On the Capacitated Vehicle Routing Problem*

T.K. Ralphs! L. Kopman! W.R. Pulleyblank? and L.E. Trotter, Jr.

Revised December 17, 2001

Abstract

We consider the Vehicle Routing Problem, in which a fixed fleet of delivery vehicles
of uniform capacity must service known customer demands for a single commodity
from a common depot at minimum transit cost. This difficult combinatorial problem
contains both the Bin Packing Problem and the Traveling Salesman Problem (TSP) as
special cases and conceptually lies at the intersection of these two well-studied problems.
The capacity constraints of the integer programming formulation of this routing model
provide the link between the underlying routing and packing structures. We describe
a decomposition-based separation methodology for the capacity constraints that takes
advantage of our ability to solve small instances of the TSP efficiently. Specifically, when
standard procedures fail to separate a candidate point, we attempt to decompose it into
a convex combination of TSP tours; if successful, the tours present in this decomposition
are examined for violated capacity constraints; if not, the Farkas Theorem provides a
hyperplane separating the point from the TSP polytope. We present some extensions
of this basic concept and a general framework within which it can be applied to other
combinatorial models. Computational results are given for an implementation within
the parallel branch, cut, and price framework SYMPHONY.

*This research was partially supported by NSF Grant DMS-9527124 and Texas ATP Grant 97-3604-010

"Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18017,
tkralphs@lehigh.edu, http://www.lehigh.edu/"tkr2

School of OR&IE, Cornell University, Ithaca, NY 14853

$Exploratory Server Systems and The Deep Computing Institute, IBM Research, Yorktown Heights, NY
10598

YSchool of OR&IE, Cornell University, Ithaca, NY 14853, 1trotter@cs.cornell.edu

1 Introduction

We consider the Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser [17],
in which a quantity d; of a single commodity is to be delivered to each customer i €
N ={1,---,n} from a central depot {0} using k independent delivery vehicles of identical
capacity C. Delivery is to be accomplished at minimum total cost, with ¢;; > 0 denoting
the transit cost from ¢ to j, for 0 < i, 5 < n. The cost structure is assumed symmetric, i.e.,
Cij = Cji and Ciyp = 0.

Combinatorially, a solution for this problem consists of a partition {Ry,..., Ry} of
N into k routes, each satisfying 3 ;cp, d; < C, and a corresponding permutation o; of
each route specifying the service ordering. This problem is naturally associated with the
complete undirected graph consisting of nodes N U {0}, edges E, and edge-traversal costs
¢ij,{3,j} € E. In this graph, a solution is the union of k cycles whose only intersection is
the depot node. Each cycle corresponds to the route serviced by one of the k vehicles. By
associating a binary variable with each edge in the graph, we obtain the following integer
programming formulation:

min E Cele

ecll
Z e = 2k (1)
e={0,j}€E
> xe = 2 VieN (2)
e={i,j}€F
> e = 2b(S) VSCN, |S|>1 (3)
e={i,j}€EE
i€S,jES
0 <we < 1 Ve={i,j}ek, i,j#0 (4)
0 <z < 2 Ve={0,j}€eF (5)
Te integral Ve e E. (6)

For ease of computation, we define b(S) = [(3;c5di)/C, an obvious lower bound on the
number of trucks needed to service the customers in set S. Constraints (1) and (2) are
the degree constraints. Constraints (3) can be viewed as a generalization of the subtour
elimination constraints from the TSP and serve to enforce the connectivity of the solution,
as well as to ensure that no route has total demand exceeding the capacity C. A (possibly)
stronger inequality may be obtained by computing the solution to a Bin Packing Problem
(BPP) with the customer demands in set S being packed into bins of size C. Further
strengthening is also possible (see [15]). We will refer to the inequalities (3) as the capacity
constraints.

It is clear from our description that the VRP is closely related to two difficult combina-
torial problems. By setting C' = oo, we get an instance of the Multiple Traveling Salesman
Problem (MTSP). An MTSP instance can be transformed into an equivalent TSP instance
by adjoining to the graph k — 1 additional copies of node 0 and its incident edges (there
are no edges among the k depot nodes). On the other hand, the question of whether there
exists a feasible solution for a given instance of the VRP is an instance of the BPP. The

decision version of this problem is conceptually equivalent to a VRP model in which all
edge costs are taken to be zero (so that all feasible solutions have the same cost). Hence,
we can think of the first transformation as relaxing the underlying packing (BPP) structure
and the second transformation as relaxing the underlying routing (TSP) structure. A fea-
sible solution to the full problem is a TSP tour (in the expanded graph) that also satisfies
the packing constraints (i.e., that the total demand along each of the k segments joining
successive copies of the depot does not exceed C).

Because of the interplay between the two underlying models, instances of the Vehicle
Routing Problem can be extremely difficult to solve in practice. In fact, the largest solvable
instances of the VRP are two orders of magnitude smaller than those of the TSP. Exact
solution of the VRP thus presents an interesting challenge to which various approaches have
been proposed. The use of 1-tree Lagrangian relaxation as a TSP solution procedure [22] was
extended to the VRP using k-trees in [14]. Set partitioning also provides a natural approach
for solving the VRP (see [10, 20, 16, 19, 2]). In this formulation, for each S C N one assigns
cost cg as the TSP tour cost for S, provided } ;cgd; < C, and cg = oo, otherwise. Then
one seeks the minimum cost k-partition of N. Finally, various implementations of branch
and bound and branch and cut for the VRP have been investigated in [27, 13, 14, 3, 9, 11].
We will address branch and cut methods further in the remainder of the paper.

Intuitively, what makes this problem much more difficult than the TSP is that the
cost structure is dictated purely by routing considerations and does not account for the
packing structure. Hence, the routing and packing requirements are sometimes in conflict.
This observation suggests the exploration of decomposition-based optimization techniques
involving relaxation of one or the other of the underlying structures. In this paper, we
investigate a method by which we attempt in a novel way to isolate the TSP structure
from that of the BPP in order to take advantage of known techniques for optimizing over
the TSP polytope. By examining the relationship between the TSP, the BPP, and the
VRP, we develop a separation routine for the capacity constraints and other classes of valid
inequalities. This has led us to a general approach for separation that can be applied to
combinatorial optimization problems that either have difficult side constraints or are the
intersection of two underlying models.

In what follows, we will discuss both theoretical and implementational aspects of this
and other procedures and present computational results with the SYMPHONY framework
for parallel branch, cut, and price. We will not discuss the details of the underlying frame-
work. For more information on SYMPHONY and the branch and cut algorithm itself, the
reader is referred to the SYMPHONY User’s Guide [32] and [25]. The computational results
reported here are still preliminary. However, the theoretical framework is well-developed
and has wide applicability.

2 Separation of the Capacity Constraints

The most important and challenging aspect of any branch and cut algorithm is designing
subroutines that effectively separate a given fractional point from the convex hull of integer
solutions. This has been, and still remains, a very challenging aspect of applying branch
and cut techniques to the VRP. Many classes of valid inequalities for the VRP polytope

have been reported in the literature (see [26, 27, 1, 12, 15, 28, 9, 8, 11]), but the separation
problem remains difficult to solve for most known classes. Classes that can be effectively
separated tend to be ineffective in the context of branch and cut.

For the remainder of the paper, we will focus primarily on the problem of separating
an arbitrary fractional point from the VRP polytope using the capacity constraints (3). In
the IP formulation described by (1)-(6), the capacity constraints provide the link between
the packing and routing structure and are hence understandably important in describing
the polyhedral structure of the VRP polytope. However, the separation problem for these
constraints was shown to be N'P-complete by Harche and Rinaldi (see [9]) even if b(S) is
taken to be [(};cgdi)/C]. This means that solving the complete LP relaxation of our
formulation is, unfortunately, an NP-complete problem.

Because of the apparent intractability of solving the separation problem, a good deal
of effort has been devoted in the literature to developing effective separation heuristics for
these constraints. However, until the paper by Augerat, et al. [9], most known algorithms
were not very effective at locating violated capacity constraints. In [8], it is shown that the
fractional version of these constraints (i.e., with b(S) replaced by (3°;cqdi) /C) is polyno-
mially separable. This method can be used as a heuristic for finding violated constraints of
the form (3).

Let us return to the model suggested in Section 1 in which the TSP is viewed as a
relaxation of the VRP on a slightly expanded graph. As indicated, a TSP tour provides
a feasible VRP solution when it also yields a feasible solution to the BPP. We denote by
T the TSP polytope, i.e., the convex hull of incidence vectors of all TSP tours, and by
R the polytope generated by the incidence vectors of tours corresponding to feasible VRP
solutions. Thus, R C 7 and the extremal elements of R are among those of 7.

Suppose that at some node in the branch and cut search tree, the LP solver has returned
an optimal solution & to the current LP relaxation. We define the support graph or fractional
graph corresponding to & to be G = (N U {0}, E) where E = {e : &, > 0}. Suppose that &
is integral. If & ¢ 7, then G must be disconnected since the degree constraints are included
explicitly in each LP relaxation. In this case, the set of nodes in any connected component
of G that does not include the depot induces a violated capacity constraint, so we CUT;
that is, we add this inequality to the LP and re-optimize. On the other hand, when & € T,
we consider whether £ € R. If not, then £ must again violate a capacity constraint induced
by the nodes of some depot-to-depot segment of the tour corresponding to z, so we CUT.
Finally, when & € R, then & provides a feasible solution to the VRP and investigation of the
current search node terminates. Thus we assume henceforth that & is not integer-valued.

2.1 Heuristics

Because of the difficulty of this separation problem, we first apply several simple heuristics
in an attempt to determine a capacity constraint violated by Z. These heuristics work
within the support graph G described above and first appeared in [31], though some were
also discovered independently by other authors (see [8]). As discussed above, we assume
in what follows that this graph is connected, and we associate with it a vector w € R¥ of
edge weights whose components are defined by we = Z.. In what follows, we will also use

Connected Components Heuristic

Input: The support graph G of & € RE.

Output: A set C of capacity constraints violated by Z.

Step 1. Construct the node sets C1,...,C), of the maximal connected compo-
nents of G\ {0}. Set i — 0.

Step 2. Set i — i+ 1. If w(0(C;)) < 2b(C;), then add this violated constraint
to C.

Step 3. Otherwise, attempt to locate a subset of C; that induces a violated
constraint as follows. Determine a node v € C; such that b(C; \ {v}) = b(C;)
and w (6(C; \ {v})) —2b(C; \ {v}) < w (6(Cs)) — 2b(C;). If no such node exists,
go to Step 2.

Step 4. Otherwise, if C;\ {v} induces a violated constraint, add this constraint
to C and continue with Step 2 as long as i < p.

Step 5. If C; \ {v} does not induce a violated constraint, set C; <« C; \ {v} and
repeat Step 3.

Figure 1: The connected components heuristic

the notation

w(F) = Zwe, F C E, and (7)
eeF
5(9) = {{i,jleE:ieS j¢gS}, SCNuU{0. (8)

The connected components heuristic considers one-by-one the connected components of
the support graph after removing the depot. Suppose S is the node set of such a compo-
nent. If & violates the capacity restriction determined by S, we CUT. If not, we replace
S «— S\{v}, with v € S chosen so that violation becomes more likely after its removal, and
the procedure iterates until no such node can be found. If the process discovers no violated
inequality, we move on to consider the next component of the support graph. A variant,
called the 2-connected components heuristic, which begins with the 2-edge connected com-
ponents (those for which the removal of at least two edges is required to disconnect the
component) of the support graph after the depot’s removal, was also used. The first of
these algorithms is presented in Figure 1.

The shrinking heuristic begins by considering the edges of the support graph. If the two
end nodes of any edge not adjacent to the depot determine a capacity constraint violated by
Z (i.e., the set S = {4,j} induces a violated capacity constraint), we CUT. If not, suppose
and edge e = {i,j} not adjacent to the depot satisfies we > 1. In this case, we shrink, or
contract, edge e in the usual manner, identifying its end nodes and summing components of
w for edges which are identified in consequence. In the resulting contracted graph, the two
endpoints that are identified form a supernode, which is associated with a subset of N. We
say that the supernode contains the nodes in its associated subset. The demand associated
with this new supernode is the sum of the demands of the nodes it contains. When two
supernodes ¢ and j are identified, the resulting supernode contains the union of the subsets

Shrinking Heuristic

Input: The support graph G of & € RE.

Output: A set C of capacity constraints violated by z.

Step 1. If Je = {i,j} € E such that e is not adjacent to the depot and
we > 2 —b({i,7}), then S = {1, 5} induces a violated capacity constraint. Add
this constraint to C. If w, < 1 Ve € E or every remaining edge is adjacent to the
depot, then STOP.

Step 2. Select e € E with w, > 1 such that e is not adjacent to the depot, and
shrink e to produce Ge. Set G — G, and update w appropriately. Go to Step 1.

Figure 2: The shrinking heuristic

associated with ¢ and j. Hence, the nodes of a contracted graph define a partition of the
original node set with each node in the contracted graph associated with one member of
this partition.

It is not difficult to see that this shrinking process does not interfere with violated
capacity constraints—if S induces a violated capacity constraint, then there must exist a
set ', with either 7,5 € S or i, j ¢ S", which also induces a violated capacity constraint.
Thus the heuristic proceeds iteratively, alternately shrinking an edge e for which w, > 1
and checking whether any pair of end nodes determines a violated capacity constraint. If
a violated constraint is produced, we CUT; if not, the procedure iterates until every edge
e is either adjacent to the depot or satisfies w. < 1. Note that in a contracted graph, it is
entirely possible that we > 1 for some edge e. The algorithm is described in Figure 2.

The extended shrinking heuristic is based on the minimum cut algorithm suggested by
Nagamochi and Ibaraki in [30] and is similar in spirit to the shrinking heuristic. In this
extension of the basic algorithm, shrinking continues with edges of weight less than one in
the order prescribed by the algorithm of [30]. As in the shrinking heuristic, each edge is
checked before contraction to determine if it induces a violated capacity constraint. Because
the sequence of edges is chosen in such a way that the weight of each cut examined is “small,”
this algorithm may lead to the discovery of violated capacity constraints not discovered by
other heuristics.

If the above heuristics fail to locate a violated capacity constraint, we apply the greedy
shrinking heuristic first described in [9]. In this heuristic, we begin with a small set of
nodes S, selected either at random or by one of several heuristic rules. In each iteration, we
try to grow the set S in a greedy way by adding a node j such that ZeE{{i,j}GE:iGS} Te 1S
maximized (and hence 3 ,c(g) Te is minimized). Notice the contrast between this strategy
and that taken by the connected components heuristic, where a large initial set is shrunk
using a similar rule.

2.2 The Decomposition Algorithm

If the heuristics described above have failed to produce a violated capacity constraint, then
we resort to a decomposition algorithm, which originally appeared in [31]. At a high level,
the algorithm can be described in the following terms. Given a fractional solution & to some

LP relaxation, we attempt to determine whether & lies within 7" by expressing & as a convex
combination of incidence vectors of tours, i.e., of extreme points of 7. More precisely, where
T denotes the matrix whose columns are the extreme points of 7, we are asking whether
the linear program

max{0' X\ : TA =& 1" A =1, A >0}, (9)

has a finite optimum. If such a decomposition of Z into a convex combination of tour vectors
is possible, Carathéodory’s Theorem assures only a modest number of columns of T' will
be required. Generating the matrix 7' is, needless to say, difficult at best, and the reader
should for the moment put aside consideration of exactly how this is to be accomplished.

Note that when & violates a capacity constraint and & is a convex combination of tour
vectors, then some member of the decomposition must also violate that capacity restriction.
Thus, given such a convex representation for &, we examine the depot-to-depot segments of
its tours in an attempt to find a violated capacity restriction. Section 2.6 describes in more
detail how this is done (see also Figure 4). If successful, the violated inequality is returned
and we CUT. If not, i.e., when there is a convex decomposition of & (hence & € 7)) and we
find no evident capacity violation, then separation fails and we must BRANCH. An example
of a decomposition is shown in Figure 3. The fractional graph in this figure is composed
of 1/3 of each of the three tours shown below it. The fractional edges are dashed and have
their values listed next to them. The values listed next to the nodes are their associated
demands. In this case, the capacity C' is 6000, so the cut indicated in the fractional graph
induces a violated capacity constraint. This violated constraint is found by examining the
top route of the middle tour below.

When no convex decomposition of Z exists, then & ¢ 7 and the Farkas Theorem provides
a hyperplane separating & from 7. Specifically, in this case there must exist a vector a and
scalar « for which at > « for each column ¢ of T', yet aZ < «. This inequality corresponds
to a row of the current basis inverse when solving the LP defined in (9) and can be readily
obtained. The inequality ax > « is returned to CUT, and the process iterates.

We suggest two means for dealing with the intractability of matrix 7. One approach is
to project the matrix T into a lower-dimensional space. Note that any tour ¢ present in a
convex decomposition of & must conform to &; i.e., t must satisfy

te = 1 for each e such that z, = 1; (10)
te = 0 for each e such that . = 0. (11)

Thus one obvious means of projection is to simply require that (10) and (11) hold for all
columns of T'. When the fractional support of Z, the set of edges e for which 0 < z, < 1,
is of small cardinality, we can simply enumerate all such tours using depth-first search and
thereby create T' explicitly. The disadvantage of this approach is that any resulting Farkas
inequalities must be lifted back to the original space, another computationally intensive
task. The details of how this is done are given in Section 2.4.

A second approach is to use column generation to handle T" implicitly. Here T is initially
comprised of only a partial collection of tours. The algorithm proceeds as before, asking
whether Z is a convex combination of the columns of 7. When a convex representation is
found among the columns of T', we again check whether any of its tours determines a violated

Figure 3: The decomposition of a fractional graph

capacity constraint. If so, we CUT. As before, when there is no convex decomposition of
Z using the known tours, the Farkas Theorem provides (a,«) for which at > « for each
column t of T, but aZ < ov. Now we minimize over 7 with costs a using TSP optimization
techniques. Suppose t* is the incidence vector of the optimal tour which results. If at* > a,
then the minimization guarantees that ax > « separates & from 7, so this inequality is
passed to CUT. If at* < «, then t* is not among the columns of T'; so t* is appended to T’
and we ask again whether a convex decomposition of & can be obtained from the columns
of T'. The process iterates until either a decomposition is found or it is proven that & ¢ 7.
This algorithm is described in a more general setting in the next section.

2.3 A General Framework

The decomposition algorithm just described can be applied in a straightforward manner to
other combinatorial optimization problems. In general, consider a combinatorial optimiza-
tion problem CP = (E,F), defined by a ground set E and a set F of feasible subsets of E.
Let P = conv ({ms :SeF }) and suppose that we have effective separation algorithms and
heuristics for P, so that we can solve C'P efficiently. Suppose we would now like to solve
a subproblem CP" = (E, H) where H C F. Let P/ = conv ({xs :S e ’H}) The inequality
ax > «, denoted (a, @), is a side constraint for CP if it is a valid inequality for P’ but not
for P.

Suppose we want to separate over some class of side constraints £. Suppose also that
given s € F, we can determine efficiently if s € H and if not, generate a constraint ax > «
in the class £ violated by s. Applying the previously described methodology, we immedi-
ately arrive at a separation algorithm for C'P’, shown in Figure 4. The column generation
algorithm (Step 1) is shown in Figure 5.

2.4 Lifting the Farkas inequalities

As discussed earlier, if the matrix 71" is projected, the resulting Farkas inequalities must
be lifted in order to be valid. Several standard techniques can be used to lift these in-
equalities from the projected space back into the original solution space. The easiest and
most straightforward approach, which we will call the big M method, is simply to apply an
appropriately large coefficient to each one of the fixed edges to ensure that the inequality
remains valid when lifted. In other words, define the vector a’ to be

M if e € Ey;
a’ =4 —M ifec Ey; (14)
Qe otherwise

where (a, 3) is the original inequality and
Ey={e:z. =0}, (15)
Ey={e: 1. =1}. (16)
Then the inequality o’z > 3 — M|E;| is valid for P’ and is violated by Z as long as M >

max{f —ax : x € P'}. Any lower bound for C'P’ obtained with cost vector a can hence be
used to derive a suitable constant.

Decomposition Algorithm (High Level Description)

Input: & € R¥

Output: A valid inequality for P’ which is violated by Z, if one is found.

Step 0. Apply separation algorithms and heuristics for P and P’. If one of these
returns a violated inequality, then STOP and output the violated inequality.
Step 1. Otherwise, solve the linear program

max{0'A:TA=% 1T A=1, A >0}, (12)

where T is a matrix whose columns are the incidence vectors of members of F.
Step 2. The result of Step 1 will be either (1) a subset D of the columns of T’
participating in a convex combination of Z or (2) a valid inequality (a, 3) for P
that is violated by Z. In the first case, go to Step 3. In the second case, STOP
and output the violated inequality.

Step 3. Scan the members of F corresponding to the columns in D. For each
inequality in £ violated by a column of D, check whether it is also violated by Z.
If a constraint violated by Z is encountered, STOP and output it. Otherwise, &
must satisfy all the constraints in £, provided that all constraints in £ violated
by some member of D were enumerated.

Figure 4: The decomposition algorithm for separating side constraints

Column Generation Algorithm for Step 1

Input: # € RF

Output: Either (1) a valid inequality for P violated by Z; or (2) a subset D of
the columns of T" and a vector A > 0 such that D\ = # and 17\ = 1.

Step 1.0. Generate a matrix 7" containing a small subset of promising columns
from T

Step 1.1. Solve (12) using the dual simplex algorithm replacing T by 7". If
this LP is feasible, then STOP. The columns corresponding to the nonzero com-
ponents of ;\, the current solution, comprise the set D.

Step 1.2. Otherwise, let r be the row in which the dual unboundedness condi-
tion was discovered, and let (a, —3) be the r** row of B~!. Solve CP with cost

vector ¢ defined by
M if z. = 0;
Ce=4 —M ifz,=1; (13)

Qe otherwise

Ve € E. M is chosen large enough to ensure conditions (10) and (11) are met.
Let t be the incidence vector of the result. If at < (3, then t is a column eligible
to enter the basis. Add ¢ to T” and go to 1.1. Otherwise, impose the appropriate
Farkas inequality (see Section 2.4).

Figure 5: Column generation for the decomposition algorithm

10

Procedure for Determining Lifting Coefficients for F;

Input: Fy, Ep, and (a,3) valid for Pi = {x € P’ : 2. =1 Ve € By,2. =0 Ve €
Ep}.

Output: An inequality (a’, 8) valid for Py = {x € P’ : 2. =0 Ve € Ep}.

Step 1. Set EY «— Ey, a° « a, 8% « 3, and i « 0.

Step 2. Choose e’ € Ei and compute [(e), a lower bound on the optimal value of
CP' computed with cost vector a’ and the constraint that x. = 1 Ve € Ei\ {e'},
z. =0 Ve € Ej.

Step 3. Set ‘ ‘ ‘

gt — {ﬁl —l(e") ife=c¢, (17)

€ a otherwise,

Step 4. Set Eit « Ei\ {e'}, it «—I(ef), and i« i + 1.
Step 5. If Ei # (), go to Step 2. Otherwise, output (a?, 3%).

Figure 6: Lifting Procedure for the Farkas Inequalities

To get stronger coefficients, one can use a sequential lifting procedure based on the same
idea. We assume without loss of generality that a. = 0 Ve € Fy U Ey. The coefficients
for the members of E; are computed first using the procedure outlined in Figure 6. An
analogous procedure can be used to determine the coefficients for the edges in Ej.

2.5 Extensions to the Basic Approach

Here we indicate several means to improve the efficiency of the decomposition algorithm,
as reported in [23]. We have already observed that T" can be limited to only those columns
that conform to the current fractional solution. Consider the effect of further limiting the
columns of T to only extreme points of P’. At first, this may seem to defeat our purpose
since in this case, we cannot possibly succeed in finding a decomposition. However, the
Farkas cut generated when we fail to find a decomposition separates & from P’ and hence
can still be used to CUT. This basic approach was later used to generate valid inequalities
for the TSP in [6].

Next, consider the polytope P” defined as the convex hull of incidence vectors of so-
lutions whose cost is less than or equal to the current upper bound. It is immediate that
P” C P’ and furthermore, it is easily seen that min{cx : x € P'} = min{cx : x € P"}. We
can therefore further limit enumeration to only those columns whose cost is less than the
current upper bound and still generate a valid Farkas inequality.

This observation suggests considering what happens when we limit the enumeration to
the point where T" becomes empty. In this case, we have proven that there does not exist a
feasible solution whose cost is below the current upper bound and whose structure conforms
to that of the current fractional solution. Hence, we can impose the following cut, which
we term a no-columns cut:

11

S we— > we <|Ei| -1, (18)

ecEn ecFEy

where Ey and Fj are defined as in (15) and (16). These cuts are a special case of hypo-tours
introduced in [9]. Notice that if we limit column generation by both feasibility and cost,
as suggested, we can always generate one of these inequalities. To see this, suppose T is
composed only of extreme points of P”. Then each of these columns generates a possible
new upper bound and can hence be removed from 7', leaving T empty.

Further modifications can be implemented to ensure that the maximum number of
possible cuts is generated. In most cases, although only one row of the basis inverse is
required to prove the infeasibility of the decomposition LP, multiple rows may provide this
proof and all can be used to generate Farkas inequalities. Furthermore, even if we do not
wish to limit column generation as described above, we can still easily generate additional
inequalities by eliminating columns of 1" that are either not feasible, or have cost above the
current upper bound, and then imposing a new group of cuts based on the reduced matrix.

2.6 Implementation for the VRP

When applying the decomposition algorithm to the VRP, we employ some additional tech-
niques. Our method for generating the columns of T' is a combination of the enumerative
search and dynamic column generation methods described earlier. The enumerative gener-
ator performs a depth-first search of the fractional graph until a specified number of TSP
tours are found. If the specified limit is reached before all possible tours are enumerated,
then the column generation algorithm is invoked. The column generator is a simplified
version of the CONCORDE TSP solver [4] called TINYTSP.

We tried a method described in [23] in which we first enumerated the connected com-
ponents of the support graph G after removing the depot, as in the connected components
heuristic. 'We then considered the subgraphs induced by each of these components plus
the depot. It is easy to show that if the current fractional solution violates some capacity
constraint, then there must also be a violation exhibited when restricting the fractional
solution to just the edges in each of the described subgraphs (see [23]). This component-
wise approach can lead to a dramatic time savings for the column enumeration method
of generating T', but leads to unnecessary complication and yields little advantage for the
dynamic column generation algorithm. It was therefore abandoned.

Because the algorithm tends to be inefficient for dense graphs, we apply it only to
fractional graphs whose density is below a specified threshold. To avoid tailing off of the
objective function value, we also only rerun the algorithm in a particular search node if the
gap decreased by at least a certain specified fraction since the last call to the algorithm.
Finally, we place a time limit on the column generation process in order to avoid excessive
computational effort in this phase of the algorithm.

To allow the algorithm to execute as quickly as possible, we do not lift the coefficients
corresponding to variables that have been fixed by reduced cost or by branching. This
means that the Farkas inequalities that are derived are only locally valid and do not get
used in other parts of the branch and cut tree. To lift the remaining coefficients, we tried

12

three different methods. The first method was simply to avoid the necessity of lifting by not
projecting the matrix 7' as described in Section 2.2. The second method we implemented
was the big M method with coefficients calculated using TINYTSP (see Section 2.4). Finally,
we also implemented the sequential lifting procedure described in Figure 6.

We conclude this section by discussing the method by which we discover violated capac-
ity constraints once we have successfully obtained a decomposition of the current fractional
solution. This is a critical step, as it determines the ultimate success or failure of the al-
gorithm. It is important to understand that the implementation of this step determines
whether or not the algorithm will perform ezact separation (i.e., be guaranteed to find a
violated inequality if one exists). In order to perform exact separation, we need to be able to
determine, given an extreme point ¢ of 7 and a fractional point Z, the full set if inequalities
violated by ¢ and we must check each one for violation by #. In the VRP, it is easy to
determine whether there exists some inequality violated by a given t € 7. However, it is
another matter to enumerate the full set of such violated inequalities, since in general there
can be exponentially many of them. We implemented an exact separation version of this
algorithm, but preliminary experiments indicated it was much too inefficient and did not
generate many additional inequalities. Instead, we used a few simple heuristics to generate
potential violated inequalities.

3 Computational Results

The separation routines were embedded in the generic, parallel branch and cut framework
SYMPHONY developed by Ralphs [31] and Ladényi [24]. The implementation of this shell
is reviewed in [25]. Our test set consisted of medium-sized VRP instances taken from the
TSPLIB [36] repository and from that maintained by Augerat [7]. This test set includes
the standard problems from the literature, but is larger and more varied than that used
in previous papers. The full test set and source code used in this paper are available at
http://www.branchandcut.org/VRP.

Ten of the problems in the set (those whose names are preceded by an ‘E’) are derived
from that used by Christofides and Eilon in [13], which is included among the VRP instances
at TSPLIB. Three of those (E-n76-k7, E-n76-k8, and E-n101-k8) were solved for the first
time during this work using the parallel version of SYMPHONY on an IBM SP2 parallel
computer with up to 80 processors. Recently, Blasum and Hochstéttler solved E-n76-k7
and E-n76-k8 on a single processor using additional cutting planes [11]. We have also since
managed to solve E-n76-k7 sequentially, but required a larger tree. Many larger problems
from the test set were solved to optimality during this work (some presumably for the first
time), but are not reported here. We plan to release a supplementary report detailing our
experience with solving those instances on the above Web site. It is worth noting that the
smallest instance we are aware of that has not been solved to optimality is B-n50-k8. We
managed to solve a version with the truck capacity increased to 150, but could not solve
the original instance.

We performed several experiments to test the effectiveness of various branching rules
and separation procedures. The results are shown in Table 1. These results were obtained
using the sequential version of SYMPHONY with CPLEX 6.6 as the LP engine and were

13

run on a 700MHz Intel Pentium III Xeon platform under Linux. The previously unsolved
problems are included in the table for informational purposes, but are not included in the
totals for obvious reasons. Comparison with previous results is difficult at best, not only
because of hardware differences, but because the test sets used in previous papers were not
large or sufficiently varied enough to permit a proper assessment.

3.1 Branching

We experimented with branching strategies involving branching on cuts and variables. To
branch on cuts, we used a straightforward method that consisted of maintaining a small pool
of candidate cuts that had been removed from the current relaxation because of slackness.
Branching on variables was done in the usual way. The overall strategy was to first develop
a pool of candidates consisting of those cuts and variables whose current values maximized
the distance from each side of the corresponding disjunction (i.e., the zero-one variables
closest to value one-half, etc.). We then applied strong branching to this list of candidates
by pre-solving the two potential children of the current search node for each candidate. Any
candidate spawning a child that could be pruned in the pre-solve was immediately chosen
for branching. Otherwise, we branched on the candidate that maximized the minimum
objective function value in each of its two children.

Overall, it was found that the most effective strategy was to branch only on variables.
Our method of branching on cuts was generally ineffective, usually leading to increased
running times. However, Augerat, et al., had success with a slightly different implementation
in [9]. Although we tried several alternative methods of selecting the candidate variables for
strong branching, the most effective method proved to be the classical method of choosing
the variables farthest from being integer-valued. Strong branching was found to be an
extremely effective tool for reducing the size of the tree. We used a graduated strong
branching technique by which the number of strong branching candidates evaluated near
the root of the tree is gradually reduced at lower levels. This method proved effective at
reducing the expense of strong branching without increasing the size of the tree.

3.2 Separation

We performed several experiments to test the effectiveness of both the separation heuristics
and the decomposition algorithm. When using decomposition, we observed a significant
reduction in the number of search tree nodes examined, but because of the expense of
generating the matrix 7" and lifting the Farkas inequalities, running times were usually
increased. In trying to strengthen the Farkas inequalities, we experimented with various
methods of sequential lifting, various ways of projecting 7', and various ways of limiting
column generation. The Farkas cuts were most effective when column generation was not
limited except by enforcing conditions (10) and (11). This method also allowed the greatest
opportunity for finding a decomposition and hence locating additional violated capacity
constraints.

The Farkas cuts were ineffective in some cases. Because of the projection of T', the
unlifted Farkas inequalities were typically extremely sparse and localized, often having only
one or two nonzero coeflicients. We conjecture that lifting these cuts may cause them to

14

With Decomposition

Without Decomposition

problem Tree Size | Tree Depth | Wallclock | Tree Size | Tree Depth | Wallclock
E —n30 — k3 123 17 4.01 206 25 3.53
E —n31 — k7 7 3 1.08 36 31 3.32
E—n33 — k4 8 4 1.67 5 3 0.35
E —nb51—-k5 24 7 37.74 42 2 22.86
gr —n2l1 — k3 1 0 0.05 4 3 0.14
gr —n24 — k4 3 1.06 4 7 0.32
fri — n26 — k3 23 9 0.95 16 10 .35
swiss — n42 — k5 10 4 4.69 23 21 1.52
att — nd8 — k4 346 24 112.85 440 9 30.58
gr — nd8 — k3 31 11 5.86 36 12 2.92
hk — n48 — k4 115 11 87.28 122 7 17.02
A —n32—-Xk5 8 3 0.79 12 6 0.70
A —n33—-kb 13 4 4.53 9 5 0.78
A —n33 — k6 17 6 8.84 36 7 241
A —n34 —kb 15 6 4.80 15 7 1.51
A —1n36 — kb 45 10 14.83 91 10 7.92
A —n37—-kb 12 6 6.40 18 5 2.31
A —n38 —kb 195 16 46.45 351 20 21.55
A —n45 — k6 315 18 253.28 422 20 120.59
A —nd6 — k7 6 3 6.27 8 3 5.83
A —n44 — k6 1403 23 935.67 1966 24 621.22
A —nb3 —k7 788 19 1379.20 1222 18 733.20
B —n31-k5 8 7 0.80 7 3 0.20
B —n34 —k5 562 16 27.34 1120 21 17.76
B —n38 — k6 28 7 13.25 88 12 6.43
B —n39 —k5 10 7 0.61 5 4 0.20
B —n41 — k6 66 11 32.51 43 9 3.40
B — n43 — k6 551 23 341.53 509 22 35.09
B —n44 — k7 1 0 0.88 4 3 0.55
B —n45 — k5 58 12 31.04 52 8 5.04
B —nb0 — k7 3 3 0.50 8 5 0.52
B —nbd1 — k7 294 41 102.94 340 36 23.44
B —nb2 — k7 10 8 2.59 21 11 0.85
B —nb6 — k7 97 15 27.41 91 13 8.63
B —n64 — k9 18 7 24.06 18 7 8.51
Total 5215 — 3523.76 7390 — 1711.55
E —n76 — k7 121,811 — 288,640 | 115,991 — | 278,613
E —n76 — k8 484,245 — 11,927,422 — — —
E —nl01 — k8 244,968 — 11,900,671 — — —

Table 1: Results of computational experiments

15

lose their relevance once the solution is perturbed slightly. However, the structure of these
cuts and the effect of lifting them needs to be further examined.

Perhaps the most intriguing aspect of this work has been the chance to develop some
insight into the polyhedral structure of the VRP polytope. The decomposition algorithm
allows us to answer some interesting questions about the behavior of branch and cut al-
gorithms for this problem and about the performance of our separation heuristics. In
particular, we can for the first time assess exactly how good our heuristics are at finding
existing violated capacity constraints. With respect to this question, the answer is strongly
positive. The mix of separation algorithms we describe in this paper seems to be highly
effective. The decomposition algorithm was only able to find additional violated inequalities
about 20% of the time when the current fractional solution was actually inside the VRP
polytope. Furthermore, the additional cuts that were found did not seem to be as effective
as the ones that had been found by the heuristics.

4 Conclusions and Future Work

Overall, our branch and cut algorithm has demonstrated promising performance. During
this work, we were able to solve several previously unsolved problems and were also able
to significantly improve on previously reported solution times through application of the
ideas in this paper and through advances in SYMPHONY, our underlying branch and cut
framework. Many of these advances are detailed in [25]. Still further progress should come
from additional separation over a wider class of inequalities. This has been demonstrated in
recent work by Blasum and Hochstéttler [11] in which they further improve on our solution
times by implementing a much wider variety of cutting plane routines.

By analyzing the results of applying the decomposition algorithm, we were able to dis-
cern that after our separation heuristics failed, the fractional solution to the LP relaxation
was still outside the TSP polytope more than 20% of the time. Furthermore, this varied
dramatically by problem instance. In certain instances, the fractional solutions were vir-
tually always outside the TSP polytope. In others, they never were. It could therefore
be fruitful to simply apply TSP separation algorithms to the VRP directly in cases where
the tendency is to be outside the polytope. This is an example of one way in which we
could further leverage the tremendous amount of information gathered in the process of
attempting to find a decomposition.

The decomposition algorithm proved to be an effective tool when measured with respect
to its ability to find violated inequalities and reduce the size of the search tree, but improve-
ments must be made in its implementation in order for it to effect a decrease in running
times. Changes in both the relaxation and the projection used to generate the matrix T’
could help. Obvious candidates for further relaxation are the Assignment Problem or the
the Minimum k-tree Problem. These relaxations could be solved more quickly than the
TSP and would still yield a method for locating violated capacity constraints.

It should be noted that this separation algorithm has interesting theoretical connections
to other decomposition-based algorithms, such as Lagrangian relaxation and Dantzig-Wolfe
Decomposition. These connections will be explored in a forthcoming paper [35]. Because of
its generality, this separation algorithm holds the potential for application to new problem

16

settings, including more complex VRP models. Because heuristic separation for capacity
cuts has improved significantly in recent years, the standard capacitated VRP model may
no longer be the ideal platform for development of decomposition. However, the algorithm
can be easily modified to handle other types of side constraints, including time window and
distance constraints, that are common in practical applications.

References

[1] J.R. Araque, L. Hall, and T. Magnanti (1990): Capacitated Trees, Capacitated Routing
and Associated Polyhedra. Discussion paper 9061, CORE, Louvain La Nueve

[2] Y. Agarwal, K. Mathur, and H.M. Salkin (1989): Set Partitioning Approach to Vehicle
Routing. Networks 7, 731-749

[3] J.R. Araque, G. Kudva, T.L. Morin, and J.F. Pekny (1994): A Branch-and-Cut Algo-
rithm for Vehicle Routing Problems. Annals of Operations Research 50, 37-59

[4] D. Applegate, R. Bixby, V. Chvétal, and W. Cook (2001): CONCORDE TSP Solver.
Available at www.keck.caam.rice.edu/concorde.html

[5] D. Applegate, R. Bixby, V. Chvéatal, and W. Cook (1995): Finding Cuts in the TSP (A
Preliminary Report). DIMACS Technical Report 95-05

[6] D. Applegate, R. Bixby, V. Chvatal, and W. Cook (2001): TSP Cuts Which Do Not
Conform to the Template Paradigm. Computational Combinatorial Optimization, D.
Naddef and M. Jiinger, eds., Springer, Berlin, 261-303

[7] P. Augerat (1995): VRP problem instances. Available at
http://www.branchandcut.org/VRP/data/.

[8] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberdn, D. Naddef (1998): Separating
Capacity Constraints in the CVRP Using Tabu Search. European Journal of Operations
Research, 106, 546-557

[9] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, G. Rinaldi (1995):
Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing
Problem. Research Report 949-M, Université Joseph Fourier, Grenoble, France

[10] M.L. Balinski and R.E. Quandt (1964): On an Integer Program for a Delivery Problem.
Operations Research 12, 300-304

[11] U. Blasum and W. Hochstéttler (2000): Application of the Branch and Cut Method
to the Vehicle Routing Problem. Zentrum fiir Angewandte Informatik, Ko6ln, Technical
Report zpr2000-386

[12] V. Campos, A. Corberédn, and E. Mota (1991): Polyhedral Results for a Vehicle Routing
Problem. European Journal of Operations Research 52, 75-85

17

[13] N. Christofides and S. Eilon (1969): An Algorithm for the Vehicle Dispatching Problem.
Operational Research Quarterly 20, 309-318

[14] N. Christofides, A. Mingozzi and P. Toth (1981): Exact Algorithms for Solving the
Vehicle Routing Problem Based on Spanning Trees and Shortest Path Relaxations.
Mathematical Programming 20, 255-282

[15] G. Cornuéjols and F. Harche (1993): Polyhedral Study of the Capacitated Vehicle
Routing Problem. Mathematical Programming 60, 21-52

[16] F.H. Cullen, J.J. Jarvis and H.D. Ratliff (1981): Set Partitioning Based Heuristic for
Interactive Routing. Networks 11, 125-144

[17] G.B. Dantzig and R.H. Ramser (1959): The Truck Dispatching Problem. Management
Science 6, 80-91

[18] M.L. Fisher (1988): Optimal Solution of Vehicle Routine Problems Using Minimum
k-Trees. Operations Research 42, 626-642

[19] M.L. Fisher and R. Jaikumar (1981): A Generalized Assignment Heuristic for Solving
the VRP. Networks 11, 109-124

[20] B.A. Foster and D.M. Ryan (1976): An Integer Programming Approach to the Vehicle
Scheduling Problem. Operational Research Quarterly 27, 367-384

[21] M.R. Garey and D.S. Johnson (1979): Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., San Francisco

[22] M. Held and R.M. Karp (1969): The Traveling Salesman Problem and Minimal Span-
ning Trees. Operations Research 18, 1138-1162

[23] L. Kopman (1999): A New Generic Separation Routine and Its Application in a Branch
and Cut Algorithm for the Vehicle Routing Problem. Ph.D. Dissertation, Field of Op-
erations Research, Cornell University, Ithaca, NY, USA

[24] L. Ladényi (1996): Parallel Branch and Cut and Its Application to the Traveling
Salesman Problem. Ph.D. Dissertation, Field of Operations Research, Cornell University,
Ithaca, NY, USA

[25] L. Ladanyi, T.K. Ralphs, and L.E. Trotter (2001): Branch, Cut, and Price: Sequential
and Parallel. Computational Combinatorial Optimization, D. Naddef and M. Jiinger,
eds., Springer, Berlin, 223-260

[26] G. Laporte and Y. Nobert (1981): Comb Inequalities for the Vehicle Routing Problem.
Methods of Operations Research 51, 271-276

[27] G. Laporte, Y. Nobert and M. Desrochers (1985): Optimal Routing with Capacity and
Distance Restrictions. Operations Research 33, 1050-1073

18

[28] A.N. Letchford, R.W. Eglese, and J. Lysgaard (2001): Multistars, Partial Multi-
stars and the Capacitated Vehicle Routing Problem. Technical Report available at
http://www.lancs.ac.uk/staff/letchfoa/pubs.htm

[29] D. Naddef and G. Rinaldi (2000): Branch and Cut. To appear in P. Toth and D. Vigo,
eds., Vehicle Routing, STAM.

[30] H. Nagamochi and T. Ibaraki (1992): Computing Edge Connectivity in Multigraphs
and Capacitated Graphs. STAM Journal of Discrete Mathematics 5, 54—66

[31] T.K. Ralphs (1995): Parallel Branch and Cut for Vehicle Routing. Ph.D. Dissertation,
Field of Operations Research, Cornell University, Ithaca, NY, USA

[32] T.K. Ralphs (2001): SYMPHONY Version 2.8 User’s Guide. Available at
www . branchandcut . org/SYMPHONY

[33] T.K. Ralphs and L. Ladédnyi (2001): Computational Experience with Branch, Cut, and
Price. In preparation.

[34] T.K. Ralphs and L. Ladédnyi (1999): SYMPHONY: A Parallel Framework for Branch
and Cut. White paper, Rice University

[35] T.K. Ralphs (2001): Decomposition-based Algorithms for Large-scale Discrete Opti-
mization. In preparation.

[36] G. Reinelt (1991): TSPLIB—A traveling salesman problem library. ORSA Journal on
Computing 3, 376-384. Update available at
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

19

