

d2

]V̂z1

]s
U

s50

1
] p̂a

]z
1

] p̂1

]z1
50, ~75!

j vvC zea1
2

d2

]V̂ze

]s
U

s50

1
] p̂ea

]z
1

] p̂e

]z1
50,

j vvC za21
2

d2

]V̂za

]s
U

s50

1
] p̂a2

]z
1

] p̂a

]z1
1

] p̂1

]z2
50.

Furthermore, as shown in Eq.~28!, the multiple scales tech
nique applied here requires the derivatives with respectz
appearing in the definitions ofẐ and Ŷ to be replaced with
derivatives with respect to the three length scalesz, z1 , and
z2 . Using the wave equations~59!, ~65!, and~72! governing
the sound pressure and the expansion terms of the vol
flow û5vC z that can be deduced from Eq.~75!, the following
expressions for the series impedance and the shunt ad
tance are obtained:

Ẑ52
1

û S d

dz
1a

d

dz1
1a2

d

dz2
D p̂s

5 j v1a
11 j

d
A2v1a2

3

d2
1O~ea2,a3!,

~76!
Ŷ52

1

p̂s
S d

dz
1a

d

dz1
1a2

d

dz2
D û

5 j v1a
11 j

d
~g21!A2v

Pr
2a2

g21

d2 Pr
1O~ea2,a3!.

The expansions for tube parametersẐc and Ĝ then read

Ẑc511a
12 j

dA2v
S 12

g21

APr
D 2a2

j

2d2v
S 222

g21

APr

2
5g23g222

Pr D 1¯,

~77!

Ĝ5 j v1a j vF̂1a2 j vĤ1¯

5 j v1a
11 j

d
Av

2 S 11
g21

APr
D 1a2

1

d2 F11
g21

APr

3S 12
g

2APr
D G1¯ .

It should be emphasized that the expression for the cha
teristic impedanceẐc could have been truncated after th
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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second term as well, since the investigation is confined to
first- and second-order terms of the sound pressure and
volume flow. However, as far as the propagation paramete
concerned, all three expansion terms have to be includ
because the length of the tube might be much larger than
wavelengths, i.e., even of the orderO(a21).

The corresponding results for the dimensional transm
sion line parameters are presented in Appendix C. Inter
ingly, Eq. ~C2! completely conforms to the results given b
Keefe,10 which were derived by high order series expansio
of the Zwikker and Kosten solutions~9! with respect to the
~small! inverse of the Stokes number. Comparison with t
expressions~14! clearly shows that the terms of the ord
O(St22) appearing in Eq.~C2! must not be neglected if the
effects emerging over distancesL@l are to be incorporated
into the HFL of the series impedance and the shunt adm
tance. In addition to providing precise solutions for t
sound pressure, the velocity components, and the other
modynamic quantities, the study presented here thus ext
the validity of the Zwikker and Kosten approach to the ca
of sound propagation in long tubes in the limit of larg
Stokes numbers~HFL!, provided that the low reduced fre
quency assumptions~5! hold. In order to demonstrate thi
equivalence graphically, the different solutions for the re
part of the propagation parameter resulting from Eqs.~9!,
~14!, and~C2! are depicted in Fig. 2.

B. Example

The results summarized so far are sufficient to evalu
the transmission line parameters entering the four-pole tra
fer matrix Â defined in Eq.~2! for a long circular duct with
isothermal walls. Exemplarily, the total load impedanceẐt

5 p̂s2 /û2 of a tube radiating into open space will be calc
lated. The parametersa and e are required to be small, in
order to comply with the requirements the multiple sca
analysis elaborated in Sec. IV is based on. Furthermore,
tube lengthL shall be so large that the nondimensional qua
tity

L15aL ~78!

FIG. 2. Graphs ofR(Ĝc0 /v) as functions of St in double logarithmic scale
Pr50.707,g51.402~air at 300 K!; St@1: R(Ĝc0 /v)5O(St21).
541Stefan Scheichl: Transmission line parameters for long tubes
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is of orderO(1). These conditions can be satisfied if, e.g.
thin tube of dimensional length 10 cm and radius 0.5 mm
considered, the fluid is assumed to be air~at 300 K! and the
characteristic dimensional wavelengthl equals 7 mm, which
corresponds to a driving frequencyf of approximately 50 000
Hz and leads toe/a50.071!1, a/d50.036!1, L514.286
@1. Then one may choosee5a50.071, a51, and d
52.008, resulting inL151.0205O(1).

Since the conditione!1 holds, the radiation impedanc
can be expanded into

Ẑe5eẐee1e2Ẑee21¯ . ~79!

In the case of radiation of sound from a circular duct with
infinite flange, the leading order termẐee is a pure imaginary
and given by

Ẑee5Lej v, ~80!

whereLe50.8217/a is the so-called quasistatic end corre
tion. The validity of this result will be proved in Sec. IV C

Substituting the solutions from Eq.~77! and the relation-
ship p̂s1 /û15Ẑe into Eq. ~4!, a series expansion of the re
sulting total impedance with respect toe and a then yields
~see Appendix C for the dimensional form of this result!

Ẑt5
p̂s2

û2
5tanhS j vL1S 1

a
1F̂ D D1e

Ẑee

coshS j vL1S 1

a
1F̂ D D 2

1aF 12 j

dA2v
S 12

g21

APr
D tanhS j vL1S 1

a
1F̂ D D

1
j vL1Ĥ

coshS j vL1S 1

a
1F̂ D D 2G1¯

5tanhS L1F j v

a
1

11 j

d
Av

2 S 11
g21

APr
D G D

1aF 12 j

dA2v
S 12

g21

APr
D

3tanhS L1F j v

a
1

11 j

d
Av

2 S 11
g21

APr
D G D

1

e

a
Ẑee1

L1

d2 F11
g21

APr
S 12

g

2APr
D G

coshS L1F j v

a
1

11 j

d
Av

2 S 11
g21

APr
D G D 2G1¯,

~81!

which reveals the fact that in the case ofe;a, the effects
resulting from the radiation at the end of the tube enter
expansion of the total impedance at the same order as
542 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
s

e
he

viscothermal effects accumulating over the considera
large length of the tube. It should be emphasized that
arguments of the functions 1/cosh~•! and tanh~•! always con-
tain a real part of orderO(1), sinceL1 is assumed to be o
order O(1). Thus, the moduli of these terms will remai
O(1) quantities as well, even if the dimensional tube leng
assumes a value close to (n11/2)c0 /(2 f ), wheren is an
integer ofO(a21), i.e.,L1'a(n11/2)p/v. This is in con-
trast to the well-known resonance phenomenon occurrin
shorter tubes, where thermal and viscous effects contrib
much less to the total load impedance.

C. End correction for circular tubes with an infinite
flange

The radiation impedance at the flanged opening will e
cite higher-order modes in the backward propagating wa
However, due to the long wavelength assumptionl;e!1
these modes have cut-off frequencies well above the driv
frequencyv/~2p! and, consequently, die out rapidly within
spatial range comparable to the radius of the cross sec
leaving only the lowest mode to propagate over any lon
distance along the tube~see Ref. 14, p. 499!. In order to
resolve the details of the flow close to the exit of the duc
separate perturbation analysis is therefore necessary:
convenience, the origin of the axial coordinate is set to
position of the opening as shown in Fig. 3. Similarly to t
inner expansion for the boundary layer, a stretched inner
ordinate for the end region

z5
z

e
,

]

]z
→ 1

e

]

]z
~82!

can then be introduced. The quantities arising from this s
ond inner expansion will be denoted by the subscripte.

Substitution of the expressions~27! into the basic equa-
tions ~17!–~21! in the same manner as was done in Sec.
leads to

]V̂re1

]s
50⇒V̂re150, ~83!

] v̂ze1

]z
1a

1

r

]

]r
~r v̂ re1!50, ~84!

FIG. 3. Sketch and notation of a duct radiating into half-space.
Stefan Scheichl: Transmission line parameters for long tubes
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] P̂e1

]s
5

] P̂ee

]s
5

] P̂ea

]s
50, ~85!

] p̂e1

]r
5

] p̂ea

]r
50, j v v̂ re11a

] p̂ee

]r
50, ~86!

Ĉe15g P̂e12Q̂e1 , Ĉee5g P̂ee2Q̂ee ,

Ĉea5g P̂ea2Q̂ea , ~87!

r̂e15g p̂e12q̂e1 , r̂ee5g p̂ee2q̂ee ,

r̂ea5g p̂ea2q̂ea , ~88!

] P̂e1

]z
5

] P̂ea

]z
50, j vV̂ze12

1

d2

]2V̂ze1

]s2
1

] P̂ee

]z
50,

~89!

] p̂e1

]z
5

] p̂ea

]z
50, j v v̂ze11

] p̂ee

]z
50, ~90!

j vQ̂e12 j v~g21!P̂e12
1

d2 Pr

]2Q̂e1

]s2
50,

j vQ̂ee2 j v~g21!P̂ee2
1

d2 Pr

]2Q̂ee

]s2
50, ~91!

j vQ̂ea2 j v~g21!P̂ea2
1

d2 Pr

]2Q̂ea

]s2
50,
le

e

d

J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
q̂e15~g21! p̂e1 , q̂ee5~g21! p̂ee ,

q̂ea5~g21! p̂ea , ~92!

showing that the leading order term of the sound press
and the correction termp̂ea do not change at all in the en
region z<0. Obviously, the second-order termp̂ee satisfies
the Laplace equation

z<0:
]2p̂ee

]z2
1a2

1

r

]

]r S r
] p̂ee

]r D50, ~93!

subject to the boundary condition

r 51:
] p̂ee

]r
50. ~94!

In the region outside the tube where the dimensio
axial and the dimensional radial coordinate are compara
to the wavelength, i.e.,z5O(1) andr 5O(1/e), the expan-
sion terms of the pressure fluctuations are determined b
set of Helmholtz equations. However, close to the mo
where z5O(1) and r 5O(1), the Helmholtz equation for
p̂ee reduces to the Laplace equation so that Eq.~93! turns out
to hold equally well forz.0. Moreover, the quantitiesp̂e1

and p̂ea are found to fulfill Eqs.~86! and ~90! outside the
tube too. Since the acoustic waves spread hemispheric
the pressure perturbationp̂ee in the regionz.0 thus is re-
lated to the axial velocity in the opening by
z.0: p̂ee~z,r !5 j v
1

2ap E
0

1

r 1v̂ze1~r 1!E
0

2p 1

Az21r 21r 1
2 22rr 1 cos~b!

dbdr1

5 j v
1

a E0

1

r 1v̂ze1~r 1!E
0

`

e2ztJ0~tr !J0~tr 1!dt dr1 , ~95!
he
ial
the

41
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with v̂ze1(r 1) given by the relationship in Eq.~90!, whereas
one obtains for the other expansion terms

z.0: p̂e1~z,r !50, p̂ea~z,r !50. ~96!

Evaluation of Eqs.~86! and ~90! renders Eq.~96! valid for
z<0 as well. As a consequence, Van Dyke’s matching ru
applied to the outer solutions~74! give

ĉ1152 ĉ21, ĉ1a~0!52 ĉ2a~0! ~97!

and, furthermore,

z→2`: p̂ee→ ĉ1e~0!1 ĉ2e~0!22 j v ĉ11z. ~98!

Interestingly, Eqs.~93!, ~94!, ~98!, together with the
boundary condition that can be deduced from Eq.~95! by
taking the limit asz→01, turn out to constitute precisely th
same system of equations that was solved by Rayleigh2 ~pp.
487–491, see also Ref. 19! in order to calculate the so-calle
quasistatic end correction
s

Le5
ĉ1e~0!1 ĉ2e~0!

2 j v ĉ11
. ~99!

A summary of this investigation can also be found in t
paper by Howe.20 Using a variational approach based on tr
functions, Rayleigh obtained an approximate value of
end correction asLe50.8242/a. In addition, Daniell21 pro-
vided a solution bounded by the narrow range 0.821
,aLe,0.82168. More recently, other authors, e.g., Nor
and Sheng,22 calculated the quasistatic as well as the d
namic reflection of sound from the end of a flanged pipe
implementing a rational function approximation with th
Bessel functions used as basis functions. In these stu
more accurate numerical results for the end correction in
limit of zero frequency are presented which are all very clo
to the valueLe50.8217/a also presented in Sec. IV B.

Finally, introducing the relationship~99! in combination
with condition ~97! into the expressions for the sound pre
sure~74! and the volume flow~75! and performing a series
543Stefan Scheichl: Transmission line parameters for long tubes
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expansion ofẐe5 p̂s1 /û1 with respect to the perturbatio
parameterse anda yields the result given by Eq.~80!.

V. EXTENSION: THE CASE lÄO„1…

The following part will deal with the propagation o
sound waves in cylindrical ducts, proceeding from the
sumption that the characteristic wavelength is comparabl
the diameter of the tube. In this case the HFL is defined

e51, a!1, ~100!

leading to Re21;a2!1, l;He5O(1), and St21;d/R;a
!1.

As a consequence, the inner and outer expansions o
basic equations~17!–~21! subject to conditions~23! and~24!
are carried out with respect to the remaining perturbat
parametera only. One then obtains for the continuity equ
tion:

]V̂r1

]s
50⇒V̂r150, ~101!

j vĈ11
]V̂z1

]z
2a

]V̂ra

]s
50, ~102!

j vĈa1
]V̂za

]z
1

]V̂z1

]z1
2a

]V̂ra2

]s
1aV̂ra50, ~103!

j vr̂11
] v̂z1

]z
1a

1

r

]

]r
~r v̂ r1!50, ~104!

j vr̂a1
] v̂za

]z
1

] v̂z1

]z1
1a

1

r

]

]r
~r v̂ ra!50, ~105!

j vr̂a21
] v̂za2

]z
1

] v̂za

]z1
1

] v̂z1

]z2
1a

1

r

]

]r
~r v̂ ra2!50,

~106!

for the radial Navier–Stokes equation:

] P̂1

]s
5

] P̂a

]s
50, ~107!

j vV̂ra2a
] P̂a2

]s
50, ~108!

j v v̂ r11a
] p̂1

]r
50, j v v̂ ra1a

] p̂a

]r
50, ~109!

j v v̂ ra22
1

a2d2

]2v r1

]z2
2

1

d2 S 4

3
1h D F1

r

]

]r S r
]v r1

]r D2
v r1

r 2 G
2

1

ad2 S 1

3
1h D ]2vz1

]z]r
1a

] p̂a2

]r
50, ~110!

for the equation of state:

Ĉ15g P̂12Q̂1 , Ĉa5g P̂a2Q̂a ,
~111!

Ĉa25g P̂a22Q̂a2,

which holds for the outer expansion as well, furthermore,
the axial Navier–Stokes equation:
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r

j vV̂z12
1

d2

]2V̂z1

]s2
1

] P̂1

]z
50, ~112!

j vV̂za2
1

d2

]2V̂za

]s2
1

1

d2

]V̂z1

]s
1

] P̂a

]z
1

] P̂1

]z1
50, ~113!

j v v̂z11
] p̂1

]z
50, ~114!

j v v̂za1
] p̂a

]z
1

] p̂1

]z1
50, ~115!

j v v̂za22
1

a2d2 S 4

3
1h D ]2vz1

]z2
2

1

d2

1

r

]

]r S r
]vz1

]r D
2

1

ad2 S 1

3
1h D 1

r

]

]r S r
]v r1

]z D1
] p̂a2

]z
1

] p̂a

]z1
1

] p̂1

]z2
50,

~116!

and, finally, for the energy equation:

j vQ̂12 j v~g21!P̂12
1

d2 Pr

]2Q̂1

]s2
50, ~117!

j vQ̂a2 j v~g21!P̂a2
1

d2 Pr

]2Q̂a

]s2
1

1

d2 Pr

]Q̂1

]s
50, ~118!

q̂15~g21! p̂1 , q̂a5~g21! p̂a , ~119!

j vq̂a22 j v~g21! p̂a22
1

a2d2 Pr

]2q̂1

]z2

2
1

d2 Pr

1

r

]

]r S r
]q̂1

]r D 50. ~120!

Substitution of Eq.~111! into Eq. ~119! yields

r̂15 p̂1 , r̂a5 p̂a ~121!

Inspection of Eqs.~101!, ~104!, ~109!, and~114! shows
that the leading order pressure perturbations in the core
gion p̂1 satisfy the Helmholtz equation

v2p̂11
]2p̂1

]z2
1a2

1

r

]

]r S r
] p̂1

]r D50, ~122!

together with the boundary condition

r 51:
] p̂1

]r
50. ~123!

The solution is given by the modal decomposition

p̂15 (
n50

` S Ĉ1n1~z1 ,z2!
J0~gnr !

J0~gn!
e2 j k̂nz

1Ĉ2n1~z1 ,z2!
J0~gnr !

J0~gn!
ejk̂nzD , ~124!
Stefan Scheichl: Transmission line parameters for long tubes
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where the parametersgn , n50,1,2,... are the zeros of th
first-order Bessel function J1( ĵ), with g050 and the quan-
tities

k̂n5HAv22a2gn
2, v.agn

2 jAa2gn
22v2, v,agn

~125!

are, respectively, the axial wave numbers for the propaga
and evanescent modes.

Combining Eqs.~105!, ~109!, ~114!, and~115! yields the
inhomogeneous Helmholtz equation for the second-or
term p̂a ,

v2p̂a1
]2p̂a

]z2
1a2

1

r

]

]r S r
] p̂a

]r D522
]2p̂1

]z]z1
. ~126!

With Van Dyke’s matching rules applied to the expressio
for V̂z1 , v̂z1 , Q̂1 , and q̂1 resulting from Eqs.~112!, ~114!,
~117!, ~119!, and~23!, the solutions

V̂z15 v̂z1ur 51~12e2~11 j !dsA~v/2!!,
~127!

Q̂15 p̂1ur 51~g21!~12e2~11 j !dsA~v Pr/2!!

are derived. It then follows from Eqs.~102! and ~111! that

aV̂ra5 p̂1ur 51F j vs1
11 j

d
Av

2

g21

APr

3~12e2~11 j !dsA~v Pr/2!!G1
]2p̂1

]z2 U
r 51

3
1

v2 F j vs2
11 j

d
Av

2
~12e2~11 j !dsA~v/2!!G .

~128!

Consequently, the matching principle gives the bound
condition for the outer expansion termp̂a in the form

r 51:
] p̂a

]r
5

12 j

a2d
vAv

2 S p̂1

g21

APr
2

]2p̂1

]z2

1

v2D .

~129!

The solutionp̂a8 to the homogeneous part of Eq.~126!
subject to the homogeneous boundary conditions atr 51 as-
sumes the same form as the expression forp̂1 from Eq.
~124!. However, the functionsĈ1n1 and Ĉ2n1 have to be
replaced withĈ1na and Ĉ2na , respectively. In order to de
termine a particular solutionp̂a9 such thatp̂a5 p̂a81 p̂a9 the
ansatz

p̂a95 (
n50

` F S f̂ 1na~z,z1 ,z2!
J0~gnr !

J0~gn!

1ĝna~r !Ĉ1n1~z1 ,z2! De2 j k̂nz

1S f̂ 2na~z,z1 ,z2!
J0~gnr !

J0~gn!

1ĝna~r !Ĉ2n1~z1 ,z2! D ejk̂nzG ~130!
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is made, which is required to fulfill the conditions~24! and
~129!. Furthermore, the functional dependence on the co
dinater of the terms that are generated by the left-hand s
of Eq. ~126! for each moden50,1,2,... on substituting Eq
~130! must be given by the radial eigenfunctions J0(gnr ).
Together, these requirements imply that

ĝ0a5
v2F̂0

2a2
r 2, ĝna5

k̂n
2F̂n

a2

rJ1~gnr !

gnJ0~gn!
, n51,2,...,

~131!

with the parametersF̂n defined as

F̂n5
12 j

dA2v
S 11

v2

k̂n
2

g21

APr
D , n50,1,2,... . ~132!

Substitution of expression~130! into Eq.~126! then results in

]2 f̂ 1na

]z2
22 j k̂n

] f̂ 1na

]z
522F̂nk̂n

2Ĉ1n112 j k̂n

]Ĉ1n1

]z1
,

~133!
]2 f̂ 2na

]z2
12 j k̂n

] f̂ 2na

]z
522F̂nk̂n

2Ĉ2n122 j k̂n

]Ĉ2n1

]z1
.

The forcing terms on the right-hand sides are resonant
would produce secular terms in in the functionsf̂ 1na and
f̂ 2na . Therefore, they must be annihilated, yielding

Ĉ1n1~z1 ,z2!→Ĉ1n1~z2!e2 j k̂nF̂nz1,

Ĉ2n1~z1 ,z2!→Ĉ2n1~z2!ejk̂nF̂nz1, ~134!

whereupon the functionsf̂ 1na and f̂ 2na can simply be set to
zero, since any other solution would lead to expressions
p̂a9 that could be incorporated into the homogeneous solu
p̂a8 . Please note that Eq.~134! could also have been derive
by using a different concept: As a result of the homogene
problem

~v22 k̂n
2!ĉ1a2

1

r

]

]r S r
]ĉ

]r D 50, r 51:
]ĉ

]r
50

~135!

having a nontrivial solution and the operator being se
adjoint, the inhomogeneous problem has a solution onl
the forcing terms are orthogonal to the homogeneous s
tion, see, e.g., Ref. 11. This is known as theFredholm alter-
native and introduces two solvability conditions for Eq
~126!, which are identical to the right-hand sides of E
~133!.

The quantitiesI(2vF̂0)5I(2vF̂) and I(2 k̂nF̂n), n
51,2,..., turn out to be, respectively, the leading order de
rate of the fundamental mode and the leading order de
rates of the higher order modes due to boundary layer atte
ation, which is in accordance with Beatty’s23 results for the
axisymmetric case obtained by using the concept of bou
ary layer admittance.

In order to calculate the corresponding expressions
the third-order terms, a procedure very similar to that us
545Stefan Scheichl: Transmission line parameters for long tubes
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before is performed: Combination of Eqs.~106!, ~110!,
~114!–~116!, ~119!, and~120! and multiple application of Eq
~122! shows that

v̂za252
1

a2d2

] p̂1

]z S 4

3
1h D1

j

v S ] p̂1

]z2
1

] p̂a

]z1
1

] p̂a2

]z D
~136!

and thatp̂a2 has to satify the inhomogeneous equation

v2p̂a21
]2p̂a2

]z2
1a2

1

r

]

]r S r
] p̂a2

]r D
522

]2p̂1

]z]z2
2

]2p̂1

]z1
2

1 j v3
1

a2d2
p̂1S 4

3
1h1

g21

Pr D
22

]2p̂a

]z]z1
, ~137!

where the third term on the right-hand side obviously inc
porates the effects of heat conduction and viscosity in
ne
ar

lu
e
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core region associated with the propagation of the lead
order pressure fluctuationsp̂1 . This is in contrast to the
analysis in Sec. IV where, due to the long wavelength
sumptionl !1, these effects do not affect the wave equatio
@see Eq.~70!#. Moreover, Eqs.~113! and~118! are solved for
the axial velocity and the temperature in the boundary lay
leading to

V̂za5 v̂zaur 51~12e2~11 j !dsA~v/2!!

2 v̂z1ur 51

s

2
e2~11 j !dsA~v/2!,

~138!
Q̂a5 p̂aur 51~g21!~12e2~11 j !dsA~v Pr/2!!

2 p̂1ur 51~g21!
s

2
e2~11 j !dsA~v Pr/2!.

After substitution forĈa , V̂z1 , V̂ra , and V̂za from Eqs.
~111!, ~127!, ~128!, and~138!, respectively, integration of Eq
~103! with respect to the inner coordinates gives
aV̂ra25 p̂1ur 51F j v

2
s22

g21

2d2Pr
~12e2~11 j !dsA~v Pr/2!!1

11 j

2d
Av

2

g21

APr
s~22e2~11 j !dsA~v Pr/2!!G

1
]2p̂1

]z2 U
r 51

1

v2 F j v

2
s21

1

2d2
~12e2~11 j !dsA~v/2!!2

11 j

2d
Av

2
s~22e2~11 j !dsA~v/2!!G

1 p̂aur 51F j vs1
11 j

d
Av

2

g21

APr
~12e2~11 j !dsA~v Pr/2!!G

1S ]2p̂a

]z2 U
r 51

12
]2p̂1

]z]z1
U

r 51
D 1

v2 F j vs2
11 j

d
Av

2
~12e2~11 j !dsA~v/2!!G . ~139!
-
t

Furthermore, upon applying the matching rules to the in
and outer expansions of the radial velocity, the bound
condition

r 51:
] p̂a2

]r
5

j v

2a2d2 S p̂1

g21

Pr
2

]2p̂1

]z2

1

v2D
1

12 j

a2d
vAv

2 F p̂a

g21

APr
2S ]2p̂a

]z2
12

]2p̂1

]z]z1
D 1

v2G
~140!

is obtained. It should be mentioned that the particular so
tion p̂a9 vanishes at the boundary for all higher order mod
n51,2,... .

A particular solutionp̂a29 to Eq. ~137! can be found by
employing the ansatz
r
y

-
s

p̂a29 5 (
n50

` F S f̂ 1na2~z,z1 ,z2!
J0~gnr !

J0~gn!

1ĝna2~r !Ĉ1n1~z2!e2 j F̂ nk̂nz1

1ĥna2~r !Ĉ1na~z1 ,z2! De2 j k̂nz

1S f̂ 2na2~z,z1 ,z2!
J0~gnr !

J0~gn!

1ĝna2~r !Ĉ2n1~z2!ejF̂ nk̂nz1

1ĥna2~r !Ĉ2na~z1 ,z2! Dejk̂nzG , ~141!

such that conditions~24! and ~140! are satisfied and the op
erators on the left-hand side of Eq.~137! produce terms tha
have the same functional dependence onr as the terms on the
right-hand side. As a consequence, one obtains
Stefan Scheichl: Transmission line parameters for long tubes
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ĝ0a25
v2

2a2 S Ĝ01
v2F̂0

2

4a2 D r 21
v4F̂0

2

16a4
r 4,

ĝna25
k̂n

2

a2 S Ĝn1
k̂n

2F̂n
2

a2gn
2D rJ1~gnr !

gnJ0~gn!

2
k̂n

4F̂n
2

2a4

r 2J0~gnr !

gn
2J0~gn!

, n51,2,..., ~142!

ĥ0a25
v2F̂0

2a2
r 2, ĥna25

k̂n
2F̂n

a2

rJ1~gnr !

gnJ0~gn!
, n51,2,...,

where

Ĝn52
j

2d2v
F32

v2

k̂n
2 ~g21!S 1

Pr
2

4

APr
D G ,

n50,1,2,... . ~143!

Substitution of Eq.~130! into Eq. ~137! then yields

]2 f̂ 1na2

]z2
22 j k̂n

] f̂ 1na2

]z
5S 22Ĥnk̂n

2Ĉ1n112 j k̂n

]Ĉ1n1

]z2
D

3e2 j F̂nF̂nz122F̂nk̂n
2Ĉ1na

12 j k̂n

]Ĉ1na

]z1
, ~144!

]2 f̂ 2na2

]z2
12 j k̂n

] f̂ 2na2

]z
5S 22Ĥnk̂n

2Ĉ1n122 j k̂n

]Ĉ2n1

]z2
D

3e2 j F̂nK̂nz122F̂nk̂n
2Ĉ2na

22 j k̂n

]Ĉ2na

]z1
,

where

Ĥ05Ĝ02
F̂0

2

2
1

v2F̂0
2

4a2
2

j v

2a2d2 S 4

3
1h1

g21

Pr D
52

j

d2v
F11

g21

APr
S 12

g

2APr
D G

2
j v

2a2d2 F11

6
1h1

g21

2APr
S 21

11g

APr
D G ,

~145!

Ĥn5Ĝn2
F̂n

2

2
2

j v3

2a2d2k̂n
2 S 4

3
1h1

g21

Pr D
52

j

d2v
F11

v2

k̂n
2

g21

APr
F12

1

2APr
S 11

v2

k̂n
2 ~g21!D G G

2
j v3

2a2d2k̂n
2 S 4

3
1h1

g21

Pr D , n51,2,... .

As before, the right-hand sides of Eq.~144! have to be an-
nihilated in order to rule out secular terms in the functio
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
s

f̂ 1na2 and f̂ 2na2. The resulting solvability conditions thu
read

2F̂nk̂n
2Ĉ1na22 j k̂n

]Ĉ1na

]z1
5S 22Ĥnk̂n

2Ĉ1n112 j k̂n

]Ĉ1n1

]z2
D

3e2 j F̂nk̂nz1 ,
~146!

2F̂nk̂n
2Ĉ2na12 j k̂n

]Ĉ2na

]z1
5S 22Ĥnk̂n

2Ĉ1n122 j k̂n

]Ĉ2n1

]z2
D

3e2 j F̂nk̂nz1 ,
,

and, furthermore,f̂ 1na2 and f̂ 2na2 can be set to zero. The
right-hand sides of Eq.~146! are again identified as resona
forcing terms, finally leading to

Ĉ1n1~z2!e2 j F̂ nk̂nz1→Ĉ1n1e2 j k̂n~ F̂nz11Ĥnz2!,
~147!

Ĉ2n1~z2!ejF̂ nk̂nz1→Ĉ2n1ejk̂n~ F̂nz11Ĥnz2!

and, additionally,

Ĉ1na~z1 ,z2!→Ĉ1na~z2!e2 j k̂nF̂nz1,
~148!

Ĉ2na~z1 ,z2!→Ĉ2na~z2!ejk̂nF̂nz1.

Results. One interesting property of the parameterĤ0

for the fundamental mode is that it cannot be derived fr
the quantitiesĤn , n51,2,..., for the higher order modes sim
ply by settingk̂n5v. However, it reduces to the paramet
Ĥ defined in Sec. IV, when the limit asa→` is taken and
thus, formally, the long wavelength assumptionl !1 is rein-
troduced. In accordance with this, the axial wave numb
k̂n , n51,2,..., then approach2 j ` and all higher order
modes die away immediately.

The definition of the propagation parameter from Eq.~3!
can easily be extended, such that each mode is treated s
rately: To this end, the quantities

Ĝn5A 1

p̂nsv̂nz

] p̂ns

]z

] v̂nz

]z
5A 1

p̂ns

]2p̂ns

]z2
, ~149!

where p̂ns and v̂nz denote the sound pressures and the a
velocities associated with the modesn50,1,2,..., are intro-
duced. Upon replacing the partial derivatives with respec
z with derivatives with respect to the three length scales u
here according to Eq.~28!, application of Eqs.~134!, ~147!,
and~148! implicates that the parametersĜn are given by the
relationship

Ĝn5A2 k̂n
2@112aF̂n1a2~2Ĥn1F̂n

2!#1¯,

n50,1,2,..., ~150!

where F̂n and Ĥn are the quantities already introduced
Eqs. ~132! and ~145!, respectively. Ifuk̂nu5O(1) this result
simplifies to

Ĝn5 j k̂n1a j k̂nF̂n1a2 j k̂nĤn1..., n50,1,2,... .
~151!
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Inspection of the definitions~132! and~145! shows that
in the limiting case of a moden5m having a cut-off fre-
quency so close to the driving frequency thatuk̂mu!1 the
orders of magnitude of the different terms appearing in
~150! may change completely. Before turning to a detai
analysis of that problem, please note that one aspect o
first- and second-order solutions derived by Anderson
Vaidya13 in their study of linear sound propagation in sl
shaped waveguides carries over unchanged to the cas
circular cross sections considered here: The solvability c
ditions resulting from Eqs.~133! and~144! are singular at the
cut-off frequenciesv5agn , n51,2,..., predicting that in the
limit as v→agm , k̂m→0, the attenuation of the moden
5m takes place over a much shorter spatial range than
defined byz15O(1). A closer examination of the solvabilit
conditions then indicates that in order to investigate
modulation of a modem featuring a cut-off frequency in
proximity to the driving frequencyv such that

v5vm1ava , vm5agm , m>1 ~152!

holds, for thismth mode, the length scalesz, z1 , andz2 have
to be replaced with the length scales

z̄15a1/2z, z̄25a3/2z. ~153!

Moreover, this necessitates expressing the pressure
similarly, the velocity components and the other thermo
namic quantities in the form:

p5
1

g
1M ~p11a1/2pa1/21apa1a3/2pa3/21a2pa2

1¯ !1M2~¯ !1¯ . ~154!

Application of the MMS then leads to the following re
sults: ~a! The leading order solutions given by Eqs.~109!,
~114!, and~124! remain unchanged. However, the functio
Ĉ1m1(z1 ,z2) and Ĉ2m1(z1 ,z2) have to be replaced with
Ĉ1m1( z̄1 ,z̄2) and Ĉ2m1( z̄1 ,z̄2), respectively, and, addition
ally, v must be replaced withvm , resulting in k̂m50. ~b!
The perturbationsv̂ ra1/2, v̂za1/2, and p̂a1/2 satisfy Eq.~109!,

j vmv̂za1/21
] p̂a1/2

]z
1

] p̂1

] z̄1
50, ~155!

and the homogeneous Helmholz equation~122! subject to
the boundary condition~123!. ~c! The sound propagation a
the orderO(a) is now governed by the set

j vmv̂ ra1 j vav̂ r11a
] p̂a

]r
50,

j vmv̂za1 j vav̂z11
] p̂a

]z
1

] p̂a1/2

] z̄1
1

] p̂1

]z1
50,

~156!

vm
2 p̂a1

]2p̂a

]z2
1a2

1

r

]

]r S r
] p̂a

]r D
522vmvap̂122

]2p̂1

]z]z1
2

]2p̂1

] z̄1
2

,
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and the boundary condition~129!. By introducing the ansatz
~130!, with ĝma redefined as

ĝma5
FC m

a2

rJ1~gmr !

gmJ0~gm!
, FC m5vm

3/212 j

dA2

g21

APr
, ~157!

the following modified solvability conditions are obtained

2Ĉ1n1~ F̂nk̂n
21vmva!1 j k̂n

]Ĉ1n1

]z1
1 j k̂n

]Ĉ1na1/2

] z̄1
50,

~158!

Ĉ2n1~ F̂nk̂n
21vmva!1 j k̂n

]Ĉ2n1

]z1
1 j k̂n

]Ĉ2na1/2

] z̄1
50,

nÞm,

wherev in k̂n and F̂n has to be replaced withvm , and

2~Ĉ1m11Ĉ2m1!~FC m1vmva!1
]2

] z̄1
2 ~Ĉ1m11Ĉ2m1!50

~159!

for the mth mode. Equations~158! and ~159! thus yield

Ĉ1n1~z1 ,z2!→Ĉ1n1~z2!e2 j k̂n~ F̂n1vmva / k̂n
2
!z1,

~160!
Ĉ2n1~z1 ,z2!→Ĉ2n1~z2!ejk̂n~ F̂n1vmva / k̂n

2
!z1, nÞm,

Ĉ1m1~ z̄1 ,z̄2!→Ĉ1m1~ z̄2!e2 j ~2FC m12vmva!1/2z̄1,
~161!

Ĉ2m1~ z̄1 ,z̄2!→Ĉ2m1~ z̄2!ej ~2FC m12vmva!1/2z̄1.

~d! Furthermore, the solvability conditions forp̂a3/2 imply
that

Ĉ1ma1/2~ z̄1 ,z̄2!→Ĉ1ma1/2~ z̄2!e2 j ~2FC m12vmva!1/2z̄1,
~162!

Ĉ2ma1/2~ z̄1 ,z̄2!→Ĉ2ma1/2~ z̄2!ej ~2FC m12vmva!1/2z̄1.

Substitution ofv from Eq. ~152! into Eq. ~134! multi-
plied by exp(7jk̂nz), series expansion with respect toa, and
comparison with Eq.~160! immediately shows the equiva
lence of both formulations provided thatnÞm. As expected,
relationships~150! and ~151! for the propagation paramete
are left unchanged for all modes having cut-off frequenc
not close to the driving frequency. However, if there is
modem>1 such that Eq.~152! is fulfilled, Eqs.~161! and
~162! lead to the interesting result that the propagation
rameterĜm is then given by

Ĝm5a1/2j ~2FC m12vmva!1/21a3/2Ĝma3/21¯, ~163!

which is valid for all frequenciesv arbitrarily near the cut-
off frequency agm , i.e., even for va50. This solution
agrees perfectly with the approximation derived by Hudde24

using the concept of boundary layer admittance; the exp
ments reported in this paper are also in good accordance
the theoretically predicted attenuation rate. In principle,
higher order correction termĜma3/2 could be calculated by
evaluating the resonant forcing terms appearing in the eq
tions governing the pressure perturbationp̂a2. Here, how-
ever, a different~more intuitive! approach shall be used: I
contrast to the limits of the original solvabilty condition
~133! and~144! ask̂n→0, n51,2,..., the corresponding limit
Stefan Scheichl: Transmission line parameters for long tubes
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of the propagation parameters given by Eq.~150! can be
calculated without any difficulties. As it turns out, the lea
ing order term ofĜm , which is of the orderO(a1/2), can also
be derived by substituting forv from Eq.~152! in Eq. ~150!,
setting n5m, and performing a series expansion with r
spect to the perturbation parametera. Consequently, it is
very reasonable to assume that for each mode, the expre
for Ĝn from Eq. ~150! including the O(a2) terms retains its
validity even for those driving frequencies that are very clo
to the cut-off frequency of this mode, which enables t
computation of the higher order correction term ofĜm .
Hence, one obtains

Ĝma3/25
j

2
~2FC m12vmva!1/2

3S va

2vm
1

va

vm
FC m1A2vmva

12 j

d
1KC m

FC m1vmva

D ,

~164!

where

KC m5 lim
v→vm

km
2 S Ĥm1

F̂m
2

2 D
5 j vm

g21

2d2 S 1

Pr
2

4

APr
D 2

j vm
3

2a2d2 S 4

3
1h1

g21

Pr D .

~165!

The corresponding result obtained when the general
pression for the propagation parameters from Eq.~150! is
rewritten in terms of dimensional quantities can be found
Appendix C. As far as the fundamental mode is concerne
agrees perfectly with the solution given by Kergomard25

This applies even for the terms appearing inĤ0 that result
from heat conduction and viscosity in the core region. U
fortunately, in that paper, no derivations were presen
Later Bruneauet al.26 calculated the propagation paramete
for the higher order modes, starting from a generalized
persion equation. However, in the intermediate steps
then followed only boundary layer effects were taken in
account~the mentioned dispersion relation was corrected i
subsequent paper, see Ref. 27; if, though, only the axis
metric modes are considered, as is the case here, it rem
unchanged!. The expressions for the propagation parame
Ĝn presented in Eqs.~150! and ~C4! are in complete accor
dance with the results in Ref. 26, if the terms proportiona
1/a2 appearing in the definitions~145! are formally omitted,
so that the quantitiesĤn reduce to Ĥn5Ĝn2F̂n

2/2, n
50,1,2,... . However, it should be kept in mind that with
the framework of a correct asymptotic analysis sucha pos-
teriori simplifications are not appropriate, since in the ca
of l 5O(1) the terms inĤn resulting from boundary laye
attenuation and those due to the viscous and thermal ef
in the core region are of the same order of magnitude.

As can be seen from Eqs.~C4! and ~C5!, the quantity
Ĝnv/c0 can be conveniently expressed in terms of the
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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rameters St, He, Pr,g, and h0 /m0 . The real part of this
function evaluated for the fundamental mode is displayed
Fig. 4, which clearly shows that the attenuation rate is s
nificantly affected by the viscothermal damping mechanis
in the core region as soon as the Helmholtz number beco
an O(1) quantity. In addition, Fig. 5 displays the graphs
R(Ĝnv/c0) for n50, 1, 2, 3 andR50.001 m as functions of
the Helmholtz number He5O(1). Here, the~large! Stokes
number has been eliminated using the relationship
5AHe ReR, where ReR5c0Rr0 /m0;Re@1 denotes the radia
Reynolds number. The results plotted in this figure well
lustrate the behavior of the modal damping rates when
frequency is increased such that a new mode becomes pr
gational: In conformity with Eqs. ~151! and ~163!,
R(Ĝnv/c0)5O(1) if He,gn and gn2He5O(1),
R(Ĝnv/c0)5O(St21/2) if uHe2gnu!1, and R(Ĝnv/c0)
5O(St21) if He.gn and He2gn5O(1).

A further point of interest is the calculation of the tran
fer functions that relate the pressure fluctuations at both e

FIG. 4. Graphs ofR(Ĝ0c0 /v) as functions of St with He as parameter
double logarithmic scale; Pr50.707,g51.402,h0 /m050.6 ~air at 300 K!;
the curve for He; l !1 corresponds to the long wavelength solution fro
Sec. IV; St@1: R(Ĝ0c0 /v)5O(St21).

FIG. 5. Graphs ofR(Ĝnc0 /v) as functions of He in double logarithmic
scale, R50.001 m, i.e., St5AHe ReR with ReR5c0Rr0 /m0; Pr50.707,
g51.402, h0 /m050.6, c0r0 /m05221.37323105 m21 ~air at 300 K!; g1

53.8317,g257.0156,g3510.1735.
549Stefan Scheichl: Transmission line parameters for long tubes
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sure
of a tube to the axial velocities~in the case ofl !1 these
relations can easily be derived by solving the system
equations given by the transfer matrixÂ for the sound pres-
suresp̂s2 and p̂s1). Again, the tube is regarded as a tran
mission line whose length is large compared to the cha
teristic wavelength such thatL5L1 /a with L15O(1). Due
to the viscothermal processes taking place in the bound
layer, each transfer function associated with a distinct m
will turn out to be affected by all the other modes as wel

For convenience, the axial velocities in the core reg
at both ends of the duct are assumed to involve only term
order O(1). Decomposition through the radial eigenfun
tions J0(gnr ) then results in

v̂z2

M
5 v̂z125 (

n50

`

Ĉnvz2

J0~gnr !

J0~gn!
,

~166!
v̂z1

M
5 v̂z115 (

n50

`

Ĉnvz1

J0~gnr !

J0~gn!
.

Setting the origin of the axial coordinatez to the left end of
the tube, evaluation of Eqs.~114! and ~124! in combination
with the solutions~134!, ~147!, and ~148! of the solvability
conditions leads to

Ĉ1n12Ĉ2n15Ĉnvz2

v

k̂n

,

~167!

Ĉ1n11Ĉ2n15S Ĉnvz2 coth~ ĜnL !2
Ĉnvz1

sinh~ ĜnL !
D v

k̂n

,

where, for an evanescent mode or a mode having a cu
frequency close to the driving frequency, the term
coth(ĜnL) and 1/sinh(ĜnL) can simply be replaced with 1
and 0, respectively, since in such cases the resulting co
tions become exponentially small. Furthermore, annihilat
the second- order solutionsv̂za2 and v̂za1 given by Eqs.
~115! and ~130! yields

Ĉ10a2Ĉ20a52Ĉ0vz2S F̂01
v2F̂0

4a2 D
1 (

m51

`

Ĉmvz2

2k̂m
2 F̂m

a2gm
2

,

Ĉ10a1Ĉ20a5~Ĉ10a2Ĉ20a!coth~ Ĝ0L !

1F Ĉ0vz
1S F̂01

v2F̂0

4a2 D
2 (

m51

`

Ĉmvz1

2k̂m
2 F̂m

a2gm
2 G 1

sinh~ Ĝ0L !
,

~168!

Ĉ1na2Ĉ2na52Ĉnvz2

vF̂n

k̂n

2 (
m50
mÞn

`

Ĉmvz2

2v k̂m
2 F̂m

a2k̂n~gn
22gm

2 !
,
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Ĉ1na1Ĉ2na5~Ĉ1na2Ĉ2na!coth~ ĜnL !1S Ĉnvz1

vF̂n

k̂n

1 (
m50
mÞn

`

Ĉmvz1

2v k̂m
2 F̂m

a2k̂n~gn
22gm

2 !D 1

sinh~ ĜnL !
,

n51,2,...,

where the relationship

E
0

1

2r
J0~gnr !

J0~gn!

rJ1~gmr !

gmJ0~gm!
dr

5H 2

gn
22gm

2
, n50,1,2..., m51,2..., mÞn

0, m5n51,2...

~169!

has been used.
Equations~124!, ~130!, ~167!, and ~168! together with

Eqs. ~134!, ~147!, and ~148! are sufficient to determine th
solutions

p̂s2

M
5 p̂121a p̂a21¯5 (

n50

`

Ĉnps2

J0~gnr !

J0~gn!
,

~170!
p̂s1

M
5 p̂111a p̂a11¯5 (

n50

`

Ĉnps1

J0~gnr !

J0~gn!

at z50 andz5L, respectively, in terms of the radial eigen
functions. The thus obtained expressions for the coefficie
of the eigenfunction expansions can be written in the for

Ĉnps75S 6Ĉnvz7 coth~ ĜnL !7
Ĉnvz6

sinh~ ĜnL !
D

3~12aF̂n!
v

k̂n

7a (
m50
mÞn

`

Ĉmvz7

2k̂m
2 F̂m

a2~gn
22gm

2 !

3S coth~ ĜnL !
v

k̂n

2coth~ ĜmL !
v

k̂m
D

6a (
m50
mÞn

`

Ĉmvz6

2k̂m
2 F̂m

a2~gn
22gm

2 !

3S 1

sinh~ ĜnL !

v

k̂n

2
1

sinh~ ĜmL !

v

k̂m
D 1¯,

n50,1,2,... . ~171!

As pointed out earlier, the terms coth~•! and 1/sinh~•! appear-
ing in Eq.~171! can simply be replaced with 1 and 0, respe
tively, if n or m correspond to an evanescent mode or a m
having a cut-off frequency close to the driving frequen
which reveals the well-known fact that the pressure per
bations at one end can only be affected by velocity fluct
tions at the other end that are associated with the propaga
modesn, m50,1,2,...,q, whereq denotes the highest mod
such thatk̂q is a positive real of orderO(1). Therefore, as
far as the propagating modes are concerned, the pres
Stefan Scheichl: Transmission line parameters for long tubes
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fluctuations at one end can also be expressed in terms o
components of the axial velocity and the sound pressur
the other side by rearranging the systems~171!, substituting
the resulting equations mutually, and truncating after
second-order terms. It then follows that

Ĉnps75Ĉnps6 cosh~ ĜnL !

6Ĉnvz6 sinh~ ĜnL !~12aF̂n!
v

k̂n

1a (
m50
mÞn

q

Ĉmps6

2k̂m
2 F̂m

a2~gn
22gm

2 !
~cosh~ ĜnL !

2cosh~ ĜmL !!7a (
m50
mÞn

q

Ĉmvz6

2k̂m
2 F̂m

a2~gn
22gm

2 !

3S sinh~ ĜnL !
v

k̂n

2sinh~ ĜmL !
v

k̂m
D 1¯,

n50,1,2,...,q. ~172!

The expressions from Eqs.~171! and~172! written in dimen-
sional form are presented in Appendix C.

In order to derive the asymptotically correct expressio
for the volume flows at both ends, the axial Navier–Stok
equation ~17! is averaged over the cross section and
panded with respect to the perturbation parametera, yielding

j vvC z11
]pC 1

]z
50, j vvC za1

2

d2

]V̂z1

]s
U

s50

1
]pC a

]z
1

]pC 1

]z1
50.

~173!

Since the expansion terms of the pressure fluctuations in
boundary layerP̂1 and P̂a are independent of the inner co
ordinates, the quantitiespC 1 andpC a can be conveniently cal
culated by integrating the inner solutions from Eqs.~124!
and ~130! over the core region. Hence, using Eqs.~127!,
~167!, and~168! results in

û7

M
5

vC z7

M
5vC z171avC za71¯

5Ĉ0vz72a
12 j

d
A2

v (
n50

`

Ĉnvz71¯ . ~174!

In the limit asa→`, i.e., l !1, the solutions for the funda
mental mode from Eq.~171! then reduce to

pC s75MĈ0ps75S 6û7 coth~ Ĝ0L !7
û6

sinh~ Ĝ0L !
D

3F11a
12 j

dA2v
S 12

g21

APr
D G1¯ ~175!

and the matrix system~4!, with the parametersẐc and Ĝ
given by Eq.~77!, is recovered.

VI. CONCLUSIONS

In the work presented here the method of multiple sca
in combination with a matched asymptotic analysis has b
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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carried out to provide insight into the linear evolution
sound pressure waves in long hard-walled ducts. The ca
lations primarily proceed from the assumptions that the fl
is a perfect gas and, additionally, that the acoustic bound
layer is thin compared to the characteristic dimension of
cross-sectional area. Furthermore, two different assumpt
concerning the diameter to wavelength ratio have b
adopted in order to derive the transfer characteristics o
long tube up to the second-order terms.

In the first case, where the wavelengths are assume
be large compared to the diameter, it is found that the sm
perturbation parametere introduced by that ratio plays only
passive role, that is to say, its smallness prevents higher o
modes from being excited. As a consequence, the series
pansion of the characteristic impedance up to second o
and the series expansion of the propagation parameter, w
has to be calculated up to the third order, depend only on
~small! scaling parametera determining the thickness of th
boundary layer in terms of the diameter. However, as sho
in Secs. IV B and IV C, the parametere will become impor-
tant if the effects resulting from radiation at the tube end
to be incorporated into the analysis.

In Sec. V the reduced frequency~or, equivalently, the
Helmholtz number! is presupposed to be of orderO(1), i.e.,
e51. As a consequence, the analysis has to account for
excitation of higher order modes and the interaction of
different modes in the acoustic boundary layer. To dem
strate this, the transfer functions relating the sound press
at both ends of the duct to the axial velocities have be
calculated. The series expansions derived for the propaga
parameters extend the results given in the literature with
ditional terms resulting from shear and bulk viscosity a
heat conduction in the core region. In addition, special e
phasis has been placed on the asymptotically correct tr
ment of modes having cut-off frequencies close to the d
ing frequency.

Obviously, some of the simplifying assumptions ma
here can be relaxed in order to account for the phys
mechanisms neglected so far. Examples include nonlin
effects and the consideration of the asymmetric modes.

APPENDIX A: DUCTS WITH RECTANGULAR CROSS
SECTIONS

The derivations ofẐ andŶ for the case of a rectangula
tube, which were elaborated by Stinson8 ~see also Roh
et al.28!, result from his general procedure developed
ducts having arbitrary cross-sectional shape. As explicate
Ref. 8, this theory is primarily based on the hypotheses
both the characteristic wavelengthl as well as the inverse o
the propagation parameterĜ5AẐŶ are very large compared
to the boundary layer thicknessd, the density perturbations
and the sound pressure are of comparable magnitude w
scaled by their equilibrium values, and, furthermore, t
sound pressure does not vary significantly through the c
section. This set of assumptions then enables the simplifi
tion of the basic equations such that, in addition to the c
of circular tubes, even in the case of tubes with rectangu
551Stefan Scheichl: Transmission line parameters for long tubes
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cross section, the expressions for the shunt admittance
the series impedance can be given in closed form:

Let 2h and 2b be the height and the width of the tub
with D52h as the characteristic dimension of the cross s
tion andb/h5O(1). Additionally, the following parameters

ak5
~k11/2!p

h
,

~A1!

bn5
~n11/2!p

b

are introduced. Then the quantitiesẐ and Ŷ are constructed
from

Ẑ5
m0b2h2

4S(
k50

`

(
n50

`
1

ak
2bn

2S ak
21bn

21
j vr0

m0
D

,

~A2!

Ŷ5
j vS

p0 F 12
4~g21! j vr0Cp

gk0b2h2

3 (
k50

`

(
n50

`
1

ak
2bn

2S ak
21bn

21
j vr0Cp

k0
D G ,

whereS54bh.
Since for every arbitraryĵ the relationship

(
k50

`
1

h2ak
2~h2ak

21 ĵ !
5

1

2ĵ
S 12

tanh~Aĵ !

Aĵ
D ~A3!

holds, expression~A2! can be recast into

Ẑ5
m0b2

2Sh2(
n50

` 1

bn
2ĵ1

S 12
tanh~Aĵ1!

Aĵ1

D ,

~A4!

Ŷ5
j vS

p0
F 12

2~g21! j vr0Cph2

gk0b2

3 (
n50

` 1

bn
2ĵ2

S 12
tanh~Aĵ2!

Aĵ2

D G .

Here, ĵ1 and ĵ2 are abbreviations for
552 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
nd

-

ĵ15h2S bn
21

j vr0

m0
D ,

~A5!

ĵ25h2S bn
21

j vr0Cp

k0
D .

Due to the infinite sums in Eqs.~A2! and ~A4! the ex-
pansions in the limits as St→0 ~LFL! or St→` ~HFL!, with
the Stokes number defined as

St5Avr0h2

m0
, ~A6!

turn out to be very tedious. However, one could try to der
at least the asymptotically correct expressions for Eq.~A4! in
the HFL by means of a multiple scales analysis based on
low reduced frequency assumptionsstated in Eq.~5! in com-
bination with a matched asymptotic expansion, as outline
Sec. IV. Such an approach involving separate calculations
the acoustic flow in the core region, the main boundary
gions, and, in principle, also in the corner regions of t
boundary layer has the advantage that the series expan
of infinite sums can then be avoided. In contrast to the st
in Sec. IV, the following analysis confines itself to inves
gating theleadingorder terms of the volume flowû and the
sound pressurep̂s generated by waves propagating over
distanceL;Stl or, equivalently, theleading order terms
and thesecond-order terms of the quantitiesû and p̂s gener-
ated by waves propagating over a spatial rangeL;l only.

To this end, the nondimensional coordinates

x* 5
x

b
, y* 5

y

h
~A7!

for the vertical and the horizontal direction, respectively, a
the small scaling parameters

e5a
h

l
; l , a5d

l

hARe
;St21 ~A8!

are introduced. Omitting the superscripts* denoting nondi-
mensional quantities, the boundary layer coordinates
given by

s6y5
17y

a
, s6x5

17x

a
. ~A9!

As mentioned earlier, in this simplified analysis eith
the changes of the first- and second-order terms of the q
tities p̂s and û are to be resolved over a spatial range of t
order O(1) or just the leading order effects emerging ov
distances of the orderO(a21) are to be investigated. In bot
cases two length scales are sufficient, resulting in
Stefan Scheichl: Transmission line parameters for long tubes
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]

]z
→ ]

]z
1a

]

]z1
. ~A10!

In order to guarantee the linearity of the problem, the Ma
number now has to be assumed to satisfy

M!e, M!a. ~A11!

Furthermore, it should be noted that the effects result
from the viscothermal processes taking place in the v
small corner regions of the boundary layer where boths6x as
well as s6y are of orderO(1) will not enter the correction
terms at second order ina, since their contribution to the
volume flow is an order smaller than that of the main part
the boundary layer. Hence, deriving an exact solution of
boundary layer equations for the corner regions is not ne
sary.

A perturbation analysis for the HFL very similar to th
carried out in Sec. IV then shows that the series impeda
and the shunt admittance in dimensional form assume
limiting values

Ẑ5
vr0

S F j 1~11 j !S 11
h

bDA m0

2vr0h2
1O~St22!G ,

~A12!

Ŷ5
vS

gp0
F j 1~11 j !S 11

h

bD ~g21!A m0

2vr0h2

k0

m0Cp

1O~St22!G .

The low reduced frequency assumptions from Eq.~5! to-
gether with St;h/d@1 yield the ordering relationshipl
@h@d and Eq.~A12! implies that in the HFL, the inverse o
the dimensional propagation parameter is of the orderO(l).
Furthermore, as in the case of tubes with circular cro
sectional shape, the sound pressure does not change si
cantly over the cross section. As a consequence, the b
assumptions adopted by Stinson~see above! are satisfied,
which leads to the conclusion that Eq.~A12! represents the
asymptotically correct approximations to Eq.~A2! in the
limit of large Stokes numbers.

APPENDIX B: DUCTS WITH SLIT-SHAPED AND
ARBITRARY CROSS SECTIONS

In the case of a rectangular slit-shaped tube withD
52h as the characteristic dimension such thath/b!1, the
expressions forẐ and Ŷ derived forb/h5O(1) reduce to8
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Ẑ5
j vr0

SS 12A m0

j vr0

tanhS hAj vr0

m0
D

h
D ,

~B1!

Ŷ5

j vSF 11~g21!A k0

j vr0Cp

tanhS hAj vr0Cp

k0
D

h
G

gp0
,

with S54bh. The result forẐ is in accordance with the
solution already given in the 1975 paper by Backus;29 how-
ever, please note that in the expression for the shunt ad
tance stated there, a factor ofAj is missing. Derivations ofẐ
and Ŷ can also be found in Ingard30 ~pp. 2/19–2/29!.

The LFL can be calculated by means of a power se
expansion with respect to the Stokes number from Eq.~A6!
and reads

LFL: Ẑ5
3m0

h2S
S 11 j

2vr0h2

5m0
1O~St4! D ,

~B2!

Ŷ5
vS

p0
S j 1

g21

g

vr0h2

3m0

m0Cp

k0
1O~St4! D .

Furthermore, since for St→`

tanh~ ĵ !→1, ~B3!

expression~B1! can be evaluated to give the HFL in the for

HFL: Ẑ5
vr0

S F j 1~11 j !A m0

2vr0h2
1O~St22!G ,

~B4!

Ŷ5
vS

gp0
F j 1~11 j !~g21!A m0

2vr0h2

k0

m0Cp

1O~St22!G .

As expected, the relationships~A12! as well as Eqs.
~B4! and ~14! confirm the assumption stated in Morse a
Ingard14 ~p. 475! and elsewhere that for St→` terms result-
ing from viscous dissipation (Ẑ) and heat conduction (Ŷ) in
the boundary layer are always proportional toP/S, with P
being the perimeter of the cross-sectional area~however, in
contrast to the results forẐ andŶ presented here, in Ref. 1
the effects of heat conduction are contained within the re
tive part of the series impedance!. For an arbitrary cross
section the HFL can thus be written as

HFL: Ẑ5
vr0

S F j 1~11 j !
P

S
A m0

2vr0
1¯G ,

~B5!

Ŷ5
vS

gp0
F j 1~11 j !

P

S
~g21!A m0

2vr0

k0

m0Cp
1¯G .
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Further~semianalytical! results for the LFL and HFL in

the case of rectangular and other cross sections, which w
derived by using variational methods, are presented
Cummings.31

APPENDIX C: RESULTS IN DIMENSIONAL FORM

Expressions used in the following:

S5R2p, St~v!5Avr0R2

m0
@1,

Pr5
m0Cp

k0
5O~1!, ~C1!

He~v!5
vR

c0
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Equation~76!:
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Equation~81!:
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wherevL/c05O(St) and He5O(St21).
Equation~150!:
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where
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and, furthermore, He5O(1).
Equations~171! and ~172!:
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2cosh~ ĜmL !!7 (
m50
mÞn

q
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whereĜn , k̂n , andF̂n are defined as in Eqs.~C4! and~C5!,
respectively, He5O(1) andvL/c05O(St). Then the sound
pressure, the axial velocity, the average sound pressure
the volume flow at the ends of the tube are given by
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