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(Communicated by Kathrin Bringmann)

Abstract. The authors have conjectured that if a normalized generalized
modular function (GMF) f , defined on a congruence subgroup Γ, has integral
Fourier coefficients, then f is classical in the sense that some power fm is a
modular function on Γ. A strengthened form of this conjecture was proved in
case the divisor of f is empty. In the present paper we study the canonical
decomposition of a normalized parabolic GMF f = f1f0 into a product of
normalized parabolic GMFs f1, f0 such that f1 has unitary character and f0
has empty divisor. We show that the strengthened form of the conjecture holds
if the first “few” Fourier coefficients of f1 are algebraic. We deduce proofs of
several new cases of the conjecture, in particular if either f0 = 1 or the divisor
of f is concentrated at the cusps of Γ.

1. Introduction

Let Γ ⊂ Γ1 := SL2(Z) be a congruence subgroup and let H be the complex upper
half-plane. We consider generalized modular functions of weight zero (GMFs) on
Γ. These are holomorphic functions f : H → C which satisfy

f(γ ◦ z) = χ(γ)f(z) (∀γ ∈ Γ),

where χ : Γ → C∗ is a (not necessarily unitary) character, and which are meromor-
phic at the cusps. We call f a parabolic generalized modular form (PGMF) if it
also satisfies χ(γ) = 1 for all parabolic elements γ ∈ Γ of trace 2. If f is a GMF,
then some power fm of f is a PGMF. For further details we refer to [KM1]. In this
paper we deal mainly with PGMFs.

At the cusp at infinity, a PGMF f has a Fourier expansion

f(z) =
∑
n≥h

a(n)qnN (0 < |qN | < ε)

for appropriate h ∈ Z, N ∈ N and where qN := e2πiz/N (z ∈ H).
We shall call f normalized if a(h) = 1.
According to [KM2], each normalized PGMF f on Γ has a canonical decomposi-

tion

(1) f = f1f0,
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1126 WINFRIED KOHNEN AND GEOFFREY MASON

where f1 and f0 are normalized PGMFs on Γ, f1 has unitary character, and the di-
visor of f0 is empty. The canonical decomposition is indeed unique, which amounts
to the assertion [KM2] that a PGMF with empty divisor and unitary character is
constant. Note that it follows from these conditions and our assumptions that

f1 = qhN + . . . , f0 = 1 + . . . .

It was conjectured in [KoM], Section 1, that if a normalized PGMF f on the
Hecke congruence subgroup Γ0(N) of level N has integral Fourier coefficients, then
it must be classical; i.e. the character χ is of finite order. A proof of this conjecture
would have some very important consequences in rational conformal field theory,
as explained in [KoM].

In the present paper we shall show that the conjecture is equivalent to requiring
that the first “few” Fourier coefficients of the function f1 in the decomposition (1)
are algebraic numbers. We will actually prove slightly stronger statements regarding
the hypothesis on the Fourier coefficients of f , requiring only that they are rational
and p-integral for almost all primes p. This result implies several new cases of the
conjecture: if χ is unitary (i.e. f0 = 1), or if the divisor div(f) of f is supported at
the cusps of Γ. Some special cases of the second assertion, including the case when
div(f) is empty (i.e. f1 = 1), were established in [KoM]. Our present results are
valid for an arbitrary congruence subgroup Γ.

Apart from the decomposition (1), there are two main ingredients to the proof
of our results: the first is a theorem of Scholl-Waldschmidt ([Sc], [W]) on the
transcendence of canonical differentials of the third kind on modular curves; the
second one is the result on PGMFs with empty divisors [KoM] already mentioned
above, whose proof largely depends on the analytic theory of Dirichlet series.

The paper is organized as follows. We give the proof of the main results, The-
orem 2.1 and Corollary 2.2, in Section 3. In Section 4 we consider the action of
complex conjugation on PGMFs and their characters. For example, we show that
if the Fourier coefficients of a PGMF f are real, then so are those of f0 and f1.

2. Statement of results

We define

κΓ := [
1

6
[PΓ1 : PΓ]] + 1− cΓ.

Here PΓ1 := PSL2(Z) and PΓ denotes the image of Γ under the natural projection
Γ1 → PΓ1. Furthermore [x] (x ∈ R) denotes the greatest integer function and cΓ is
the number of cusps of Γ.

The main result of the paper is the following:

Theorem 2.1. Let f be a normalized PGMF on Γ whose Fourier coefficients a(n)
are rational for all n and are p-integral for all but a finite number of primes p. Let
(1) be the canonical decomposition of f . Then the character χ of f is of finite order
if, and only if, the Fourier coefficients a1(n) of f1 are algebraic for h ≤ n ≤ κΓ+h.

Theorem 2.1 has the following consequence.

Corollary 2.2. Let f be a PGMF on Γ and let χ be the character of f . Assume
that the Fourier coefficients a(n) are rational for all n and are p-integral for all
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but a finite number of primes p. Then χ has finite order if either of the following
conditions holds:

(a) χ is unitary.
(b) The divisor of f is concentrated at the cusps of Γ.

We point out ([KM1]) that the condition on the divisor in part (b) is equiva-
lent to the assumption that the logarithmic derivative f ′/f , which is generally a
meromorphic modular form of weight 2 on Γ, is in fact holomorphic.

3. Proof of Theorem 2.1

In one direction the conclusion is easy. Indeed, assume that χ has finite order
m. Then fm has trivial character, so that

fm = fm
1 · fm

0 = fm
1 · 1

must be the canonical decomposition of fm. Therefore f and f1 differ by an m-
th root of unity, and since they are both normalized, then they are equal and all
Fourier coefficients of f1 are algebraic, indeed rational.

In the other direction we may, and from now on we shall, assume without loss
of generality that Γ = Γ(N) is the principle congruence subgroup of Γ1 of level
N . Indeed, if Γ contains the normal subgroup Γ(N), and if χr = 1 on Γ(N), then
χre = 1 on Γ, where e = |Γ1 : Γ(N)| is the index.

Now suppose that a1(n) is algebraic for h ≤ n ≤ κ+h, where we have abbreviated
κ := κΓ. Solving recursively in (1) for the Fourier coefficients a0(n) of f0, we see
that our assumption implies that each a0(n) (0 ≤ n ≤ κ) is also algebraic.

Let

(2)
2πi

N
g0 :=

f ′
0

f0

be the logarithmic derivative of f0 and write

g0 =
∑
n≥1

b0(n)q
n
N .

Then we see that each b0(n) (1 ≤ n ≤ κ) is algebraic. Note that g0 is a cusp form
of weight 2 on Γ with trivial character, since div(f0) = ∅ [KM1].

We now assert

Lemma 3.1. All Fourier coefficients b0(n) (n ≥ 1) are contained in a finite exten-
sion K/Q.

Proof. Our claim is essentially well known and follows from linear algebra combined
with the valence formula and the fact that Γ = Γ(N). However, for the reader’s
convenience we will give a detailed proof.

First recall that the valence formula says that the sum of the orders (measured
in the appropriate local variables) of a nonzero cusp form of weight 2 on Γ on the

complete modular curve XΓ := Γ \ H is equal to [ 16 [PΓ1 : PΓ]].
Since Γ = Γ(N), it is well known that the space S2(Γ) of cusp forms of weight

2 for Γ has a basis {g1, . . . , gd} of functions with rational (in fact integral) Fourier
coefficients ([Sh], Thm. 3.52). Note that the valence formula implies that d ≤ κ.

We write g0 as a linear combination of the gν (1 ≤ ν ≤ d). Bearing in mind
that the first κ Fourier coefficients of g0 are algebraic, our claim will follow if we
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can show that the κ × d matrix A whose columns consists of the first κ Fourier
coefficients of g1, . . . , gd has maximal rank.

To show this we argue as follows. Let 〈 , 〉 denote the usual inner product on
S2(Γ). Let Pn (n ≥ 1) be the n-th “Poincaré series” in S2(Γ) with respect to 〈 , 〉;
i.e., Pn is the dual of the functional that sends a cusp form g ∈ S2(Γ) to its n-th
Fourier coefficient ag(n). By the valence formula, {P1, . . . , Pκ} generates S2(Γ).
Hence, there exists a basis {Pn1

, . . . , Pnd
}, where 1 ≤ nν ≤ κ for all ν.

On the other hand, let � ∈ S∗
2(Γ) be any functional. Then by standard duality,

there exists L ∈ S2(Γ) such that 〈g, L〉 = �(g) for all g. Writing L in terms of
the basis {Pn1

, . . . , Pnd
}, we see that � is a linear combination of a(n1), . . . , a(nd);

hence the latter functionals form a basis of S∗
2(Γ).

From the above it follows that the κ × d matrix B whose columns are the first
κ Fourier coefficients of Pn1

, . . . , Pnd
has maximal rank (the rows with indices

n1, . . . , nd are linearly independent). Hence the same is true for A, since A is
obtained from B by multiplying with an invertible d × d matrix. This completes
the proof of the lemma. �

In (2) we now solve recursively for the a0(n). Using Lemma 3.1, we see that
a0(n) ∈ K for all n. Therefore by (1), each a1(n) also lies in K.

We put

(3)
2πi

N
g1 :=

f ′
1

f1
.

Then g1 also has Fourier coefficients in K, and g1 is a meromorphic modular form
of weight 2 on Γ with trivial character. It has at worst simple poles in H with
integral residues and is holomorphic at the cusps [KM1].

We let
D := div(f).

Then degD = 0 [KM1], while div(f) = div(f1) by hypothesis.
The form g1 defined by (3) gives rise to an abelian differential of the third kind,

ω1 :=
2πi

N
g1dz,

on XΓ with residue divisor D.

Lemma 3.2. The divisor D is defined over a number field.

Proof. This essentially is well known: indeed, the Galois group operates on mero-
morphic differentials and this operation is compatible with the formation of residue
divisors. However, for the convenience of the reader, we again give a detailed proof.
We shall prove somewhat more, namely that each point P in the support of D is
already fixed by Gal(Q/L) where L/Q is a finite extension.

The modular curve XΓ is defined over a number field F (in fact, over Q(ζN ),
where ζN = e2πi/N ). Since the cusps of Γ are defined over a number field, we may
suppose that P is contained in the “open part” YΓ := XΓ \ {cusps} of the modular
curve.

The function field FXΓ
of XΓ/F is a finite extension of F (j), where j is the

classical modular invariant. By the “theorem of the primitive element” there exists
a modular function t for Γ such that FXΓ

= F (j, t) and t satisfies an algebraic
equation over F (j). The points of YΓ then can be parametrized as (j(z), t(z))
(z ∈ Γ \ H).
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THE CANONICAL DECOMPOSITION OF GMFS 1129

Suppose that P “corresponds” to (j(z), t(z)) (z ∈ H). It is sufficient to show
that j(z) is algebraic over Q. Because P is not a cusp, then z is necessarily a zero
of f , and hence a simple pole of g1. Let

G1 :=
g61
Δ

,

where Δ is the usual discriminant function of weight 12 on Γ1. Then G1 is a
modular function on Γ with a pole at z. Because g1 has Fourier coefficients in K,
the same is true of G1. Observe that each of the translates

(G1|γ)(z) := G1(
az + b

cz + d
), γ =

(
a b
c d

)
∈ Γ1,

also has Fourier coefficients in a number field. Once again, this is a standard result.
The proof is based on the “q-expansion principle” for congruence subgroups ([DR],
VII, 4.8). (A more general proof that works for noncongruence subgroups can be
found in [KL], Proposition A1.)

We may, and shall, choose c ∈ Q such that none of the modular functions
(G1|γ)(z)− c has a zero at z. Now consider the “norm”∏

γ∈PΓ\PΓ1

(G1 − c)|γ.

It is a modular function on Γ1 with coefficients in K, and hence is a rational
function A(j)/B(j) with A(j), B(j) ∈ K[j]. By construction there is a pole at z,
so that B(j(z)) = 0. The algebraicity of j(z) follows, and the proof of the lemma
is complete. �

Next, observe that ω1 is a canonical differential on XΓ; i.e.

�(
∫
σ

ω1) = 0

for all σ ∈ H1(U ;Z), where U := XΓ \ suppD. Indeed, this is equivalent to our
assumption that f1 has unitary character, bearing in mind the relation (3). We
may now invoke an important theorem of Scholl-Waldschmidt [Sc], [W] on the
transcendence of abelian differentials of the third kind on modular curves: since
g1 has Fourier coefficients in a number field, D has finite order in the divisor class
group. Thus there exists m ∈ N and a modular function h1 on Γ such that

div(
fm
1

h1
) = ∅.

Therefore fm
1 = h1, since f1 and h1 both have a unitary character.

Lemma 3.3. Let X be a projective algebraic variety defined over a number field
F , and let D be a divisor on X defined over F . If there is a rational function
Ψ ∈ C(X) over C with divisor D, then there is a rational function Ψ0 ∈ F (X) over
F with divisor D and a constant c ∈ C∗ such that Ψ = cΨ0.

Proof. We consider the linear system of −D over C, i.e. the complex vector space
L(−D) = {f ∈ C(X)∗ | div(f) ≥ D} ∪ 0. By our assumption Ψ ∈ L(−D), and
since X is projective, then L(−D) = CΨ.

Since D is defined over F , L(−D) is invariant under the action of Γ = Aut(C/F ),
the automorphism group of the field extension C/F . We have to show that L(−D)
contains a Γ-invariant vector. This, however, follows from a standard descent result;
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see e.g. Lemma 16.6 in [Mi]. In this lemma take k = F , Ω = C, V = F (X) the
field of rational functions of X/F , and V (Ω) = C(X) the field of rational functions
of X over C = V ⊗F C, W = L(−D). �

If we apply Lemma 3.3 in our situation (with X = XΓ) and use the q-expansion
principle [Mi] then we see that we can normalize h1 to have Fourier coefficients in
the compositum of Q(ζN ) and the field of definition of the algebraic divisor D (cf.
Lemma 3.2) and to have leading nonzero term equal to 1. From (1) we now obtain

(4) fm = h1 · h0,

where
h0 := fm

0 .

Since div(h0) = ∅ and h1 has trivial character, it follows that (4) is the canonical
decomposition of fm.

Lemma 3.4. Let h =
∑

b(n)qnN be a modular function on Γ = Γ(N) with Fourier

coefficients in a number field, and let σ ∈ Gal(Q/Q). Then hσ :=
∑

b(n)σqnN is a
modular function on Γ.

Proof. This is well known. Indeed, arguing as in the proof of Lemma 3.2, we see
that j(z) is algebraic if z ∈ H is a pole of h. We therefore conclude that there exists
a polynomial P with algebraic coefficients and a large positive integer M such that

H := ΔMP (j)h

is a cusp form of weight k ≥ 2 on Γ. The latter space has a basis of functions with
rational Fourier coefficients [Sh], so that H is a Q-rational linear combination of
such functions (an argument similar to that used in the proof of Lemma 3.1 with 2
replaced by k is valid). The result follows from this. �

All coefficients of the individual functions on both sides of (4) are contained in
a finite Galois extension F/Q. In (4) we now take “norms” (products of Galois
conjugates of σ ∈ Gal(F/Q)) to obtain an equation

(5) fmr = H1 ·H0,

where r = [F : Q], H1 and H0 are normalized and have rational Fourier coefficients,
and (thanks to Lemma 3.4) H1 has trivial character.

Now notice that div(H0) = ∅. Indeed, if 2πi
N w ∈ S2(Γ) corresponds to the

normalized PGMF v upon taking logarithmic derivatives, then the cusp form 2πi
N wσ

corresponds to vσ (where of course the action of Galois elements σ is defined in the
same way as above).

Since H1 has rational coefficients and Γ = Γ(N), the coefficients of H1 must in
fact be p-integral for almost all primes p ([Sh]). Since H1 is normalized, the same
holds for H−1

1 and therefore also for H0 by (5). So we have arrived at the situation
that H0 is a normalized PGMF with empty divisor and rational Fourier coefficients
which are p-integral for all but a finite number of primes p. By [KoM], Theorem 2,
we conclude that H0 = 1. Thus fmr = H1 has trivial character; i.e. the character
of f is of finite order. This concludes the proof of Theorem 2.1.

We turn to the proof of Corollary 2.2. Suppose first that χ is unitary. Then
f0 = 1, so that f = f1 has rational Fourier coefficients by hypothesis. Therefore, χ
has finite order by Theorem 2.1. This proves part (a) of the corollary. As for part
(b), because the divisor D = div(f) = div(f1) is assumed to be concentrated at
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THE CANONICAL DECOMPOSITION OF GMFS 1131

the cusps, D is defined over a number field and the Manin-Drinfeld theorem tells
us that div(f) has finite order in the divisor class group. Then fm

1 has algebraic
Fourier coefficients for some integer m; hence f1 does too. Now Theorem 2.1 again
tells us that χ has finite order. This completes the proof of part (b) of the corollary.

4. PGMFs with real Fourier coefficients

In this section we briefly consider the action of complex conjugation on PGMFs.
Recall Hecke’s operator K, defined on holomorphic functions in H as follows ([R],
Section 8.6):

f |K(z) = f(−z).

If f is a PGMF on Γ, then so is f |K [R], and the q-expansions at the infinite cusp
are related as follows:

(6) f(z) =
∑

a(n)qnN , f |K(z) =
∑

a(n)qnN .

Set

J =

(
−1 0
0 1

)
.

Note that

J

(
a b
c d

)
J−1 =

(
a −b

−c d

)
.

In the following we will need to assume that J normalizes Γ. From the last
display, we see that this holds, for many congruence subgroups, e.g., Γ = Γ(N), or
Γ0(N). We write γJ = JγJ−1 for γ ∈ Γ. A character χ of Γ may be ‘twisted’ by
J to yield a second character χJ defined by

χJ (γ) = χ(γJ).

Lemma 4.1. Assume that J normalizes Γ, and suppose that the PGMF f is as-
sociated with the character χ. Then f |K is associated with the character χ̄J . In
particular, f has real Fourier coefficients if, and only if, χ = χ̄J .

Proof. For γ ∈ Γ we have

f |K(γz) = f(−γz) = f(γJ(−z)) = χ̄J (γ)f |K(z).

This proves the first assertion. The second follows from (6). �

Suppose that f is a PGMF with canonical decomposition (1) and that χj is the
character associated to fj , j = 0, 1. We have

(7) f |K = (f1|K)(f0|K).

By Lemma 4.1, fj |K has associated character χj
J . Because χ1 is unitary, then so

too is χ1
J . Moreover, it is easy to see that f0|K has empty divisor. It follows from

these comments that (7) is the canonical decomposition of f |K.
If now we assume that f has real Fourier coefficients, then χ = χJ by Lemma 4.1.

By the uniqueness of the canonical decomposition, we can conclude that χj
J = χj

for j = 0, 1. Applying Lemma 4.1 once more, we arrive at

Lemma 4.2. Suppose that f has real Fourier coefficients. Then f1 and f0 have
real Fourier coefficients.
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1132 WINFRIED KOHNEN AND GEOFFREY MASON

The condition χj
J = χj places strong restraints on the characters χj . For

example, in the case of the unitary character χ1 we have χ1(γ
Jγ) = 1 for γ ∈ Γ.

Finally, notice that Lemma 4.2 applies in the context of Theorem 2.1. If we
could replace the real field by a number field in the statement of the lemma, the
main conjecture would follow.
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