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Abstract—The capacity of wireless ad hoc networks is mainly
restricted by the number of concurrent transmissions. Recent
studies found that multi-packet reception (MPR) can increase
the number of concurrent transmissions and improve network
capacity. This paper studies the capacity of 2-D wireless networks
wherein each node can decode at mostk simultaneous transmis-
sions within its receiving range. We call such networksk-MPR
wireless networks. For comparison, we call traditional networks
1-MPR wireless networks. Suppose that the number of nodes in a
wireless network isn and each node can transmit atW bits/sec.
For arbitrary k-MPR wireless networks, we show that when
k = O(n), the capacity gain over 1-MPR networks isΘ(

√

k).
When k = Ω(n), the capacity isΘ(Wn) bit-meters/sec and the
network is scalable. For random k-MPR wireless networks, we
show that when k = O(

√

log n), the capacity upper bound and
lower bound match and the capacity gain over 1-MPR networks is
Θ(k). When k = Ω(

√

log n), even the lower bound has a capacity
gain of Θ(

√

log n) over 1-MPR networks. From these results, we
conclude that the main constraints fork-MPR wireless networks
to utilize MPR ability are the limited number of transmitters
and the limited number of flows served by each node.

Index Terms—Capacity, Scaling law, Multi-packet reception

I. I NTRODUCTION

T HE seminal work of Gupta and Kumar [1] derived that
the wireless network capacity scales asΘ(W

√
n) bit-

meters/sec in arbitrary networks while scales asΘ(W
√

n
log n

)

bits/sec in random networks wheren is the number of nodes.
For infrastructure wireless mesh networks, P. Zhou et al. [2]
derived that the per-client throughput decreases as the number
of clients increases. The main reason for these throughput
degradations is that all wireless nodes share the same wireless
medium and the number of concurrent transmissions is limited.

As the successive interference cancellation (SIC) circuits
with simple implementation and low complexity have been
introduced, multi-packet reception (MPR) becomes a reality
[8], which provides potential to increase the number of con-
current transmissions and improve the network capacity. Past
researches on the capacity of MPR-based wireless networks
derived their results assuming that all the transmissions within
the receiving range of a node can be decoded, however, as the
number of transmissions within the receiving range increases,
the receiver cannot decode all of them. The reason is as
follows. As shown in [8], the main idea of SIC is to cancel
each received signal one by one in the decreasing order of
the signal strength and the signal cancellation process delay
is restricted by the speed of performing Walsh-Hadamard
Transform (WHT), so the possible number of cancellations
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is limited, which leads to the limited number of decoded
transmissions.

Using a more practical interference model compared with
[5], [6], this paper studies the capacity of 2-D MPR-based
wireless ad hoc networks assuming that a wireless interface
can decode at mostk, k ≥ 1 transmissions within its receiving
range. We call such networksk-MPR wireless networks. For
comparison, we call traditional networks 1-MPR wireless
networks. The MPR ability,k, depends on the hardware
implementation. We study how the capacity of 2-D k-MPR
wireless networks scales withk and the number of wireless
nodes,n, in both arbitrary and random scenarios.

The remainder of the paper is organized as follows. We
summarize the related work in Section II. Section III describes
the network model and main results. In Section IV, we prove
the results for arbitrary networks. The proofs for the results
of random networks are presented in Section V. We discuss
the derived results in Section VI. Section VII concludes our
work.

II. RELATED WORK

Assuming that a node can concurrently send to and re-
ceive from many nodes when using FDMA and CDMA,
R. M. D. Moraes et al. [3] studied the upper bound and lower
bound of link’s Shannon capacity and per source-destination
throughput. G. D. Celik et al. [4] presented new backoff
mechanisms for MPR-based wireless networks to deal with
unfairness and improve network throughput. Assuming that all
the transmissions within the receiving range of a receiver can
be decoded, J. J. Garcia-Luna-Aceves et al. [5] have shown
that 3-D random MPR-based wireless network has a capacity
gain of Θ(log n). Also assuming that all the transmissions
within receiving range can be decoded, J. J. Garcia-Luna-
Aceves et al. [6] took SINR and Shannon link capacity
into the capacity analysis and gave their results. Using more
realistic protocol model compared with [5], [6], X. Wang et
al. [7] assumed that at mostM simultaneous transmissions
within the receiving range of a receiver can be decoded and
maximized the aggregate network throughput by formulating
an optimization problem.

According to the survey of the related work, we can see
that this paper is the first work studying the capacity of 2-D

MPR-based wireless networks using a practical model, which
assumes that an interface can decode at mostk transmissions
within its receiving range. Our contributions can be summa-
rized as follows:

• To the best knowledge of us, this paper is the first work
studying the capacity of such networks in both arbitrary
and random scenarios.

• From the derived results, we get some valuable design
implications fork-MPR wirelesss networks.
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The maximum number of concurrent receptions, k

Fig. 1. The capacity of arbitrary k-MPR wireless networks (figure is not to
scale). The upper bound and lower bound match exactly.

III. N ETWORK MODEL AND MAIN RESULTS

A. Network Model

In this work, we suppose that each node is equipped with
one k-MPR wireless interface, which can decode at mostk

transmissions within its receiving range. We call such ability
k-MPR ability. Each node can transmit atW bits/sec over
a common wireless channel. We consider a more general
scenario where the channel is divided intoM subchannels,
each of which has a capacity ofWm bits/sec,1 ≤ m ≤ M and
∑M

m=1 Wm = W . Transmissions are slotted into synchronized
slots of the same lengthτ . Packets are sent from source to
destination in multi-hop.

1. Arbitrary Networks

In an arbitrary k-MPR wireless network,n nodes are
arbitrarily located in a disk of unit area in the plane. Each node
has an arbitrarily chosen destination to which it could send
traffic at an arbitrary rate. Each node can choose an arbitrary
power level for each transmission. Under these assumptions,
we give the protocol interference model for arbitraryk-MPR
wireless networks as follows.

Supposek nodes,{Xip|1 ≤ p ≤ k}, transmit to nodeXj

simultaneously. These transmissions are successfully decoded
by nodeXj if

|Xq − Xj | ≥ max
1≤p≤k

(1 + ∆) |Xip − Xj |

for any other nodeXq simultaneously transmitting over the
same subchannel.

Similar as [1], the quantity∆ > 0 models a guard zone that
prevents a neighboring node from transmitting on the same
subchannel at the same time.

2. Random Networks

In a randomk-MPR wireless network,n nodes are randomly
located, i.e., independently and uniformly distributed, on the
surface of a torus of unit area. Each node has one flow to
a randomly chosen destination to which it wishes to send at
λ(n) bits/sec. Each node employs the same receiving range
r(n) for each reception. Under these assumptions, we give
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Fig. 2. Upper bound and lower bound for the capacity of randomk-MPR
wireless networks (figure is not to scale).

the protocol interference model for randomk-MPR wireless
networks as follows.

Supposek nodes,{Xip|1 ≤ p ≤ k}, transmit to nodeXj

simultaneously. These transmissions are successfully decoded
by nodeXj if

(1) The distance betweenXip andXj is no more thanr(n).

max
1≤p≤k

|Xip − Xj | ≤ r(n)

and
(2) For any other nodeXq simultaneously transmitting over

the same subchannel, the following inequation holds.

|Xq − Xj | ≥ (1 + ∆)r(n)

B. Main Results

The results of this paper are presented as follows.

1. Arbitrary Networks

In an arbitrary network, the network capacity is measured
in terms of “bit-meters/sec” (introduced by [1]). As shown in
Fig. 1, the capacity of arbitraryk-MPR wireless networks is
as follows:

(1) When k = O(n), the network capacity isΘ(W
√

kn)
bit-meters/sec.

(2) Whenk = Ω(n), the network capacity isΘ(Wn) bit-
meters/sec.

Note that Fig. 1 is not to scale. To simplify the illustration,
we use piecewise linear curve to represent the capacity scaling
law, although the scaling function is not piecewise linear.This
figure convention also applys in Fig. 2.

2. Random Networks

In random networks, the network capacity is measured in
terms of “bits/sec”. We give a lower bound and an upper
bound for the capacity of randomk-MPR wireless networks.
As shown in Fig. 2, the network capacity exhibits different
bounds as the order ofk varies.

When k = O(
√

log n), the lower bound and upper bound
match exactly and the network capacity isΘ(Wk

√

n
log n

)

bits/sec.
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Fig. 3. Routing through cells in a random k-MPR wireless network

When k = Ω(
√

log n), the network capacity isΩ(W
√

n)
bits/sec. The capacity upper bound is presented as follows:

(1) When k = Ω(
√

log n) and k = O( log n

log log n
), network

capacity isO(Wk
√

n
log n

) bits/sec.

(2) Whenk = Ω( log n

log log n
) andk = O(n), network capacity

is O(W
√

kn√
log log n

) bits/sec.

(3) When k = Ω(n), network capacity isO( Wn√
log log n

)
bits/sec.

IV. CAPACITY OF ARBITRARY NETWORKS

Firstly, we derive the upper bound for the capacity of
arbitraryk-MPR wireless networks in Section IV-A. Secondly,
in order to illustrate that the upper bound is tight, we give
a constructive lower bound, which matches the upper bound
exactly, in Section IV-B.

A. Upper Bound

In an arbitraryk-MPR wireless network, we suppose the
whole network transportsλnT bits over T seconds. The
average distance between the source and the destination of a
bit is L meters. Consequently a capacity ofλnL bit-meters/sec
is achieved. Under the network model we described in Section
III- A, we have the following theorem.

Theorem 1:Under the protocol model, the upper bound for
the capacityλnL of arbitrary k-MPR wireless networks is
presented as follows:

1. Whenk = O(n), λnL = O(W
√

kn) bit-meters/sec.
2. Whenk = Ω(n), λnL = O(Wn) bit-meters/sec.

Proof: When k is O(n), we use similar techniques used
in [1] to prove the result. There are two main differences in
our proof. Firstly, different from [1], then nodes should be
grouped to utilize thek-MPR ability. Secondly, in [1], the
disks centered at receivers should be disjoint and at one time
slot there is at most one transmission in each disk. In our
proof, these disks are also disjoint but there are at mostk

transmissions in each disk. Whenk = Ω(n), since there are
not enough transmitters to further improve the throughput,the
network capacity is at most the capacity whenk = Θ(n),
which has been given. Due to space constraint, we omit the
full proof.

E flow
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Fig. 4. The flows served by cell C are classified into 4 categories (E, S, W,
N flows).

B. A Constructive Lower Bound

In this section, we will show that the upper bound in the
previous section is tight by achieving it. For deriving the
achieved lower bound, we present the following lemma.

Lemma 1:Supposek1 = O(k2), C1 is the capacity of
k1-MPR wireless networks,C2 is the capacity ofk2-MPR
wireless networks, thenC1 = O(C2).

Proof: Thek2-MPR wireless networks can imitatek1-MPR
wireless networks by restrictingk2-MPR ability to k1-MPR
ability. Hence the capacity ofk2-MPR wireless networks is
at least the capacity ofk1-MPR wireless networks. Hence we
get the lemma.

Note that Lemma 1 applys in both arbitrary networks and
random networks.

Theorem 2:The lower bound for the capacity of arbitrary
k-MPR wireless networks is presented as follows:

1. Whenk = O(n), λnL = Ω(W
√

kn) bit-meters/sec.
2. Whenk = Ω(n), λnL = Ω(Wn) bit-meters/sec.

Proof: Whenk = o(n), we use the similar node deployment
used in [1] to prove the result. The only difference is that at
each transmitting location we placek nodes rather than only
deploy one node. A receiver and itsk nearest transmitters
form a transmitting group. There arek transmissions for each
group. Whenk = Θ(n), for construction we suppose that
n = k + 1 and there is only one transmitting group. The
result whenk = Ω(n) can be deduced from the result when
k = Θ(n) by Lemma 1. Due to space constraint, we omit the
full proof.

V. CAPACITY OF RANDOM NETWORKS

In a randomk-MPR wireless network, we suppose that each
node sends atλ(n) bits/sec to its destination. The highest value
of λ(n) that can be supported by every source-destination pair
with high probability is defined as the per-node throughput of
the network. The traffic between a source-destination pair is
referred to as “flow”. Since there aren flows in total, the
network capacity is defined to benλ(n). In Section V-A, we
give a constructive lower bound for the capacity of random
k-MPR wireless networks. In Section V-B, we give a loose
upper bound.
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A. A Constructive Lower Bound

In order to establish a lower bound, we construct a routing
scheme and a transmission scheduling scheme for any random
k-MPR wireless network.

1. Cell Construction

Utilizing the approach used in [9], we divide the surface
of the unit torus into square cells, each of which has an
area ofa(n). We choose the receiving ranger(n) of each
node to be

√

8a(n). With this range, a node in one cell can
communicate with any node in its eight neighboring cells.
The area of each cell,a(n), should be carefully chosen to
satisfy multiple constraints, which will be described later.
We seta(n) = min(max( 100 log n

n
, k

n
), ( log log n

log n
)2). The first

constraint is connectivity constraint. The cell sizea(n) should
be large enough, say,a(n) ≥ 100 log n

n
, to gurantee network

connectivity. The second constraint is used to gurantee that
each node has at leastk neighbors to utilize thek-MPR ability.
The cell size should be large enough, say,a(n) ≥ k

n
, to ensure

that each node has at leastk neighbors. The third constraint
is to ensure that the network can at least accommodate the
terminating flows of each node. The cell size should be chosen
small enough, say,a(n) ≤ ( log log n

log n
)2 to satisfy this constraint.

We will discuss the third constraint in detail in the discussion
on the routing scheme. For construction, we use the following
lemma to bound the number of nodes in each cell. This lemma
has been proved in [11].

Lemma 2: If a(n) > 50 log n

n
, then each cell hasΘ(na(n))

nodes, with high probability.

By construction, we gurantee thata(n) ≥ 100 log n

n
for large

n by setting a(n) = min(max( 100 log n

n
, k

n
), ( log log n

log n
)2).

Consequently, Lemma 2 holds and each cell hasΘ(na(n))
nodes.

2. Routing Scheme

The routing scheme consists of two steps, cell assignment,
and then node assignment.

Cell Assignment –Cells are assigned to serve each flow of
the network. As shown in Fig. 3, packets of a flow are routed
through the cells that lie along the straight line joining the
source and the destination node. For each intersected cell of
a flow (source-destination line), we choose a node to relay
the traffic of this flow (we will describe the node assignment
scheme later). We should consider a special case wherein the
line passes a grid point exactly, say,Q, in Fig. 3. In this case,

11

Fig. 6. 1-Conflict Structures

22

Fig. 7. 2-Conflict Structures

we require the cell on the right side ofQ to serve this flow.
Hence in Fig. 3 the packets of flowS-D should be firstly
relayed from cell 1 to cell 2 and then be relayed from cell 2
to cell 3.

Node Assignment –For each flow served by a cell, we
select a node from the cell to serve this flow. According to
the cell assignment scheme, the next hop for any flow must
be within one of the four neighboring cells: the northern,
southern, eastern and western neighboring cell. Each flow
served by a cell can be classified by direction into one of four
cardinal categories. A served flow whose next hop is within
the northern neighboring cell is called aN flow served by this
cell. Similarly, we can defineS, E, W flows served by a cell.
The examples ofN , S, E andW flows served by cellC can
be found in Fig.4.

The node assignment scheme has two steps. In step one,
the source node and destination node of a flow are assigned
to serve the flow. In step two, we assign nodes to serve those
flows that pass through a cell. For each passing flow of a cell,
the node, which has been assigned to the least number of flows
of the same category so far, is assigned to serve the flow. This
step evenly distributes the flows of each category among the
nodes of a cell. Hence for each flow category, all nodes serve
nearly the same number of flows. The node assigned to a flow
will receive packets from the assigned node in the previous
cell and send the received packets to the assigned node in the
next cell.

We present the following lemma to bound the number of
source-destination lines that pass through any cell. This lemma
is proved in [9].

Lemma 3:The number of source-destination lines passing
through any cell (including lines originating and terminating
in the cell) isO(n

√

a(n)) with high probability.

From Lemma 2 and Lemma 3, we conclude that each node
servesO( 1√

a(n)
) flows.

After introducing the routing scheme, we discuss the third
constraint for cell size. Because each node picks a destination
node randomly, a node may be the destination of multiple
flows. Let D(n) be the maximum number of flows that have
the same destination node. We use the following lemma to
boundD(n). This lemma is proved in [11].

Lemma 4:The maximum number of flows for which a node
in the network is a destination,D(n), is Θ( log n

log log n
), with high

probability.

Because each node should at least accommodate the
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flows that have the node as destination, we should ensure
1√
a(n)

= Ω(D(n)). Hence the cell sizea(n) should not exceed

Θ(( log log n

log n
)2).

3. Scheduling Transmissions

The scheduling scheme aims to schedule each flow with
equal opportunity (i.e., all flows in a local region are served
with same time slots) while satisfying the following con-
straints.

(1) A node cannot transmit and receive simultaneously,
since each node has only onek-MPR wireless interface.

(2) A node cannot transmit to more than one receivers
simultaneously. The reason is the same as that of con-
straint (1).

(3) Any two simultaneous transmissions should not interfere
with each other under the protocol model.

(4) In order to utilizek-MPR ability, the transmissions for
the same receiver should be concurrent.

For scheduling transmissions, we define a new scheduling
unit “Structure”. In Fig. 5, the five cells surrounded by the red
line compose a structure. We call the centering cell receiving
cell (R-Cell). Each of the four neighboring cells of aR-Cell is
called transmitting cell (T -Cell). For calculating the achieved
network capacity, we consider the transmission scheduling
in one second. We divide one second into several big slots,
“Structure Slots”. Then we further divide each structure slot
into smaller slots, “Flow Slots”.

We build a schedule using a two-layer process. The first
layer is “Structure Layer” and the second layer is “Flow
Layer”. On the structure layer, we schedule the structures with
structure slots to avoid conflicts and interferences between
any two structures. On the flow layer, we schedule the in-
dividual flows with flow slots. After illustrating the two layer
scheduling scheme, we will prove that the scheduling scheme
schedules each flow with equal opportunity while satisfying
the four constraints. Hence this scheme is feasible.

Structure Layer –On the structure layer, we schedule the
structures satisfying the following requirements

(1) In any structure slot, a cell cannot act as both aT -Cell
and aR-Cell.

(2) In any structure slot, there is only oneR-Cell for each
T -Cell.

(3) In any structure slot, the transmissions of one structure
should not interfere with the transmissions of any other
structure under the protocol model.

Based on the three requirements, we introduce the definition
of i-conflict structure, 1 ≤ i ≤ 3. If structureA andB cannot
be scheduled in same structure slot due to requirement (i),
1 ≤ i ≤ 3, we say that structureA is a i-conflict structureof
structureB, and vice versa. StructureA andB are i-conflict
structures with each other.

Theorem 3:Under the protocol model, there is a schedule
such that in everyc structure slots, each structure in the tessel-
lation gets one structure slot such that the three requirements
are satisfied wherec depends only on∆.

Proof: To prove the theorem, we should satisfy each of the
three requirements.

Firstly, to satisfy the requirement (1), we should ensure that
the 1-conflict structures are scheduled in different structure
slots. As shown in Fig. 6, cell 1 acts as aR-Cell in the
red structure (the left structure) while it acts as aT -Cell in
the green structure (the right structure). Hence red and green
structures are 1-conflict structures with each other. In ourgrid
tessellation, the number of 1-conflict structures for a structure
is a constant, say,c′1 (in fact, it is four).

Secondly, as shown in Fig. 7, cell 2 acts as aT -Cell in the
red structure (the lower left structure) while it acts as aT -Cell
in the blue structure (the upper right structure). Hence thered
and blue structures are 2-conflict structures with each other.
In our grid tessellation, the number of 2-conflict structures for
a structure is constant, say,c′2 (in fact, it is eight).

Thirdly, we will satisfy the requirement (3). LetN1 denote
the number of interfering cells of each cell in a random 1-
MPR network (the cell tessellation is the same with that we
described above). LetN2 denote the number of interfering
cells for each cell in a randomk-MPR network. LetN3 denote
the number of interfering structures of each structure in a
randomk-MPR network. Since only theR-Cell of a structure
can be interfered by other cells, we haveN3 ≤ N2. Since the
only difference between the protocol models of 1-MPR andk-
MPR networks isk concurrent reception, we haveN2 ≤ N1.
Hence we haveN3 ≤ N1. [11] has shown thatN1 is upper
bounded by a number, say,c′3, which depends only on∆.
Hence the number of 3-conflict structures for a structure is
less thanc′3.

Letting each structure denote a node, we build an inter-
ference graph. There is an edge between two nodes, if the
corresponding two structures of the two nodes are i-conflict
structures,1 ≤ i ≤ 3, with each other. From the analysis
above, we conclude that the maximum vertex degree of this
interference graph is at mostc′1+c′2+c′3. Let c′ = c′1+c′2+c′3.
According to [12], the interference graph can be vertex-colored
with at most(c′ + 1) colors. Lettingc = c′ + 1, we get the
theorem.

Flow Layer – On the flow layer, we build a two-phase
scheme to schedule each flow served byR-Cell using the
k-MPR ability when a structure is scheduled for a structure
slot. To achieve the scheduling objective, flow layer scheduling
should ensure that each flow is served with equal number of
flow slots in a structure slot. To achieve this goal and to be
feasible, flow layer scheduling should satisfy the following
requirements.

(1) In both phases, the number of concurrent receptions
cannot exceed the number of transmitters.

(2) In the second phase, the number of concurrent receptions
cannot exceed the number of flows each node serves.

We will show that these requirements are necessary condi-
tions for feasible flow layer scheduling later.

Because of these requirements, we cannot always fully
utilize the k-MPR ability and the feasible number of con-
current receptions cannot always bek. Hence for flow layer
scheduling, we define “g” as the feasible number of concurrent
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receptions whereg ≤ k.

First Phase –In this phase, each flow gets a flow slot to
be transmitted from theT -Cell to theR-Cell. For each node
in the T -Cells, each of the served flows whose next hops
are in theR-Cell is transmitted for one flow slot. Since we
use multi-packet reception, the number of receivers is less
than the number of transmitters ( ideally, the ratio between
transmitters and receivers isk, when k-MPR ability is fully
utilized). The other nodes inR-Cell do nothing in first phase.
By construction, we arbitrarily select a portion (this portion,
which is dependent ong, will be discussed later) of nodes
from each cell and use them as receivers when the cell acts
as aR-Cell in the first phase. We call these receivers of a
R-Cell in first phase “Busy Nodes” and call all of the other
nodes “Free Nodes”. In the first phase, busy nodes receive
transmissions on behalf of aR-Cell. Additionally, the flows
served by free nodes but received by busy nodes in first phase
should be distributed uniformly among the busy nodes for
utilizing multi-packet reception in second phase.

Second Phase –In this phase, each flow served by free
nodes is assigned a flow slot to be transmitted from busy nodes
to free nodes using thek-MPR ability. The transmitters in this
phase are busy nodes.

Theorem 4:Using the two-phase flow layer scheduling, for
a scheduled structure, each flow served by theR-Cell can be
assigned one effective flow slot to be transmitted from the
serving node in theT -Cell to the serving node in theR-Cell.

Proof: The flows served by theR-Cell can be classified
into two categories. The first category includes all the flows
served by the busy nodes of theR-Cell. The second category
includes all the flows served by free nodes ofR-Cell. For the
first category, each of the flows is assigned only one flow slot
in the first phase. Hence each flow is transmitted from the
serving node in theT -Cell to the serving node in theR-Cell
for one effective flow slot. For the second category, each of
the flows is assigned two flow slots (one in the first phase and
one in the second phase). Since in the first assigned flow slot,
the flow is transmitted fromT -Cell to a temporary receiver,
the number of effective assigned flow slots is only one (the
one assigned in second phase). Hence in flow layer scheduling,
each of the flows served by theR-Cell gets one effective flow
slot to be transmitted from the serving node in theT -Cell to
the serving node in theR-Cell.

After introducing the two-phase process, we present the
following theorem to show that the two requirements are
necessary for feasible flow layer scheduling.

Theorem 5:If flow layer scheduling withg concurrent re-
ceptions is feasible, then requirement (1) and (2) are satisfied.

Proof: Firstly, we prove that requirement (1) is a necessary
condition for feasible flow layer scheduling withg concurrent
receptions. If requirement (1) is not satisfied,g is larger than
the number of transmitters in the first or second phase. Hence
we have not enough transmitters to fully useg concurrent
receptions and flow layer scheduling withg concurrent recep-
tions is infeasible, which contradicts the assumption. Secondly,

we prove that requirement (2) is a necessary condition for
feasible flow layer scheduling withg concurrent receptions. If
requirement (2) is not satisfied,g is larger than the number of
flows each node serves in second phase. As a result, to makeg

concurrent receptions feasible, some or all of the flows served
by free nodes are assigned more than one flow slot because
there are not enough flows for assigning each flow one flow
slot to fully useg concurrent receptions. However, each of
these flows is assigned only one flow slot in first phase and
in each flow slot, a node sends at a data rate which is at most
W bits/sec, so the maximum number of bits of each flow to
be transmitted in second phase is at mostW · (length of flow
slot). Hence in order to keep flow conservation, in second
phase, in all the assigned flow slots for each flow (including
the added flow slots), the total number of transmitted bits of
the flow cannot exceedW ·( length of flow slot). Consequently
the added flow slots due tog concurrent receptions contribute
nothing to the capacity. Henceg concurrent receptions is
infeasible, which contradicts the assumption.

We give the following theorem to justify the proposed two-
layer scheduling scheme.

Theorem 6:The proposed two-layer scheduling scheme is
feasible and schedules each flow with equal opportunity.

Proof: As each cell can act either as aR-Cell or aT -Cell
and according to the routing scheme all the flows served by a
cell are from the fourT -Cells, each flow in the network can
be served. From Theorem 4, we conclude that each flow is
served with equal opportunity. Next, we prove that the scheme
satisfies the four constraints to conclude that the scheme is
feasible. Firstly, on the structure layer, a cell cannot actboth
as aR-Cell and act as aT -Cell in any structure slot and on
the flow layer, a node cannot both transmit and receive in
any flow slot, so constraint (1) is satisfied. Secondly, on the
structure layer, there is only oneR-Cell for eachT -Cell in any
structure slot and on the flow layer, a transmitter has only one
receiver in any flow slot, so constraint (2) is satisfied. Thirdly,
on the structure layer, the transmissions of a structure do not
interfere with transmissions of any other structure under the
protocol model in any structure slot and on the flow layer,
at mostk flows are scheduled in any flow slot, so there is no
interference between any two transmissions under the protocol
model and constraint (3) is satisfied. Fourthly, on the flow
layer, g receptions of a receiver is scheduled in same flow
slot, so the constraint (4) is satisfied. Consequently we getthe
theorem.

4. The achieved capacity lower bound

After introducing the whole scheduling scheme, we discuss
the capacity lower bound for randomk-MPR wireless net-
works. Recalling that each node servesO( 1√

a(n)
) flows, for

requirement (2) of flow layer scheduling, we should ensure
that the number of concurrent receptions isO( 1√

a(n)
) in the

second phase.

a. Whenk = O(
√

log n), we have the following lemmas
for the capacity lower bound.

Lemma 5:When k = O(
√

log n), we can fully utilizek-
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MPR ability and the number of concurrent receptions isk.

Proof: To prove the lemma, we need to show that with
k concurrent receptions, the requirement (1) and (2) are
satisfied. Note that whenk = O(

√
log n) , the cell size

a(n) is 100 log n

n
. In first phase, it can be concluded from

the node assignment scheme that the number of transmitters
is Θ(na(n)) = Θ(log n) = Ω(k). In second phase, the
number of transmitters (busy nodes),Θ(na(n)

k
), isΩ(k). Hence

requirement (1) is satisfied. Sincek = O(
√

log n), k is
O( 1√

a(n)
). Hence requirement (2) is satisfied.

Based on Lemma 5, we present the following lemma for
the capacity lower bound whenk = O(

√
log n).

Lemma 6:Whenk = O(
√

log n), nλ(n) = Ω(kW
√

n
log n

)

bits/sec.

Proof: In the first phase, since the number of flows is
O(n

√

a(n)) and the number of concurrent receptions isk,

we needO(
n
√

a(n)

k
) flow slots to assign each flow one flow

slot. In the second phase, the number of flows to be redis-
tributed from busy nodes to free nodes isO((k−1

k
)n

√

a(n)) =

O(n
√

a(n)), so we also needO(
n
√

a(n)

k
) flow slots to as-

sign each flow one flow slot. Consequently, for flow layer

scheduling, we needO(
n
√

a(n)

k
) flow slots to schedule the

flows served byR-Cell such that each flow is assigned one
effective flow slot to be transmitted from the serving node in
T -Cell to the serving node inR-Cell.

We divide one second intoc structure slots and divide each
structure slot intoO(

n
√

a(n)

k
) flow slots, each of which has a

length ofΩ( k

cn
√

a(n)
) seconds. Since each node can transmit at

the rate ofW bits/sec, in each flow slot,λ(n) = Ω( kW

cn
√

a(n)
)

bits can be transported. HenceΩ( kW

cn
√

a(n)
) bits of each flow

can be transmitted in one second. According to Theorem 3,c

is a number dependent only on∆. Sincea(n) = 100 log n

n
, we

get the lemma.

b. Whenk = Ω(
√

log n) and k = O(
√

n), we have the
following lemmas for the capacity lower bound.

Lemma 7:Whenk = Ω(
√

log n) andk = O(
√

n), we can
partially use thek-MPR ability and the number of concurrent
receptions isΘ(

√

na(n)).

Proof: Note that whenk = Ω(
√

log n) andk = O(
√

n), the
cell sizea(n) is k

n
. Firstly, we prove that whenk = Ω(

√
log n)

and k = O(
√

n), we cannot fully use thek-MPR ability
and the number of concurrent receptions,g, cannot bek.
To see this, if the number of concurrent receptions isk,
in second phase, the number of transmitters (busy nodes) is
Θ(na(n)

k
) = Θ(1) = O(k). Hence the number of concurrent

receptions exceeds the number of transmitters, which con-
tradicts requirement (1). Hence we cannot fully use thek-
MPR ability. Secondly, we prove that we can partially use
the k-MPR ability and the number of concurrent receptions
is Θ(

√

na(n)). To see this, if the number of concurrent
receptions,g, is Θ(

√

na(n)), in the first phase, it’s easy to see
that the number of concurrent transmissions does not exceed

the number of transmitters. In second phase, the number of
transmitters isΘ(na(n)

g
) = Θ(

√

na(n)), which has the same
order compared with the number of concurrent receptions,g.
Hence requirement (1) is satisfied. Sincek = O(

√
n), we have

g = Θ(
√

na(n)) = O( 1√
a(n)

) in the second phase. Hence

requirement (2) is satisfied.

Based on Lemma 7, we present the following lemma for the
capacity lower bound whenk = Ω(

√
log n) andk = O(

√
n).

Lemma 8:When k = Ω(
√

log n) and k = O(
√

n),
nλ(n) = Ω(W

√
n) bits/sec.

Proof: Whenk = Ω(
√

log n) andk = O(
√

n), the number
of concurrent receptions,g, is Θ(

√

na(n)). Substitutingk

with Θ(
√

na(n)), using the similar techniques used in proof
for Lemma 6, we get the lemma.

c. Whenk = Ω(
√

n), we have the following lemma for the
capacity lower bound.

Lemma 9:Whenk = Ω(
√

n), nλ(n) = Ω(W
√

n) bits/sec.

Proof: According to Lemma 1, whenk = Ω(
√

n), the
achieved capacity is at least the achieved capacity when
k = Ω(

√
log n) and k = O(

√
n). Sincenλ(n) = Ω(W

√
n)

bits/sec whenk = Ω(
√

log n) and k = O(
√

n), when
k = Ω(

√
n), nλ(n) = Ω(W

√
n) bits/sec.

Based on Lemmas 6, 8 and 9, the capacity lower bound can
be presented as follows.

Theorem 7:The lower bound for the capacity of random
k-MPR wireless networks is as follows:

1. When k = O(
√

log n), nλ(n) = Ω(kW
√

n
log n

)

bits/sec.
2. Whenk = Ω(

√
log n), nλ(n) = Ω(W

√
n) bits/sec.

B. Upper Bound

In this section, we give the upper bound for the capacity
of randomk-MPR wireless networks. The capacity of random
k-MPR wireless networks is constrained by three constraints,
destination bottleneck constraint, general constraint and inter-
ference constraint respectively. For each of these constraints,
there is an upper bound for the network capacity. These upper
bounds together define the upper bound for the capacity of
randomk-MPR wireless networks.

Destination Bottleneck Constraint –The capacity of random
k-MPR wireless networks is constrained by the data that can
be received by a destination node. Using similar techniques
used in [11], we can get following upper bound for this
constraint.

1. Whenk = O(n), nλ(n) = O(Wnk log log n

log n
) bits/sec.

2. Whenk = Ω(n), nλ(n) = O(Wn2 log log n

log n
) bits/sec.

General Constraint –Since a randomk-MPR wireless
network is a special kind of arbitraryk-MPR wireless net-
work, the capacity upper bound for arbitrary networks is also
applicable in randomk-MPR wireless networks. Because the
distance between the source and destination of a flow isΘ(1),
we have the following capacity upper bound.
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1. Whenk = O(n), nλ(n) = O(W
√

kn) bits/sec.
2. Whenk = Ω(n), nλ(n) = O(Wn) bits/sec.

Interference Constraint –Since we need to avoid the
interference, we present the upper bound for this constraint
below.

Theorem 8:To satisfy the interference constraint, the ca-
pacity of randomk-MPR wireless networks is bounded as
follows

1. When k = O( log n

log log n
), nλ(n) = O(Wk

√

n
log n

)

bits/sec.
2. When k = Ω( log n

log log n
) and k = O(n), nλ(n) =

O(W
√

kn
log log n

) bits/sec.

3. Whenk = Ω(n), nλ(n) = O( Wn√
log log n

) bits/sec.

Proof: To prove the theorem, we use similar techniques
used in [1]. Firstly, based on the area consuming observation,
we can bound the total data rate of the whole network,
D1. Secondly, by lower bounding the number of hops for a
flow, we can lower bound the data rate served by the whole
network,D2, which is dependent on the receiving range,r(n).
Obviously, we haveD2 ≤ D1. To make the upper bound
tight, we should ensure that the network is connected and
each node has at leastk neighbors to utilize thek-MPR
ability. According to the results of [10], we can take the

receiving range,r(n) ≥
√

log n+2k log log n

πn
to satisfy these

two requirements. Discussing the order ofk, we can get the
theorem based on the inequationD2 ≤ D1. Due to the space
constraint, we omit the full proof.

Because the first two upper bounds are loose compared with
the third one, the third upper bound is the upper bound for
the capacity of randomk-MPR wirelesss networks.

VI. D ISCUSSIONS

We analyze the derived results in this section. As shown in
Section IV, the capacity of arbitraryk-MPR wireless networks
becomesΘ(Wn) bit-meters/sec whenk = Ω(n), which
means the network is truly scalable. The main reasons for
this scalable network are the arbitrary deployment of nodes
and arbitrary traffic pattern, which allow us to deploy nodes
and plan the traffic pattern properly in order to fully utilize
the k-MPR ability.

On the other hand, in randomk-MPR wireless networks,
both the deployment of nodes and the traffic pattern are
random, so we cannot intentionally deploy the nodes and plan
the traffic pattern to fully utilize thek-MPR ability. Receivers
should redistribute the received flows to more nodes in order
to allow more transmitters to transmit the flows, which utilizes
thek-MPR ability better. Recalling our constructive procedure
for the lower bound, whenk is small enough, say,k =
O(

√
log n), the random network has enough transmitters and

flows to fully utilize thek-MPR ability so the capacity gain
over 1-MPR networks is exactlyΘ(k). Whenk = Ω(

√
log n),

since k is too large, there are not enough transmitters or
enough flows to fully utilize thek-MPR ability. Consequently
we can only employ part of thek-MPR ability and the capacity
gain of the lower bound over 1-MPR networks isΘ(

√
log n).

Satisfying the destination bottleneck constraint, the general
constraint and the interference constraint, we give a loose
upper bound. We see that this upper bound is loose by noting
that in the deriving process of this upper bound, the receivers
do not redistribute flows to more nodes for future transmissions
using thek-MPR ability. Consequently, for later transmissions,
there are not enough transmitters to utilize thek-MPR ability.
Hence this upper bound cannot be achieved by any random
k-MPR wireless network in fact.

In summary, the main constraints for randomk-MPR wire-
less networks to utilize thek-MPR ability are the limited
number of transmitters and the limited number of flows each
node serves. To address the first constraint, the receivers need
to distribute the received flows to more nodes for future
transmissions. To address the second constraint, we should
assign more flows to each node (i.e., assign the same flow
to more nodes to balance the traffic load and improve the
robustness of the network).

VII. C ONCLUSIONS

In this work, we study the capacities of both arbitraryk-
MPR wireless networks and random networks. We equip each
node in the network with onek-MPR wireless interface. Each
interface is able to decode at mostk concurrent transmissions
within its receiving range. Under these assumptions, we have
shown that for arbitrary networks, whenk = O(n), there is
a Θ(

√
k) capacity gain over 1-MPR wireless networks. When

k = Ω(n), the capacity of arbitraryk-MPR wireless networks
is Θ(Wn) bit-meters/sec and the network is scalable. For
random networks, we give a constructive lower bound and
an upper bound for the network capacity. We have shown that
even the lower bound has a capacity gain ofΘ(

√
log n) over 1-

MPR random wireless networks whenk is large enough. From
these results, we conclude that the main constraints for the
capacity of randomk-MPR wireless networks are the limited
number of transmitters and the limited number of flows served
by each node.
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