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ABSTRACT. The d eformation a nd the sta te of stress in the fronta l part of a fl oa ting glacier is a na lysed by a 
method analogous with the beam theory, applied in engineering practice for determining stresses a nd 
deflections of a beam of an elastic m ateria l. Very rough a pproximations a re made, the most severe being that 
of assuming the viscosity of the ice consta nt. Curves showing the progress in time of the deflections and the 
stresses in the frontal part of the glacier are given for the case of a n infinitely wide glacier. The curves show, 
that the stresses are grea test at a cross-section situa ted a t a distance of a bout the thickness of the g lacier from 
tbe front, a nd tha t the stresses a re of a magnitude which very likely will lead to fracture, resulting in the 
formation of a n iceberg. It is shown tha t the m agnitude of the icebergs as well as the frequency of the calving 
is a function of the thickness, the density, a nd the tempera ture of the glacier. Observations from nature 
supporting the theory a re d escribed . Fina ll y other ca lving mecha nisms for Roating g laciers a re briefl y 
discussed. 

RESUM E. SlIr le vtlage des gLaciers floltant s et des ice-shelves. La deformation et I'eta t des contra intes d e la 
partie frontale d 'un g lacier flottant sont a na lyses avec une method e analogue a la theorie des poutres, 
utilisee par les ingenieurs pour d eterminer les contra intes et courbures d 'une poutre e lastique. De tres fortes 
a pproximations sont fa ites dont la plus severe est d 'admettre que la viscosite de la glace est consta nte. Des 
courbes montrent le changement avec le temps des devia tions et les contra intes d a ns la pa nie fronta le clu 
g lacier sont donnees pour le cas d 'un glacier infiniment la rge. Les courbes montrent que les contra intes sont 
les plus fortes clans une coupe situee it une clistance du front d 'environ I'epaisseur clu glacier , et que les 
contraintes sont d ' un ordre d e gra ndeur am enant plus que proba blement la rupture et la forma tion d 'un 

iceberg. Il est montre que la grandeur des icebergs, aussi bien que la frequence du velage, est une fonction 
de l'epa isseur, de la densite et d e la tempera ture du glacier . D es observations reelles, decrites da ns le ra pport, 
soutiennent la theori e. Finalement d 'autres mecanismes de vel age de g lac iers flotta nts sont bri evement 
d iscu tes. 

Z USAMMENFASSUNG. Uber das KaLben des E ises von schwimmenden GLetschem und Eisscheifen . Die Deformation 
und d el' Spannungszusta ncl im Frontbereich e ines schwimmenclen Gletschers werclen mit Hilfe e iner zur 
Ba lkentheorie ana logen M ethocle untersucht, wie sie im Ingenieurwesell zur Bestimmung cler Spa nnung und 
Verbiegung eines elastischen Balkens angewandt wircl. Es werden sehr grobe Naherungsa nnahmen getroffen, 
deren schwerwiegelldste die V ora ussetzung einer konsta nten Viscosi tiH des Eises ist. Fur den Fa ll eines 
unbegrenzten Gletschers werden Kurven a ngegeben , welche die zeitabhangige Veranderung del' Verbie
gungen und die Spannungen im Frontbereich d es Gletschers darstellen. Die Kurven zeigell, dass die grossten 
Spannungen in einem Querschnitt a uftreten, d essen Entfernung von d er Gletscherfront ungefa hr d es Eisdicke 
entspricht . Sie ze igen weiter , dass die Spa nnllngen von einer Grossenordnung sind, clie sehr leicht zum Bruch 
und cla mit zur Bildung eines Eisbergs fuhrt. Es wird geze igt, dass clie G riisse cler Eisberge unci die H a ufigkeit 
cl er K albungen Funktionen cl er Dicke, cler Dichte unci cler T empera tur cles Gl etschers sincl. Beobachtungell 
in der N atur, welche die Theori e stiitzen, werden beschri eben . Schliesslich werden kurz andere K a lbungs
vorgange an schwimmenden C letschern di skuti ert. 

I . I NTROD UCTION 

In order to give an answer to the important ques tion of whether the big ice shee ts of the 

world , in Greenland and the Antarctic, are decreasing, increasing or even in equilibrium, 

several attempts have been made to set up total mass balance equations. The debit side of 

these budgets contains two items, (a ) Loss due to melting and evaporation (ablation), (b) Loss 

due to calving. Approximate values of the to tal loss and the loss due to calving per year for 

Greenland and Antarctica are shown in Table 1. The values given in this table are attended 

with great uncertainty, but what can be deduced with certainty is that the loss due to calving 

constitutes a large part of the total loss (about 50 per cent for Greenland and about go per cent 

T AB LE 1. ApPRoxnlATE VALUES OF THE Loss OF ICE FROM TH E 
GREEN LAND AN D ANTARCTIC ICE SHEETS 

Tota l loss 
Loss by ca lving 

km3jyea r 
km 3jyear 

Greenland 

50 0 

250 

Antarctica 

I 100 

1 000 
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for Antarcti ca ) . Consequentl y, a necessary cond ition for find ing a reliable mass balance for 

the big ice shee ts is to obtain a rather accurate value of the loss of ice by calving. 

Seen in thi s context, the importance of throwing some light on the factors influencing the 

ca lving process is obvious. The considerations put forward in this paper are an attempt to do 

thi s. 

2. D EFO RMATION AND STRESS IN A FLOATI NG GLACIE R 

In the foll owing, the term " fl oating glacier" will be a pplied to the subject di scussed , but i t 

should be pointed out tha t fl oating ice shelves are a lso included . 

pre ssure h 

water ~- N --- -----

:'\. SEA h'= pPw
i 

h 

_______ ~~~~~~ ______ ~~~~p~r~e~s~s~u:r~e~~~~~~~ GLACIER ~ 

,_ Pi gh pgh 
. - - • I I' I • I 

Fig. I. L ongitudinal section of floa ting glacier 

Consider a portion of a floating g lacier of constant thickness h (cf. F ig. I) . In order to 

keep an arbitrary proporti on of the glacier in equilibriu m in the sense that the rates of strain 

in a ll directions are equa l to zero , the stress distribution must be purely hydrostatic, i. e. a ll 

shear stresses must be equal to zero, and a ll norma l stresses equal to pigy, where Pi is the 

density of the ice (assumed constant), g the acceleration due to gravity, and y the vertical 

di sta nce fmm the upper surface. At the front of the fl oating g lacier (which fOI" simplicity is 

ass umed vertical) the normal stress is equal to the water pressure a nd distributed as shown in 

Figure I , i. e. it varies linearly from zero at water level to the value Pwgh' = Pigh at the bottom 

surface. Comparing this stress distribution with that necessary for keeping the ice in equili

brium , it is seen that the actua l stresses are insufficient to maintain equilibrium. T he deviation 

be tween the hydrostatic pressure and the actual pressure is a tensil e force N , and consequentl y 

the ice must expand in the direction of the tensile force, i .e. in the direction perpendi cular to 

the fron t. This expa nsion has been considered by Weertma n ( J 95 7) . 

As wi ll be seen from F igure I, the deviation between the actual pressure a nd the hyd ro

static pressure increases from the bottom to the LOp of the g lacier, which means that the 

tensile force acts eccentrica lly . In o ther words, the fl oating g lacier is subject to bending as 

well. Consequentl y, the upper layers will be stre tched more than the lower layers, so tha t the 

front of the ice begins to rotate, overhanging more a nd more. T his rotation cannot proceed 

withou t a simultaneous downwal"d movement of the frontal pa rt. This, in turn , causes upwa l"d

directed buoyancy forces to act on the front section of the g lacier. J f the front of the g lacier is 

situated far from bedrock con tact, then the n ecessary reaction to this upwa rd-directed force 

must come from the neighbouring section of the glacier, which starts moving upwards for thi s 

reason . Applyi ng this a rgument to consecutive sections of the floating g lacier, it will be 

realised that in this way a seri es of undulations with their axes para ll el to the ice front are 

developed. The amplitude of the undu lations decreases acco rding to the distance fmm the icc 

front. Th is procedure takes place at the same time as the g lacier is expa nding. At somc 

distance from the fmn t the verti cal defl ection has in practi ce disappeared , and here the g lacier 

is in a state of pure expa nsion . T his is the sta te considered by vVeertman , who a lso point ed 

out that his theory is valid onl y at some di stance from the ice front. 

The assumption that the ice front is situa ted far from bedrock contact is eorrect with 

regard to the big ice shelves of Antarctica. E lsewhere, the number of undul ations developed 

depends on the distance betwecn the front and the bedrock in the direc tion p erpendicul a r to 

the ice fro n t. 
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Now let us Lurn to Lh e sLress di stribution in Lhe glacier, proceeding with the descriptive 

account followed so fa r. A more precise trea tment of the ubj ect is given in section 3, where 

the theory is put in a mathematica l form . lL has a lready been stated that when stress deviation 

from hyd rosta ti c press ure is considered , the g lacier is subj ect to a te nsil e force ac ting on the 

front , and that the tensil e stresses are greatest at the upper surface of the g lacier. As the 

frontal part moves downwards, transverse forces start act ing on the g lacier, inducing shear 

stresses in the ice body. In this way a ra ther complex sLa Le of stress is developed in the frontal 

pa rt of the glacier. 

As shown in sec tion 4, the tensile stresses, as well as the shea r stresses, reach their maximum 

at a cross-section situated at a di stance from the fron t appr'oximately eq ua l to the th ickness of 

the g lacier. Since the combination of tensil e stress and shear stress is very dangerous, from the 

poin t of view of fracture, it seems reasonab le to assume that the mechan ism described here will 

lead to fra cture developing from the upper surface of the glacier, where the tensil e stresses a re 

g reatest. 

Several simplifications a nd inaccuracies have been made in the above considerations. T he 

most importan t simplifications are di scussed below. 

T he deviation between the hydrostatic pressure and the actual pressure acting at the front 

was claimed to be an eccentt'icall y acting, tensil e force. As the fronta l part of the g laciet· moves 

downwards, however, the magnitude of the force, as well as the eccentricity , vari es con

tinuously. In fact, the force acting on the fi'ont becom es a compressive force from a certain 

moment, but an essen tial poin t is that the bending moment at the front increase slightl y 

during the downward movement and , consequently, keeps the process going. 

I t was a lso assumed that the front was verti cal. This is in practice the case as rega rds that 

part of the front above sea-level. According to Swithinba nk and Zumberge ( 1965 ), p. 201 

the shape of the front below sea-level may differ considerably from the vertical. T herefore, 

le t us examine the effect of the front shapes shown in F ig ure 2. In addition to the norma l force 

.N, the action of which was considered above, the cross-section marked wi th the dotted line is 

now influenced a lso by a verti cal force Q, downward or upward , depending on whether the 

front is overhanging or not (Fig. 'la and b) . This causes a movement of the frontal pan in the 

direction of the force. By thi s movement, however , the force is decreased a nd , consequent ly, 

the g lacier wou ld approach a state of equilibrium in which the force had disappeared if the 

force Q were the onl y force ac ting on it. This shows that whatever the sha pe of the frontal pan 

of the g lacier, it wi ll onl y modify, but not prevent , the deform ation process previously 

d escribed. 

GLACIER SEA G LAC IER 

0) b) 

Fig. 2. Forces acling al lhe !ronl oJ Ihe glacier 

3. DEVELOPMENT OF B ASIC E QUATIO NS 

3. I. General remarks 

In th is section the equa tions for the stresses and deformations of the floating g lacier are 

set up. The theo ry developed is a nalogous to beam theory used for determining stresses a nd 

deflec ti ons of a beam of a n elast ic materi a l. As is most frequently the case when dea li ng with a 
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problem from nature, a correct treatment, if possible at a ll , will involve enormous mathe

matica l troubles. In order to avoid these troubles a simplified system- a model- has to be 

introduced. Before describing the model adapted for the calcu lation , mention of the system 

proper wou ld be appropriate. 

h 
GLACIER U 0 

SEA 

Fig . 3. Longitudillal section of floating glacier 

W e are dealing with a glacier which moves from la nd ou t in to the sea (F ig. 3) . At the 

poin t where th e depth of the sea is equal to djh, (d; = pi/pw ) the frontal part of the glacier 

comes afloat. Observations, as well as theoretica l considerations, indicate that the velocity is 

practi call y constant over the entire th ickness of the glacier. If the extension of the g lacier in 

the direc tion parall el to the front , i. e. normal to the plane of the paper (Fig. 3), is supposed 

large, the glacier may therefore with good approximation be regard ed as moving into the sea 

as a rigid body. If the inclination of the ground over which the glacier moves is supposed 

slight, then the buoyancy forces resul ting from the oblique, downward movem ent of the front 

into the sea, will be compensa ted by a simultaneous upward movement of the frontal part of 

the g lacier (compare the remarks in connec tion with Figu re 2, section 2) . This m ea ns that, 

apart from the vertical d eflections caused by the bending moment acti ng at the front , the 

glacier wi ll move into the sea as a free-floating body. T he extent of the floating part of the 

g lacier increases in course of time, partly due to th e suppl y of ice from the tributary of the 

g lacier, which causes a translational movement, and partly due to the ex tension of the g lacier 

itself owing to the tensi le force mentioned in section 2. 

From time to time a p iece of the frontal part o f the g lacier will break off, and in this way a 

state of equi li brium is attained in which the loss by calving balances the supply of ice from 

behi nd. If the supply of ice is supposed constant, the front of the glacier will flu ctuate around 

a state of equilibrium. 

The co-ordinate system used in the calculation forms part o f the translational movement of 

the g lacier. T he velocity resulting from the extension of the glacier itself is neglected . Mathe-

d 0 
maticall y, this means that total derivatives dtare replaced by local derivatives at. Viewed 

from the moving co-ordinate sys tem, the transition point between the grounded part of the 

g lacier a nd the floating part m oves at a velocity of the same magnitude, but directed opposite 

to the translational velocity of the glacier. At the point of transition, the deflection a nd the 

slope of the defl ection curve a re eq ua l to zero. So the point where these boundary condition 

should actually be applied , moves relative to the co-ordinate system . 

As shown by the calc ulations (see sec tion 4), the position of the point of transition may 

vary considerabl y withou t influencing the deformation of the fro n tal part very much. For 

this reason, the point of transition is considered fixed , in relation to the co-ordinate system. 

This is tantamount to ass uming the extent of the floating part of the glacier to be constant. 

To sum up, the following approxima tions a re made: 

(a ) The extent of the glacier in the direction parallel to the front is supposed large, i. e. 

we a re dealing with the case of pla ne strain. 
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(b) Apart from the vertical deflections caused by the bending moment acting on the front, 

the glacier floats freely. 

(c) The extent of the floating part of the glacier is assumed constant. 

To these assumptions we add one more, viz . 

(d ) The thickness of the glacier is supposed constant. Actually, the thickness val'ies, due to 

melting- possibly deposi tion of snow or ice- and also due to the extension creep 

which may cause thinning of the glacier. 

3.2. The co-ordinate system 

An XI-axis is located at the middle surface of the undef1ected glacier (parallel to sea-level), 

directed perpendicular to the ice front. The deviation of the middle surface of the glacier 

from the horizontal plane containing the XI-axis is denoted u. The deflection u is positive in 

the upward direction. The x2-direction is normal to the middle surface of the undeflected 

glacier with o rigin at the middle surface of the deflected glacier, and positive downwards (see 

Fig. 3). 

3·3 . forces acting on a cross-section if the glacier 

Consider a section of unit width in the direction normal to the plane of the paper. Th e 

stresses acting on a cross-section normal to the XI-axis may be reduced to three forces, which can 

statically replace the stresses (see Fig. 4 ) viz . 
111 

bending moment M = J a" X2 dX2; ( I) 
- l,1I 

fit 

normal force N = J a" dX2; (2) 
- {h 

}h 

transverse force Q = J a" dx,; (3) 

- ~h 

(7" and an denote normal stress and shear stress, respectively. The sign-convention for forces 

and stresses will appear from Figure 4. 

N 

Q 

M 

dx, . I 

du 

a 

N+dN 

Q+dQ 

Fig. 4. Forces acting on an element of the glacier 

dx, 

b 
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3+ Equations qf equilibrium 

Since all movem ents are very slow, inertial forces may be negl ected. Consequently, the 

equations of equilibrium used in statics can be applied. Neglecting the small contributions to 

the moment from the normal force and the horizontal component of the water pressure, the 

application of these equilibrium conditions to an element of the glacier leads to the well

known equations 

and 

dQ. 

d Xl 
- q 

dM 
- = Q. 
d X I . 

In these equations q denotes the transverse load on the glacier, i.e. 

q = Pwgu. 

Substituting Equation (6) into Equation (4) and introducing dimensionless variables 

u' ~ , x; = y: Q: = pw~hl ' N' = ip:gh1' 

and 
, M 

M = 1 h3' 
wPwg 

(5) 

(6) 

where L is the length of the floating part of the glaciet', and the other symbols are as explained 

above, Equations (4) and (5) are rewritten 

dQ: Lu' 
(7) 

dx; - h ' 
dM' 12LQ: 
dx; = - -h- (8) 

Differentiating Equation (8) once with respec t to x; and substituting dQ: /dx; from Equation 

(7) leads to 

d'M' 
(9) dx? = - ----,;z-. 

The dimensionless normal force, obtained from an equi librium condition, may be expressed 

by 
( 10) 

3.5. Stress- strain relationship 

So far , only statical conditions have been applied, which are independent of the rheological 

properties of the ice. In order to proceed further , the relationship between stress and strain 

for the ice must be considered. Ice is known to possess viscous as well as elastic properties. 

If, however, stress variations take place very slowly, as in the case here considered, the elastic 

terms occurring in the stress- strain relationship are negligible, and consequently ice may in 

this connection with good approximation be treated as a purely viscous material. Hence, 

applying the notation of Cartesian tensors the stress- strain relationship may be expressed by 

the equation 

where fij are the strain-rate components, aij the stress components, fA. the viscosity, and 

Oij the Kronecker delta, defined by Oij = I if i = j and 0 if i i= j , and the Einstein convention 

of summing repeated suffices is employed. Numerous experiments indicate that the viscosity 
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o f ice is strongly dependent on stress and temperature. For effective shear stresses (defined 

below) of the o rder of magnitude of 1- 2 bar, the following formula seems to tally reasonably 

well with various experimental results (Lliboutry, 1964- 65, p . 86- 87) 

fL et:. exp (- o.258)/T1 (12 ) 

where 8 is the temperature in degree' Celsi us, and T the effec ti ve shear stress defined by the 

equation: 

7
2 

= !u,j. a,j-, ( 13) 

where ail is the deviatoric stress (ail = a ij - }akk8ij ) ' 

The effec tive shear stress varies considerably throughout the glacier. Moreover , the 

temperature varies in the vertical direc tion through the g lacier. Evidence of such a variation 

is given for the Antarctic ice shelves (see Bender and Gow ( 196 1 )) , for which the tempera ture 

difference between the uppel- and lower surfaces may amount to 20 deg or more. A similar 

temperature variation , perhaps not so marked , may be expected for the big ice streams of 

Green land. 

From these remarks, in conjunction with Equation ( 12 ) , it follows that a correct treatment 

of the problem would require consideration of the great variation (by a factor ten or more) of 

the viscosity. This, however, would involve enormous mathematica l troubles. Since a funda 

mentall y correct solution may be obtained assuming the viscosity constant, and since the 

mathematical treatment is grea tly faci lita ted by this assumption, the viscosity of the ice is 

supposed constant, although with this ass umption the results obtained by the calculation (e.g. 

the width of the icebergs produced by ca lving or the time inte rval between two ca lvings) 

cannot be expec ted to agree with nature. On the other hand , the results will give an indi ca tion 

of the variation of these quantiti es with the mean temperature, density and thi ckness of thf' 

g lacier. 

3.6. D ifferential equation Jor the deflection curve 

According to beam theo ry , the curvature of a beam of an elasti c material having a na rrow 

recta ngular cross-section may to a first a pproximation be expressed by 

d Zu 121\1 

dx; Eh3 

where E is Young's modulus of elasti cit y. Equat ion (14) is based on the assumption tha t plane 

c ross-sections remain plane during the deformation. 

Comparing the stress- strain relationships for the elastic material with that for the viscous 

material , it can be shown tha t the corresponding equa tion for an infinitely wide beam of a 

viscous ma teri a l is expressed by 

1n th is equa tion d /dt has been replaced by a/at in accordance with the remarks on p . 218. 

In section 2 it was mentioned that onl y deviations of stress from the hydrostati c pressure 

will result in deformations. For this reason the moment forming part of the right-hand side of 

Equation (15) equals the moment of the stress deviation between the actual no rmal stresses 

a nd the hydrostatic pressure. Since the quantity previously denoted by 1\1 is the moment of 

the actua l stresses, it may be realised that M in Equa ti on (15) should be replaced with 

.'vf + -f2Pi gh3, Ihe latter term being the moment of the hydros tatic pressure. 

Substituting this expression into Equation ( 15) and introducing dimensionl ess va ri ables, 

th is equation is rewri tten 

4fLh a (22U') , 
- ---=L-:-2 =T ~ ~ = NI + cl; . 
pwg cl ('x , 
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The dimensionless time is introduced as t ' = ti T , where T is a fixed time interval. 
o2M' 

Differentiating Equation (16) twice with respect to x, and substituting ~ from 
uX, 

lion (9) gives 

o (04U') 3p gL4T (L) 4 
ot' o x~4 = - :h3 u' = - 3C It u', 

Equa-

where c = pwghT/fL is a dimension less constant. Equation (17) is the differential equation 

for the deflection curve of the floating glacier, and is analogous with the differential equation 

for the deflection curve of a beam on an elastic foundation . 

3.7 . Boundary conditions 

At the transition from the grounded part of the glacier to the part afloat, i.e. for x; = 0, 

the defl ection and the slope of the defl ection curve are put equal to zero (er. Fig. 3), 

[u ']o = 0 ( 18) 

and [ou'] 
ox; 0 = o. 

h 

Fig . 5. BOllndar.y conditions at the front of the glacier 

At the front of the glacier, the bending moment a nd the shear force are known . If small 

quantities are neglected , the following expressions for the dimensionless forces acting on a 

vertical cross-section at the front , are obtained (Fig. 5) . 

M; ;:::: - 3 d ~ + 2d 1 + 6 ( dj - d~ ) [u ' ], . 

Substituting in Equation (16) from Equation (22 ) gives 

[ o ~,G: ~~)] I = :~: ( di - 3 d ~ + 2d 1 + 6 ( dj - d~)[U']I ) ' 
Differentiating Equation ( 16) with respect to x; and substituting oM' lox; from Equation (8) 

leads to 

4fLh2 0 (03U') , 

pwgLZT ot' ox ' ~ = 12Q . 

Putting x; = 1 and ma king use of Equation (2 I) we get 

[ o~ ,G:~ ~ )l = o. 
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3.8. Method oJ solution oJ the differential equation 

It would lead too far to discuss in detail the method applied for solving the differential 

Equation (17) . In short, the following method has been used. 

The solution is written in the form 

u' (x;, t ' ) = u~ ( x; ) + u; (x; ) t ' + ... + u,; (x; ) t"' + ... 

where the u,;-functions are functions of x; only. Substituting Equation (25) into Equation ( [ 7) 

leads to a set of differential equations for the u,;-functions . If u~ ( x; ) is supposed to be known, 

( u~ ( x~ ) is the deflection curve at the time t' = 0), then all u~-functions may be determined 

successively by integration . The arbitrary constants introduced by the integrations are deter

mined by the boundary conditions Equations (18), (19), (23) and (24). 

When in this way the deflections of the glacier have been determined , the forces Q' , M' 
and N' are calculated from Equations (7), (8) and ( 10), respectively. Since the convergence 

of the series equation (25) is rather slow, (especia ll y for large t's ) a computer program 

written in the ALGOL III language has been worked out to calculate the coeffi cien ts of the 

polynomials u ,; ( x~ ) . The program also calculates the values ofu', N', 0.: , and M' for different 

values of x. The calculations were carried out on the Danish medium-size computer GIER. 

3.9. Calculation oJ stresses 

From the forces M' , JV', and Q' , the stresses are calcula ted by means of the formulae 

from beam theory. Application of more exact formulae is unreasonable owing to the approxi

mations introduced . The stress components made dimensionless by division by Pwgh are 

expressed in terms of the dimensionless forces M', N' and 0.: as follows: 

a;, = - (dj - u')( i +x; ), 

a;, = 1.5Q' ( I - 4x; ' ) . 

For the state of plane strain, the effective shear stress (see Equation (13)) may be expressed 

by 

In order to obtain a representative value applicable for comparing the effective shear 

stress from one glacier to another, let us consider the state of pure expansion. In this case 

a;, - a;, = t ( di - d~ ) and a;, = o. Hence the dimension less effective shear stress for this 

case IS 

, - l. (d· d' ) T - 4 1 - i 

Due to the bending and shearing action, the actual value of T ' may in the frontal part of the 

glacier attain values two to three times the value indicated by Equation (30). 

4. R ESU LTS OF THE CALCULATIONS 

From the differential equation ( [ 7) and the boundary conditions, Equations (18), (19), 

(23) and (24), it can be seen that the problem is governed by the dimensionless quantities 

L jh, d j and c = pwghTfp.. Since c is the only quantity containing the scale of time T , c may be 

used for converting the scale of time from one case to another. If L /h and d j are identical for 

two glaciers, and the progress in time of the deformation procedure has been calculated for one 

of them ( I), then the results (in dimension less form ) are transferable to the other glacier (2) 

merely by changing the scale of time by a factor determined by the demand that c is the same 

for the two glaciers. This factor becomes 

h2 P. I 

J = hI P.2 

where suffices I and 2 refer to glaciers ( I) a nd (2), respectively. 
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The influence of Llh has been investigated by performing calculations with Llh = 5 and 

Llh = 10, respectively. The calculations showed that the deformation procedure of the frontal 

part of the glacier (and with that the state of stress in this part) was in practice independent 

of Llh. The influence of di has a lso been investigated , leading to the result that in the intet-val 

0.8 < d i < 0.9, the influence can be taken into account by applying the factor di - 3d~ + 2di 

to the resul ts. 

From these remarks it may be concluded that within the simplified theory advanced in 

this paper (constant fJ- ), the progress in time of the deformation and the state of stress of the 

fro ntal part of all infinitely wide floating glaciers, may be represented by one and the same 

et of curves. 

Figures 6, 7 and 8 show the progress in time of the dimensionless defl ection , transverse 

fo rce, and bending moment, respectively. 

-I. 
""---- - - -- --- --=--

t=12 .Sf 
t= 8 .5 f 
t=4.Sf 
t = 1.25f 
t: 0 

-3 

Scale of time : 

-2 -1 

~ 
f= Pw9h (see table 2 ) 

.!:!. 
h 

3dj L dj - 2d j3 

0 .2 

x, 
h 

, 

'~, 
-0.2 

.~\ 

\. -0.1. 

, ' 

\ -0.6 

-0 .8 

Fig . 6. Progress in time of dimension less deflection of the frontal part of an infinitely wide floating glacier 

3d ·2- d· - 2d ·3 
I I I 

-4 

-0.04 

- --t= 12.Sf 

- ---t= 8.Sf 
-----t= 4.Sf 

-0.08 

- ·- -t = 1.2Sf 
---t= 0 -0.12 

Il 
ScaLe of time : f = M11 (see table 2) -0.16 

F!g. 7. Progress in time of dimensionless transverse force in the frontal part ~r an infinitely wide floating glacier 
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Scale of time : (see table 2 ) 

3d jL d i - 2d j3 

0 .4 

-0.4 

-0.8 

::- - 1.2 

- 1. 6 

Fig. 8. Progress ill time of dimellsioniess momCllt in the Fon/a! part of an infinitely wide floating glacier 

The scale of time T of the deformation progression varies from one glaciel" to another 

proportional to JL /h, i.e. 

JLe 
T - - 

- pwgh" 

Substituting JL from Equation ( 12 ), where T and () are now regarded as representative mean 

values for the glacier, and substituting T = Hd ; - d~ ) Pwgh (see section 3.9), Equation (3 1) 

is written 

(where the constant of proportionality is I bar3 year), which shows that the thinner and colder 

a float ing glacier is, the greater is the time scale T , i. e. the longer the periods that pass until a 

certain state of the deformation progression is attained. 

In order to get an idea of the periods required for producing considerable deflections, le t u 

calculate som e representative values of the factor 

64 exP (- 0/4) 

f = (pw gh )3( d i - d ~ ) 2 ' 
Putting d; = 0.9, the values for f shown in Table II are obtained. If d; = 0.8, the values in 

the table shou ld be divided by about 3. 

TABLE II . TIMEFACTORflN YEARS AS FUNCTION OF 

THICKNESS h AND TEMPERATURE (J 

h m 200 400 600 700 

(J' C 
0 0.26 0.032 0.0096 0 .0061 

- 4 0.7 1 0.088 0.026 0.0165 

- 8 1.9 0.24 0.07 1 0 .045 

- 12 5. 2 0.65 0. 19 0. 1'22 

By means of the values in Table 11 and the curves in Figure 6 it can be seen that a 600-m 

thick glacier having a mean temperature of - 4 QC and a relative density of 0 .9 (this glacier 

represents the ice streams of W es t Greenland) wi ll attain a deflection of 30 m (a twentieth of 

https://doi.org/10.3189/S0022143000031014 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000031014


JO UR NA L OF GL AC IOLOGY 

the thickness) after about 0.29 year = 3.5 months, while a 200-m thick glacier having a m ean 

temperature of - 12°C-and a relative density of 0.8-(representing an Antarctic ice shelf)

will attain a relative defl ection of the same magnitude only after about J 9 years. These 

values are, of course only to be taken as orders of magnitude. 

From Equations (26) , (27) and ( IQ) we get the fo llowing expression for the stress difference 

ail - a;! = t ( dj - d~ +( 2dj - l ) u' )+ x; (M' + dj - u'). 

From this equation and Figures 6 and 8 the progress in time of ai, - a;2 may be obtained. 

Putting d j = 0.9 and putting x; = - t and + t , the curves given in Figure 9 showing the 

stress difference at the upper and the lower surface of the glacier , respectively, are obtained. 

Choosing another value of di, another set of curves are found . It will be seen that the stress 

difference is greatest at the upper surface of the glacier at a distance from the front of between 

half the thickness and the whole thickness of the glacier , and that, in practice, the stress 

d ifference at this place is constant. 

d j = 0.9 

t =12.Sf 
t= 8.Sf 

t= 4.5 f 
t= 1.2Sf 

0.10 

Upper su r face 0.02 
-+ ------~-- ---- ~-----+---- -- ~ ------r_ ----_+------~ ------ ~ -~ 
-4 -3 -2 -1 h 

°11 -°22 

Pwgh 0.06 

~ = I t 0 .02 
r- --~~L- ---------------------------------- ---- --~ ~~ _ ~=~_ ~ 
~-- ----+--- ---- I h 

-4 -3 -2 -1 

Il 
Scale of time : f = Pw gh (see table 2 ) 

Fig . 9. Progress in time of the dimensionless stress-difference a" - a" in the frontal part of an infinitely wide floa ting glacier 

As seen from Equation (28), the maximum value of the shear stress ai2 occurs at the middle 

surface of the glacier (x; = 0) and has the magnitude 1.5Q:. The progress in tim e of the 

maximum shear stress may consequently be obtained by multiplying the values given by the 

curves in Figure 7 by the factor J .5. Figure 7 shows that the shear stress is maximum at a 

cross-section situated at a distance of about half the thickness of the glacier from the front, 

and that the shear stress at this cross-section increases in time. From the above considera tions, 

in conjunction with Equation (29) it will be seen that the effective shear stress attains the 

greatest values at a cross-section situated at a d istance from the front of about the thickness of 

the glacier. 

6. FRACTURE CRITERION 

As introduction to a discussion of where and when the state of stress in the glacier becom es 

critical, from the point of view of fracture, some general remarks on the fracture criterion for 
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ice would be appropriate. A reasonable criterion for the fracture of ice is that the ultimate 

strength is attained when the effective shear stress T has reached a certain critical value, which 

i a function of the mean normal stress p = t(ulI + u22 + u33) ' Investigations supporting thi s 

assumption are reported in Zumberge and others (1960, p. 69). Moreover, it is a well-known 

fact that the time during which a specimen of any material will carry a given load is dependent 

on the magnitude of this load (see, e.g. Nadai, 1950, p. 188). This behaviour has been proved 

for ice by J ellinek (1957) . Temperature also affects the strength of ice. From the remarks 

above it will be seen that the establishmen t of a fracture criteri on for ice is a rather complicated 

problem, in which factors like temperature, effective shear stress, mean normal stress and the 

t ime during which the stresses act are involved. 

At present a formula expressing the fracture criterion cannot be set up, but the criterion 

can be given the following general formulation: the higher the temperature, the greater the 

effective shear stress and the greater the m ean normal stress (tensile positive), the shorter will 

be the time until fracture occurs. 

As stated above, the effective shear stress is greatest at a cross-section situated at a distance 

from the front of about the thickness of the glacier. At the upper surface the m ean normal 

stress is greatest, and consequently the ice will fracture at the surface, at which a crack starts 

opening. Consequently, the stresses in the uncracked part of the cross-section increase, 

resulting in increased deformation rates. After some time, this procedure will lead to total 

fracture, resulting in the formation of an iceberg. The width of the iceberg produced is of the 

same order of magnitude as the thickness of the glacier. The magnitude of the maximum 

effective shear stress may be obtained from Equation (29) and Figure (9) . It is approximately 

T = kh, 

where k depends on dj • The Table III shows values of T for different values of di and h. The 

two rows correspond to d i = 0.9 (an approximate value for the ice streams of W est Greenland) 

and d i = 0.8 (an approximate value fo r the ice shelves of Antarctica) . The thickness of the 

ice streams of W est Greenland is of the order of magnitude of 200- 700 m , that of the fronts of 

the Antarctic ice shelves of the order of magnitude of 200- 300 m. From Table III the maxi

mum effective shear stress is found to be I - 3 bars in both cases. 

TABLE Ill. l\1AxIMUM EFFECTIVE SHEAR STRESS ( I N BARS) AS A FUNCTION 

OF R ELATIVE DENSITY di AND THICKNESS h 

},m 200 400 600 Boo 

di 

o.g o.B 1.6 2·4 2.B 

0.8 1.6 3.2 4.8 5.6 

According to Pounder (1965, p . 96) the tensil e strength of ice, as obtained from short-time 

tests, is 15 bars. The test results may be larger or smaller than this value by a factor of two or 

three. Due to inhomogeneities, which must exist inside a large ice body as a glacier, the tensile 

strength of the g lacier ice must be less than, say, 10 bars, to which corresponds an effective 

shear stress of 10/ V3 ~ 6 bars. On these g rounds it seems reasonable to postulate, that an 

effective shear stress of the order of magnitude of 1- 3 bars acting for a long time under tensil e 

condi tions will lead to fracture. 

T he question as to when the fracture occurs cannot be answered until more is known about 

the long-time strength of ice, but according to the above discussion of the fracture criterion, it 

may be stated that the thinner a nd colder a floating glacier is the longer are the interva ls 

between one calving and another. 
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6. OBSERVATIONS S UPPORTING THE PROPOSED THEORY OF CALV ING 

Evidence of a large downward deformation of the frontal part of a g lacier at the stages 

preceding calving, is provided by a couple of aeria l photographs of Rink Gletscher in north

western Greenland, taken in June ' 964 (Figs. 10 and 'I ) . As will be seen from the photo

graphs, the glacier has calved during the period of ' 3 days that has elapsed between the first 

and the second photographs. 

Fig. 10. R ink Cletscher, 9 June [964. (CeoddJtisk Jnstitut. D enmark, cop'vrigh t ) 

The topographical maps shown in Figures '2 and 13 are based on the aerial photographs. 

The mapping was can-ied out by means of a stereothope. In the absence of the necessary fixed 

points, only vertical adjustments of the stereoscopic models have been carried out so that four 

points at sea-level have been used as fixed points with known levels. The scale of the maps was 

determined on the basis of the flight altitude. For these reasons the maps are, of course, 

somewhat inaccurate . Looking at the maps, one observes that south of the dotted line shown 

in Figure 12 , the level of the glacier's surface is practically constant (about 80 m above sea

level) . This is quite likely because this part of the glacier is floating. Considering the map and 

the longitudinal section shown in Figures 12 and '4 respectively, it can be seen that at the 

front of the glacier the upper surface is almost at the water level. Consequently, the downward 

deflection of the front amounts to about 80 m. On the other hand, the part of the glacier 
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immediately behind the front has moved about 20 m upwards. This is precisely the sort of 

deformation predi cted by the theory. Another thing supporting the theory, as will be seen 

from Figure 10, is the presence of recen tly opened crevasses near, and parallel to, the front , 

indicating tensil e stresses at this place. Such crevasses are apparent from aerial photographs 

of all glaciers terminating in water. 

Fig. 1 I . Rink Cle/seizer, 22 J une 1964. (Ceodtetisk Ins/ilul , Denmark, copyright ) 

Having mentioned the things supporting the theol'y, it must in fairness be admitted that 

no t all the surface features observable on the photographs can be explained . The existence of 

the smaller waves behind the large one at the fron t is not predicted by the theory, which gives 

a wave-length of the undulations of several times the thi ckness of the glacier. The wave

length of the undulations in Figure 12 is of the sam e order of magnitude as the thickness of the 

glacier. 

Another result of the theory, which is supported by observations from nature is that the 

thinner and colder a floating glacier is, the longer are the intervals between one calving and 

another. This agrees with the observation that calving from the relatively cold and thin 

Roating ice fronts in north Greenland (e.g. M elvill e Bugt) and Antarctica, occurs at longer 

intervals than calving from the warmer a nd , especially, thi cker glaciers terminating in Disko 

Bugt and the Umanak di strikt in western Greenland. 

https://doi.org/10.3189/S0022143000031014 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000031014


JO U RNAL OF GLAC I OLOGY 

1 : 50000 I N 
ELevations in metres 
1 0 2 km 

fiTTTtTTTT3 I 

Position of the 
longitudinal section 

shown in fig . 14~ 

FJORD 

100 

ROCK 

180 

\..._--

220 

r 

Fig. 12. TO/JOgra.bhieal map of R ink Gletseher based on the photogra/Jizy carried out 9 J une 1964 
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Fig. 13. Topographical map of R ink Gletscher based on the photography carried out 22 June 1.964 
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Fig. [-I. LongitudinaL section of Rink CLetscher at the position shown ill Fig., re 1 2 

7. DISC USSION OF OTHE R CALV ING MECHANISMS 

6 km 

Several theories of the causes of calving have been given in the past. Some of these will be 

discu sed briefly below. 

(a ) Buoyancy effects. These a rise either from the oblique, downward movement of the front 

into the sea or from tide variations . Common to these effects are that the greatest stresses 

produced by them occur at the point of transition from the grounded part of the glacier to the 

part afloat, which means that the width of the icebergs should be equal to the length of the 

floating part of the glacier. This is evidently not the case as regards the icebergs originating 

from the Antarctic ice shelves. 

(b) Effect of storm waves. The action of waves at the ice front itsel f can hardly result in 

stresses which can lead to calving. H owever, the waves wi ll also produce pressure fluctua tions 

along the lower surface of the g lacier. Now, the pressure fluctuations decrease very rapidl y 

with the distance below the sea surface, and at a depth equal to the wave-length they have 

practically di sappeared . Wave-lengths of 200- 300 m are the maximum reported for ocean 

waves. Below a depth of this magnitude, significant pressure fluctuations will not occur. 

Since the thickness of most of the fronts of floating glaciers and ice shelves is more than 200 m 

we can conclude that the action of storm waves can hardly explain the breaking of big icebergs 

from the ice front. 

8. CONCL USION 

The theory of calving advanced in this paper seems to agree with observations from the ice 

streams of western Greenland, especia lly with observations from such ice streams as the 

Jakobshavn Isbne and Rink Gletscher, which , most likely, have floating fronts. On the other 

hand, the theory does not explain directly the periodical break-up of la rge portions of the 

Antarctic ice shelves . A possible explanation of this feature is that, when the first iceberg has 

loosened from the front , the adjoining part of the shelf is not in equilibrium and, consequently, 

breaks off, and so on. 

It should be pointed out that, of course, not all of the ice calved from the floating glacier 

of the world is formed in the way proposed in this papeL Many small icebergs are, fOl· 

example, produced by pieces falling down from the upper part of the ice front. 

Finally, it should be mentioned that a consequence of the theory proposed is that the size 

of the icebergs as well as the frequency of calving depends solely on the thickness, the tempera

ture, and the density of the glacier. Consequently, the loss of ice by calving depends on these 

three quantities only. The width of the glacier will of course influence the cal ving process to 

som e degree. But if the width is just a few times the thickness of the glacier, the influence is 

believed to be small. 
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