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Abstract. An AG-groupoid is a non-associative groupoid in general in
which the identity (ab)c = (cb)a holds. In this paper we study some struc-
tural properties of AG-groupoids with respect to the cancellativity. We prove
that cancellative and non-cancellative elements of an AG-groupoid S parti-
tion S and the two classes are AG-subgroupoids of S if S has left identity e.
Cancellativity and invertibility coincide in a finite AG-groupoid S with left
identity e. For a finite AG-groupoid S with left identity e having at least one
non-cancellative element, the set of non-cancellative elements form a maximal
ideal. We also prove that for an AG-groupoid S, the conditions (i) S is left
cancellative (ii) S is right cancellative (iii) S is cancellative, are equivalent.
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Introduction: An AG-groupoid is a groupoid satisfying the left invertive
law: (ab)c = (cb)a. In literature this structure has also been called by different
names by different authors like left almost semigroup or shortly LA-semigroup
in [3], left invertive groupoid in [2], while right modular groupoid in [1, line 35].
Cancellativity plays an important role in groups and loops and many results
therein occur due to cancellativity. AG-groupoids are not necessarily cancella-
tive but all or some of the elements of an AG-groupoids can be cancellative
and hence can enjoy some special properties that a general AG-groupoid can-
not possess. In the present paper we see this aspect of AG-groupoids. We
remove in Theorem 1 a wrong impression existing in the literature that a right
cancellative AG-groupoid is not cancellative in general. We prove that can-
cellative and non-cancellative elements of an AG-groupoid S partition S and
the two classes are AG-subgroupoids of S if S has left identity e (Theorem 6).
Cancellativity and invertibility coincide in a finite AG-groupoid S with left
identity e (Theorem 7). For a finite AG-groupoid S with left identity e having
at least one non-cancellative element, the set of non-cancellative elements form



2188 M. Shah, T. Shah and A. Ali

a maximal ideal (Corollary 6). The direct product S1 × S2 of two cancellative
AG-groupoids S1 and S2 is cancellative (Theorem 8).

Preliminaries: An AG-groupoid (S, ·) always satisfies the medial law:
(ab)(cd) = (ac)(bd) [1, Lemma 1.1 (i)] while an AG-groupoid (S, ·) with left
identity e satisfies paramedial law: (ab)(cd) = (db)(ca) [1, Lemma 1.2 (ii)]. An
AG-groupoid (G, ·) is called an AG-group or a left almost group (LA-group),
if there exists left identity e ∈ G (that is, ea = a for all a ∈ G), for all a ∈ G

there exists a
−1

∈ G such that a
−1

a = aa−1 = e [5]. A non-empty subset H
of an AG-groupoid S is called an AG-subgroupoid if ab ∈ H for all a, b ∈ H.
A subset I of an AG-groupoid S is called left ideal (right ideal) if SI ⊆ I
(IS ⊆ I). A subset I of an AG-groupoid S is called ideal if it is both left and
right ideal. An element a of an AG-groupoid S is called left cancellative if
ax = ay ⇒ x = y for all x, y ∈ S. Similarly an element a of an AG-groupoid S
is called right cancellative if xa = ya ⇒ x = y for all x, y ∈ S. An element a of
an AG-groupoid S is called cancellative if it is both left and right cancellative.
An AG-groupoid S is called left cancellative (right cancellative, cancellative)
if every element of S is left cancellative (right cancellative, cancellative).

1. Cancellativity of AG-groupoids

In [6, Theorem 2.6], this has been proved that every left cancellative AG-
groupoid S is cancellative while in [7] this has been said through a reference to
[6] and without giving a counterexample that the converse is not true in general
but true only if S has left identity. We prove that this is incorrect. The converse
is also true in general and does not require the existence of left identity. That
is, every right cancellative AG-groupoid S is also left cancellative. So we begin
by the following theorem.

Theorem 1. The following conditions are equivalent for an AG-groupoid S
(i) S is left cancellative
(ii) S is right cancellative
(iii) S is cancellative.

Proof. (i) ⇒ (ii) Let S be left cancellative. Let a be an arbitrary element
of S and let xa = ya for all x, y ∈ S. Suppose k is any element of S. Then
(ka)x = (xa)k = (ya)k = (ka)y which by left cancellativity implies that
x = y. Thus S is right cancellative (ii) ⇒ (iii) Let S be right cancellative
and let ax = ay for all x, y ∈ S. Suppose k is any element of S. Then
((xk)a)a = (aa)(xk) = (ax)(ak) = (ay)(ak) = (aa)(yk) = ((yk)a)a which
by repeated use of right cancellativity implies that x = y. Thus S is left
cancellative. (iii) ⇒ (i) Obvious. �

Corollary 1. The following conditions are equivalent for an AG-groupoid S.
(i) S is left quasigroup
(ii) S is right quasigroup
(iii) S is quasigroup.
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The previous discussion was about the whole left cancellativity or right can-
cellativity of the AG-groupoid. In what follows we focus on the cancellativity
of an individual element of an AG-groupoid when the whole AG-groupoid is
not necessarily left cancellative or right cancellative. But first observe that an
AG-groupoid can have all, some or none of its elements as cancellative. For
example all the elements of the following AG-groupoid are cancellative.

Example 1. A cancellative AG-groupoid with left identity 0:

· 0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0

The following AG-groupoid has two cancellative elements which are the left
identity 0 and 3.

Example 2. An AG-groupoid with left identity 0:

· 0 1 2 3 4
0 0 1 2 3 4
1 4 2 2 4 4
2 2 2 2 2 2
3 3 1 2 0 4
4 1 1 2 1 2

The following AG-groupoid has four cancellative elements and one non-
cancellative.

Example 3. An AG-groupoid with {0, 1, 2, 3} as cancellative elements and
only {4} as non-cancellative.

· 0 1 2 3 4
0 0 2 3 1 4
1 3 1 0 2 4
2 1 3 2 0 4
3 2 0 1 3 4
4 4 4 4 4 4

The following AG-groupoid has no cancellative element.

Example 4. An AG-groupoid without left identity and without any cancella-
tive element:

· 0 1 2 3 4
0 2 2 2 2 2
1 2 0 2 2 4
2 2 2 2 2 2
3 0 0 2 4 4
4 2 2 2 2 2
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Theorem 2. Every right cancellative element of an AG-groupoid S is (left)
cancellative.

Proof. Let S be an AG-groupoid. Let a be an arbitrary right cancellative
element of S. Suppose ax = ay for all x, y ∈ S. Then ((xa)a)a = (aa)(xa) =
(ax)(aa) = (ay)(aa) = (aa)(ya) = ((ya)a)a which by repeated use of right
cancellativity implies x = y. Thus a is left cancellative. Hence every right
cancellative element of S is left cancellative. �

Next we need the following theorem from [6].

Theorem 3. In an AG-groupoid S with left identity e, ab = cd ⇒ ba = dc for
all a, b, c, d ∈ S.

Theorem 4. Let S be an AG-groupoid with left identity e. Then every left
cancellative element is also right cancellative.

Proof. Let a be an arbitrary left cancellative element of S. Suppose xa = ya
for all x, y ∈ S. Then by Theorem 3, we have ax = ay. Which by left
cancellativity implies x = y. Thus a is right cancellative. Hence every left
cancellative element of S is right cancellative. �

Remark 1. From Theorem 3, this is clear that if the AG-groupoid S has left
identity e then e will always be cancellative because e by its definition is left
cancellative.

Next we prove that the set of cancellative elements and the set of non-
cancellative elements of an AG-groupoid S form a partition of S.

Theorem 5. Let S be an AG-groupoid and let a, b, c ∈ S. Define on S the
relation ∼ as

a ∼ b ⇔ a and b are both cancellative or non-cancellative.

Then ∼ is an equivalence relation.

Proof. Since a, a are both cancellative or non-cancellative. Therefore a ∼ a.
Thus ∼ is reflexive. Suppose now a ∼ b then a and b are both cancellative
or non-cancellative. Which implies that b and a are both cancellative or non-
cancellative. Which implies that b ∼ a. Thus ∼ is symmetric. Next suppose
that a ∼ b and b ∼ c then a and b are both cancellative or non-cancellative and
b and c are both cancellative or non-cancellative. Which implies that a and c
are both cancellative or non-cancellative and so a ∼ c. Thus ∼ is transitive.
Hence ∼ is an equivalence relation. �

Corollary 2. Cancellative and non-cancellative elements of an AG-groupoid
S partition S.

Next we prove that the two classes will be AG-subgroupoids of S if S has
left identity.
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Lemma 1. The set of cancellative elements of an AG-groupoid S with left
identity e is an AG-subgroupoid of S.

Proof. Let H = {a ∈ S: a is cancellative}. Clearly H is non-empty as e ∈ H
by Remark 1. Now let a1, a2 ∈ H and let a = a1a2. We show that a is
cancellative. Suppose ax = ay for all x, y ∈ S then (xa2)a1 = (a1a2)x = ax =
ay = (a1a2)y = (ya2)a1 which by cancellativity of a1 and a2 implies x = y.
Thus a is left cancellative and hence cancellative by Theorem 4. This implies
a ∈ H. Hence H is an AG-subgroupoid of S. �

In Example 1, H = S, in Example 2, H = {0, 3}, in Example 3, H =
{0, 1, 2, 3} that can be easily seen as an AG-subgroupoid of S.

Remark 2. Computer search shows that the smallest non-associative AG-
groupoid is of order 3. But how many non-isomorphic AG-groupoids of order
3 or higher order exist no one has counted yet, neither computationally nor
algebraically. So we suggest this as a future problem.

Example 5. A non-associative AG-groupoid of order 3 :

· 0 1 2
0 2 2 2
1 0 2 2
2 2 2 2

Lemma 2. Every cancellative element of an AG-subgroupoid S with left iden-
tity e is the product of two cancellative elements of S.

Proof. By Remark 1, e is cancellative and e = ee. Let a be an arbitrary non-
trivial cancellative element of S. Let a = a1a2. We show that a1, a2 are both
cancellative. Suppose xa2 = ya2 for all x, y ∈ S. Then ax = (a1a2)x =
(xa2)a1 = (ya2)a1 = (a1a2)y = ay which implies that x = y since a is cancella-
tive. Thus a2 is right cancellative and hence cancellative by Theorem 2. Now
suppose a1x = a1y. Then

a(xa2) = (a1a2)(xa2)

= (a1x)(a2a2) = (a1y)(a2a2)

= (a1a2)(ya2) = a(ya2),

which by cancellativity of a and a2 implies that x = y. Thus a1 is left can-
cellative and hence cancellative by Theorem 4. �

Note that Lemma 2 does not hold for a non-cancellative element. A non-
cancellative element can be expressed as the product of a cancellative element
and a non-cancellative element or as the product of two non-cancellative ele-
ments as in Example 2, 2 = 0 · 2 or 2 = 2 · 2 where 0 is cancellative and 2 is
non-cancellative elements of S.
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Corollary 3. In an AG-subgroupoid S with left identity e the product of two
non-cancellative elements or one cancellative and one non-cancellative is al-
ways non-cancellative, that is, if a or b is non-cancellative then ab is non-
cancellative.

Lemma 3. The set of all non-cancellative elements of an AG-groupoid S with
left identity e is either empty or an AG-subgroupoid of S.

Proof. Let K = {a ∈ S: a is non-cancellative}. Clearly K is empty if S
is cancellative. Suppose S is not cancellative. Then e /∈ K since e is al-
ways cancellative. Now let a1, a2 ∈ K and let a = a1a2. We show that a is
non-cancellative,that is, a ∈ K. Suppose a /∈ K then a is cancellative and
consequently a1, a2 are cancellative by Lemma 2 and thus a1, a2 /∈ K, which is
a contradiction. Therefore a ∈ K. Thus K is an AG-subgroupoid of S. �

In Example 1, K = φ, in Example 2, K = {1, 2, 4}, in Example 3, K = {4}
and in Example 4, K = S that can easily be seen as an AG-subgroupoid of S
in the non-empty case.

Thus from Corollary 2, Lemma 1 and Lemma 3, it follows that:

Theorem 6. Cancellative and non-cancellative elements of an AG-groupoid
S with left identity e partition S into two AG-subgroupoids of S.

As an application of our theory to the ideal theory of AG-groupoids, we
have the following:

Corollary 4. A proper (left,right) ideal of an AG-groupoid S with left identity
e cannot be a subset of H.

Proof. Since the product of the non-cancellative elements of S with the ele-
ments of H cannot be contained in H by Lemma 2. So a proper (left,right)
ideal of S cannot be a subset of H. �

Next we show that none of the elements of the proper (left,right) ideal can
lie in H at least in finite case.

Corollary 5. A proper (left,right) ideal of a finite AG-groupoid S with left
identity e is a subset of K.

Proof. Let S = {s1, s2, ..sn} and let I be a proper left ideal of S. Let a ∈ I be
such that a ∈ H. Then since a is cancellative therefore s1a, s2a, ..sna ∈ I are all
distinct. This implies that I and S have the same number of elements which
is a contradiction. So a /∈ H. Therefore I ⊆ K. Other cases are similar. �

Corollary 6. For an AG-groupoid S with left identity e having at least one
non-cancellative element, K is always a maximal ideal.

Proof. It follows from Corollary 3 and 5. �

Next we prove that cancellativity and invertibility coincide in a finite AG-
groupoid S with left identity e.



On the cancellativity of AG-groupoids 2193

Lemma 4. Every invertible element of an AG-groupoid with left identity e is
cancellative.

Proof. Suppose a is an invertible element then there exists a−1 ∈ S such that
aa−1 = a−1a = e. Suppose xa = ya then x = ex = (a−1a)x = (xa)a−1 =
(ya)a−1 = (a−1a)y = ey = y. Thus a is right cancellative and hence cancella-
tive. �

Corollary 7. An AG-group G is cancellative [5].

Lemma 5. Every cancellative element of a finite AG-groupoid S with left
identity e is invertible.

Proof. Let S = {s1, s2, ..sn} and let a be an arbitrary cancellative element of
S. Then clearly as1, as2, ..asn are all distinct. Since S is finite therefore there
must exists a positive integer i ∈ {1, 2, ..n} such that asi = e but then sia = e
follows by Theorem 3. Hence a is invertible. �

Now the following theorem follows.

Theorem 7. Let S be a finite AG-groupoid with left identity e then a is in-
vertible ⇔ a is cancellative.

In Example 1, all elements are cancellative as well as invertible, in Example
2, 0 and 3 are cancellative as well as invertible elements, in Example 3, the
elements 0, 1, 2, 3 are both cancellative and invertible and in Example 4, there
is no cancellative and no invertible element.

Remark 3. If the AG-groupoid S does not have left identity, then Theorem
7 does not hold as the following example shows:

Example 6. A cancellative AG-groupoid without left identity:

· 0 1 2 3 4
0 2 1 0 4 3
1 0 4 3 2 1
2 3 2 1 0 4
3 1 0 4 3 2
4 4 3 2 1 0

Corollary 8. A finite cancellative AG-groupoid with left identity e is an AG-
group.

The AG-groupoid in Example 1 is an AG-group.

Theorem 8. The direct product S1 × S2 of two cancellative AG-groupoids S1

and S2 is cancellative.

Proof. Suppose the AG-groupoids S1 and S2 are cancellative. Then S1 × S2

is also an AG-groupoid by [4, page 462, line 9]. Now let a, x1, y1 ∈ S1

and b, x2, y2 ∈ S2 then consider (a, b)(x1, y1) = (a, b)(x2, y2), which implies
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(ax1, by1) = (ax2, by2), from this we get that ax1 = ax2, by1 = by2, which by
cancellativity of S1 and S2 implies that x1 = x2 and y1 = y2. Thus S1 × S2 is
cancellative. �

Finally let us apply the concept of cancellativity in the proof of Theorem 3
which has been proved in [6] without this. The proof becomes a bit easier.

Proof. (ba)e = (ea)b = ab = cd = (ec)d = (dc)e ⇒ ba = dc, since e is
cancellative. �

Conclusion: In this paper we have proved that a right cancellative element
of an AG-groupoid S (not necessarily having left identity) is left cancellative.
This has also been shown that a left cancellative element of an AG-groupoid
S is right cancellative if either S is cancellative or if S has left identity. But if
the whole S is not cancellative or S does not have a left identity then we are
unable to prove that a left cancellative element is also right cancellative. Thus
we had to take an AG-groupoid S with left identity e. This requires further
investigation to remove this condition. If this could be proved then most of
our results will hold in general. So we suggest it as an open problem:

Problem 1. Prove or disprove that every left cancellative element is also right
cancellative of an AG-groupoid S without left identity.
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