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Abstract—This paper studies a two source, two destination
Gaussian interference channel in the presence of a cognitive relay.
The cognitive relay has access to the messages transmitted by
both the sources and assists them in communicating the messages
successfully to their respective destinations. An achievable rate
region for the system is derived by combining the Han-Kobayashi
coding scheme for the general interference channel with dirty
paper coding. The paper also derives outer bounds on the
capacity region and obtains the degrees of freedom of the system.

I. I NTRODUCTION

Practical wireless communication systems are in general
interference limited. The interference channel is a well stud-
ied problem. However, the capacity region of the two user
interference channel is still an open problem (even for the
Gaussian case). The capacity region is known only for a few
special classes of interference channels such as the Gaussian
interference channel with strong interference [1], discrete
memoryless interference channel with strong interference[2],
a class of deterministic interference channels [3] and a class of
discrete additive degraded interference channels [4]. Recently,
Etkin et. al. characterized the capacity region of the Gaussian
interference channel to within one bit [5]. In other recent
works [6][7], the authors derive new outer bounds for the
Gaussian interference channels and achieve the sum capacity
under certain channel conditions.

Networks with cognitive users are gaining prominence with
the development of cognitive radio technology, which is aimed
at improving the spectral efficiency and the system perfor-
mance by designing nodes which can adapt their strategy based
on the network setup. Much recent work has been focused on
the two user interference channel with a cognitive transmitter
[8]–[12]. In this channel setting, one of the transmitters has
non-causal access to the message transmitted by the other
transmitter. In this paper, we study a two user Gaussian
interference channel in the presence of a cognitive relay. This
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channel model is different from the one used in [8]–[12]
in that, each transmitter has access to only their respective
messages. However, we assume that there is a cognitive relay
node which has non-causal access to the messages of both
the transmitters. This relay node serves only to assist the
two transmitters in communicating their messages to their
respective receivers. An achievable region for this systemis
described in [13].

In this paper, we present a new achievable region for the
Gaussian interference channel with a cognitive relay. This
region is a generalization of the achievable region given in
[13]. The coding scheme used in this paper is a combination of
the Han-Kobayashi coding scheme for the general interference
channel [14] and Costa’s dirty paper coding [15]. The Han-
Kobayashi coding scheme was also used for the interference
channel with a normal (non cognitive) relay in [16]. We
perform dirty paper coding simultaneously for both the users
instead of time sharing between the two users as was done
in [13]. We derive outer bounds on the capacity region of
the Gaussian interference channel with a cognitive relay using
results on MIMO cognitive radio channel from [12] and using
standard information theoretic inequalities. We also derive the
degree of freedom (d.o.f.) region of the interference channel
with cognitive relay. We show that we can achieve the full
degrees of freedom of a two user no-interference channel for
a large range of channel parameters.

Throughout the paper, we denote random variables by capi-
tal letters, their realizations by lower case and their alphabets
by calligraphic letters (eg.X, x andX respectively). We de-
note vectors of lengthn with boldface letters (e.g.xn), and the
ith element of a vectorxn by xi. For any setS, S andCH(S)
denote the closure and convex hull ofS respectively. For any
vector or matrixA, A

′

denotes its transpose.Tr(A) denotes
the trace of a matrixA. We define the functionL : R+ → R

asL(x) = 1
2 log(1 + x).

II. SYSTEM MODEL

We study a Gaussian interference channel with two trans-
mitters, two receivers and a cognitive relay. The system
model is described in Figure 1. The interference channel is
described by(X1,X2,Xr,Y1,Y2, p(y1, y2|x1, x2, xr)), where
X1,X2,Xr are the input alphabets associated with the two
transmitters and the relay,Y1,Y2 are the two output alphabets.
For the Gaussian channel, we assume that all the alphabets
are the entire realsR. Source i, i = 1, 2 has message
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Fig. 1. System model for Gaussian Interference Channel withCognitive
Relay.

mi ∈ {1, . . . , 2nRi} to be communicated to destinationi
over n channel uses. The relay has non-causal access to both
the messagesm1 and m2 and assists the two sources. Let
X1, X2, Xr andY1, Y2 denote the random variables represent-
ing the respective channel inputs and outputs. Then, the input-
output relationship can be represented by the system equations

Y1 = X1 + bX2 + c1Xr + Z1

Y2 = aX1 + X2 + c2Xr + Z2,
(1)

wherea, b, c1 and c2 represent the channel gains as shown
in Figure 1.Z1 and Z2 denote the additive noise which are
i.i.d. Gaussian random variables distributed asN (0, 1). The
channel inputs must satisfy the following power constraints:

1

n

n
X

i=1

E[X2
j,i] ≤ Pj , j ∈ {1, 2, r}. (2)

A (2nR1 , 2nR2 , n, Pe) code consists of message setsM1 =
{1, . . . , 2nR1} and M2 = {1, . . . , 2nR2}, three encoding
functions

f1 : M1 → Xn
1 , f2 : M2 → Xn

2 ,

fr : M1 × M2 → Xn
r ,

(3)

and two decoding functions

g1 : Yn
1 → M1, g2 : Yn

2 → M2, (4)

such that the transmitted codewordsX
n
1 ,Xn

2 andX
n
r satisfy

the power constraints given by (2) and an error probability
≤ Pe = max(Pe,1, Pe,2). For t = 1, 2, we have

Pe,t =
1

2n(R1+R2)

X

(m1,m2)

Pr[g(Yn
t ) 6= mt|(m1, m2) sent]. (5)

A rate pair(R1, R2) is achievable if there exists a sequence
of (2nR1 , 2nR2 , n, Pe(n)) codes such thatPe(n) → 0 as
n → ∞. The capacity region of the interference channel with
cognitive relay is then the set of all rate pairs(R1, R2) that
are achievable, and is denoted byCIC . The d.o.f. region of
the Gaussian interference channel with cognitive relayD is
defined as

D =

8

<

:

(d1, d2) ∈ R
2
+ : ∀w ∈ R+,

wd1 + d2 ≤ lim supP1+P2+Pr→∞
sup(R1,R2)∈CIC

wR1+R2

log(P1+P2+Pr)

9

=

;

. (6)

III. M AIN RESULTS

Let P denote the set of
(P11, P12, P21, P22, Pr11, Pr12, Pr21, Pr22, Pr3, Pr4)
described by
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Let P ∗ ∈ P . Let α1, α2, β1, β2 ∈ {−1, 1}. We denote
r11, r12, r21, r22 as follows :

r1j = (
p

P1j + αjc1

p

Pr1j)
2, j ∈ {1, 2},

r2j = (b
p

P2j + βjc1

p

Pr2j)
2, j ∈ {1, 2}.

(8)

Let RP∗

i1 (α1, α2, β1, β2) denote the set described by
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:

(R11, R12, R21) : R11 ≥ 0, R12 ≥ 0, R21 ≥ 0

R11 ≤ L

„

r11

1+r22+c2
1
(Pr3+Pr4)

«

R12 ≤ L

„

r12

1+r22+c2
1
(Pr3+Pr4)

«

R21 ≤ L

„

r21

1+r22+c2
1
(Pr3+Pr4)

«

R11 + R12 ≤ L

„

r11+r12

1+r22+c2
1
(Pr3+Pr4)

«

R11 + R21 ≤ L

„

r11+r21

1+r22+c2
1
(Pr3+Pr4)

«

R12 + R21 ≤ L

„

r12+r21

1+r22+c2
1
(Pr3+Pr4)

«

R11 + R12 + R21 ≤ L

„

r11+r12+r21

1+r22+c2
1
(Pr3+Pr4)

«
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We denotes11, s12, s21, s22 as follows :

s1j = (a
p

P1j + αjc2

p

Pr1j)
2, j ∈ {1, 2},

s2j = (
p

P2j + βjc2

p

Pr2j)
2, j ∈ {1, 2}.

(10)

RP∗

i2 (α1, α2, β1, β2) denotes the set described by
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(R12, R21, R22) : R12 ≥ 0, R21 ≥ 0, R22 ≥ 0

R12 ≤ L

„

s12

1+s11+c2
2
(Pr3+Pr4)

«

R21 ≤ L

„

s21

1+s11+c2
2
(Pr3+Pr4)

«

R22 ≤ L

„

s22

1+s11+c2
2
(Pr3+Pr4)

«

R12 + R21 ≤ L

„

s12+s21

1+s11+c2
2
(Pr3+Pr4)

«

R12 + R22 ≤ L

„
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2
(Pr3+Pr4)

«

R21 + R22 ≤ L

„
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1+s11+c2
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(Pr3+Pr4)

«

R12 + R21 + R22 ≤
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1+s11+c2
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(Pr3+Pr4)
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Let α = (α1, α2) and β = (β1, β2). Let RP∗

in,1(α, β) and
RP∗

in,2(α, β) be the set of rate pairs(R1, R2) described by

RP∗
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RP∗

in,2(α, β) =
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Let Rin be the set of rate pairs described by

Rin = CH

„

[

P∗∈P

[

α,β

`

RP∗

in,1(α, β) ∪RP∗

in,2(α, β)
´

«

. (14)

Then, the following theorem describes an achievable region
for the Gaussian interference channel with cognitive relay.

Theorem 1:The capacity region of the Gaussian interfer-
ence channel with cognitive relayCIC satisfies

Rin ⊆ CIC . (15)

The outline of the proof of Theorem 1 is described in Section
IV. The coding scheme used to achieve the region given by
Rin is a combination of Han-Kobayashi coding scheme for an
interference channel [14] and Costa’s dirty paper coding [15].

Let γ > 0 be any positive real number. We define the
following 3 × 1 matrices:

G1γ =
h

1 c1√
γ

b√
γ

i

, H1γ =
h

0 c2√
γ

1√
γ

i

,

G2γ =
h

1√
γ

c1√
γ

0
i

, H2γ =
h

a√
γ

c2√
γ

1
i

. (16)

Consider the two2-user Gaussian MIMO broadcast channels
given in Figures2 and 3 with three transmit antennas and
one antenna at each receiver. We denote the two broadcast

G1γ
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P1 + γP2 + γPr

X(m1, m2)

Z2

Z1

Y1

Y2
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Receiver 1

H1γ

Fig. 2. Broadcast Channel 1.

channels asBCγ
1 and BCγ

2 respectively. Let their capacity
regions be denoted byCγ

BC,1 and Cγ
BC,2 respectively.Rγ

BC,1

H2γ

Co-operating Transmitters

X(m1, m2)

Z2

Z1

Y1

Y2

Receiver 2

Receiver 1

γP1 + P2 + γPr

G2γ

Fig. 3. Broadcast Channel 2.

represents the closure of the convex hull of the set of rate pairs
described by
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Rγ
BC,2 represents the closure of the convex hull of the set of
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«

R2 ≤ L

„

H2γΣ2H
′

2γ

1+H2γ (Σ1+Σ2)H
′

2γ
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Then, we have the following lemma.

Lemma 1:For anyµ ≥ 1, we have

max
(R1,R2)∈Rγ

BC,1

µR1 + R2 = max
(R1mR2)∈Cγ

BC,1

µR1 + R2 (19)

max
(R1,R2)∈Rγ

BC,2

R1 + µR2 = max
(R1mR2)∈Cγ

BC,2

R1 + µR2. (20)

The proof of the lemma follows directly from the results of
[17] and is omitted here. The following theorem describes an
outer bound on the capacity region of the Gaussian interfer-
ence channel with cognitive relay.

Theorem 2:Let µ ≥ 1. The capacity region of the Gaussian
interference channel with cognitive relay,CIC satisfies

max
(R1,R2)∈CIC

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈Rγ

BC,1

µR1 + R2 (21)

max
(R1,R2)∈CIC

R1 + µR2 ≤ min
γ>0

max
(R1,R2)∈Rγ

BC,2

R1 + µR2. (22)

An outline of the proof of Theorem 2 is described in Section
V. It is to be noted that the outer bound is not just the
capacity region of the broadcast channel obtained by allowing
all the transmitters to co-operate. In fact, the broadcast channel
considered in Figures2 and 3 have some channel gains that
are set to zero. The outer bound is obtained by considering
the outer bound of a MIMO cognitive channel [12] that results
from partial transmitter co-operation.

Let ρ1, ρ2 ∈ [−1, 1]. Let A(ρ1, ρ2) be given by

A(ρ1, ρ2) =

0

@

P1 0 ρ1

√
P1Pr

0 P2 ρ2

√
P2Pr

ρ1

√
P1Pr ρ2

√
P2Pr Pr

1

A . (23)



We define the functionsF1(ρ1, ρ2) andF2(ρ1, ρ2) as

F1(ρ1, ρ2) = L(P1 + c2
1Pr(1 − ρ2

2) + 2c1ρ1

√
P1Pr)

F2(ρ1, ρ2) = L(P2 + c2
2Pr(1 − ρ2

1) + 2c2ρ2

√
P2Pr).

(24)

The following theorem describes another outer bound onCIC .

Theorem 3:Let (R1, R2) ∈ CIC . Then for any0 ≤ µ < ∞,
we have

µR1 + R2 ≤ max
ρ1,ρ2∈[−1,1]

µF1(ρ1, ρ2) + F2(ρ1, ρ2) (25)

such thatA(ρ1, ρ2) � 0.

The proof of the theorem follows from a series of basic
information theoretic inequalities and is omitted here. The fol-
lowing theorem characterizes the d.o.f. region of the Gaussian
interference channel with cognitive relay.

Theorem 4:If c1 a 6= c2 andc2 b 6= c1, the d.o.f. region of
the Gaussian interference channel with cognitive relay is

D1 =



(d1, d2) ∈ R
2
+ :

d1 ≤ 1, d2 ≤ 1

ff

. (26)

If c1a = c2 and/or c2b = c1, then the d.o.f. region of the
cognitive relay is given by

D2 =



(d1, d2) ∈ R
2
+ :

d1 + d2 ≤ 1

ff

. (27)

Proof : We first consider the case whenc1a 6= c2 andc2b 6= c1.
We describe an outer bound on the d.o.f. region. We allow
all the three transmitters to co-operate and obtain a two user
broadcast channel with3 antennas at the transmitter and1
antenna at each receiver. The d.o.f. region of the broadcast
channel is equal to the region described by (26). Hence, the
region described byD1 is an outer bound on the d.o.f. region
of the Gaussian interference channel with cognitive relay.

We now show that the d.o.f. regionD1 is achievable by
interference cancelation. Fori = 1, 2, transmitteri chooses
its transmit codewordXi according to the distributionXi v

N (0, Qi), Qi ≤ Pi. The relay transmitsXr = λ1X1 + λ2X2.
Hence, we must haveλ2

1Q1 + λ2
2Q2 ≤ Pr. We chooseλ2 =

− b
c1

and λ1 = − a
c2

, to cancel out the interference at each
receiver. To satisfy the power constraints, we chooseQi =
min( Pr

2λ2

i

, Pi), i = 1, 2. We then achieve the point(d1, d2) =

(1, 1). Hence, the regionD1 is achievable.

Next, we consider the case whenc1a = c2 and/orc2b = c1.
The region given byD2 is achievable by time sharing. When
c1a = c2, using arguments similar to those used in [1], we can
show that receiver2 can decode both the messagesm1 and
m2 successfully, and that is the optimal strategy for receiver
2. Hence,d1 + d2 ≤ 1 is an upper bound on the d.o.f. region.
The proof is similar for the case whenc2b = c1.

IV. A CHIEVABLE REGION : THEOREM 1

Outline of Proof of Theorem 1 :We fix a P ∗ ∈ P where
P is described in (7). We also fixα1, α2, β1, β2 ∈ {−1, 1}.
We show thatRP∗

in,1(α, β) is achievable. We assume that
P11, P12, P21, P22 > 0. The proof for the case when some

of P11, P12, P21, P22 are equal to zero is almost identical to
the one presented here and is hence omitted.

For i = 1, 2, sourcei splits its messagemi ∈ {1, . . . , 2nRi}
into 3 independent parts(mi1, mi2, mi3) ∈ {1, . . . , 2nRi1} ×
{1, . . . , 2nRi2}× {1, . . . , 2nRi3} such thatRi1 + Ri2 + Ri3 =
Ri.

Encoding Scheme : Fori = 1, 2, transmitter i encodes
messagemi1 into X

n
i1, such thatp(xn

i1) = Πn
j=1P (xi1,j), and

Xi1,j v N (0, Pi1). Messagemi2 is then encoded intoXn
i2,

such thatp(xn
i2) = Πn

j=1P (xi2,j), and Xi2,j v N (0, Pi2).
Transmitteri transmitsXn

i = X
n
i1 + X

n
i2.

The relay encodes message(m11, m12) into
X

n
r1 = α1

√

(Pr11/P11)X
n
11 + α2

√

(Pr12/P12)X
n
12, and

message(m21, m22) into X
n
r2 = β1

√

(Pr21/P21)X
n
21 +

β2

√

(Pr22/P22)X
n
22. The relay node encodes message

m13 into X
n
r3 treating (b + c1β2

√

(Pr22/P22))X
n
22 as

non-causally known interference at receiver1. That is,
X

n
r3 is formed using Costa’s dirty paper coding [15], and is

distributed asp(xn
r3) = Πn

i=1P (xr3,i) andXr3,i v N (0, Pr3).
Finally, the relay encodes messagem23 into X

n
r4 treating

(a + c2α1

√

(Pr11/P11))X
n
11 + c2X

n
r3 as non-causally

known interference at receiver2. X
n
r4 is distributed as

p(xn
r4) = Πn

i=1P (xr4,i) and Xr4,i v N (0, Pr4). The relay
transmitsXn

r = X
n
r1 +X

n
r2+X

n
r3+X

n
r4. It is to be noted that

this coding scheme uses the result that the capacity region
of a Gaussian broadcast channel with additive state known
non-causally at the transmitter is the same as the capacity
region of the same broadcast channel with no state [18].

Decoding : Receiver1 decodes(m11, m12, m21) jointly by
treating(b + c1β2

√

(Pr22/P22))X
n
22 + c1(X

n
r3 + X

n
r4) + Z

n
1

as Gaussian noise. Hence,(m11, m12, m21) can be success-
fully decoded at receiver1 if (R11, R12, R21) ∈ RP∗

i1 (α, β).
Receiver1 then decodes messagem13 by treatingc1X

n
r4+Z

n
1

as Gaussian noise.

Receiver2 decodes(m12, m21, m22) jointly by treating(a+
c2α1

√

(Pr11/P11))X
n
11 + c2(X

n
r3 + X

n
r4) + Z

n
2 as Gaussian

noise. Hence,(m12, m21, m22) can be successfully decoded at
receiver2 if (R12, R21, R22) ∈ RP∗

i2 (α, β). Finally, message
m23 is decoded by treatingZn

2 as noise.

Hence, it follows thatRP∗

in,1(α, β) is achievable. Similarly,
RP∗

in,2(α, β) is also achievable. Hence, the proof follows.

Remark 1:There are two main differences between the
achievable region presented in this paper and the one given
in [13]. The first one is that, we incorporate message split-
ting and partial interference cancelation at the receiver.This
strategy is motivated by the Han-Kobayashi coding scheme
for the general interference channel [14]. The second major
difference is, we perform dirty paper coding for both the users
simultaneously and time share the order in which we perform
dirty paper coding. In [13], the authors perform dirty paper
coding for only one user at a time and time share between the
two dirty paper coding regions.



V. OUTER BOUND : THEOREM 2

Outline of Proof of Theorem 2 :The outer bound is obtained
by allowing transmitter co-operation. We allow transmitter 2
to fully co-operate with the relay. This is done by providing
transmitter2 with messagem1 non-causally. This reduces
the channel to a Gaussian MIMO cognitive channel studied
in [12]. Let the capacity region of the corresponding MIMO
cognitive channel be denoted byCMCC,1. Then, for anyµ ≥ 1,
it is shown in [12, Theorem 3.2 and Lemma 5.6] that

max
(R1,R2)∈CMCC,1

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈Rγ

BC,1

µR1 + R2. (28)

It follows that for anyµ ≥ 1,

max
(R1,R2)∈CIC

µR1 + R2 ≤ min
γ>0

max
(R1,R2)∈Rγ

BC,1

µR1 + R2.

By allowing transmitter1 to co-operate fully with the relay
node, we obtain the other bound. That is, for anyµ ≥ 1,

max
(R1,R2)∈CIC

R1 + µR2 ≤ min
γ>0

max
(R1,R2)∈Rγ

BC,2

R1 + µR2.

Remark 2: It is to be noted that the outer bound is not
obtained by merely letting all the transmitters co-operatewith
a sum power constraint. In the broadcast channel in Figures2
and3, it can be seen that one of the channel gains is made zero.
Also, the outer bound is obtained by minimizing over a series
of broadcast channel with different sum power constraints and
channel gains. The outer bound obtained is in general not
tight, even with respect to the cognitive radio channel [10][12],
because, the non cognitive transmitter in the cognitive radio
channel cannot transmit any information with respect to the
message of the other transmitter.

VI. N UMERICAL RESULTS

In this section, we provide some numerical results on the
capacity region of the two user Gaussian interference channel
with a cognitive relay. We consider an example system, where
a = b = 2, c1 = 1.5, c2 = 0.75. We take all power constraints
to be equal to10 (i.e.,P1 = P2 = Pr = 10). Figure4 plots the
achievable regionRin described in (14), and the outer bounds
in Theorem2 and Lemma2. The plot shows the performance
improvements over the achievable region by [13] and the gap
between the achievable region and the outer bounds.
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Fig. 4. Plot of Achievable region and Outer bound for Interference channel
with Cognitive Helper

VII. C ONCLUSIONS

In this paper, we derived a new achievable region for the
two user Gaussian interference channel with a cognitive relay.
The achievable region is a generalization of the region given
in [13]. In Theorems2 and 3, we derive outer bounds on
the capacity region of the interference channel with cognitive
relay. We also derive the d.o.f. region of the channel setting
and show that we can achieve the full degrees of freedom of a
two user no-interference channel for a large range of channel
parameters.
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[9] I. Marić, A. Goldsmith, G. Kramer, and S. Shamai, “On thecapacity of
interference channel with one co-operating transmitter,”European Trans.
on Telecomm., to appear in 2008.

[10] W. Wu, S. Vishwanath, and A. Arapostathis, “Capacity ofa class of
cognitive radio channels: Interference channels with degraded message
sets,”IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 4391–4399, Nov.
2007.

[11] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic
perspective,” to appear in IEEE Trans. Inform. Theory. Preprint available
at http://arxiv.org/abs/cs.IT/0604107.

[12] S. Sridharan and S. Vishwanath, “On the capacity of a class of MIMO
cognitive radios,” to appear in Journal on Selected Topics in Signal
Processing, 2007. Preprint available at http://arxiv.org/abs/0711.4792v2.

[13] O. Sahin and E. Erkip, “On achievable rates for interference relay
channel with interference cancelation,” inProc. of Forty First Annual
Asilomar Conf. on Signals, Systems and Computers, Pacific Grove,
California, vol. Nov., 2007.

[14] T. S. Han and K. Kobayashi, “A new achievable rate regionfor the
interference channel,”IEEE Trans. Inform. Theory, vol. 27, no. 1, pp.
49–60, Jan. 1981.

[15] M. Costa, “Writing on dirty paper (corresp.),”IEEE Trans. Inform.
Theory, vol. 29, no. 3, pp. 439–441, May 1983.

[16] O. Sahin and E. Erkip, “Achievable rates for the Gaussian interference
relay channel,” inProc. of 2007 GLOBECOM Communication Theory
Symposium, Washington D.C., Nov. 2007.

[17] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inform. Theory, vol. 52, no. 9, pp. 3936–3964, Sept. 2006.

[18] Y. Steinberg and S. Shamai, “Achievable rates for the broadcast channel
with states known at the transmitter,” inProc. of Intl. Symp. of Inform.
Theory, Sep. 2005, 2005.


