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On the Capacities of Bipartite Hamiltonians and
Unitary Gates

Charles H. Bennett, Aram W. Harrow, Debbie W. Leung, and John A. Smolin

Abstract—We consider interactions as bidirectional channels.
We investigate the capacities for interaction Hamiltonians and non-
local unitary gates to generate entanglement and transmit clas-
sical information. We give analytic expressions for the entangle-
ment generating capacity and entanglement-assisted one-way clas-
sical communication capacity of interactions, and show that these
quantities are additive, so that the asymptotic capacities equal the
corresponding 1-shot capacities. We give general bounds on other
capacities, discuss some examples, and conclude with some open
questions.

Index Terms—Communication capacities, entanglement capaci-
ties, two-way quantum channels.

I. INTRODUCTION

A. Motivation I—Converting Given Interactions Into Abstract

Resources

T
HE fundamental physical resource for performing various

quantum information processing tasks is the interaction

between various quantum systems. These quantum systems can

be, for example, individual registers in a quantum computer,

or systems possessed by isolated parties. The interactions are

Hamiltonians or their discrete-time incarnation as unitary gates

that are nonlocal with respect to individual systems. The infor-

mation processing tasks of interest include converting a given

interaction into a universal quantum gate, generating entangle-

ment between remote parties, and communicating classical or

quantum information. These tasks output what are considered

abstract resources in quantum information theory, such as entan-

glement and classical communication. The study of the conver-

sions among these various resources and the efficiencies thereof

has proved to be a fruitful field.

While our knowledge about the optimal use of a nonlocal

interaction to provide the derived resources is far from complete,
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important progress has been made. References [1]–[4] provide

motivating examples on the interconversion of these resources.

Interconversion tasks can be classified as follows.

1) Simulation of one nonlocal Hamiltonian or gate by an-

other: methods for doing so are much studied1 some of which

are optimal under certain circumstances.

2) Generation of entanglement using nonlocal Hamiltonians

and gates: Partial results are obtained in [5]–[8].

3) Classical (or quantum) communications using nonlocal

Hamiltonians and gates.

4) Performing a nonlocal quantum operation using entangle-

ment and classical communication: This is the converse of the

last two tasks. General formalisms for the -shot bipartite case

and methods for more specific gates are given in [6]. These tasks

are related. First, entanglement, forward classical communica-

tion, and backward classical communication are strictly incom-

parable resources: no one of them can be generated even from an

infinite supply of the other two. Thus, the capacity of a given in-

teraction to create each of the three resources cannot exceed the

amount used to perform the interaction. For example, the CNOT

can be simulated using 1 ebit,2 one forward, and one backward

classical bit [9], so that the entanglement capacity and both for-

ward and backward classical capacities are upper-bounded by

. Second, the efficiency for one interaction to simulate another

provides bounds on the relative efficiency for the interactions

to generate resources. For example, any capacity of SWAP is at

most three times that of CNOT since the SWAP can be written as

three CNOTs.

In this paper, we focus on tasks 2) and 3), and investigate the

capacities of a unitary interaction to generate entanglement and

1The following is a partial list of results on interconversions of interactions:
N. Linden, H. Barjat, R. Carbajo, and R. Freeman, Chem. Phys. Lett., vol. 305,
pp. 28–34, 1999; arXive e-print quant-ph/9811043. D. W. Leung, I. L. Chuang,
F. Yamaguchi, and Y. Yamamoto. Phys. Rev. A, vol. 61, p. 042310, 2000; arXive
e-print quant-ph/9904100. J. Jones and E. Knill. J. Magn. Res., vol. 141, pp.
322–325, 1999; arXive e-print quant-ph/9905008. J. L. Dodd, M. A. Nielsen,
M. J. Bremner, and R. T. Thew; arXive e-print quant-ph/0106064. P. Wocjan,
D. Janzing, and Th. Beth; arXive e-print quant-ph/0106077. D. Leung, J. Mod.

Opt., vol. 49, pp. 1199–1217, 2002; arXive e-print quant-ph/0107041v2. M.
Stollsteimer and G. Mahler, Phys. Rev. A, vo. 64, p. 052301, 2001; arXive
e-print quant-ph/0107059v1. N. Khaneja, R. Brockett, and S. J. Glaser, Phys.

Rev. A, vol. 63, p. 032308, 2001. C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W.
Leung, N. Linden, S. Popescu, and G. Vidal, Phys. Rev. A, vol. 66, p. 012305,
2002; arXive e-print quant-ph/0107035. G. Vidal and J. Cirac; arXive e-print
quant-ph/0108076, 0108077. P. Wocjan, M. Roetteler, D. Janzing, and Th. Beth;
arXive e-print quant-ph/0109063, 0109088. M. A. Nielsen, M. J. Bremner, J. L.
Dodd, A. M. Childs, and C. M. Dawson, Phys. Rev. A, vol. 66, p. 022317, 2002;
arXive e-print quant-ph/0109064. H. Chen; arXive e-print quant-ph/0109115.
G. Vidal, K. Hammerer, and J. I. Cirac; arXive e-print quant-ph/0112168. L.
Masanes, G. Vidal, and J. I. Latorre; arXive e-print quant-ph/0202042. W. Dur,
G. Vidal, and J. I. Cirac; arXive e-print quant-ph/0112124.

2The unit ebit is defined to be the amount of entanglement in the Ein-
stein–Podolsky–Rosen (EPR) state (j00i + j11i).

0018-9448/03$17.00 © 2003 IEEE
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perform classical communication. The unitary interaction can

be a nonlocal Hamiltonian or gate. We are primarily concerned

with the asymptotic limit, when many uses of the gate (or a long

duration of the Hamiltonian) are given. We consider an interac-

tion on two -dimensional systems, allow unlimited local opera-

tions, local ancillas of arbitrarily large dimensions, and arbitrary

input states. We give expressions for the entanglement gener-

ating capacity and the entanglement-assisted one-way classical

capacity [10]–[13] of an interaction. We show that these quan-

tities are additive in the sense that the amount of entanglement

or classical communication generated by uses of a gate is

times the amount generated by one use.

B. Motivation II—Interactions as Bidirectional Channels

The capacities of generating entanglement and communi-

cation are well studied in the context of a noiseless or noisy

channel connecting a sender (Alice) to a receiver (Bob). In

this usual model of a quantum channel, a quantum system

is physically transported from Alice to Bob, with possible

changes (noise) caused by a quantum operation [14] (i.e., a

trace-preserving, completely positive, or TCP, linear map).

This model of a channel is unidirectional—Bob cannot send

information to Alice. However, such unidirectional interactions

are a special case of quantum interactions, and in general, a

quantum system cannot affect another without being changed

itself. For example, the CNOT (defined in the computational

basis) operates in reverse direction in the conjugate basis,

and transmits an equivalent amount of information in either

direction when used in conjunction with other local gates.

In view of this, we generalize the usual model of a quantum

channel to take into account the bidirectional nature of a

quantum interaction. We define a “bidirectional channel” as

a bipartite quantum operation. Alice and Bob each inputs a

state to the “bidirectional channel” and receives an output. This

work can be viewed as studying the entanglement and classical

capacities in bidirectional channels, restricted to the unitary

case.

Throughout this paper, a protocol means a procedure that uses

a nonlocal gate one or more times, or a nonlocal Hamiltonian for

some total amount of time, possibly also consuming and/or pro-

ducing various amounts of other standard resources, such as en-

tanglement and classical communication in each direction. We

always allow unlimited local operations, and we are interested in

a protocol’s net yield (production minus consumption) of stan-

dard resources per use of the gate or per unit interaction time.

The protocol can be written as a quantum circuit, and the net

effect can be described as a bipartite quantum operation, with

bipartite input and output. We call this quantum operation the

protocol as well. In general, there is a tradeoff among the yields

of various resources when the protocol is varied. For example,

CNOT can transmit a classical bit in the forward or backward

direction, but not both. As back communication is generic in a

bidirectional channel, a protocol using it is generically interac-

tive.

In the next two subsections, we provide more detailed in-

troductions to the two tasks studied in this paper and discuss

closely related work.

C. Entanglement Generating Capacity of Bidirectional

Channels

In [15], the quantum communication capacity of a channel is

shown to be equal to its capacity for generating pure entangle-

ment; a greater quantum capacity typically results if two-way

classical communication is allowed. Likewise, a bidirectional

channel (bipartite quantum operation) can be used to generate

entanglement. Simple examples are considered in [1]–[4]. Ref-

erence [5] considers the average amount of entanglement cre-

ated by one use of a nonlocal operation on a distribution of

product states. Reference [6] classifies the type of entanglement

(bound or distillable) that can be created from product states.

Reference [7] considers the optimal -shot rate of creating en-

tanglement using an arbitrary 2-qubit Hamiltonian on possibly

entangled pure input states without local ancillas. Reference [8]

considers the optimal amount of entanglement created by one

use of an arbitrary 2-qubit gate on pure product input states

without ancillas. References [7], [8] also exhibit examples in

which local ancillas increase the amount of entanglement cre-

ated.

In this paper, we follow the philosophy of [15] and investigate

the asymptotic entanglement generating capacity of a bidirec-

tional channel acting on two -dimensional systems. Contrary

to previous work [5]–[8] we do not restrict ourselves to qubit

systems, we allow arbitrary local ancillas and input states (in-

cluding entangled or mixed states), and we consider the most

general asymptotic protocols. We also consider the effect of

many auxiliary resources including classical communication.

We restrict our attention to unitary bidirectional channels. We

derive the expression for the capacity, show that it is additive,

and discuss the optimal protocol.

Leifer, Henderson, and Linden [16] have independently

shown, by similar arguments, that the asymptotic entanglement

generating capacity on pure input states is an optimization

over a -shot expression. They also investigate the capacities

for many 2-qubit gates with low dimension ancillas both

analytically and numerically.

D. Classical Communication Capacities of Bidirectional

Channels

The classical capacity of an ordinary (unidirectional)

quantum channel is, in general, affected by the availability

of auxiliary resources, such as entanglement [17] and back

communication. For a general noisy quantum channel, the

capacity without auxiliary resources is found in [10], [11], and

that with unlimited supply of pure entanglement is found in

[12], [13]. The capacity for a noiseless quantum channel with

unlimited supply of a certain noisy entangled state is found in

[18]–[21].

In treating bidirectional channels, we again follow the phi-

losophy of [10]–[13] and consider various asymptotic classical

capacities of unitary bidirectional channels of arbitrary dimen-

sions. We allow unlimited local resources, including free instan-

taneous local operations, and the freedom for Alice and Bob

to attach and remove local ancillas. Shared randomness is also

given as a resource. Our philosophy is also similar to Shannon’s
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study of the classical capacities of classical two-way communi-

cation channels [22].

A new ingredient in the case of bidirectional channels is the

simultaneous forward and backward communication, resulting

in a pair of achievable rates. One can define many classical

capacities other than the forward and the backward capacities.

Generally, there is a tradeoff between the forward and backward

rates.

Our long-term goals are to obtain expressions for these ca-

pacities, understand the tradeoff between forward and backward

communication, and relate the quantities to other capacities such

as the entanglement generating capacity. In this paper, we de-

fine various asymptotic capacities of bidirectional channels. We

obtain an expression for the one-way (forward or backward) en-

tanglement-assisted classical capacity for any arbitrary nonlocal

gate or Hamiltonian, and the protocol achieving it. The asymp-

totic capacity is achieved by a -shot expression, as an optimiza-

tion over input ensembles for one use of the gate.

We remark that other independent investigations on optimal

methods to perform classical communication in low dimensions

without entanglement assistance are being conducted [23]–[25].

E. Structure and Assumptions of the Paper

In the next section, we discuss in detail the problem of entan-

glement generation, and derive the expression for the entangle-

ment generating capacity for any nonlocal gate. In Section III,

we define various classical communication capacities, followed

by a derivation of the entanglement-assisted one-way classical

capacity for any nonlocal gate in Section IV. We discuss the

similarities and differences between the two derivations in Sec-

tion V. In Section VI, we prove various general bounds relating

the capacities for entanglement generation and classical com-

munication. We conclude in Section VIII with open questions

and examples of unitary bidirectional channels.

Throughout the paper, we assume the following. Unless oth-

erwise noted, logarithms are in base . and , respec-

tively, denote functions linear and sublinear in . denotes a

nonlocal gate acting on two -dimensional systems (with short-

hand ) in the possession of Alice and Bob. They have access

to the following local resources.

Local ancillas of arbitrarily large but finite dimensions and un-

limited local operations.

We do not consider ancillas of infinite dimensions and do not

know if they can be more useful (see Section VIII).

Though we have motivated the discussion with both Hamil-

tonians and gates, we now argue that it is sufficient to focus on

gates only. This is because Hamiltonian capacities are simply

gate capacities in the limit of infinitesimal gates, so that any

Hamiltonian capacity can be obtained from the corresponding

gate capacity. A protocol using a Hamiltonian is similar to one

using a gate, with additional freedom on how long each free

Hamiltonian evolution can last before being interspersed with

local operations. However, different durations of evolution are

simply concatenation of different numbers of infinitesimal ones.

Thus, any Hamiltonian capacity can be expressed in terms

of the corresponding gate capacity

II. ENTANGLEMENT CAPACITY OF BIDIRECTIONAL CHANNELS

A. Main Idea

Before a formal treatment of the entanglement capacity, we

first illustrate our central idea with the following example. Let

be the entropy of entanglement [31]. Suppose the goal is

to increase as much as possible. Different uses of can

be used sequentially or in parallel, and be interspersed by local

operation and classical communication (LOCC). We allow an

arbitrary pure input state with ancillas, possibly entangled over

different uses of . What is the optimal strategy? The answer

turns out to be very simple. Consider the quantity

(1)

which represents the entanglement generated by optimizing the

input state for just one use of . In (1), subscripts label the

quantum systems where a state resides or where an operation

acts on. Let attain the supremum. Then applying

individual uses of to copies of is asymptotically

optimal. This is because the total increase in in any asymp-

totic protocol is at most the sum of the increases due to each use

of , and each is no greater than .

In the following, we will develop this idea rigorously in the

most general setting. We consider mixed input states and dif-

ferent entanglement measures, and analyze the roles of various

auxiliary resources.

B. Definitions and Summary of Results

The entanglement capacity of a gate can only be defined

when the entanglement measures for the input and output and

the available auxiliary resources are specified.

Traditionally, entanglement is a qualitative phenomenon.

The theory of quantifying entanglement is not complete, though

much progress has been made3 ([26], [27] give informative

reviews). Based on the transformation properties of entangled

states, measures of entanglement are defined which are very

different in the asymptotic and nonasymptotic regimes. Dif-

ferent measures in the same regime can also be inequivalent.

The entanglement generated by a protocol on an input is

intuitively

(2)

where , are the input and output entanglement mea-

sures specified in the problem. We can now define the entangle-

ment capacity of .

3 A partial list includes [28], [29] as well as the following: S. Popescu, and D.
Rohrlich, Phys. Rev. A, vol. 56, 1997; P3319. arXive e-print quant-ph/9610044.
V. Vedral and M. B. Plenio, Phys. Rev. A., vol. 57, pp. 1619–1633, 1998; arXive
e-print quant-ph/9707035. A. Uhlmann, Open Sys. Inf. Dyn., vol. 5, p. 209, 1998;
arXive e-print quant-ph/9701014. M. Horodecki, P. Horodecki, R. Horodecki,
Phys. Rev. Lett., vol. 84 p. 2014, 2000; arXive e-print quant-ph/9908065.
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Definition 1: The -shot entanglement capacity of is the

maximum amount of entanglement generated per use of by

any protocol that uses times, auxiliary resources labeled

by , and local resources specified in Section I-E (ancillas of

arbitrary but finite dimensions and unlimited local operations).

We consider two possible -shot capacities, depending on the

allowed input state:

1) when the input is restricted to be a product state (without

loss of generality , since Alice and Bob can locally trans-

form any product state into any other product state)

(3)

where the superscript denotes “starting from nothing,” and

2) when there is no restriction on the input state

(4)

where the superscript denotes an optimization over all possible

input states.

The corresponding asymptotic capacities are

(5)

In our notation, we assume that an entanglement measure is

written as where the subscript labels the measure. For ex-

ample, in , , and the notation for the above capacities,

the “in” and “out” are placeholders for the entanglement mea-

sures being referred to. Whenever we sim-

plify the notation of the capacity to . Finally, an arbitrary

entanglement measure is written as without the subscript, and

the capacity is written as .

By definition, . The capacity

has an operational meaning that a supply of the

initial state is available at a price . This is a resource,

because the ability to create with an average cost

is generally not guaranteed (unless is the entanglement

cost [28]). We refer to this as “the resource ” throughout the

paper. In contrast, no such resource is assumed in the capacity

.

Since we are interested in asymptotic capacities, we are

primarily concerned with asymptotic measures. These include

the entanglement cost [28] and the distillable entanglement

[15]. We also study the entanglement of formation [15],

which is closely related to . All of these measures coincide

with the entropy of entanglement on pure states. As our

results apply to more general measures, and may be useful

in other contexts, we follow an abstract approach [26], [27],

which requires more technicalities in our arguments. However,

the essence can be made clear by relating to the discussion of

the special case in Section II-A, and we leave this step to the

readers as an exercise.

The auxiliary resources can be divided into three types ac-

cording to their quantities. The first type is given in an amount

that is negligible or can be recovered at the end of the protocol.

For example, a sublinear (in the number of uses of ) amount

of resources in the asymptotic case are negligible, and catalytic

resources in the -shot case are used and regenerated (for ex-

ample, see [29]). We need not consider these resources. In the

-shot case, catalytic resources are a subset of the resource and

need not be treated separately. In the asymptotic case, the sub-

linear amount of any resource can be produced at a vanishing

average cost and it does not affect the asymptotic capacity. This

is because any nonlocal gate has nonzero capacity to create pure

entanglement and to perform classical communication (see Sec-

tion VI) from which any other resource can be produced. The

second type of resources are at least linear in the number of uses

of . To consider these resources is an important open question,

but it is out of the scope of the present paper. The third type of

resources are unlimited and free. In the context of generating

entanglement, we focus on the auxiliary resource of unlimited

two-way classical communication, labeled by “ .”

Our results can be summarized in terms of the entanglement

capacities just defined.

• In Section II-C, we show that if and is

nonincreasing under LOCC, . Thus, given

the resource , the -shot capacity is no less than the asymp-

totic capacity. We give a sufficient condition for additivity,

, and we describe an optimal asymptotic

protocol that does not require classical communication (thus,

). Additivity holds for many measures in-

cluding .

• In Section II-D, we consider , and we show that

by describing an explicit protocol.

We show the same for . In other words, or does not

increase the asymptotic capacity of , which can be attained

without classical communication or a supply of the optimal

input.

• In Section II-E, we consider the maximum gain of pure en-

tanglement. This is given by , and we show that it is

equal to . Thus, the optimal protocol in Section II-D

applies, without the need of resources or .

C. Expression for When

Throughout this subsection, and both re-

sources , are available. Let

be the maximally entangled state shared between Alice

and Bob. Unless otherwise stated, satisfies the following as-

sumptions, but is otherwise arbitrary:

A1. for product states.

A2. is invariant under local unitaries.

A3. is nonincreasing under LOCC.

A4. .

A1–A3 are basic axioms for entanglement measures, while A4

is needed to define the “net” amount of entanglement generated

by a protocol. Generally, we do not assume is normalized

and will state the assumption explicitly

when it is needed.
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We first state a lemma based on the following simple observa-

tion [3], [4]. Alice and Bob can implement if Alice teleports

her input to Bob, who applies locally in his own laboratory

and teleports her output back to her. This consumes two copies

of and bits of classical communication in each di-

rection.

Lemma 1: . Thus,

. If furthermore is normalized, .

Proof: For any protocol with uses of and LOCC,

modify it by replacing each use of with its double teleporta-

tion implementation. Let and be the input and output of

the original protocol. The modified protocol uses only LOCC

and has input and output . Applying A3

and A4 to the modified protocol

We now proceed to prove Theorem 1, which says that the

asymptotic capacity is equal to the -shot capacity given the re-

sources and . This is done by proving two separate inequal-

ities, each is referred to as a half of the theorem.

Theorem 1 (First Half): .

Proof: Since LOCC operations cannot increase entangle-

ment, the best -use protocol has the form

(6)

The only optimization is over the initial state, and thus

(7)

In (7) and throughout the paper, the subscripts of an operator

denote the systems being acted on. As an aside,

since no classical communication is used in the protocol

depicted in (6).

Now, consider any protocol with LOCC and uses of .

Without loss of generality, we can divide the circuit into time

steps each having either one use of or only LOCC operations.

The entanglement can only increase in the time steps with

and each is described by (6), by defining the ancillas and

to include all registers not acted on by in that time step. Thus,

the total amount of entanglement generated by the protocol is

no more than , and

We now consider sufficient conditions for additivity,

. We say that is weakly additive on if

. is weakly additive if it is so on all . We

say that is strongly additive on if

is strongly additive if

Weak and strong subadditivity and superadditivity are defined

by replacing the equality in the corresponding additivity defini-

tions by the inequalities and , respectively.

Theorem 1 (Second Half): If is weakly additive or subad-

ditive on the optimal input in (7) and is weakly additive or su-

peradditive on the optimal output, then .

Proof: Consider the -use protocol that repeats the -use

protocol in (6) times, each acting on a separate copy of the

optimal input. The entanglement generated is at least ,

and .

Note that any measure which is weakly additive and is non-

increasing under LOCC satisfies both halves of Theorem 1 and

. Weak additivity is not an axiomatic prop-

erty of entanglement, and needs to be checked for individual

measures before applying the second half of Theorem 1. On

the other hand, Theorem 1 does hold for most commonly used

measures. Examples include , 4 [30] and the Rényi en-

tropy (which includes the mixed-state generalizations of the log-

arithm of the Schmidt number and as special cases). It is an

open problem whether is weakly additivity, however, we will

prove that the second half of Theorem 1 still holds for .

In general, we say that “Theorem 1 holds” whenever both

halves of Theorem 1 hold. Equation (7) then provides an ex-

plicit expression for achieved by repeating the -use

protocol. In fact, the protocol only requires a supply of the op-

timal input (the resource ) but not classical communication,

and . In the following, we prove some lemmas

for . We discuss how to obtain this supply of optimal

input in Section II-D.

In the expression for in (7), the supremum is taken

over finite but arbitrarily large dimensional ancillas . This

can also be viewed as a limiting quantity as the ancilla dimen-

sions increase.

Lemma 2: Suppose we restrict to -dimensional

in (7), and denote the subsequent maximization by . Then,

.

Proof: The sequence is increasing and

bounded above by Lemma 1. Thus, such that

.

Lemma 2 provides one possible way to estimate the sup-

remum in (7) suitable for numerical approaches.

We say that “ can be attained on an input ”

if the -shot protocol generates an amount of entanglement

on the input . The next two lemmas show that

the optimal input for the -shot capacity in (7) can be chosen

pure for the specific measures and .

Lemma 3: For any , can be attained on a

pure input state.

4E is weakly additive and nonincreasing under LOCC by definition. There
is doubt on its convexity. [30], However, violation of convexity does not imply
E can be increased by LOCC.
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Proof: Let be a state attaining the supremum in

(7) to within . We omit the system label when it is in

Lemmas 3 and 4. Let be an optimal decom-

position so that . Then

(8)

The second inequality is obtained by applying convexity of

to the first term, and the definition of the optimal decomposition

in the second term. Thus, can be attained on a pure

input state.

Lemma 4: For any , can be attained on a

pure input state.

Proof: Let attain the supremum in (7) up to . That is,

(9)

For any , such that [28].

Substitute this into (9) with

(10)

Using weak additivity of and the fact , the first term

in the right-hand side (RHS) of (10) can be rewritten as

(11)

But the expression in the bracket represents the entanglement

of formation generated by a certain -use protocol, and is not

greater than , by the first half of Theorem 1. Together

with Lemma 3

(12)

Finally, we replace by on the RHS since they coincide

on pure states

(13)

which proves our claim.

When Theorem 1 holds, lemmas about hold for

as well. This fact, together with Lemmas 2–4, lead to

many useful corollaries. These are given with numbers matching

those of the corresponding lemmas.

Corollary 2: If Theorem 1 holds for , then is

achievable using the -use protocol in (6) with sufficiently

large-dimensional , .

Corollary 3.1: Since is strongly additive on pure states,

Lemma 3 implies that Theorem 1 holds for .

Corollary 3.2, 4.1: Corollary 3.1 and Lemma 4 imply that

, and are each attainable with the

-shot protocol in (6) on a pure input state.

Corollary 3 4: with common pure

optimal inputs. Same for .

It is unclear whether can be attained on a pure

state. Convexity in is required in our proofs of Lemmas 3

and 4, but unlike and , may not be convex [30].

Note that Theorem 1 is concerned with weak additivity of

the entanglement capacity of bidirectional channels, i.e., the

protocol uses only one type of nonlocal gate. We can consider

strong additivity when different types of nonlocal gates are

available:

Theorem 1S (First Half): For a protocol with uses of the

gate , the maximum amount of entanglement generated (given

, ) is no more than .

Theorem 1S (Second Half): If is strongly additive or sub-

additive on the optimal input and strongly additive or superad-

ditive on the optimal output for each , then repeating times

the -shot protocol for for each generates an amount of en-

tanglement no less than .In particular, Theorem

1S holds for , and the entanglement capacities are

strongly additive given and .

D. Auxiliary Resources are Unnecessary When or

In this subsection, we show that the resource is unnecessary

in the optimal asymptotic protocol in the previous subsection

(repeating the optimal -shot protocol) for the specific measures

.

By Lemma 4, when , the optimal input and output

of the -shot protocol are pure. The amount of entanglement

can be generated by adapting

an argument in [7]. The protocol first creates copies of the

pure optimal input (inefficiently), and then repeats

the cycle: 1) apply , 2) “concentrate” [31] the outputs

to EPR pairs, and 3) dilute some of the EPR pairs to form

[32]–[35]. For large , dilution and concentration

take classical communication and waste

amount of entanglement [34], [35]; both can be supplied by an

additional uses of —negligible for sufficiently large

. The cost of creating the first copies of the pure optimal

input inefficiently is also negligible when the cycle is repeated

sufficiently many times. The same argument holds for .

Corollary 3.3, 4.2: and .

The asymptotic entanglement capacity for under

the most general setting in Section II-B can be generated without

initial entanglement and without or . The core part of the

optimal protocol is basically an -shot—tensor product of the

optimal -shot protocol. The only collective steps, entanglement

concentration and dilution, are auxiliary.

Since no initial entanglement is required for the optimal

asymptotic generation of and , one can relate the

asymptotic entanglement capacities to the Schmidt number of

. Any bipartite pure state can be written as ,

where , , and , are orthonormal

sets of states. Likewise, any bipartite unitary gate can

be written as , where , ,

and , are sets of operators orthonormal under

the trace norm. The Schmidt number of the bipartite pure state

or gate [14], [36], denoted as , is the unique number of
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terms in the above “Schmidt decomposition.” The are called

the Schmidt coefficients. We will repeatedly use the fact that

the Schmidt number of a state is nonincreasing under LOCC

and that (see [36, Ch. 6.4.2]).

Corollary 3.4, 4.3: .

Proof: Since and can be achieved without

initial entanglement, the initial state has Schmidt number ,

and the final state of a -use protocol has Schmidt number

. Hence, the output entropy of entanglement is

, and

Corollary 3.5, 4.4:

where are the Schmidt coefficients of .

Proof: This is the entanglement generated when

in (7) [38].

Interested readers can repeat the preceding analysis for other

measures. It holds for if the optimal input is pure or

if satisfies (by replacing concentration with

distillation of the optimal output and replenishing the optimal

input using EPR pairs per copy of and classical com-

munication (see the Appendix)).

E. Different Input and Output Entanglement Measures

Each choice of entanglement measures for the input and

output can be given an operational meaning. We consider the

important example of creating EPR pairs in this subsection,

which requires different entanglement measures for the input

and output. Alice and Bob fabricate the possibly mixed optimal

input state and distill entanglement from the output. Thus,

the appropriate choices for the input and output entanglement

measures are the entanglement cost and the distillable

entanglement .5 Let denote an optimal -shot protocol

and the corresponding quantum operation, and let be the

optimal input to within (again we omit the system label

). Then

(14)

where we have used Corollary 4 in Section II-C to obtain (14).

This means that the asymptotic capacity to create EPR pairs is

(15)

and the protocol in Section II-D is optimal for creating EPR

pairs even in the most general setting described in Section II-B.

5Note that t is finite, but we have chosen the asymptotic measuresE andE .
We are mainly interested in protocols with large t, with the understanding that

the 1-shot capacityE is achieved with collective pre- and postprocessing.

Furthermore, since the optimal output is pure, and , are

strongly additive on pure states, strong additivity (Theorem 1S)

holds when different types of gates are given.

F. Summary

We summarize our results obtained so far:

1) for all ;

2) for all weakly additive on

the -shot optimal input and output;

3) for ;

4) .

In particular, when , or when ,

and or , the asymptotic capacities become inde-

pendent of the availability of and , and they are all equal to

in (1). The only capacity mentioned above that

is different from is . We will study these two

capacities in Sections VI and VIII in more detail.

As an aside, when (or ), if , then

for all finite . This is because

III. CLASSICAL CAPACITIES OF BIDIRECTIONAL CHANNELS

If Alice and Bob have access to a nonlocal gate to couple

their systems, then the classical communication capacity of is

the maximum asymptotic number of classical bits that can be re-

liably transmitted per use of . Communication can be achieved

simultaneously in both directions, with possible tradeoffs. Free

local resources as stated in Section I-E and shared classical ran-

domness are always allowed.

In the context of classical communication, the most impor-

tant auxiliary resource is free entanglement. Communication is

called “assisted/unassisted” when this resource is/is not avail-

able.

The most general protocol with uses of can be represented

as

(16)

In (16), and label the systems acted on by during the pro-

tocol and the systems carrying the classical messages before and

after the protocol, while and label the rest of Alice and

Bob’s systems. The dimensions of and are converted to

by the initial operation and are further converted by the

final operation . The freedom to apply to any register

is included as swap operations in and . Without loss of

generality, the local operations , can be assumed unitary,
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since measurements can be deferred until the end of the pro-

tocol. In fact, no measurements are needed, except for the final

readout of the transmitted messages. In the unassisted case, the

initial ancilla state can be taken to be

with random , which can generate an arbitrary separable state.

In the assisted case, can be taken to be the maximally

entangled state, which can generate an arbitrary entangled state.

In both cases, the preparation of special ancillary states can be

done with negligible costs.6

Each protocol allows a certain amount of forward and back-

ward classical communication, giving a pair of achievable rates

for the gate.

Definition 2: A pair of rates is said to be achiev-

able by a gate if it is possible to intersperse uses of with

local unitaries , such that an -bit message from

Alice to Bob and an -bit message from Bob to Alice are

communicated with high fidelity, and , .

Mathematically, is achievable if

s.t.

and (17)

In Definition 2, the fidelity between two states and

is given by (this is a simplified expression when one

of the states is pure).

We first discuss unassisted capacities, and the assisted ca-

pacities are defined in exactly the same way. Each gate de-

fines a region of achievable unassisted rate-pairs .

The region is convex by using mixed strategies. Furthermore, if

is achievable, so is any where

and . In particular, the boundary of the achiev-

able region never has positive slope (see Fig. 1). Thus, the for-

ward and backward capacities can always be achieved at the

boundary points, and can be defined, respectively, as

is achievable by

is achievable by

We can also define various bidirectional capacities, for example,

the duplex and the total capacities

is achievable by

is achievable by

We omit the subscript when the notation is too cumbersome.

Fig. 1 is a schematic diagram for the achievable region and the

definitions of the various capacities. We present all the known

6In the unassisted case, free shared randomness is sufficient to create any sep-
arable state. In the assisted case, free entanglement, together with some classical
communication, is sufficient to create any state. We now show that the require
amount of classical communication can made negligible. Consider any protocol
for sending nc bits using maximally entangled states and some special ancilla
� and n uses of U (n is fixed but is chosen to be sufficiently large to make
c close to the capacity of interest). Since we are concerned with asymptotic
capacities, we can consider repeating the n-use protocol k times and focus on
creating k copies of � . A method is reported in [37] using o(k) bits of classical
communication [with a constant overhead f(n) that depends on n]. Thus, the
overall kn-use protocol transmits knc bits, requires no special ancillary states
and consumes an additional f(n)o(k) cbits which are negligible for fixed n and
sufficiently large k.

Fig. 1. Schematic diagram for the achievable region and the definitions of the
various capacities. For each point (R ; R ) enclosed by the curve, there is a
protocol that, respectively, communicates R and R bits per use of the gate
U in the forward and backward directions. The one-way capacitiesC andC
are given by the intercepts with the coordinate axes. The duplex capacity C is
given by the intersection with the line R = R while the total capacity C
is given by the intersection with the tangent R + R = C .

properties and intentionally show the features that are not ruled

out, such as the asymmetry of the region, and the nonzero cur-

vature of the boundary.

There are much simpler examples—the unassisted achiev-

able region for CNOT and SWAP are similar triangles with

vertices and ,

respectively, (see Section VIII).

In general, little is known about the unassisted achievable re-

gion of besides the convexity and the monotonicity

of its boundary. The most perplexing question is perhaps

whether the region has reflective symmetry about ,

which implies and . References [7], [8]

show that any 2-qubit gate or Hamiltonian is locally equivalent

to one with Alice and Bob interchanged, so that the achievable

region is indeed symmetric. This implies the conjecture in [3]

that the one-shot forward and backward unassisted capacities

are equal. In higher dimensions, [39] shows that there are

Hamiltonians (and so unitary gates) that are intrinsically

asymmetric. However, it remains open whether the achievable

rate pairs are symmetric, or more weakly, whether

or .

Assisted capacities , , , can be de-

fined in exactly the same manner, now the ancilla is

maximally entangled instead of being in the defi-

nition of the achievable rate pairs in (17) (see footnote 6). The

properties and open questions of the achievable region are also

the same as those in the unassisted case. Two simple examples

are the assisted achievable regions for CNOT and SWAP, they are

similar squares with vertices

and , respectively (see Sec-

tion VIII).

Entanglement assistance greatly simplifies the analysis of the

classical capacities of the usual (unidirectional) quantum

channels.7 An expression for has been found and proved to

be strongly additive [12], [13]. The study of also provides

useful upper bounds for the unassisted capacities and insights

to the classification of channels [40]. In the next section, we

7Note that the resource label E appears as a subscript of the capacity for a
unidirectional channel (following [12], [13]), but as a superscript for a bidirec-
tional channel (following Section II-B).
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derive a simple expression for and , the one-way

(forward or backward) entanglement-assisted capacity of any

bidirectional channel. Surprisingly, this capacity is also strongly

additive, as in the unidirectional case!

Comparison of the two problems of generating entanglement

and classical communication will be given in Section V, and the

two resulting capacities are related in Section VI.

IV. ENTANGLEMENT-ASSISTED ONE-WAY CLASSICAL

CAPACITY

A. Preliminaries and Definitions

In this section, we derive expressions for and ,

as defined in (17) with being a maximally entangled

state. Without loss of generality, we focus on . It can

be evaluated using the general framework of one-way classical

communication with quantum resources [41], [10], [11]. In this

framework, suppose classical messages , occurring with prob-

abilities , are encoded in the “signal states” received by

Bob, forming an ensemble . The information on

obtained by measuring a signal state is upper-bounded by the

Holevo information for the ensemble , defined as

(18)

The Holevo–Schumacher–Westmoreland (HSW) theorem

states that this amount of mutual information per signal state is

achievable given the ability to transmit an asymptotically large

number of signal states. (See [10], [11], and [14, Ch. 12.3.2].)

We will see that the optimal methods to generate EPR pairs

(see Sections II-D–II-E) and entanglement-assisted classical

communication have many similarities. The respective goals

are to maximize the increase in entanglement and the Holevo

information. The optimal asymptotic strategies in both cases

are to repeat the -shot protocol, with an optimal input state

in the former and with an optimal input ensemble in the latter.

In the case of entanglement generation, allowing the most

general -shot optimal input with arbitrary ancillas and initial

entanglement makes the -shot capacity equal to the asymptotic

ones. Likewise, we will allow the most general -shot input

ensemble for assisted classical communication, and will show

that the resulting -shot capacity is equal to the asymptotic

capacities by establishing a method to “replenish” the optimal

input ensemble (analogous to concentration and dilution in

entanglement generation).

Let be an ensemble of bipartite states.

A trace-preserving operation acts on by acting on each com-

ponent state (preserving its probability). For example, we will

write

and

We have the following definitions analogous to those in Sec-

tion II-B.

Definition 3: The -shot Holevo information capacity of is

the maximum increase in Holevo information per use of due

to any protocol that uses times, the auxiliary resources

labeled , and the local resources specified in Section I-E. There

are two possible -shot capacities, depending on the allowed

input ensembles:

1) when the input ensemble is restricted to satisfy

(19)

2) when the input ensemble is unrestricted

(20)

Since we always assume free entanglement as an auxiliary re-

source, and we always focus on forward capacity, we omit

and in the above notation

and (21)

We have

(22)

Note that it is unnecessary to consider mixed-state ensembles

in (19) and (20)—we can replace a mixed state by its

purification , where is the purifying system,

without affecting neither nor .

In the next two subsections, we will prove .

We first prove that , and then we describe a

protocol to achieve the upper bound, thereby proving additivity

and providing an optimal asymptotic strategy.

B. An Additive Upper Bound

We first prove an analog of Lemma 1.

Lemma 5: and .

Proof: Consider a -use protocol. Replace each use of

by double teleportation (see Lemma 1). If the original

protocol consumes and produces and bits of forward

communication, the modified protocol consumes and produces

and bits of forward communication. By

causality [42] of the modified protocol, .

Hence, . Similarly, . (Note

that the above proof is stronger than we need, since we have

allowed .)

Consider the best -shot protocol to increase the Holevo in-

formation. Since local operations do not increase mutual infor-

mation, the optimal -shot protocol is to just apply , as in (6).

Thus,

(23)

where the supremum is over the most general bipartite pure state

ensemble .

We now consider the asymptotic problem. Using the same

idea that proves Theorem 1 (fisst half), we obtain the following

analog.

Theorem 2 (First Half): .

Proof: Consider the most general protocol with uses

of (such as depicted in (16)). Let be an arbitrary bipartite

input ensemble. Then, the total increase in is upper-bounded
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by the sum of the stepwise increases. Since local operations

cannot increase , and the increase in by each use of is

bounded by (23)

(24)

from which the theorem is immediate.

It follows from (24) and (22) that .

C. Protocol to Achieve the Upper Bound of

In optimal asymptotic entanglement generation, the fol-

lowing basic cycle is repeated:

1) convert EPR pairs into copies of the optimal input state;

2) apply the gate to each;

3) convert the copies of optimal output state into EPR

pairs.

More EPR pairs are obtained in 3) than used in 1)—as excess

entanglement generated.

In entanglement-assisted classical communication, we want

a similar basic cycle:

1) convert classical communication to create states drawn

from the optimal input ensemble;

2) apply the gate to each state;

3) convert the states from the optimal output ensemble into

classical communication.

Step 1) is called remote state preparation (RSP) [33], [43], [44],

a procedure whereby Alice helps Bob to construct quantum

states of her choice in his laboratory using entanglement and

classical communication. The most general procedure in RSP

is that Alice performs a measurement on her half of the shared

entangled state, sends the outcome to Bob, who conditioned on

the outcome operates on his half of the shared entangled state to

complete the RSP. For our problem, it is known [45], [46] how to

approximately prepare pure bipartite states from an ensemble

with free entanglement and bits of clas-

sical communication. Step 3) follows from the HSW theorem:

Alice can communicate bits to Bob

reliably if she can prepare states in the output ensemble .

Just like the case of generating entanglement, is chosen large

enough to ensure the efficiency of steps 1) and 3).

When describing and analyzing the protocol, we loosely call

the optimal ensemble achieving the supremum in (23). For

arbitrarily small , is chosen so that

Since it is obvious how enters the following analysis, and the

analysis is independent of the choice of and , is omitted for

simplicity.

Protocol That Achieves : Let be the op-

timal ensemble. If Alice is given bits of classical

communication as an initial resource, she can transmit mes-

sages each of length (a total of

bits) with uses of as follows.

• Alice’s Preprocessing: Alice determines messages

each of bits. Each has two parts: the message

of length , and an RSP instruction of length

for Bob to create a state such that

Fig. 2. A protocol that achieves C = �� . Time increases along
the upwards direction. In each step, Alice performs a measurement RSP on
her half of the shared entanglement (free) to obtain the instruction R for
Bob to prepare j� i. RSP denotes Bob’s conditional operation to complete
the preparation of j� i. Then n uses of the gate U are applied to obtain the
state U j� i, which encodes the message N . Bob applies the appropriate
decoding procedure (denoted as “HSW”) to extract N , which has two parts,
the RSP instruction R for the next step and some message M that is to be
communicated by the protocol. Part of the communication generated in each
step is used in the next.

encodes (by the HSW theorem).

In order to generate for , Alice needs to determine

and to perform her measurement for the RSP of . This,

in turn, requires knowledge of . So Alice first computes

the last message (in which is known and is ir-

relevant), classically calculates , performs measurement

for the RSP of to find in , works her way

backward through , , , determining from

and performing measurement for RSP for for decreasing .

• Quantum Protocol: Alice uses the given initial classical

communication to create , which she shares with Bob. Then

is applied to convert it to , Bob reads off the mes-

sage , which consists of to instruct him to do RSP for

, and so on.

The protocol is summarized in Fig. 2.
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The initial amount of classical communication can be created

by Alice and Bob using uses of inefficiently, for some

constant .8 The communication rate is

(25)

We have not yet discussed small inaccuracies and inefficien-

cies in the protocol. The asymptotic correctness of this protocol

comes from the asymptotic reliability of its component pieces:

RSP and the HSW theorem. However, since errors and ineffi-

ciencies accumulate over many rounds, we need to choose the

rates of increase of and slightly more carefully.

Suppose that preparing a member of with RSP requires

bits of communication and has error

, where as . Similarly, a

state in provides bits of

information with error , where, again,

as . Combining these into and

, we find that the communication rate is

(26)

and the total error is . This vanishes if one chooses first,

and then chooses such that is small ( thus depends on ).

We summarize the order of the limits. First, choose the op-

timal ensemble to approximate . Second, choose

large to make negligible (to overcome the initial cost). Fi-

nally, choose large to make both of and vanish. As this

protocol does not require initial mutual information, we have

the following.

Theorem 2 (Second Half): .

Putting the two halves together gives:

Theorem 2:

Thus, initial mutual information does not increase the asymp-

totic capacity, analogous to entanglement generation. Finally,

we generalize Theorem 2 to prove strong additivity.

Theorem 2S: The classical communication achievable by

uses of is asymptotically .

Proof: The argument that proves Theorem 2 (first half)

can be applied to prove that the amount of communication gen-

erated is no more than , which is achieved by ap-

plying the optimal protocol for each separately.

D. Additivity

We conclude this section with two observations about addi-

tivity.

8Section VI shows that any nonlocal gate U has nonzero communication ca-
pacities in both directions.

• We emphasize that in Theorem 2 (first half), the Holevo

bound is applied to the output of a general protocol with pos-

sibly entangled inputs to different uses of . Thus, the one-way

entanglement-assisted capacity for unitary bidirectional chan-

nels is strongly additive independent of whether the Holevo in-

formation is additive or superadditive.

• In the optimal asymptotic protocol, the copies of are ap-

plied to states each chosen from the optimal input ensemble.

Thus, entangling the inputs to different uses of does not im-

prove .

V. DISCUSSION

Despite the many similarities between generating entangle-

ment and entanglement-assisted classical communication, there

is an important difference. Communication cannot be stored and

be used later. In particular, Alice needs to work backward in our

optimal entanglement-assisted communication protocol, so that

the classical messages need to be known at the beginning of the

protocol to share the initial cost. In contrast, entanglement can

be stored. The optimal entanglement generation protocol can be

stopped and resumed at arbitrary times.

We can generalize the first half of Theorems 1 and 2 to any

other quantity which is monotonic under the given resources, as

long as a sufficiently general input (e.g., state or ensemble) is

allowed for the -shot capacity. In particular, the input should

possess all the properties the output may possess. If, in addi-

tion, the quantity is weakly additive or subadditive on the op-

timal input and weakly additive or superadditive on the optimal

output, repeating the optimal -shot protocol allows the upper

bound to be attained asymptotically, and additivity holds.

We end this section with a discussion on the parallel versus

sequential applications of bidirectional channels in a protocol.

Note that there is no such distinction for unidirectional channels

(in the absence of back channels), as the output state of a given

application of the channel is with the receiver and can never

be used as an input for later uses. For bidirectional channels,

there are sequential schemes that cannot be made parallel. For

example, the protocol for entanglement-assisted one-way clas-

sical communication in Section IV-C cannot be made parallel.

Sequential schemes are always at least as powerful as parallel

ones. The opposite is true in the asymptotic regime, in which

case any capacity of (i.e., one must apply copies of

in parallel) is equal to times the capacity of . The proof is

simple—let be any protocol that uses sequentially. A par-

ticular -use protocol for is to run copies of in parallel.

Thus, the -shot capacity of is no worse than times that

of , and equality holds.

VI. OTHER GENERAL BOUNDS

We have proved a few simple general bounds:

We now derive other general bounds that hold for all . We

focus on the entropy of entanglement , and on the two ca-
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pacities and since the latter is equal to

many entanglement capacities of our interest (see Section II-F).

Bound 1: is nonlocal

.

Proof: The first equivalence follows from Corollary 3.5 in

Section II-D. Let be the amount of entanglement created

by applying to .

Alice can send a noisy bit to Bob with the following -use

protocol. Bob inputs to all uses of . To send “ ”

Alice inputs to share ebit with Bob. To send “ ,”

Alice inputs to the first use of , takes the output and uses

it as the input to the second use, and so on, so that their final

entanglement is no more than . Thus, different messages

from Alice result in a very different amount of entanglement at

the end of the protocol. Using Fannes’ inequality [47], [48]

where are the reduced density matrices of Bob when Alice

sends . For any , such that

and Bob can distinguish from with nonzero advantage.

It means that the -use protocol then simulates a noisy clas-

sical channel with nonzero capacity and . Obviously,

implies is nonlocal. Similarly,

is nonlocal.

Bound 2: .

Proof: Suppose a -use protocol transmits bits from

Alice to Bob and bits from Bob to Alice with fidelity .

Recall from Section III that can be assumed unitary with the

ancillas starting in the state , where is a shared

random variable. Let carry the messages to be com-

municated, where and are - and -bit strings. Then, by

definition (17), the state change is given by

s.t.

(27)

By Uhlmann’s theorem [49], there are normalized states

and such that

(28)

and has support orthogonal to the span

of .

To prove , we simply change the inputs to the

protocol so that it creates entanglement. Alice’s input system

is now in a maximally entangled state with another ancilla

, each with dimensions, and similarly for Bob. Thus, the

input state is given by

(29)

where and are summed over their possible values. The output

is given by

To calculate , we first calculate for

(30)

is simply the entropy of Alice’s reduced density ma-

trix, which can be found by the “Joint Entropy Theorem” (in

[14, eq. (1.58)])

(31)

We now relate to . The inner product

can be bounded as follows:

(32)

where we have used the orthogonality of to

obtain the first line, and the orthogonality of

and to obtain the second line. The trace distance

between and is defined to be

and

(see [14, Sec. 9.2.3]). Using Fannes’ inequality [47] or the con-

tinuity of the entropy of entanglement [48]

(33)

We explain how (33) is obtained. First, be-

cause the protocol has a product initial state and

[36]. We now bound . A Schmidt

decomposition of can be obtained by Schmidt decom-

posing each in (30) so that

For each , since can be

obtained with nonzero probability by locally measuring .
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Each is obtained from a product initial state after

applications of , and . Altogether

and

From (31) and (33) we can lower-bound the entanglement

generated per use of

As increases, can be made arbitrarily small and

. Furthermore,

is well bounded. The above equation then im-

plies .

Remark: In the proof above, it is crucial to bound

and as functions of , and our bound

is based on having a product initial state. Furthermore, the two

limits and are dependent. Thus, one cannot

assume as a separate premise in the above proof and

extra care is needed in how the limits are taken.

After this paper was first posted, Berry and Sanders [50]

proved that if the capacity is achievable by an exact protocol

(i.e., ), then .

To adapt the proof of Bound 2 for

in the general case when will require an explicit bound

on and and knowledge of how various

inaccuracies vanish asymptotically, so as to specify how various

dependent limits should be taken. So far, we do not see how this

can be done.

In the following, we prove a weaker bound

for

by adapting the proof of Bound 2 and an idea from [50], as well

as using details on the optimal protocol for achieving and

an improved method for RSP of bipartite pure entangled state

that uses less entanglement than the method in [45].

Before we present the proof, we give an interpretation of

as the entanglement destroying capacity of

(34)

since creates as much entanglement on the input as

can destroy on . Note that to disentangle a state unitarily

is a nonlocal task. We now turn to our proof.

Bound 3: .

Proof: We omit details already given in the proof of

Bound 2. Let be a unitary protocol transmitting bits

from Alice to Bob with fidelity . The ancillas are initially

in the maximally entangled state where

is the amount of initial entanglement required to assist the

communication. Let carry the -bit message of Alice. By

definition (17) and Uhlmann’s theorem [49], the state change

is given by

(35)

(36)

where has support orthogonal to

.

In the entanglement generation protocol, Alice inputs half of

while Bob still inputs . The input and output

states are given by

and

For

Applying the definition of the entanglement destroying capacity

to (36)

(37)

Since

and

Fannes’ inequality implies

(38)

Hence,

(39)

Using , and that

Fannes’ inequality implies

(40)

Thus,
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and

(41)

(42)

In particular, consider the entanglement-assisted communica-

tion protocol in Section IV-C. For any , consisting

of -dimensional bipartite states with

Following (26), for some constant and the rate is

, where as .

The total error is , where . The RSP

method in [45] can be improved [51] to prepare states from an

ensemble with cbits and

ebits where is the average reduced density matrix

of the ensemble as seen from Bob, so that . Putting all

these parameters into (42)

(43)

For any , choose

1) such that ,

2) such that and so that

,

3) such that and small enough for

.

To summarize, for all , we have

• , Sch ;

• , , ;

•

;

• , .

We now return briefly to Hamiltonian capacities. Recall from

Section I-E that any Hamiltonian capacity can be expressed in

terms of the corresponding gate capacity

The finiteness of is not immediate from the above defini-

tion. Even though when due to conti-

nuity, it is not guaranteed that . One may

argue that physically, the rate should be finite, but the avail-

ability of unlimited local resources complicates the argument.

We now provide a proof of the finiteness of the Hamiltonian ca-

pacities [52].

Bound 4: Hamiltonian capacities are finite.

Proof: Recall that the entanglement capacity of a gate

is no more than the average amount of entanglement required to

simulate given free classical communication. Reference [6]

describes a method to simulate with en-

tanglement, which implies that is finite. Reference

[39] describes a method to simulate any other Hamiltonian

in using the Hamiltonian with over-

head, so that is also finite.

The finiteness of other capacities now follows. From the sum-

mary, is an upper bound to all other

classical capacities of .

VII. BIDIRECTIONAL CHANNELS ON

We have assumed acting on a bipartite system. We

note here that all the results discussed hold for a nonlocal gate

(or Hamiltonian) acting on a system (without loss of

generality, ). The interested reader can easily verify that

all the arguments hold in this case, because the fact is

never used in the proofs. We also note a subtle observation, that

the case is not described by embedding the operation in

a system by taking the direct sum with a -di-

mensional identity matrix acting on the side of lower dimension.

VIII. OPEN QUESTIONS AND EXAMPLES

We have found expressions for the entanglement capacity and

the entanglement-assisted classical capacity of unitary bidirec-

tional channels, defined classical capacities for them, and pro-

vided general bounds for the capacities. We conclude first with

a list of open questions, followed by examples to illustrate our

results and our open questions.

A. Open Questions

• How large do the ancillas need to be in the optimal

input for entanglement generation? How large do need to

be, and how many states are needed in the optimal ensemble

for entanglement-assisted classical communication? These are

important for numerical studies of the capacities.

• Will infinite-dimensional ancillas improve the entanglement

capacity and the entanglement-assisted one-way classical ca-

pacity? Will an ensemble with an infinite number of members

improve the latter?

We have learned of two interesting results on entanglement

capacity involving infinite-dimensional systems or ancillas

since the initial submission of this paper. First, Eisert [53] has

proved that under certain restrictions on the system energy,

infinite dimensional ancillas are no better than finite-dimen-

sional ones for generating entanglement. Second, van Enk

[54] has found a Hamiltonian acting on infinite-dimensional

systems that creates an infinite amount of entanglement in an

infinitely short time (compare to our proof for finiteness of all

Hamiltonian capacities in the finite-dimensional case).

• How do the forward and backward rates trade off with each

other (in either the unassisted or assisted case)?

• Are forward and backward classical capacities always equal

(in either the unassisted or assisted case)?

• Is there a gate with a strict inequality?

• Is for all ? Both quantities relate to how

entangling a nonlocal gate is. However, we can only prove the

equality when , by using the fact
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( is the complex conjugate of ). This generalizes the proof

in [50] for 2-qubit gates since for all 2-qubit gates in

their normal form [8]. Numerical work suggests that the equality

does not hold for some in higher dimensions [55].

• When can a gate be simulated efficiently, i.e., by an amount

of some resource equal to the capacity?

• How do auxiliary resources of quantities linear in the

number of uses affect the capacity?

B. Examples

Example 1: Let CNOT. It can be simulated using 1 ebit

and 1 bit of classical communication in each direction [9]. Thus,

, , , and Bound 2

further implies . These are all achievable with

obvious methods, without the need of entanglement assistance

in and and without the need of initial en-

tanglement in . Therefore,

The rate pairs in the triangle with vertices , ,

are achievable without entanglement assistance, and convexity

implies no other pair is achievable. We also have

due to the following protocol. Starting with the EPR state

, Alice applies and Bob applies if their respective

input bits are and . The CNOT is then applied, converting the

state to . Thus, rate pairs in the square

with vertices are all achievable with

entanglement assistance, and by monotonicity, no other rate

pair is achievable.

Example 2: For , we have the general upper

bounds , , , and

Bound 2 implies . These are all achievable

as follows. is achieved on the input

. To achieve the forward assisted classical

capacity, Alice and Bob start with the state

and Alice applies when her 2-bit message is .

Then SWAP is applied. In other words, superdense coding [17]

is performed, consuming an existing EPR pair on , while

a new EPR pair is created on simultaneously. Thus, the

unassisted and assisted one-way classical capacities are both

. is achieved in the obvious way. Superdense

coding in both the forward and backward directions implies

, and by the monotonicity of the achievable

region of assisted rate pairs, . Therefore, any rate

pair inside the triangle with vertices can

be achieved without entanglement assistance, and any rate pair

inside the square with vertices can

be achieved with entanglement assistance.

The CNOT and SWAP are very simple. We now turn to more

intriguing examples.

Example 3: The gate J acts as

where the first and second registers are and (same

throughout the examples). Without ancillas, J creates 1 ebit but

seems to create less than 1 cbit in -shot, but [25] presents a

product 2-qubit input that communicates 1 cbit from Alice to

Bob.

Numerical optimization of the generated entanglement with

two-dimensional and in (7) is 1.83186 ebits, and the op-

timal input has 0.055338 ebit. As a comparison, only 1.8113

ebits is generated by inputting .

Starting from , Alice and Bob can

communicate 1 bit to each other, by applying and if their

respective messages are and . The J gate further converts the

state to where , from which they

learn each other’s input.

We suspect . For instance, the best total rate

we found requires creating 1 ebit with one use of J followed by

assisted two-way communication in the second use of J. Asymp-

totically, 2.83186 uses of J can create at least bits

of communication, so that , which is much less

than 1.83186.

Example 4: Denote the “cyclic permutation” gate by CP. It

acts as

if

if

where is modulo . CP for all , thus, .

This is achievable on the input .

since Bob can send 1 bit to Alice with the input

. Thus,

For , we have also studied forward communication

without ancillas. It is impossible to transmit 1 bit from Alice to

Bob by one use of , but it is possible asymptotically, so that

.

Example 5: Define the gate AE on by

and .

Since , , and this is achievable on the

input , and .

is achievable in the obvious manner. Thus,

. We can prove that one use of AE can communicate strictly

less than cbit from Bob to Alice starting from product

states but allowing ancillas. However, we suspect

.

Example 6: Since the initial submission of this paper, Childs,

Leung, Verstraete, and Vidal [56] have analytically proved that

the asymptotic entanglement capacity of any Hamiltonian lo-

cally equivalent to can be achieved without

ancillas, and the capacity is following [7].
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APPENDIX

LINEAR BOUND IN COMMUNICATION COST FOR DISTILLATION

In this appendix, we obtain a bound on the communication

cost in distillation using [21] which derives the enhancement

factor of the capacity of a noiseless quantum channel assisted by

noisy entanglement, i.e., unlimited supply of the mixed state .

Suppose given , forward classical bits (in either di-

rection) is sufficient to distill ebits . Here, we

do not require maximum yield of entanglement, so that the clas-

sical communication cost is upper-bounded by that required in

the more difficult job of distillation.

Then, the following is a noisy superdense coding strategy for

Alice and Bob—first distill and then perform noiseless super-

dense coding

cbits ebits

ebits qubits cbits

Together, the enhancement factor is equal to ,

which cannot exceed the optimal value [21]

where the supremum is taken over all TCP maps on Alice’s

half of . Hence, . Even though it is not

known how to calculate for an arbitrary it is unlikely to be

zero for all . If for which , then distillation would

take at least linear classical communication.
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