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1. Introduction

Let V be a compact algebraic manifold (over the complex numbers)
of dimension d, with canonical divisor Ky. We define the canonical

ring R(V) = R(V, Kv) = EB H’(V, nKv). One of the most vital un-
n~0

solved problems in the classification theory of algebraic varieties is
the following :

FUNDAMENTAL QUESTION: Is R(V) finitely generated as an algebra
over the complex numbers?

This question is of particular importance when V is of general type.
In this case, if R( V) is finitely generated, then we have a correspond-
ing canonical model Proj(R(V)). We may then attempt to classify
these canonical models up to isomorphism.

In dimension 2, we know that the canonical ring is finitely
generated (see [19]), and this enables one to produce a moduli space
for surfaces of general type (see [12]). In dimension 3, work has been
done on threefolds of general type assuming that the canonical ring is
finitely generated (see [14] and [18]). For dimensions 3 and higher
however, the main problem is still completely open.

In this paper, we start by broadening the question to the ring
R(V,D)=~ n~0 H0(V,nD), for an arbitrary divisor D, aiming to

generalize some results of Zariski for surfaces [19]. In Section 1, we
prove a useful geometric criterion for R ( V, D) to be finitely
generated, valid in arbitrary dimensions. In Sectiôn 2, we extend a
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result of Zariski on arithmetically effective divisors to arbitrary
dimensions.

In Section 3, we prove some elementary results on the canonical

ring, which results will be useful in later sections. In particular, we

investigate the fixed components of |nKV|, when V is a threefold of
general type.

In Section 4, we give two examples. Firstly a normal Gorenstein
threefold V, with 03BA(V,KV)=3, but R ( V, Kv) not finitely generated.
This example will also show that the arithmetic plurigenera (see [16]
and [17]) of normal Gorenstein varieties are not invariant under

algebraic deformations. Secondly, we give an example of a non-

algebraic complex manifold of dimension 4 for which the canonical
ring is not finitely generated. This explains why 1 have asked the

Fundamental Question in the algebraic case only.
In both examples, the fixed locus of the n-canonical system |nKV| is

rather simple; for n sufficiently large, 1 nKv | has no codimension &#x3E; 1
fixed subvarieties, and the fixed components are normal (in fact

smooth) and disjoint. In Section 5, we show however that if these

conditions hold for a smooth threefold of general type, then the
canonical ring must be finitely generated.

In the final section, various ways of progressing are discussed,
considering in particular the important case when Ky is arithmetically
effective. Here R(V) is finitely generated if and only if |nKV| is

without fixed points for some n. The ideas developed are then applied
to the case of a non-normal fixed component on a smooth threefold of

general type (cf. Section 5).
This paper was written during a year spent at the University of

Kyoto, funded by the Royal Society, London. The author would like
to thank all the mathematicians at Kyoto for helping to make his stay
such an enjoyable and stimulating one. In particular, thanks are due
to Prof. Kenji Ueno for his many kindnesses, including the benefit of
many useful discussions on the work contained herein.

1. The ring R ( V, D)

Let V be a compact, complex algebraic manifold of dimension d.
Let D be a divisor on V, and N(V, D) = {n ~ 0 such that h°( V, nD) &#x3E; 01.
Here of course, h°( V, nD) denotes the dimension of the vector space
H°( V, ~V(nD)). In general h will denote the dimension of Hi, and in
many places we shall use a divisor to denote also its corresponding
invertible sheaf. For all n E N(V, D), we can define a rational map
~nD: V~Xn C pN, where N = h0(nD)-1 (see [7]). This map is a
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morphism outside the indeterminate locus of |nD|. Throughout this
paper, 1 shall use the term indeterminate locus to mean the

codimension &#x3E; 1 fixed subvarieties of |ND|. The term fixed locus will
mean all the fixed points of |nD|, i.e. indeterminate locus plus fixed
components. The maps ~nD enable us to define the number 03BA(V,D),
the D-dimension of V (see [7]).

Following Zariski [19], we define a ring R(V, D) == ~H0(V, nD). If

R(V, D) is finitely generated, we can define a variety X = Proj
R(V, D) which has the property that for some m ~ 1, the varieties Xnm
are isomorphic to X for n ~ 1. This ring is of particular interest when
K ( V, D) = d, in which case the Xn are birationally equivalent to X for
all n sufficiently large.
As however is well known, the ring R ( V, D) is not always finitely

generated, and in the case of surfaces the question was investigated
by Zariski in [19]. In this section we aim, for arbitrary dimension d, to
translate the condition that R(V,D) is finitely generated into a

geometric condition concerning the fixed locus of |nD| ( for n large.
This is done in (1.2); first however we need the following result.

PROPOSITION 1.1: Suppose that lAI is a linear system on a compact
algebraic manifold V, with CPA birational. If F is an effective divisor on
V which does not meet the fixed locus of lAI, and such that the map
CPA contracts down (to lower dimensions) every component of F, then
for all m - 1, ImA + F| = ImAl + F.

PROOF: We may clearly assume that JAI has no indeterminate

locus, and therefore that ~ = ~A is a morphism. By Chow’s theorem,
we may also assume that V is projective. Suppose then that V C P"
say, and let N = h°(A) - 1, so that ~(V) = X C PN.
Let |mA + F|=|Am|+F’, where the fixed components of jaml do

not meet F. Let F, denote that part of F consisting of components E
whose image under 0 has dimension ~s. Similarly we define F s;
clearly F’s~Fs. We show by induction that in f act F’s=Fs for all

s ~ d - 1. For s = 0, this then gives the required result.
By assumption, the claim is trivially true for s = d - 1. Suppose

then that 0~s ~d - 2, and that the claim is true for all s’ &#x3E; s ; we

prove then that it is also true for s.

Let {Ei} denote those components of F whose images Éi under ~
have dimension s ; i.e. the components of Fs - Fs+,. Take a section

(say W) of X by a general linear space in PN of codimension s. Thus
we may assume:

(a) For any divisor E on V which is contracted under ~, with
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E = ~(E), the intersection W ~ E has the ’correct’ dimension. In
particular, W intersects each Èi in a finite number of points, and
if a divisor E on V is contracted to a subvariety of dimension s,
then W rl É is empty.

(b) The inverse image U=~-1(W) is smooth, and its intersection

with the indeterminate locus of )Am has at least codimension 2 in
U. Note that U is merely the intersection of s general elements of

JAI.
Thus U is a smooth variety of dimension (d - s), which contains a

collection {Yi} of divisors that are blown to points under the mor-
phism cp L7 : U - W. The lyil here are of course the intersections of
the {Ei} with U.
Now take a section of V by a general linear space H of codimen-

sion (d - 2 - s) in P", and let S = H n U. We then have the following:
S is a smooth surface, on which there is a collection {Ci} of curves
that are blown down to points on S = cp(S) under the morphism 0 S.
The curves {Ci} are the intersections of leil with S. Also, for all

components E of F - F,, we have that S f1 E is empty. Finally we
may assume that the intersection of S with the indeterminate locus of

)Am ) has at least codimension 2 on S.
On V we have F - F’ - Am - mA (linearly equivalent); restricting

to S, we obtain an effective divisor B = (F - F’) S which is sup-

ported on the curves fcil (using the induction hypothesis that Fs+1 =
F’s+1). We wish to show that B = 0.

If this were not so, then by a standard result (see [11]) we deduce
that B2  0. However, the general element of lAI does not meet any of
the curves fcil, (by assumption the fixed components are disjoint
from ICil, and the mobile part does not meet f Cil by construction). By
construction however, the complete linear system on S containing
Am| S only has fixed components disjoint from fcil, and therefore
B 2 = B · (Am - mA) = B - Am ~ 0. This then gives the required con-
tradiction. D

THEOREM 1.2: Let D be a divisor on a compact algebraic manifold
V, where 03BA(V, D) = d = dim( V). The ring R(V, D) is finitely generated
if and only if there exists a positive integer n and a smooth

modification f :  ~ V such that the map ~nf*D on V is a birational
morphism which contracts every fixed component of Inf* DI.

PROOF: For the ’only if’ part, we essentially use an argument from
[14]. If R(V, D) is finitely generated, then for some n ~ 1 the ring
R(V, D)(n) == EB HO(V, mnD) is generated by its degree one terms.

m2:0
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Now resolve the indeterminate locus of 1 nD obtaining f :  ~ V and
D == f *D. Thus R ( V, D) = R ( V, D) and ~=~n:~X is a mor-

phism.
Put IMDI = lAm + Fm for m ~ 1, and let E be any component of Fn.

Denote by r(m, E) the multiplicity of E in Fm ; by construction

r(mn, E) = m.r(n, E) for all m ~ 1. Hence h (V, mAn) =
h0(, mAn + E) for all m ~ 1.
Now An = ~*H for some hyperplane section H of X, and so for m

sufficiently large, we have h1(X,~*mAn) = 0. But R1~*~(mAn) =
R1~*~~~X(mH), and so using the Leray spectral sequence we
deduce that h’(mAn) behaves at worst like m d-2. From the exact

sequence

0~H0(, mAn)~H0(, mAn + E)~H0(E, OE(mAn + E))
~H1(, mAn)

we deduce that ho(E, CE(mAn + E)) behaves at worst like md-2, and
thus E is contracted by ~.
We now prove the converse; let |nf*D|=|An|+Fn, where |An| is

now without fixed points. By assumption ~nf*D contracts every

component of Fn, and so we deduce from (1.1) that for all m = 1,

1 mnf *D 1 = |mAn| + mFn. Since |An is without fixed points, we deduce
(using [19], Theorem 6.5) that R(,f*D)(n) is finitely generated, and
hence so also is R(,f*D). D

2. Arithmetically effective divisors

Let V be a compact algebraic variety of dimension d, and D a
Cartier divisor on V. Recall that D is called arithmetically effective
(a.e.) if D·C~0 for all integral curves C on V. Arithmetically
effective divisors on surfaces play a central role in Zariski’s paper
[19]. In this section we extend some of these ideas to higher dimen-
sions.

DEFINITION 2.1: For a divisor D on V, we say that the fixed locus
of |nD| is numerically bounded if for every birational morphism
f : V~ V, the fixed components of Inf *Dl have bounded multiplicities
as n~~.

Thus the fixed locus is bounded if and only if it is numerically
bounded and we can simultaneously resolve the indeterminate loci of
|nD| for all n sufficiently large. If the fixed locus of |nD| is numeric-
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ally bounded, then clearly |nD| is almost base point free in the sense
of Goodman [3].
The following result now gives a suitable generalization to higher

dimensions of Theorem 10.1 of [19].

THEOREM 2.2: If the fixed locus of INDI is numerically bounded,
then D is a.e. Furthermore, if K(V, D) = dim(V), then the converse
holds.

PROOF: Note first that if f : V~ V is a birational morphism, then
f *D is a.e. if and only if D is a.e. (see [9], page 303). Furthermore, the
multiplicity of a fixed component of |nD| will be the same as the

multiplicity of the corresponding fixed component in Inf* DI. Thus by
Chow’s theorem and the results of Hironaka [6], we may assume that
V is smooth and projective. The first part is now straightforward. In
fact the stronger result holds, that if |nD| is almost base point free,
then D is a.e. (see [3], page 178).

Let us now prove the converse under the assumption that

03BA(V,D) = dim(V). From the above remarks and the results of

Hironaka [6], it is sufficient to prove that if D is a.e. on a smooth

projective variety V, and the fixed components of InDi are smooth,
then these components have bounded multiplicities as n~~.
Choose a very ample divisor H on V such that the divisors

H - Kv - E are ample for all fixed components E. Since D is a.e., it is
also pseudo-ample ([5], Chapter I, Section 6). Thus for all r~1,
m ~ 0, rH - Kv - E + mD is ample (using the Nakai criterion).
Now for a given E, let Vi = E~H1~···~Hd-i-1 for i =

1, 2, ..., d - 1, where the Hj are general elements of 1 Hl. By Bertini’s
theorem the varieties Vi are smooth, and clearly Kv, =
(Kv + E + (d - i - I)H) 1 Vi. We prove by induction on i that

h0(Vi,~Vl(mD+dH))&#x3E;0 for all m~0. This is clear for i=1; we
assume therefore that 1  i ~ d - 1 and that the claim is true for

(i - 1). Since iH - Kv - E + mD is ample, we deduce that

h1(Vi, eJv,(mD + (d - 1)H)) = 0. We therefore have an exact sequence

Hence the claim is true for all i ~ d - 1; in particular we have that
h0(~E(mD + dH )) &#x3E; 0 for all m ~ 0.

Now from the exact sequence
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we deduce that |mD + dHI does not have E as a fixed component for
all m = 0. As this is true for all fixed components E, we deduce that
the linear system 1 mD + dH| has no fixed components for m ~ 0.

Since K ( V, D) = dim(V), a standard argument now shows that there
exists an integer a such that the divisor aD-dH is effective. Thus the
fixed components of 1(m + a)DI-have bounded multiplicities as m ~ ~,
which is the result that we wanted to prove. 0

REMARKS 2.3:

1. If K ( V, D) = dim(V), then the fixed locus of 1 nD | is numerically
bounded if and only if |nD| is almost base point free, which is if and
only if D is a.e. (by (2.2) and [3], page 178).

2. For D a.e. with K(V, D) = dim(V), we have that R ( V, D) is finitely
generated if and only if |nD| has no fixed points for some positive
integer n.

3. The canonical ring

Now let V be a compact algebraic manifold of dimension d, with
canonical divisor Kv. We wish to know whether the canonical ring
R ( V) = R ( V, KV) is finitely generated. The question will be of parti-
cular importance when V is of general type, i.e. 03BA(V) = dim(V). In
this case, the following is an easy corollary of (1.2).

PROPOSITION 3.1: The canonical ring R ( V) is finitely generated if
and only if there is a positive integer n and a birational (smooth)
model V on which CPnKv is a birational morphism contracting every fixed
component of InKvl. D

Suppose now that E is a fixed component of |nKV| for all n

sufficiently large, and let r(n, E) denote the multiplicity of E in |nKV|
(essentially independent of the birational model V). Clearly E is

Gorenstein, and we let KE denote a dualizing divisor. We put |nKV| =
)An ) + Fn, where |An| denotes the mobile part.

LEMMA 3.2: If OnK is a birational morphism and r(n, E) ~
r(n + 1, E), then h°(E, CE(KE + An)) = 0. In particular h0(E(KE)) = 0.

PROOF: By the Grauert-Riemenschneider form of Kodaira vanish-
ing [4], we know that h’(Kv + An) = 0. Thus we have an exact

sequence:
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Since r(n, E) ~ r(n + 1, E), the first map is an isomorphism, and so
the result follows. D

COROLLARY 3.3: If V is of general type, E a fixed component of
1 nK v f or all n sufficiently large, then pg(E) = 0.

PROOF: By resolving the singularities of E in V (see [6]), we may
assume that E is smooth. Choose n such CPnKv is birational, and that

r(n, E) ::; r(n + 1, E). Resolve the base locus of InKvl and use

(3.2). D

Conjecture (Ueno). If E is such a fixed component, then 03BA(E) = -~.

We now look at the case when V is a threefold of general type. Let
E be a fixed component of |mKV| for all m sufficiently large.
Motivated by (3.1), we consider the case when CPnKv is a birational

morphism which does not contract E. As in (3.3) we could assume
that E is smooth - here however we shall only assume that it is

normal (this will be needed in Section 5).

LEMMA 3.4: If r(n, E) ~ r(n + 1, E), then E contains only rational
double point singularities, and K(E) = -00. Putting B = An 1 E and
~(~E) = 1 - q, we have that the genus of B, p(B) = q. Except in the
case when E is rational and its image under cP An is ¡p2, we have
h0(~E(KE + 2B)) &#x3E; 0, and so the linear system IKv + 2An + E| on V
does not have E as a fixed component. Thus r(2n + 1, E)  2.r(n, E).
In the exceptional case, hO«(JE(KE + 3B)) &#x3E; 0, and so the linear system
IKv + 3An + E| does not have E as a fixed component.

PROOF: Using an argument involving Kodaira vanishing and the
Leray spectral sequence, it is easily verified that h1(~E(KE + B)) = 0.
Since E is Gorenstein, the Riemann-Roch theorem holds for Cartier
divisors on E (proved in a purely f ormal manner). Thus we deduce
(using (3.2)) that

Letting X(CE) = 1- q(E) by (3.2), we deduce that the genus of B,
p(B) = q. Since E is normal, the general element of |B| is a non-

singular curve.
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As commented above however, we may resolve the singularities of
E in V, and apply the same argument to the corresponding smooth
component É. With the obvious notation, it is clear that p(B) = p();
hence the above argument yields ~(~E) = ~(~). in other words that
the singularities of E are rational. Since E is also Gorenstein, these
singularities must be rational double points.

If 03BA(E) ~ 0, then ~(~E) = ~(~) ~ 0. Also, for some positive n we
have that h0(~E(nKE)) = hO(OÊ(nKÊ» &#x3E; 0. Thus we have KE - B ~ 0.
Since B2 &#x3E; 0, this gives an immediate contradiction from (*).
For the next part, we note by Riemann-Roch that ho(CE(KE +

2B )) = ~(~E) + (KE + 2B) - B = q - 1 + B 2. Hence if E is not rational

(i.e. q &#x3E; 0), or if the image of E under ~An is not P2 (i.e. B2 &#x3E; 1), we
have that h0(~E(KE+2B))&#x3E;0. The next statement follows from the
exact sequence

The final sentence of the Lemma follows similarly. D

For a surface of general type, it is well known that the canonical

ring is finitely generated. This may be shown in a number of ways.
Originally it was proved in the Mumford Appendix to [19], which

proof relies heavily on the results of Artin concerning the contrac-
tability of curves on a surface. For a more cohomological approach,
the result follows as an immediate corollary to the work of Bombieri
[2], which paper uses crucially the idea of connectedness of divisors
on surfaces. As a third alternative, one can produce a mechanical (but
rather long) cohomological proof using the methods of this section.
This last approach is close in spirit to that of Artin (in that one
considers the possible configurations of curves in the fixed locus), but
seems to rely less on special facts concerning curves on surfaces.

In all three approaches however, the first step is to note that there
exists a smooth model on which the canonical divisor is a.e. Such a

model does not of course exist in higher dimensions (see [14] and

[15]). We shall return to this point in Section 6.

4. Two examples

At this stage it seems appropriate to give a couple of examples.
Both examples are motivated by the Zariski examples in [19] of

divisors D on a surface S for which R(S, D) is not finitely generated.
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EXAMPLE 4.1: Let V be a normal Gorenstein variety with canoni-
cal divisor Ky. Is R(V, Ky) finitely generated in general? We give an
example here of a normal Gorenstein threefold V with K(V, Kv) = 3
for which the above ring is not finitely generated.

Let S C P3 be a cone on a smooth elliptic curve C, vertex P say,
and let H denote a hyperplane in P3. Thus Kp3 -- -S - H (linearly
equivalent).

If we now blow up P, say f : À - P3, we obtain a smooth surface S,
the proper transform of S. Letting E denote the exceptional divisor in
, and H denote f *H, we have K ~ - - H - E.
Now 5 is a ruled surface over the curve C, with structure map

03C0:~ C say. The zero section Co has self-intersection -3. If we let
H represent the proper transform of a general hyperplane through P,
i.e. H + E~ H, we see that ~ 03C0*h for some divisor h of degree 3
on C. Choose points PI, P2,..., Pl2 on C such that (4h - lipi) is not a
torsion element of Pic°(C) ~ C. Letting Li = 03C0*Pi, we now blow  up
in LI, ..., L l2, say g : W ~ . We let S’, H’ and E’ denote the proper
transforms of 5, H and E respectively, and H denote the pullback of
f *H by g (i.e. H - H’+ E’). Therefore Kw - -S’- H - E’-
-S’-H’-2E’.

As S’ is isomorphic to 5, we shall use 7T to denote also the structure
map of S’. We denote by E; the exceptional divisor on W cor-

responding to Li on IP. We then have

Thus (S’ + H’) 1 Sf- 03C0*(4h - 03C3iPi). Therefore, it is clear that S’ is a

fixed component of the linear systems In(S’ + H’)l for n ~ 1. 1 claim

however that for all n - 1, the linear system 1(n - 1)S’ + nH’1 has no
fixed points in W. This is trivial for n = 1, so we assume that n ? 2.

Clearly, the linear system on S’ containing ((n - 1)S’ + nH’) |S’ has
no fixed points. From the exact sequence

it is sufficient to prove that h1(~W((n - 2)S’ + nH’)) = 0.
We prove by induction that hl(Ow«r-2)S’+nH’»=O for all 1~

r~n. For r = 1, it is clear that h1(~W(-S’+nH’)) = h2(~W(-2H -
(n - 1)H’)) = 0 by the Grauert-Riemenschneider vanishing theorem
[4]. Suppose then that h1(~W((r - 2)S’ + nH’)) = 0 for some r, 1r 
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n. We have an exact sequence

In order to complete the induction step, it is sufficient therefore to

prove that h1(~S’((r - 1)S’ + nH’)) = 0.
However, ([r - 1]S’ + nH’) S’ - 1T*D, where D is a divisor on C of

degree 3(n + 1 - r) ~ 6. An elementary agrument using the Leray
spectral sequence now shows that h1(~S’(03C0*D)) = 0. Hence the in-

duction is complete, and 1(n - 1)S’ + nH’1 has no fixed points.
Since -Kw - S’+ H’+ 2E’, we see that W is an example of a

smooth variety for which R(W, -Kw) is not finitely generated. This is
because S’ will be a fixed component of multiplicity one in 1-nKwl I
for all n ~ 1 (see [19], page 562).
Now consider the linear systems In(S’ + H)j on W. As in the above

case S’ will be a fixed component for all n - 1. It is then clear that the

only fixed points of 1(n - 1)S’ + nH| lie on the curve E’ - S’ = Co.
Therefore, if we take the double cover of W ramified over the general
element of |4(S’ + H)I, say a : V- W, V will have non-canonical

singularities (see [14]) only over the curve Co. Since V is clearly
Gorenstein, we deduce from Serre’s criterion that it must be normal.
On V, KV~03B1*(KW + 2S’ + 2H) ~ 03B1*(S’ + H’). Now for all n ~ 1,

we have

Since H0(W,~W(mS’+mH’-2E’)) = 0 for all m, we deduce that

HO(V, nKv) ~ H0(W, eJw(nS’ + nH’)). Thus R( V, KV) ~ R(W, S’ + H’)
is not finitely generated, and the divisor a * S’ is fixed in |nKV| for all
n~1.

REMARK 4.2: By varying the points Pi, we may obtain a family of
normal Gorenstein threefolds, 03B8:V~C say, for which R(Vt, Kv,) is
finitely generated on a countable dense subset of C (corresponding to
the torsion points), and is not finitely generated elsewhere. In parti-
cular therefore, we see that the arithmetic plurigenera Pn(Vt) =
h0(Vt, nKv,) cannot be constant in the family. This contrasts with
known results for normal Gorenstein surfaces (see [16] and [17], and
also cf. [8]).
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EXAMPLE 4.3: We may of course extend the Fundamental Ques-
tion in another direction, and ask whether for an abitrary compact
complex manifold M, the canonical ring R(M) is finitely generated.
When the algebraic dimension a(M) = dim(M), this reduces to the
algebraic case; when a (M)  dim(M), the answer in general is No, as
is seen from the following example.

Let C C P2 be a smooth elliptic curve and H a line. Blow up 12

general points P1,..., P12 on C, and one point P not on C. Let

f:~P2 denote this modification, with exceptional curves E,, ..., E)2
and E. Let C’ be the proper transform of C, H’ = f * H - E and take
D=C’+H’.

It is clear that C’ must be a fixed component of |nD| for all n ~ 1.
The following claim is left as an exercise for the reader (cf. (4.1)).

CLAIM: For all n ~ 1, nH’ + (n - 1)C’ is very ample.
Thus R(, D) is not finitely generated (see [19], page 562).
Now let S be the double cover of P ramified over the general

element of |6C’ + 6H’l. From the above claim, the general element of
this linear system only has ordinary double point singularities, and so
S only has rational double point singularities. Let S denote the

minimal desingularization of S; we therefore have a morphism 03B1:~
P. An elementary calculation confirms that K ~ 03B1*(2C’ + 3H’ + E).
We now use a construction due to Atiyah [1], obtaining an analytic

fibre space of complex tori over P. Let L denote the line bundle over
 corresponding to the divisor H’. Take sections SI, S2 E H0(, L)
such that s, and S2 are never simultaneously zero.
Now consider the quaternion matrices in M2(C):

Note that for (a1, a2, a3, a4)~R4, det(03A3aiIi) = 0 if and only if

(a1, a2, a3, a4) = (0,0,0,0).
We can therefore consider the analytic family of tori

where
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In other words for z Er, the fibre Wz = C EB C/A(z), where A(z) is

the iattice {I1(S1(Z)S2(z)), 12 SI(z) I3(S1(z)S2(z)), I4(S1(z)S2(z))} in C2. It is easily
checked that the relative canonical sheaf 03C9W/ = 03C0*~(-2H’).
Now take the fibre product of 03B1:~ and 03C0:W~, obtaining

g : V~  say. In other words, V is obtained by taking the Atiyah fibration
over S corresponding to the divisor a*H’.
V is then a complex (non-Kähler) 4-dimensional analytic manifold

with a (V) = 2 = K(V), and such that

It is now easily checked that R ( V, Kv) is not finitely generated.
By varying the points Pi again, we note that the canonical ring

behaves badly under smooth deformations, this being for a similar
reason as exhibited in (4.2).

5. Threefolds of general type

In both the examples of Section 4, we have that |nKV| is without

indeterminate locus for n sufficiently large (in fact for n &#x26; 1), and that
the fixed components are normal (in fact smooth) and disjoint. In this
section we show that if these conditions hold for a threefold of

general type, then the canonical ring is in fact finitely generated.
So let V denote a compact smooth algebraic threefold of general

type. Suppose that for n sufficiently large, E is a fixed component of
|nKV| which meets neither the indeterminate locus nor any other fixed
component, i.e. E is isolated in the fixed locus.

PROPOSITION 5.1: If E is normal, then there exists N with CPNKv a
birational map which contracts E.

PROOF: Choose n sufficiently large such that §mK is birational for

m ~ n, and such that r(n, E) ~ r(n + 1, E). Resolve the indeterminate
locus of |nKV|; we may therefore assume that |nKV| = |An| + Fn, where
(An is without fixed points and E is an isolated component of Fn. If E
is contracted by ~nK, there is nothing to prove; we assume therefore
that it is not contracted.

(a) Letting B = An I E, we consider first the case when B2 = 1. Thus
the image of E under §nK is P2, and B corresponds to a line H on P2.
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Using (3.4), we deduce that the map on E corresponding to the linear
system IKE + 3B| is a morphism which contracts E to a point. Noting
that nKE ~ B + (n + r)E I E, where r = r(n, E), it is clear that the

divisor E |E on E corresponds on P2 to -aH for some a &#x3E; 0. Recall

from (3.4) that the linear system IKv + 3An + El does not contain E as
a fixed component. Letting 1(3n + I)Kvl = |A3n+1| + F3n+1 (where |A3n+1|
is the mobile part), we deduce that A3n+1 = Kv + 3An + E (modulo
components E’ of Fn disjoint from E). It therefore follows that E is
contracted to a point by CPNKv, where N = 3 n + 1.

(b) By (3.4), we may therefore assume that h0(~E(KE + 2B)) &#x3E; 0. Let

1(2n + I)Kvl:= IA2n+d + F2n+h where by assumption IA2n+d has no fixed
points on E. If E is not isomorphic to P2, we shall see that E is

contracted by CPNKv, where N = 2n + 1.
By (3.4), IKv + 2An + El does not have E as a fixed component;

thus we deduce that for some non-negative integer s, A2n+1 =
Kv + 2An + (s + 1)E (modulo components E’ of Fn disjoint from E). It
therefore suffices to prove that the morphism on E corresponding to
the divisor A2n+1|E = (KE + 2B + SE)JE must then contract E.
Note that n(KE + 2B) = (2n + 1)B + (n + r)E I E, where r = r(n, E),

and that nA2n+1|E = (2n + 1)B + (n + r + sn)EJE. Hence

and so the corresponding linear system is without fixed points. If E is
contracted by the morphism corresponding to (r + n + sn)n(KE + 2B),
then it is also contracted by the morphism corresponding to

(r + n)A2n+il E. Since IA2n+ll has no fixed points on E, this implies that E
is contracted by the morphism corresponding to A2n+1| E, which is the
result that we are trying to prove.

Since |(r + n + ns)n(KE + 2B)j is without fixed points, it suffices to
prove that (KE + 2B)2~0. However, an elementary calculation shows
that (KE+2B)2=4(KE+B)·B+K2E=-8~(~E)+K2E (see (3.4)). By
(3.4), we know that E only has rational double point singularities;
thus, if E is not isomorphic to P2, then the classification of ruled
surfaces yields the required result.

(c) Finally therefore, we consider the case when h0(~E(KE + 2B)) &#x3E; 0
and E is isomorphic to P2. By (3.2), we deduce that B --- 2H, where H
denotes a line on P2. We also have E |E --- -aH for some a &#x3E; 0, and
that the linear system IKv + 2An + El does not contain E as a fixed
component. Noting that KE + 2B - H on E, we therefore deduce that
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either E is contracted to a point by the morphism corresponding to
|A2n+1| or A2n+1 = Kv + 2An + E (modulo components E’ of Fn disjoint
from E).

In the first case, E is contracted by CPNKv, where N = 2n + 1. In the
second case, we have that A2n+l E ~ H, and we may therefore apply
the argument of part (a) to deduce that E is contracted by CPNKv’
where N = 3(2n + 1) + 1. 0

THEOREM 5.2: Let V be a threefold of general type, and suppose
that for n sufficiently large, InKvl has no indeterminate locus and the
fixed components are normal and disjoint. Then the canonical ring
R(V) is finitely generated.

PROOF: Let the fixed components be Ei,..., Es, and put |nKV| =
|An| + Fn, where |An| 1 is without fixed points for all n sufficiently large.
By (5.1), for each 1 ~ i ~ s, there exists an integer Ni such that the
morphism corresponding to JANil | is birational and contracts Ei.
Therefore, by (1.1), we deduce that r( rnNl, Ei ) = m.r(Ni, Ei ) f or all

m ~ 1.

Let No be an integer for which the fixed components of |N0KV| are
precisely E1,..., Es. Now put N = NoNIN2 ... NS; we therefore have
that FmN = mFN for all m ~ 1. Since JAN 1 is without fixed points, we
deduce (using [19], Theorem 6.5) that the canonical ring is finitely
generated. D

REMARK 5.3: Let V be a normal Gorenstein threefold with

K(V, Kv) = 3. Suppose that for n sufficiently large, InKvl has no

indeterminate locus and the fixed components are disjoint and nor-
mal. If the fixed components are also Cartier divisors on V, then the
above proof works essentially without modification to show that

R ( V, Kv) is finitely generated. In our example (4.1) however, the fixed
component T on V (corresponding to S’ on W) is not a Cartier

divisor, although 2T = a *(S’) clearly is.
1 should add on the practical side, that the main use of (5.2) is to

rule out immediately many of the possible counter-examples that one
would otherwise consider.

6. Arithmetically effective canonical divisors

Turning to the proof that the canonical ring is finitely generated in
dimension 2, we see that it is vital that we can demonstrate the



380

existence of a smooth model on which the canonical divisor is a.e.

Unfortunately, in dimensions 3 and higher, such a smooth model does
not always exist (see [14] and [15] for examples). However, it is

reasonable to ask about what may be said if such a model does exist.

This is all the more reasonable in dimension 3, in view of recent

results of Mori concerning the case when the canonical divisor is not
a.e. (see [10]).

THEOREM 6.1: (Mori). Suppose that V is a smooth projective
threefold of general type on which KV is not a.e. Then there exists an
irreducible divisor D on V such that V is the blow-up of some
projective variety W, 03C8: V - W say, with centre the subvariety 03C8(D).
Furthermore, one of the following five cases holds :
1. 03C8(D) is a non-singular curve and W is non-singular.
2. Q = 03C8(D) is a non-singular point of W.
3. Q = 03C8(D) is an ordinary double point of W; D ~ P1  Pl and

~D(D) ~ p*1~P(-1) 0 p*2~P(-1), the pi denoting the projections.
4. Q = 03C8(D) is a double point of W ; D isomorphic to an irreducible

reduced singular quadric surfaces in P3, ~D(D) ~ Os 0 ~P(-1).
5. Q = 03C8(D) is a quadruple point of W, locally isomorphic to a cone

on the Veronese surface (cf. [14] and [15]). Here D is isomorphic to
P2, and ~D(D) ~ ~P(-2).

Recall that for a surface S of general type, we have the following
equivalent conditions:

i. Ks is a.e.

ii. InKsl has no fixed points for n sufficiently large.
iii. S is minimal.

iv. h’(nKs) = 0 for all n &#x3E; 1.

Let us extend this to threefolds.

THEOREM 6.2: Let V be a smooth projective threefold of general
type. The following conditions are then equivalent :
a. Kv is a.e.
b. The fixed locus of InKvl is numerically bounded.
c. V is relatively minimal, and h2(nKv) = 0 for all n &#x3E; 1.

If the canonical ring is finitely generated, then we have a further
equivalent condition :

d. |nKV| has no fixed points for n sufficiently large.
PROOF: By (2.2), (a) and (b) are equivalent. If Kv is a.e., then we

deduce from the Ramanujam form of Kodaira vanishing [13], that
h2(nKv) = h1(-(n-1)KV) = 0 for all n &#x3E; 1.
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Suppose now that V is not relatively minimal. We therefore have a
birational morphism f : V ~ V onto a smooth threef old V, with Kv =
f*KV + D for some positive divisor D on V. Since Pn(V) = Pn(V) for
all n ~ 1, we deduce that nD is fixed in |nKV| for all n ? 1. Therefore,
condition (b) implies that V is relatively minimal, and hence also
condition (c).
Suppose now that condition (c) holds. If Ky is not a.e., then we

may use (6.1). Since V is relatively minimal by assumption, we
deduce that there exists an irreducible divisor D on V of type (3), (4)
or (5). An easy argument using the Leray spectral sequence, shows
that in all these cases, h 2(nK y) &#x3E; 0 for n sufficiently large.

Finally, if R ( V) is finitely generated, then a non-empty numerically
bounded fixed locus cannot occur. The equivalence of (b) and (d) is
then clear. D

REMARK (UENO): Given any variety V of dimension d and a very
ample divisor H on V such that Ky + H is ample, we may blow up
the base locus of a Lefschetz pencil containing H, say f :  ~ V.
Using the Leray spectral sequence, it is then easy to see that

hi(nK) = 0 for all i &#x3E; 1 and n &#x3E; 1. Thus in condition (c) of (6.2), the
stipulation that V is relatively minimal is essential.

COMMENT: Note that if Ky is numerically positive on a threefold V
with 03BA(V) &#x3E; 0 (i.e. Kv - C &#x3E; 0 for every integral curve C on V), then
Ky is in fact ample (see Proposition 2.3 of [18]), and thus R(V) is
obviously finitely generated.
As to the next step, it seems that the following question should be

asked.

QUESTION: Let V be a smooth threefold of general type on which
Ky is a.e., and such that |nKV| ( has no indeterminate locus for n

sufficiently large. Then is the canonical ring finitely generated?

Since the fixed components would have bounded multiplicities if

they existed, there are some rather strong numerical conditions im-
plied in this case. As in (5.2) however, one of the major problems is
that of non-normal fixed components.

Finally, let us apply the above ideas to the case of non-normal
isolated fixed components, which case was excluded from con-

sideration in (5.1) and (5.6). Let V denote a smooth threefold of
general type, and suppose that E is a non-normal fixed component of
nKv , which for sufficiently large n meets neither the indeterminate
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locus nor any other fixed component. We shall also assume here that

KV · C ~ 0 for all curves C on E. This last condition is almost

certainly implied by the others, using methods similar to those say of
[10]. In particular, the condition follows as an immediate corollary to
(6.1) in the case when E is the only fixed component. Note that if

Kv - C  0 for some curve C on E, then C can only move in an

algebraic family within E, since otherwise we would have another
fixed component E’ meeting E.

THEOREM 6.3: With the notation as above, E has bounded rnulti-

plicity in InKvl, and KV | E is numerically equivalent to zero. Fur-
thermore, the desingularization of E must be a rational surface.

PROOF: Since KV · C ~ 0 for all curves C on E, it is an easy
exercise from (2.2) to show that E has bounded multiplicity in InKvl.
From (1.1), we deduce that for all n sufficiently large, 0,K does not
contract E.

By (3.2) we know that hO(OE(KE + An)) = 0 for infinitely many n.

For such n, we deduce formally from Riemann-Roch that

Letting r = r(n, E), we have that AniE = (nK, - RE)JE. Thus

Since Kv 1 E is a.e., we know that Ky E ~ 0. Since the above

equation holds for infinitely many n, and r(n, E) is bounded, we see
that K2V·E = 0 and KV · E ~ 0.
However, we know that (nKv - rE)2 . E &#x3E; 0 for infinitely many n.

Thus we have Kv - E2 :5 0, and hence that Ky E2 = 0.

Putting B = AniE = (nKv - RE)JE, we see that B . (K | E) = 0. Also
we have B2 &#x3E; 0 and (K 1 E)2 = 0. Hence, using the Hodge index
theorem (on a resolution of E), we deduce that K E is numerically
equivalent to zero.
For n sufficiently large, we know that E is isolated in the fixed

locus of InKvl, and that CPnKv is a birational map which does not

contract E. Choose such an n with r(n, E):5 r(n + 1, E).
Now resolve the singularities of E in V by the standard procedure,

say f : Ù - V, with E the smooth surface on V corresponding to E on
V. Let g = f ( É, and |Ãn| denote the mobile part of |nK|.



383

From (3.4) we know that É is (birationally) a ruled surface of genus
q, and that putting B = Ân | E, we have p() = q. We need to show
that q = 0. Since KV | E ~ 0 (numerical equivalence) on E, we have
KE ~ E | 1 E (1/r)B, and so on É, g*KE = - (1/r).
For the case q &#x3E; 1, we obtain an immediate contradiction. By

Hurwitz’s theorem, B is a single section of the birational ruling, i.e.
B - L = 1 for a general fibre L. Thus from the above equation for
g * KE, we deduce that r = 1. Therefore p(B) = 1 + 1/2(KE + B) · B = 1,
and hence p() ~ 1. Thus q() ~ 1, which is the required contradic-
tion.

Let us now suppose therefore that q() = 1, and thus p() = 1. The
standard desingularization procedure yields that KË = g* KE - L1 for
some effective divisor à on E. Since KÊ - L = -2 for the general fibre
L of the birational ruling, and g*KE ~ -(1/r), we deduce that

0394 · L = 0 or 1.

(a) The easy case is when 0394 · L = 0, 1.e. à is concentrated in fibres.

Consider h :  ~ E, where E is any minimal model of É. Since

rK ~ - - rà, we deduce that rKË == - B - r0394, where B (respectively
0394) is the image under h of B (respectively 0394). Thus r2K É =

(B + rà )2 &#x3E; 0, which is impossible unless q(E) = 0.

(b) We are therefore left with the case when 0394 · L = 1 for the

general fibre L. Thus à contains a (multiplicity one) curve Co which is
a section of the ruling. Hence p(C0) = 1. Therefore 0 =

(K + C0) · C0 = -(1/r). C0-(0394-C0)· Co. Thus Ê - Co = 0 and

(a - CO) - Co = 0, i.e. Co is isolated in à, and does not meet B.

Now suppose Ci is a component of a fibre (not a whole fibre)
meeting Co. Therefore Ci is rational, C210 and Ci does not appear in
L1. Thus

Hence . Ci=0=(2l-Co) Cl, and C21=-1. In particular, Ci
is an exceptional curve of the first kind which meets neither B nor
(a - Co). We may therefore contract Ci, and repeat the above argument.
In this way we deduce that A = Co.

Since p() = 1, we now have that 0=(KE+B) =(1-1/r)2.
Hence r = 1, and KÊ -B - Co. Since B does not meet Co, it is also
easy to see that the general element of the linear system |B| on E
does not meet the singular locus of E.
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As q (É) &#x3E; 0, we deduce from (3.4) that r(2n + 1, E) = 1. In parti-
cular we may apply the above results in this case also. Let |A2n+1|
(respectively |Ã2n+1|) denote the mobile part of 1(2n + 1)KV| (respec-
tively 1(2n + 1)K|). Clearly A2n+1 | E ~ KE + 2B (linear equivalence).
We now calculate the quantities X(CE(A2n+,» and ~(~(Ã2n+1)).

Letting g = hl(CE) and applying Rieman-Roch formally on E, we
obtain the equation

Similarly on E, we see that

(using the fact here that Â2,11 does not meet Co). Now Ã2n+l É -
g*KE + 2, and hence h1(~(Ã2n+1))=h1(~(-C0-2)). From the

exact sequence

we deduce that h1(~(-C0 - 2)) = hO(Oco) = 1. Finally, using the fact
that A2n+1 does not meet the singular locus of E, we see that

h0(~(Ã2n+1)) = hO(OE(A2n+I». The above equations therefore yield
h1(~E(-2B)) = g.
We now use the fact that h0(~E(KE + B)) = 0 (see (3.2)). Combined

with a formal use of Riemann-Roch, this gives h1(~E(-B)) = g - 1.
However, if we consider the cohomology exact sequence derived
from the sequence of sheaves

we see that h1(~E(-2B))~h1(~E(-B)). This then is the required
contradiction. D
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