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Abstract—This correspondence explores the ergodic capacity of mul-
tiple-input multiple-output (MIMO) systems operating in generalized-
fading conditions. Using some recent results on majorization theory, we
derive an analytical capacity bound which is applicable for arbitrary
values of the signal-to-noise ratio (SNR) and number of antenna elements.
In addition, we deduce simple bound approximations in the high-SNR
regime and demonstrate that the effects of small and large-scale fading are
decoupled. A similar statistical analysis is carried out for MIMO channels
under -fading, which represents a special case of generalized- fading
that can be tackled via the Wishart matrix theory. The implications of
the model parameters on the bound performance are also investigated via
Monte Carlo simulations.

Index Terms—Ergodic capacity, generalized- fading, majorization
theory, MIMO systems.

I. INTRODUCTION

Over the past decade, numerous publications have been reported
on the statistical and capacity characterization of MIMO systems.
The majority of them, however, adopts the common assumption of
Rayleigh [1]–[3] or Ricean [4], [5] fading conditions. In these cases,
the channel statistics are jointly Gaussian and the mathematical
formulations can be carried out using elements of the well-known
Wishart matrix theory, which simplifies extensively the overall anal-
ysis. Some theoretical investigations and measurement campaigns
[6], [7], however, have demonstrated that the Nakagami-� distribu-
tion [8] yields a better fit with real-time data for various measured
channels and, more importantly, encompasses both Rayleigh/Ricean
distributions as special cases. This reveals that deriving performance
bounds for MIMO Nakagami-� channels is a highly interesting
topic. Surprisingly, little is still known for these MIMO channels
due to the difficulty in manipulating the non-Gaussian joint channel
statistics, and especially the joint eigenvalue distribution, when the
channel experiences Nakagami fading. Only recently, the authors in
[9] considered the eigenvalue statistics of 2� 2, 2� 3 configurations
and provided large system capacity expressions.

Nevertheless, a seminal work in this area was presented in [10],
where the authors used tools from majorization theory to derive tight
upper and lower bounds for Nakagami-�/lognormal MIMO channels.
Their final formulas, however, were given in integral form [10, The-
orems 4–5] and the proposed bounds were numerically approximated
via Gauss–Hermite polynomials, although such a technique comes in
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contrast with the definition of the bound. Furthermore, the authors ac-
knowledge this approximation as time consuming, especially at low
SNRs, and not amenable to further manipulations.

Thus, capitalizing on the technique of [10], we herein deduce novel
analytical bounds for the ergodic capacity of MIMO systems experi-
encing generalized-� fading. This is a generic model that occurs when
small-scale fading is modeled via the Nakagami-� distribution and
large-scale fading via the gamma distribution. This model has been
demonstrated to effectively approximate most of the fading and shad-
owing effects occurring in wireless channels, and also to be analytically
friendlier than the Nakagami-�/lognormal model [11]–[14].

In this correspondence, we first provide a general analytical upper
bound for the ergodic capacity of generalized-� MIMO channels for
arbitrary SNR. In contrast to [10], the proposed bound is expressed in
terms of Meijer’s �-function which can be easily evaluated and effi-
ciently programmed in most standard software packages (e.g., Maple,
Mathematica). For the case of non-integer arguments of the Meijer’s
�-function, an alternative closed-form bound expression is provided
as a finite weighted sum of hypergeometric/digamma functions. The
asymptotic bound performance in the high-SNR regime is assessed and
a tractable expression is deduced which indicates that the effects of
small and large-scale fading are decoupled.

We further elaborate on the special case of � (composite
Rayleigh/gamma fading) MIMO channels [15], [16], by intro-
ducing two insightful affine capacity expansions. We also present
closed-form high-SNR approximations for the ergodic capacity and
the variance of the mutual information (MI) followed by a tight lower
capacity bound.

II. MIMO SYSTEM MODEL

We consider a typical distributed MIMO (D-MIMO) system with
�� receive antennas and � radio ports each connected to �� transmit
antennas and also define � �������� ���, � �������� ���.
Then, the input-output relationship reads

� �
�
	�			����
 � (1)

where � � �� �� and � � � �� are the transmitted and re-
ceived signal vectors while � � �� ��� �� � is the complex AWGN
and 	 corresponds to the average SNR. The entries of the diagonal
matrix 			 � �� ��� represent the large-scale effects, and hence
			 � ���� ��� 
���

�
� ����� where ���  � � � � � � � denotes the dis-

tance between the receiver and the th radio port while � is the path-loss
exponent with typical values ranging from 2–6. The large-scale fading
coefficients 
��  � � � � � � �, are modeled as i.i.d. gamma random vari-
ables (RVs), 
� � ������������, or

��
�� �

� ���

������
�
�

��� 	 
�
��

� 
����� �� 
 � (2)

where ��, �� � � �
�����, are the shape and scale parameters of the
gamma distribution respectively while ���� is the gamma function and
� ��� is the expectation of a RV. The entries of the channel matrix � �
� ��� are assumed to be i.i.d. RVs with uniformly distributed phase

in ��� ���, while their amplitude � � ��	
  follows a Nakagami-�
distribution

���� �
�

����

�

�

�

������������� � � 
 �� � 
 

�
(3)

where � � � ���� is the average power, which will be assumed to be
equal to unity [15], [16]. Then, the squared Nakagami-� envelope,
� � ��, is distributed as � � �����������.
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III. ERGODIC CAPACITY UPPER BOUND

We assume that the receiver has perfect channel state informa-
tion (CSI) while the transmitter has nor statistical neither instantaneous
CSI and as such performs uniform power allocation across all data
streams. Then, the MIMO MI reads as

� � ���� ��� �� �
�

���
�			�� 
bits/s/Hz� (4)

where 
��� denotes Hermitian transpose, while the MIMO ergodic ca-
pacity is given by

���� � � ��  � � ���� ��� ��� �
�

���
�
�
� (5)

where � � �			��� and the expectation is taken over all realizations
of � and 			 (or likewise �). Using similar arguments as in [10, eq.
(36)-(37)], we can directly introduce the following upper bound ���

for the MIMO ergodic capacity1:

���� � ��� � �

�

���

���� � �
�

���
��� (6)

where ��� � 	� � � �� � � � � � are the real, non-negative diagonal el-
ements of ���. We now recall that the sum of 	 i.i.d. gamma RVs
with common scale parameter 
 and shape parameters �������� is also
gamma distributed with parameters 
 �

��� ��� 
�. Then, we can see
that the diagonal elements ��� are essentially weighted sums of i.i.d.
gamma RVs with each weight factor being a gamma RV as well.

Theorem 1: The ergodic capacity (5) is upper bounded by

��� �
��
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(7)

where �� is the Meijer’s -function [17, eq. (9.301)].
Proof: We start by writing (6) through [10, eq. (64)]

��� � ��

�
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� ���� � �
�

���

����
�

�

(8)

where ��� � � �� � � � � � is the sum of �� i.i.d. gamma RVs and as such
�� 
 �����
���� ����, or

�
��� �
��� ��
�

�
����
���� ��� 
	���� � �� � �� (9)

1In the following, it is assumed that �� � � (i.e., � � �� � � � � ).
All results though are very easily extensible to the case �� � � .

We now express the expectation in (8) in integral form
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where (10) follows by expressing the logarithmic function via
[18, eq. (8.4.6.5)]. Substituting (2) and (9) into (10), applying
[17, eq. (7.813.1)] we can obtain (7) after some algebra.

Comparing (7) with [10, eq. (22)], we clearly observe that the
proposed bound admits an analytical and more tractable expression
and thus can efficiently characterize the capacity of composite Nak-
agami-�/gamma fading MIMO channels.

Theorem 2: For ������ �� 	���� �� � the ergodic capacity in
(5) is upper bounded by (11) shown at the bottom of the page, where
��
�� denotes the generalized hypergeometric function while �
�� is
the Euler’s digamma function [17, eq. (8.360.1)].

Proof: A detailed proof is given in Appendix I.
Theorem 3: In the high-SNR regime ��� in (7) becomes

���� � ��� ����
�
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�
���
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���	 � ����
��� � (12)

Proof: The result follows by taking � large in (8), then using the
integral identity [17, eq. (4.352.1)]

�
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�������� �� ��� �
�
��

��

�
��	 ���� (13)

for ��
�� � � ��, and simplifying the resulting expression.
The above theorem reveals that at high SNRs the effects of small

and large-scale fading are decoupled, which is consistent with [10,
Corollary 5]. More important, it turns out that taking the SNR large
in (11) leads to exactly the same high-SNR approximation of (12).
This implies that (11) offers an inherent differentiation of the low and
high-SNR terms.

IV. CAPACITY ANALYSIS OF � MIMO CHANNELS

When the small-scale fading is described via the Rayleigh distribu-
tion (i.e., � � � � �), the fading model is referred to as the �-dis-
tribution [15], [16], which has recently attracted considerable research
interest thanks to its ability to effectively approximate the fading fluc-
tuations in various radar and RF communication systems [11], [12].
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A. Low-SNR Analysis

The low-SNR performance of � MIMO channels can be investi-
gated by taking a first-order expansion of (4) around � � ��. Recent
theoretic studies have demonstrated though that this approach can not
adequately reflect the impact of the channel and can, in fact, lead to
misleading results in the low-SNR (or wideband) regime [19], [20].
Thus, it is more meaningful to explore the low-SNR capacity in terms
of the normalized transmit energy per information bit ����� rather
than per-symbol SNR. This capacity representation reads as

����
��

��
� �� ����

�

�

�

� ��	

(14)

where �������	 and �� are the two key parameters determining the
low-SNR behavior, corresponding to the “minimum normalized energy
per information bit required to convey any positive rate reliably” and
the wideband slope, respectively. Following [19], these two figures of
merit are defined as
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(15)

where �������	 and �������	 denote the first and second-order derivatives
of the ergodic capacity (5) over the SNR �, respectively.

Corollary 1: For � fading MIMO channels, the minimum energy
per information bit and the wideband slope are
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Proof: We first recall that
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�
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As such, we need to evaluate
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Substituting (2) and (9) into (18) and applying [17, eq. (3.381.4)]

�

�

� ������	 � ��������� � �	� ����� �	 � � (19)

we can obtain (16) after basic simplifications. For ��, we invoke a clas-
sical result from random matrix theory on correlated Rayleigh MIMO
channels [20, eq. (19)]. Substituting ���� � �� and ���� � ��� in [20,
eq. (19)], we can work out the final expression by averaging over ���,
again with the aid of (19).

Note that (16) is independent of ��, which agrees with [19], [20],
while a higher �� improves the low-SNR capacity by reducing
�������	. Under i.i.d. Rayleigh fading, we simply have
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(20)

which respectively coincide with [19, eq. (206)], [20, eq. (17)], and [20,
eq. (19)] (i.e., for ���� � �� and ���� � ��� ).

B. High-SNR Analysis

We now focus on the first- and second-order MI statistics in the
high-SNR regime. More specifically, the following theorem yields the
ergodic capacity in the high-SNR regime:

Theorem 4: For � fading MIMO channels, the ergodic capacity at
high SNRs tends to
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Proof: A detailed proof is given in Appendix II.
Clearly, both 	� and � have a beneficial impact on the high-SNR

capacity whereas a higher Tx-Rx distance effectively reduces it, due to
the increased path-loss attenuation.

Apart from the ergodic capacity, a critical figure of merit in the per-
formance evaluation of MIMO systems is the variance of the MI which
can give better insights into the outage capacity characterization. For
this reason, the following result on the high-SNR MI variance is rather
intuitive:

Theorem 5: For � fading MIMO channels, the variance of the MI
at high SNRs tends to
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� 	�	 (22)

where���	 � ���	�� is the polygamma function [21, eq. (6.4.1)],
while ���� �	� ����	 � �� � �� ������
� � � � is the Harwitz zeta
function [17, eq. (9.521.1)].

Proof: A detailed proof is relegated to Appendix III.
This theorem demonstrates that the MI variance converges to a deter-

ministic constant for large SNR. Interestingly, the mean and variance
of MI are not related which implies that macro-diversity has no impact
on the ergodic capacity.

To get a better insight into the high-SNR capacity performance, we
now introduce the affine capacity expansion [22]

������� ����� ��	 � �� ����� � � 	�	 � ���	 (23)

where �� is the high-SNR slope in bits/s/Hz per 3-dB units

�� � ���
��
�

������� ����� ��	

������	
(24)

while 	� is the high-SNR power offset, in 3-dB units,

	� � ���
��
�

������	�
������� ����� ��	

��
� (25)

Corollary 2: For � fading MIMO channels, the high-SNR slope
and power offset are
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Proof: The proof follows trivially by combining (5), (21) and
Appendix II with the definitions (24) and (25).
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Fig. 1. Simulated ergodic capacity, analytical upper bound and high-SNR
bound approximation against the SNR (� � �, � � �, � � �, � � ���,
� � �, � � �, � � ���� �, � � �	�� �, � � �����).

The relationship (26) verifies the well-known asymptotic (in terms
of SNR) linear capacity scaling with the minimum number of antennas
[1]–[3]. In addition, (27) indicates that for a fixed number of transmit
antennas, using more antennas at the receiver leaves the high-SNR
slope unaffected but increases the high-SNR capacity by reducing the
power offset.

C. Lower Bound

We finally introduce the following tight and rather simple lower
bound on the ergodic capacity of � MIMO channels:

Theorem 6: For � fading MIMO channels, the ergodic capacity (5)
is lower bounded by

��� � � ���� � �
�

���

��	
�

�

���

���

� 
�� 	�

���

�

���


�

�� � �� 
��� � ��
����  (28)

Proof: The proof relies on the application of Minkowski’s in-
equality to (5), as was originally proposed in [3, Theorem 1] and there-
after in [4, eq. (41)]. Omitting explicit details, we can directly lower
bound (5) according to

���	 � � ���� � �
�

���

��	
�

�
� �� ��� �

�
�

and then we follow the methodology of Appendix II.
Comparing (21) with (28), we can see that the lower bound converges

to the exact high-SNR ergodic capacity. Note that similar observations
were also made in [3], [4].

V. NUMERICAL RESULTS

In this section, the theoretical analysis presented in Sections III and
IV is validated through a set of Monte-Carlo simulations. To this end,
we first generate 10,000 random realizations of the large and small-
scale fading matrices ��� and � according to (2) and (3), respectively
and thereafter obtain the simulated ergodic capacity via (5). In Fig. 1,
the simulated ergodic capacity is compared against the analytical upper
bound in (7) and the high-SNR approximation in (12). For the sake

Fig. 2. Low-SNR simulated and analytical ergodic capacity against the re-
ceived energy per bit (� � 
, � � �, � � �, � � �).

Fig. 3. Simulated and high-SNR approximation of the variance of the MI
against the SNR (� � �, � � �, � � �, � � �).

of simplicity, we have set 
� � ��� � ���	 � �� � � � � �. A high
�� makes the bound tighter while the high-SNR approximation be-
comes exact even at moderate SNR values. In the low-SNR regime, the
bound converges asymptotically to the empirical value of ergodic ca-
pacity [3]–[5].

In Fig. 2, the analytical and simulated low-SNR capacity are depicted
against the received energy per bit��

���� � �������, based on (14).
The capacity of a 6� 2 i.i.d. Rayleigh MIMO channel is also overlaid
where (20) has been used. The presence of large-scale fading reduces
both the low-SNR channel throughput and also the wideband slope. It
turns out that the linear approximations are accurate over a moderate
range of ��

���� values, especially for the Rayleigh case.
In Fig. 3, the variance of the MI is plotted with the high-SNR

approximation being generated via (22). The graph reveals that
increasing �� helps overcome the effects of fading (i.e., enhanced
receive spatial diversity) and, consequently, the dynamic range of
MI is reduced. The convergence speed of the simulated curves to
the asymptotic values gets also higher with �� . In all cases, we see
that the results converge quickly to the asymptotic values even for
moderate values of the SNR.
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VI. CONCLUSION

The capacity characterization of composite Nakagami-� MIMO
channels is a particularly interesting research topic which however
can not be addressed via Wishart matrix theory. Based on some
recent results on majorization theory, we derived a novel analytical
upper bound for the ergodic capacity of MIMO channels experiencing
Nakagami/gamma fading. The proposed bound is more tractable
than a previously derived bound for Nakagami/lognormal channels.
In the second part, a detailed capacity characterization of � fading
MIMO channels was performed and affine capacity expansions were
proposed in the low and high-SNR regimes. For high SNRs, tractable
closed-form approximations for the first- and second-order capacity
moments were proposed. Finally, a simple lower capacity bound was
given which becomes exact at high SNRs.

APPENDIX I
PROOF OF THEOREM 2

The proof starts by noting that the general upper bound in (7)
does not, in principle, admit a hypergeometric series expansion due
to the arguments of the involved Meijer’s �-function being integer
[17, Sec. 9.31]. Thus, we have to adopt a different line of reasoning
by rewriting (6) according to

��� �
���

��

� ����� �� �

�

���

�

� ����	
�
�

�
�

�

�

�

�� � 

���	


����
�

� 	�� ���� ��� ���	 
� ����	���

In order to solve the above double integral, we now provide a generic
expression for integrals of the form
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Using [18, eq. (2.6.23.4)], (30) admits a closed-form solution when
� �� , as below

�	 ��� �� �� �
�

�


�

� ��� ����
��� �� �
 ��

�

�

�� ��� �� ��
�

�
� 	 ����

	�	 �� �� �� �� �� �
�

� ��� ��
�

By defining

�� �
���

� ��� ����

�

�

�������� �� �
 ��
�

��
����
���

�	 �������
�

�

��
�

��
� 	 ��� ��������
���

�
 �
������

� ��� ��

�

�

����	�	 �� �� �� �� ��
�

��
����
���

we rewrite (29) according to

�� ��� �� �� �� �� � �� � �	 
 �
� (31)

We can solve �� by expressing the hypergeometric function ������
via a Meijer’s �-function, using [23, eq. (07.20.26.0005.01)] and [17,
eq. (9.31.2)], as
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and after introducing [17, eq. (7.813.1)], we can obtain
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The last formula can be further simplified by combining
[17, eq. (9.304)] and [23, eq. (07.26.03.0002.01)] with (32)
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when ��� �� �� �� �� . Likewise, �	 can be rewritten as

�	 � ���� ��
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��� ���� �� ����� 	 ������������
���

which, according to [18, eq. (2.6.21.2)], simplifies to

�	 � ������������ ��
�

��
� 	 ���� 	 ��� � (34)

For �
, we expand the integrand 	�	 ��� using [23, eq. (07.25.26.
0004.01)] and [17, eq. (9.31.2)], or

	�	 �� �� �� �� ��
�

��
� �� ��� ���	��

��


��

�

�� �� �� �� �
	

�� �� �
	

and after introducing [17, eq. (7.813.1)], we can obtain

�
 �
�� ��� ��� ��� �� ��������

�

��	�	
�


��

�

�� �� �� �� �� �� �
	

�� �� �
	

� (35)

When ��� �� � � �� �� , the last expression can be expanded via
[17, eq. (9.304)] and [23, eq. (07.31.03.0002.01)], to get

�
 �
���� ��� ��� �� ���������

�

�
� ���� ��� �� ��

�

���

��	 �� � 
 �� � 
 �� ��� �
��

����� �
 ��� �� �
	

� 

	
� �



���� ��

�� ��� ��
	�
 �� �� �� �� �� �� ���

�

��
� (36)

We now combine (33), (34), and (36) with (31). The result in (11)
is obtained after substituting the appropriate values for all parame-
ters, i.e., � � ��, � � ��� , � � ��	�, � � ��
���

�
� , � �

��� and thereafter using the Euler’s reflection formula �� ������� �
�������� �� [21, eq. (6.1.17)] along with ��� 
 �� � ����� [21,
eq. (6.1.15)] to simplify.
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The proof starts by rearranging (5) as

���� � 	 ���	 ��� ��� 

�


��
������ (37)
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where we have used the following determinant property:
��� ��� ���������� � ��� ��� ����������. Then, as
� ���, the ergodic capacity in (5) simplifies to

�
�
��� � � �	
�

�

���

�
�

�� 
� ��� ���� �������

�
�

�� 
� �� ��� �

�
� � (38)

Since� is Rayleigh distributed, the term��
� follows a central (zero-

mean) Wishart distribution [1]–[5]. Using [2, eq. (A.8.1)], we can di-
rectly express the last term in (38) as

� �� ��� �
�
� �

���

���

� ��� 	� � (39)

Since ��� is diagonal, the second term in (38) is evaluated as

� ��� ���� ������� � � ��

��

���


��
��
� (40)

� ���

�

���

�� ����
� ���

�

���

� ��� �
��� (41)

��	

� ����

�

���

�� ���� ���

�

���

����� � ������� � (42)

Combining (38), (39) and (42) we can easily obtain (21).
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The proof follows a similar line of reasoning as in Theorem 4. In
general, the variance of the MI is given by

������ � � ���� � ������ (43)

Omitting explicit details, we express the MI variance in the high-SNR
regime according to

������� � ��� �	
� ���
�

���

�����
�

�
�

��� ��
��� ��� ���� ������� � ��� �� ��� �

�
� � (44)

The second term in (44) was given in [2, eq. (A.8.2)]

��� �� ��� �
�
� �

���

���

�
� ��� 	� (45)

while the first term of (44), after taking into account that the gamma
variates are i.i.d., evaluates as

��� ��� ���� ������� � ��

�

���

��� ��� �
���

��	

� ��

�

���

�

	

��� �
����
���
� � ����� � �������
�

� (46)

The proof concludes after substituting (2) into (46), using the integral
identity [17, eq. (4.358.2)]

�

�

�

��

�
��� ��� ��� �

����

�

������ ����� � ��� ��

for ����� � � �� and simplifying.
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