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1. INTRODUCTION

The Gaussian model plays a central role in statistical modelling; nevertheless the need of
flexible multivariate parametric models which are able to represent departure from nor-
mality is testified by the increasing weight of the literature devoted to this issues during
the last decade. Departure from normality can take place in different ways, such as mul-
timodality, lack in central symmetry, excess or negative excess of kurtosis. The present
paper focuses on the last two features, considering the class of distribution generated by
scale mixtures of the d -dimensional skew-normal random variables defined by Azzalini
and Dalla Valle (1996).

The class of scale mixtures of skew-normal distributions includes parameters to reg-
ulated either skewness or kurtosis, and reduces to the class of scale mixture of normal
distributions when the skewness parameter vanishes. Finally, the skew-normal distribu-
tion is recovered when the mixing distribution corresponds to a random variable that
is equal to one with probability 1. Among the members of this family, whose general
form has been firstly introduced by Branco and Dey (2001), the skew t distribution is
the one that has received the greatest attention; it corresponds to the case where the mix-
ing distribution is W −1/2, where W is a Gamma(ν/2, ν/2) random variable. Azzalini
and Capitanio (2003) developed a systematic study of its main probabilistic properties
as well as statistical issues, however some aspects have been left unexplored, like the ex-
pression of suitable indices of multivariate skewness and kurtosis and a formal proof of
unimodality. The usefulness of the skew t distribution has been explored in different
applied problems. Azzalini and Genton (2008) proposed and discussed the use of the
multivariate skew t distribution as an attractive alternative to the classic robustness ap-
proach, and Walls (2005), Meucci (2006) and Adcock (2010), among others, adopted this
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model to represent relevant features of financial data. Another member which has been
studied in some details is the multivariate skew-slash distribution, defined by Wang and
Genton (2006), which is obtained when the mixing distribution is U−1/q , where U is a
uniform distribution on the interval (0,1) and q is a real parameter greater than zero.

This paper introduces the definition of a canonical form associated to scale mix-
tures of skew normal distribution, which generalizes the analogous one introduced in
Azzalini and Capitanio (1999) for the multivariate skew-normal distribution. The mo-
tivation is its suitability in allowing a simplified representation of some relevant features
which are shared by all the members of the class of scale mixtures of skew-normal dis-
tributions. In fact the components of the canonical form are such that all but one is
symmetric: the skewed component summarizes the skewness of the distribution as a
whole, leading to consistent simplifications in obtaining summary measures of the data
shape. For instance, compact general expressions for the indices of multivariate skew-
ness and kurtosis defined by Mardia (1970, 1974) for the entire class of scale mixtures of
skew-normal distributions are obtained. It will be also shown that a data transforma-
tion leading to a canonical form generates an affine invariant co-ordinate system of the
kind defined and discussed in Tyler et al. (2009) in connection with a general method for
exploring multivariate data.

2. THE SKEW-NORMAL DISTRIBUTION AND ITS CANONICAL FORM

The multivariate skew-normal distribution has been defined in Azzalini and Dalla Valle
(1996). The parameterization adopted in the present paper is the one introduced by
Azzalini and Capitanio (1999), that have further explored the properties of this family.

A d -dimensional variate Z is said to have a skew-normal distribution if its density
function is

f (z) = 2φd (z − ξ ;Ω)Φ(α>ω−1(z − ξ )) (z ∈Rd ), (1)

whereφd (z;Ω) denotes the d -dimensional normal density with zero mean and full rank
covariance matrixΩ,Φ is the N (0,1) distribution function, ξ ∈Rd is the location param-
eter,ω is a diagonal matrix of scale parameters such that Ω̄=ω−1Ωω−1 is a correlation
matrix, and α ∈ Rd is a shape parameter which regulates departure from symmetry.
Note that when α = 0 the normal density is recovered. A random variable with den-
sity (1) will be denoted by SNd (ξ ,Ω,α). The skew-normal distribution shares many
properties with the normal family, such as closure under marginalization and affine
transforms, and χ 2 distribution of certain quadratic forms. See Azzalini and Capitanio
(1999) for details on these issues. For later use we recall that the mean vector and the
covariance matrix of Z are

µ= ξ +
�

2
π

�1/2
ωδ and Σ=Ω− 2

π
ωδδ>ω, (2)
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where
δ =

1

(1+α>Ω̄α)1/2
Ω̄α (3)

is a vector whose elements lie in the interval (−1,1). From (3) we have also

α=
1

(1−δ>Ω̄−1δ)1/2
Ω̄−1δ. (4)

It is important to note that the shape parameter of a marginal component of Z is in
general not equal to the corresponding component of α. More specifically, when Z is
partitioned as Z = (Z1,Z2)

> of dimension h and d − h, respectively, the expression of
the shape parameter of the marginal component Z1 is given by

ᾱ1 =
α1+(Ω̄11)

−1Ω̄12α2

(1+α>2 Ω̄22·1α2)1/2
,

where Ω̄22·1 = Ω̄22− Ω̄21(Ω̄11)
−1Ω̄12, and Ω̄i j and αi , for i , j = 1,2, denotes the elements

of the corresponding partitions of Ω̄ and α, respectively. On the contrary, the entries of
the vector δ after marginalization are obtained by extracting the corresponding com-
ponents of the original parameter.

Azzalini and Capitanio (1999, Proposition 4) introduced a canonical form associated
to a skew-normal variate, via the following result.

PROPOSITION 1. Let Z ∼ SNd (ξ ,Ω,α) and consider the affine non singular trans-
form Z∗ = (C−1P )>ω−1(Z − ξ ) where C>C = Ω̄ and P is an orthogonal matrix having
the first column proportional to Cα. Then Z∗ ∼ SN (0, Id ,αZ∗), where αZ∗ = (α∗, 0, . . . , 0)>

and α∗ = (α
>Ω̄α)1/2.

The above authors called the variate Z∗ a canonical form of Z . With respect to the
original definition, and without loss of generality, here it is assumed that the non-zero
element of the shape vector α is the first one. The above result can be easily verified
by applying Proposition 3 of Azzalini and Capitanio (1999). Furthermore, using their
Propositions 5 and 6 it is immediate to see that Z∗1 ∼ SN1(0,1,α∗) while the remaining
components of Z∗ are N1(0,1) variates, and that in addition the components of Z∗ are
mutually independent. Finally, it is remarked that the linear transform leading to a
canonical form is not unique.

Azzalini and Capitanio (1999) underlined how this transformation plays a role anal-
ogous to the one which converts a multivariate normal variable into a spherical form.
Motivated by the expressions they obtained for the indices of multivariate skewness and
kurtosis defined by Mardia (1970), they also highlighted the role of α∗ as a quantity
summarizing the shape of the distribution. In fact the two indices are

γ1,d = β1,d =
�

4−π
2

�2� 2α2
∗

π+(π− 2)α2
∗

�3

(5)
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γ2,d = β2,d − d (d + 2) = 2(π− 3)
�

2α2
∗

π+(π− 2)α2
∗

�2

, (6)

and they depends on α and Ω only via α∗.
As an additional comment, note that by comparing expressions (5) and (6) with the

corresponding ones for a univariate skew-normal distribution (see Azzalini, 1985, sect.
2.3), and taking into account (4), it turns out that the values of the multivariate skewness
and kurtosis indices are equal to those of the corresponding univariate indices for a skew-
normal distribution having shape parameter equal to α∗. In this sense, the canonical
form is characterized by one component absorbing the departure from normality of the
whole distribution.

Notice also that on using expression (3), the marginal shape parameter δ associ-
ated to the skewed component of a canonical form turns out to be δ∗ = (δ

>Ω−1δ)1/2.
Because of the one-to-one correspondence between these two quantities, it makes no
difference which one is used as summary quantity.

Some results contained in Tyler et al. (2009) allows to provide new insight into the
role of a canonical transformation Z∗. These authors introduced a general method for
exploring multivariate data, based on a particular invariant co-ordinate system, which
relies on the eigenvalue-eigenvector decomposition of one scatter matrix relative to an-
other. The canonical transformation Z∗ turns out to be an invariant co-ordinate system
transformation with respect to the scatter matrices Ω and Σ, and taking into account
the results of Section 3 of Tyler et al. (2009), a method to obtain a matrix H such that
Z∗ =H>(Z − ξ ) can be explicitly stated.

PROPOSITION 2. Let Z ∼ SNd (ξ ,Ω,α), and define M =Ω−1/2ΣΩ−1/2, where Ω1/2 is
the unique positive definite symmetric square root of Ω, and Σ is the covariance matrix of
Z. Let QΛQ> denote the spectral decomposition of M . Then the transform

Z∗ =H>(Z − ξ ),

where H = Ω−1/2Q, converts Z into a canonical form. Moreover, Z∗ = H>(Z − ξ ) is an
invariant co-ordinate system transformation based on the simultaneous diagonalization of
the scatter matrices Ω and Σ.

PROOF. Consider the simultaneous diagonalization of the scatter matricesΩ= E[(Z
−ξ )2] and Σ, and let Ω−1/2 denote the unique positive definite symmetric square root
of Ω. Following Tyler et al. (2009, Section 3), a matrix H such that H>ΩH = Id and
H>ΣH = diag(λ1, . . . ,λd ) turns out to be Ω−1/2Q, where λ1 ≤ λ2 ≤ . . . ≤ λd are the
eigenvalues of Ω−1Σ, or equivalently of M = Ω−1/2ΣΩ−1/2, and where the i th column
of the d × d orthogonal matrix Q is the normalized eigenvector of M corresponding
to the i th smallest eigenvalue. Furthermore, the i th column of H is the eigenvector of
Ω−1Σ corresponding to the i th smallest eigenvalue ofΩ−1Σ. The transform H>Z corre-
sponds to an invariant co-ordinate system, as defined in Tyler et al. (2009, p. 558). After
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some straightforward algebra, the eigenvalues of Ω−1Σ turn out to be 1, with multiplic-
ity d − 1, and 1− (2/π)δ2

∗ , and the associated eigenspaces are the orthogonal comple-
ment of the subspace spanned byωδ, and the subspace spanned byω−1α, respectively.
This fact implies that the first row of H−1 is proportional to ωδ, while the last d − 1
rows lie in the orthogonal complement of the subspace spanned by ω−1α. On using
the expressions for the parameters of a linear transformation of a skew-normal variate
given in Azzalini and Capitanio (1999, p. 585), the distribution of Z∗ = H>(Z − ξ ) is
SN (0, Id , H−1ω−1α); taking into account the structure of the matrix H−1 and the equal-
ity H−1Ω−1(H−1)> = Id we obtain H−1ω−1α= (α∗, 0, . . . , 0)>, and hence the variate Z∗

corresponds to the canonical form of Z . 2

The proof of Proposition 2 contains a description of the structure of the matrix H ,
which it is shown to have one column proportional to ω−1α and the remaining ones
belonging to the orthogonal complement of the subspace spanned by ωδ. This result
implies that the projection α>ω−1Z captures all the skewness and the kurtosis of the
joint distribution, whereas by projecting Z onto the orthogonal complement of the
subspace spanned byωδ independent N (0,1) variates are obtained.

Since a matrix H converting a skew-normal variate to its canonical form can be ob-
tained through the simultaneous diagonalization of a pair of scatter matrices different
fromΩ andΣ, it is expected that when two scatter matrices, V1 and V2 say, are such that
they become diagonal when the variate Z is in canonical form, then Proposition 2 will
continue to be valid if the matrices Ω and Σ are replaced by V1 and V2. An example of
such matrices will be given in Proposition 6 at the end of Section 4.

3. SCALE MIXTURES OF SKEW-NORMAL VARIATES AND THEIR CANONICAL FORM

In this section a canonical form analogous to the one introduced for the skew-normal
distribution is defined for scale mixtures of skew-normal distributions, and some prop-
erties are given.

3.1. Scale mixtures of skew-normal variates

Scale mixtures of skew-normal distributions have been considered in Branco and Dey
(2001). This class of distributions contains the corresponding class of scale mixture of
normal distribution and the skew-normal distribution as proper members, allowing to
model a wide range of shapes. A scale mixture of skew-normal distributions is defined
as follows.

DEFINITION 1. Let Y = ξ +ωSZ, where Z ∼ SNd (0, Ω̄,α) and S > 0 is an in-
dependent scalar random variable. Then the variate Y is a scale mixture of skew-normal
distributions, with location and scale parameters ξ and ω, respectively.

Note that, when α= 0, Y reduces to the corresponding scale mixture of Nd (0, Ω̄) distri-
butions.
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The mth order moments of Y can be calculated by differentiating the moment gen-
erating function given in Branco and Dey (2001, expression 4.1). An alternative and
simpler way to obtain moments is to follow the scheme used by Azzalini and Capitanio
(2003, expression (28)) for the moments of the skew t distribution, which arises when
S =W −1/2, and W is a Gamma( 12 ν ,

1
2 ν) random variable. Specifically, assuming that

ξ = 0 andω = Id , by exploiting the stochastic representation given in Proposition 1 we
obtain

E(Y (m)) = E(S m)E(Z (m)), (7)
where Y (m) denotes a moment of order m. Note that to use this formula only the knowl-
edge of mth order moments of S and Z is required.

An appealing property of an SNd (0,Ω,α) variate is that the distribution of its any
even functions is equal to the one obtained by applying the same even function to a
Nd (0,Ω) variate. This fact can be easily seen by considering Proposition 2 in Azza-
lini and Capitanio (2003) and noting that the skew-normal distribution belongs to the
broader class of distribution generated by perturbation of symmetry which the propo-
sition is concerned with. As a corollary it follows from (7) that even order moments
of Y −ξ are equal to those of the corresponding scale mixture of normal distributions.
On using (7) and taking into account (2), the mean vector and the covariance matrix of
Y are

E(Y ) = ξ + E(S)
s

2
π
δ and va r (Y ) = E(S2)Ω̄− E(S)2

2
π
δδ>, (8)

in agreement with those obtained by Branco and Dey (2001).
Scale mixtures of skew-normal are models capable to take into account for both

skewness and kurtosis, and it is important to have available the expressions of measures
of these two features. The next proposition introduces the expression of the Pearson
indices of skewness and kurtosis for the univariate case; the multivariate case will be
considered later, as the introduction of the canonical form of Y allows to cope with the
problem in a simpler manner.

PROPOSITION 3. Let Y = ξ +ωSZ, where Z ∼ SN1(0,1,α) and S > 0 is a scalar
random variable. Then, provided that the moments up to order three or up to order four of
S exist, the expressions of the skewness and excess of kurtosis indices γ1 and γ2 are

γ1 = β1 = σ−3
Y

�

2
π

�1/2 �

E(S)3
4
π
− E(S3)

�

δ3+

−σ−3
Y 3

�

2
π

�1/2
�

E(S)E(S2)− E(S3)
�

δ, and

γ2 = β2− 3 = σ−4
Y

¨

8
π

�

E(S)E(S3)− 3
π

E(S)4
�

δ4+

−24
π

�

E(S)E(S3)− E(S2)E(S)2
�

δ2+ 3
�

E(S4)− E(S2)2
�

«

,
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where σ2
Y = va r (Y ).

PROOF. Since the two indices are location and scale invariant, the case were ξ = 0
and ω = 1 will be considered. The third and the fourth cumulants of Y required to
compute γ1 and γ2 are functions of the first four non central moments of Y , which in
turn, taking into account (7), depends on the corresponding moments of Z . The first
moment of Z is given in (2), and taking into account that Z2 ∼ χ 2

1 (see Azzalini, 1985,
property H) the second and the fourth ones are equal to 1 and 3, respectively. Finally, by
deriving the moment generating function of the scalar skew-normal distribution given in
Azzalini (1985, p. 174), the third moment of Z turns out to be 3(2/π)1/2δ−(2/π)1/2δ3.
After some algebra the result follows. 2

Note that when δ = 0 the variate Y is a scale mixture of N (0,1), so that the index
γ1 becomes zero and γ2 = σ

−4
Y 3

�

E(S4)− E(S2)2
�

measures the excess of kurtosis of Y .
When S is degenerate and S = 1, the expressions of the two indices for the skew-normal
distribution are recovered. When S is the inverse of the square root of a Gamma( 12 ν ,

1
2 ν)

random variable, Y follows a scalar skew t distribution, and the two indices coincide
with those given in Azzalini and Capitanio (2003, p. 382).

3.2. The canonical form of scale mixtures of skew-normal distributions

The canonical form for scale mixtures of skew-normal distributions is defined in the
following way.

DEFINITION 2. Let Y = ξ +ωSZ, where Z ∼ SNd (0, Ω̄,α) and S > 0 is an indepen-
dent scalar random variable. The variate Y ∗ = (C−1P )>ω−1(Y − ξ ) = SZ∗, where the
matrices P and C are as in Proposition 1, will be called a canonical form of Y .

From the above definition, it is straightforward to see that Proposition 2 can be extended
to scale mixtures of skew-normal variates, that is, the linear transform Y ∗ =H>(Y−ξ ),
where H is defined as in Proposition 2, converts Y into a canonical form.

The next proposition states some properties of Y ∗.

PROPOSITION 4. Under the settings of Definition 2, the following facts hold.

(i) Only the first univariate component of Y ∗ can be skewed. More specifically, Y ∗1 is a
scale mixture of an SN1(0,1,α∗) variate, where α∗ = (α

>Ω̄α)1/2, and its mean and
variance are

µ∗ = E(S)(2/π)1/2δ∗, σ2
∗ = E(S2)− (2/π)E(S)2δ2

∗ ,

respectively, where δ∗ = (δ
>Ω̄−1δ)1/2. The remaining components are identically

distributed scale mixtures of N1(0,1) distributions, that is, symmetric about zero ran-
dom variables with variance σ2 = E(S2).
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(ii) The d components of Y ∗ are uncorrelated.

(iii) The non zero elements of the set of moments E(Y ∗(3)) are

E(Y ∗31 ) = E(S3)(2/π)1/2δ∗(3−δ
2
∗ )

and
E(Y ∗1 Y ∗2i ) = E(S3)

p

2/πδ∗, i = 2, . . . , d .

(iv) The non zero elements of the set of moments E(Y ∗(4)) are

E(Y ∗4i ) = 3E(S4), (i = 1, . . . , d ),

E(Y ∗2i Y ∗2j ) = E(S4), ( j = 1, . . . , d , i 6= j ).

PROOF. (i) By definition Y ∗i = SZ∗i ; the result follows taking into account that
Z∗1 ∼ SN1(0,1,α∗)whilst the last d−1 components of Z∗ are N (0,1). The expressions for
the means and the variances can be obtained by (8) taking into account (3). (i i)Using (3)
the vector δ associated to Y ∗ becomes (δ∗, 0, . . . , 0)>, where δ∗ = (δ

>Ω̄−1δ)1/2; taking
into account the expression of va r (Y ) given in (8), we see that C ov(Y ∗i ,Y ∗j ) = 0. (i i i)–
(i v) From expression (7) we have E(Y ∗(m)) = E(S m)E(Z∗(m)). The result follows taking
into account that the components of Z∗ are mutually independent and the expressions
of their moments. 2

The above results show that the main features of the canonical form of the skew-
normal distribution are preserved when a scale mixture is considered. In fact only the
first component is skewed, and the influence of the parameters Ω and α is completely
summarized by quantity α∗, or equivalently by δ∗. Independence among the compo-
nents is replaced by a zero correlation, as expected since scale mixture of normal distri-
bution themselves does not allow to model independence between components.

4. MARDIA INDICES OF MULTIVARIATE SKEWNESS AND KURTOSIS

The canonical form of Y can lead to dramatic simplification in calculating quantities
which are invariant or equivariant with respect to invertible affine transformations. This
is the case, for instance, of the Mardia indices of multivariate skewness and kurtosis and
of the mode. In this section the Mardia indices will be considered, while the latter issue
will be developed in the next section.

Given a d -dimensional random variable Y , the Mardia indices of multivariate skew-
ness and excess of kurtosis are defined as follows

γ1,d = β1,d =
∑

i j k

∑

i ′ j ′k ′
σ i i ′σ j j ′σ kk ′µi , j ,kµi ′ j ′k ′ ,

γ2,d = β2,d − d (d + 2) = E
n

�

(Y −µ)>Σ−1(Y −µ)
�2
o

− d (d + 2),
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where µ and Σ denote the mean vector and the covariance matrix of Y , respectively,
µi , j ,k = E

�

(Yi −µi )(Y j −µ j )(Yk −µk )
�

, and σ i i ′ denotes the (i , i ′)th entry of Σ−1.

PROPOSITION 5. Consider the scale mixture of skew-normal distribution Y = ξ +
ωSZ, where Z ∼ SNd (0, Ω̄,α). Then the Mardia indices of multivariate skewness and
excess of kurtosis of Y are, provided that the involved moments of S exist

γ1,d = (γ ∗1 )
2+

3(d − 1)
σ2
∗E(S2)2

�

E(S3)− E(S)E(S2)
�2 2
π
δ2
∗ ,

γ2,d = β∗2+(d − 1)(d + 1)E(S2)−2E(S4)+

+
2(d − 1)
E(S2)σ2

∗

¨

E(S4)+ [E(S)2E(S2)− 2E(S)E(S3)]
2
π
δ2
∗

«

− d (d + 2),

where, using a self explanatory notation, the quantities γ ∗1 , β∗2, δ∗ and σ2
∗ refer to the com-

ponent Y ∗1 of the canonical form associated to Y .

PROOF. In the proof some symbols introduced in Proposition 4 will be used. Since
γ1,d and γ2,d are invariant with respect to invertible affine transforms, the canonical form
Y ∗ will be considered in place of Y . From (i) of Proposition 4 we know that the last
d − 1 components of Y ∗ are symmetric about zero; a first implication is that µ1,1,k = 0
for any 2 ≤ k ≤ d . In addition, taking into account (i i i), it follows that µi , j ,k = 0 for
any choice of i , j and k in {2, . . . , d}. From (i i) we have σ j j ′ = 0 for any j 6= j ′, and
consequently γ1,d reduces to

(µ1,1,1)
2

σ6
∗
+

3
σ2
∗σ4

d
∑

i=2

µ2
1,i ,i .

Finally, by expressing µ1,i ,i in terms of non central moments and by applying (7), the
first equality is proved.

Let us denote byµi , j ,k ,l the generic entry of the fourth order central moment of Y ∗;
taking into account (i) and (i i) of Proposition 4 we have

β2,d = E

(

�

(Y ∗1 −µ∗)
2

σ2
∗

+
d
∑

i=2

Y ∗2i

σ2

�2)

=
µ1,1,1,1

σ4
∗
+

d
∑

i=2

µi ,i ,i ,i

σ4
+ 2

d−1
∑

i=2

d
∑

j=3

µi ,i , j , j

σ4
+ 2

d
∑

i=2

µ1,1,i ,i

σ2
∗σ2

,

where the expressions of µi ,i ,i ,i and µi ,i , j , j for i and j greater than 1 are given in (i v) of
Proposition 4, and that of µ1,1,i ,i can be obtained with the aid of (7). After some algebra
the second equality follows. 2
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This result shows that, if Y is a scale mixture of skew-normal distributions, then γ1,d
and γ2,d depend on the shape of S, and on the underlying skew-normal variate only via
the scalar quantity α∗, or equivalently δ∗, reinforcing its role of a summary quantity of
the distribution shape.

By comparing these expressions with the corresponding ones of the skew-normal
distribution, given by (5) and (6), respectively, we can observe that they have a different
structure. In particular, when a scale mixture of skew-normal distributions is consid-
ered, the two indices do not coincide with their univariate version evaluated with respect
to the marginal distribution of the only skewed component of the variate in canonical
form.

It could be of interest to highlight the structure ofβ2,d = γ2,d+d (d+2). It turns out
that it is the sum of three terms: the univariate kurtosis index of Y ∗1 , whose expression is
given in Proposition 3, the kurtosis indexβ2,d−1 of the (d−1)-dimensional scale mixture
of normal distribution (Y ∗2 , . . . ,Y ∗d )

>, which is given by (d − 1)(d + 1)E(S2)−2E(S4),
and a term which is related with the fourth moment of Y ∗ through µ1,1,i ,i , for any
i ∈ {2, . . . , d}.

When Y ∼ STd (ξ ,Ω,α, ν) explicit expressions of the two indices can be easily ob-
tained taking into account the well known result

E(S m/2) =
(ν/2)m/2Γ ((ν −m)/2)

Γ (ν/2)
,

leading to

γ1,d = (γ ∗1 )
2+ 3(d − 1)

µ2
∗

(ν − 3)σ2
∗

, if ν > 3,

γ2,d = β∗2+(d
2− 1)

(ν − 2)
(ν − 4)

+
2(d − 1)
σ2
∗

�

ν

ν − 4
−
(ν − 1)µ2

∗
ν − 3

�

− d (d + 2),

if ν > 4

where

µ∗ = δ∗
� ν

π

�1/2 Γ ((ν − 1)/2)
Γ (ν/2)

, σ2
∗ =

ν

ν − 2
−µ2

∗,

and the explicit expressions of γ ∗1 and γ ∗2 = β
∗
2− 3 are given in Azzalini and Capitanio

(2003, p. 382).
Note that an equivalent expression, obtained through a different method, forβ2,d =

γ2,d + d (d + 2), is given in Kim and Mallik (2009). Finally, note also that the expres-
sion of γ1,d and γ2,d given in Proposition 5 reduces to the corresponding ones for the
skew-normal distribution when S is such that pr(S = 1) = 1, while γ2,d is the index of
multivariate kurtosis of a scale mixture of normal distributions with mixing variable S
when δ∗ = 0.
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The following proposition provides a further example of a pair of scatter matrices
that can be used for obtaining the linear transform to convert a scale mixture of skew-
normal variates into a canonical form. The proof of the proposition contains the proof
of the fact that if two scatter matrices are diagonal when the considered variate is in
canonical form, then it is expected that by applying to them the procedure described in
Proposition 2 we obtain a matrix H that induces a canonical form.

PROPOSITION 6. Consider the scale mixture of skew-normal distribution Y = ξ +
ωSZ, where Z ∼ SNd (0, Ω̄,α), and define the scatter matrix

K = E
n

�

(Y −µ)>Σ−1(Y −µ)
�2
(Y −µ)(Y −µ)>

o

.

Let M ′ = Σ−1/2K Σ−1/2, where Σ1/2 is the unique positive definite symmetric square root
of Σ, and Σ is the covariance matrix of Y . Let Q ′Λ′Q ′> denote the spectral decomposition
of M ′. Then the transform

Y ∗ =H>(Y − ξ ),

where H =Σ−1/2Q ′, converts Y into a canonical form.

PROOF. By means of the results contained in Proposition 4 it is possible to show
that when a scale mixture of skew-normal distribution is in canonical form, then both
the scatter matrices K and Σ are diagonal. Let K ∗ = H̃>K H̃ and Σ∗ = H̃>ΣH̃>

denote such matrices, where H̃ is a matrix such that H̃>(Y − ξ ) is in canonical form.
The equality M ′q ′j = λ′j q

′
j , where q ′j is the j -th column of the matrix Q ′ and λ′j =

Λ′j j is the corresponding eigenvalue, implies that the equality Σ∗−1K ∗H̃−1(Σ−1/2q ′j ) =

λ′j H̃
−1(Σ−1/2q ′j ) must also hold true; since both K ∗ and Σ∗ are diagonal, the equality

is fulfilled when all the eigenvalues of M ′ are equal, or when H̃−1(Σ−1/2Q ′)∝ Id . The
first circumstance is out of interest, because it would imply that we are considering two
scatter matrices which are proportional, the second one implies that the columns of
Σ−1/2Q ′ are proportional to the corresponding columns of H̃ , and the proposition is
proved. 2

On the basis of Propositions 2 and 6 we see that the matrix H that defines the canon-
ical form can be obtained working with the pair (Ω,Σ) or with (Σ,K ), no matter which
one between them. However it is important to highlight the auxiliary information given
by this technique, which essentially relies on a spectral decomposition. In particular, it
is straightforward to note that the trace of the matrix Ω−1Σ, or equivalently, of M , is
equal to the sum of the variances of the marginal univariate components of the canoni-
cal form, while the trace of the matrix Σ−1K , or equivalently, of M ′, is equal to β2,d .
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5. THE MODE OF THE MULTIVARIATE SKEW-NORMAL AND SKEW T DISTRIBU-
TIONS

The mode of the skew-normal and skew t distributions cannot be calculated in closed
form, so one needs to resort to numerical methods. In this section it is proved the
uniqueness of the mode in the d -dimensional case, and it is shown that its computa-
tion can be reduced to an equivalent one-dimensional problem, drastically reducing the
dimensionality of the original problem. From the expression of the mode which is ob-
tained, it also turns out that the mode, the mean and the location parameter are aligned.
More specifically, they lie in a one dimensional linear manifold of directionωδ. Thus,
the departure from symmetry of these distributions is characterized by a displacement
of the probability mass along this direction. The above issues are briefly discussed also
for the general case of scale mixture of skew-normal distributions.

For later use, we recall that the density function of a d -dimensional skew t variate
as given by Azzalini and Capitanio (2003, expression 26) is

fY (y) = 2 td (y − ξ ; ν)T1

(

α>ω−1(y − ξ )
�

ν + d
Qy + ν

�1/2

; ν + d

)

(y ∈Rd ), (9)

where Qy = (y − ξ )>Ω−1(y − ξ ), td (x; ν) is the density function of a d -dimensional
t -variate with ν degrees of freedom, T1(x; ν + d ) is the scalar t distribution function
with ν+d degrees of freedom. A random variable having density (9) will be denoted by
STd (ξ ,Ω,α, ν).

PROPOSITION 7. Let Z ∼ SNd (ξ ,Ω,α). Then the unique mode of Z is

M0 = ξ +
m∗0
α∗
ωΩ̄α= ξ +

m∗0
δ∗
ωδ

where m∗0 is the mode of a scalar SN1(0,1,α∗) random variable.

PROOF. Consider first the mode of the canonical form Z∗ ∼ SNd (0, Id ,αZ∗). If we
calculate the mode by imposing the gradient of the density function to be equal to the
null vector, the system of equations to be solved turns out to be

z1Φ(α∗z1)−φ1(α∗z1)α∗ = 0
z2Φ(α∗z1) = 0

... =
...

zdΦ(α∗z1) = 0,

where zi , i = 1,2, . . . , d denotes the i th entry of the vector z ∈ Rd . The last d − 1
equations are satisfied when zi = 0 for i = 2, . . . , d , whilst the unique root (for the
uniqueness see Azzalini, 1985, Property D) of the first one corresponds to the mode,
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say m∗0 , of a SN1(0,1,α∗), so that the mode of Z∗ is the vector M ∗0 = (m
∗
0 , 0, . . . , 0)> =

(m∗0/α∗)α
>
Z∗ . Recalling that Z = ξ+ωC>PZ∗ and α∗Z = P>Cα, and taking into account

that the mode is equivariant with respect to affine transformations, the mode of Z turns
out to be

M0 = ξ +
m∗0
α∗
ωC>P P>Cα= ξ +

m∗0
α∗
ωΩ̄α= ξ +

m∗0
δ∗
ωδ,

where the last equality follows taking into account (3) and (4). 2

PROPOSITION 8. Let Y ∼ STd (ξ ,Ω,α, ν). Then the unique mode of Y is

M0 = ξ +
y∗0
α∗
ωΩ̄α= ξ +

y∗0
δ∗
ωδ

where y∗0 ∈R is the unique solution of the equation

y(ν + d )1/2T1(w(y); ν + d )− t1(w(y); ν + d )να∗(ν + y2)−1/2 = 0,

where w(y) = α∗y
�

ν + d
ν + y2

�1/2

.

PROOF. As for the skew-normal case, the canonical form Y ∗ ∼ STd (0, Id ,αY ∗ , ν),
where αY ∗ = (α∗, 0, . . . , 0)> is considered, and the mode is calculated by imposing the
gradient of the density function to be equal to the null vector. The system of equations
to solve turns out to be

x1T1(α∗x1c(x); ν + d )−
t1(α∗x1c(x); ν + d )
(ν + x>x)1/2(ν + d )1/2

(ν + x>x − x2
1 )α∗ = 0

x2

�

T1(α∗x1c(x); ν + d )+
t1(α∗x1c(x); ν + d )
(ν + x>x)1/2(ν + d )1/2

x1α∗

�

= 0

... =
...

xd

�

T1(α∗x1c(x); ν + d )+
t1(α∗x1c(x); ν + d )
(ν + x>x)1/2(ν + d )1/2

x1α∗

�

= 0,

where x = (x1, x2, . . . , xd )
> and c(x) = {(ν+d )/(ν+x>x)}1/2. First note that the function

on the left hand side of the first equation can be equal to zero only if x1 ≥ 0. This
fact implies that the remaining equations are equal to zero if and only if xi = 0 for
i = 2, . . . , d . Hence the mode of Y ∗ is M ∗0 = (y

∗
0 , 0, . . . , 0)>, where the scalar value y∗0 ≥ 0

is the solution of

yT1(w(y); ν + d )−
t1(w(y); ν + d )

(ν + y2)1/2(ν + d )1/2
να∗ = 0, (10)
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where w(y) = α∗y
�

ν + d
ν + y2

�1/2

. To see that equation (10) admits a unique solution, first

notice that when y∗0 ≥ 0 the function on the right hand side is the difference between
a strictly increasing function and a strictly decreasing one. Furthermore, when y∗0 = 0
the latter is greater than zero while the former is equal to zero, and as y∗0 →∞ the latter
goes to zero while the former goes to∞. Hence, there exists a unique point in which
their difference is equal to zero. The expression of the mode of Y is obtained on the
basis of arguments analogous to those used for the mode of a multivariate skew-normal
distribution. 2

Note that a different proof for the uniqueness of the mode for the multivariate skew
t distribution has been independently developed by Azzalini and Regoli (2012).

The issue of finding the mode of other members of the family of scale mixture of
skew-normal distributions can be tackled in a similar way. An open problem, which is
not investigated here, is to assess the uniqueness of the solution.

It is straightforward to see that if a point of Rd is the mode of the canonical form of
a d -dimensional skew scale mixture of skew-normal variates, then it should be of type
(y∗0 , 0, . . . , 0)>, where the real number y∗0 is such that

∫ ∞

0
s−d−1φ

� y∗0
s

�§ y∗0
s
Φ
�

α∗
y∗0
s

�

−α∗φ
�

α∗
y∗0
s

�ª

fS (s)ds = 0,

where fS (s) denotes the density function of S. This implies that, as for the skew-normal
and skew t distributions, the mode of a scale mixture of skew-normal distributions will
be of the form

ξ +
y∗0
δ∗
ωδ.
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SUMMARY

The canonical form of scale mixtures of multivariate skew-normal distribution is defined, empha-
sizing its role in summarizing some key properties of this class of distributions. It is also shown
that the canonical form corresponds to an affine invariant co-ordinate system as defined in Tyler
et al. (2009), and a method for obtaining the linear transform that converts a scale mixture of
multivariate skew-normal distribution into a canonical form is presented. Related results, where
the particular case of the multivariate skew t distribution is considered in greater detail, are the
general expression of the Mardia indices of multivariate skewness and kurtosis and the reduction
of dimensionality in calculating the mode.

Keywords: Affine invariance; Kurtosis; Mardia indices of multivariate skewness and kurtosis;
Scale mixtures of normal distributions; Skewness; Skew-normal distribution; Skew t distribution.
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