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Abstract—This paper deals with the capacity behavior of wire-
less orthogonal frequency-division multiplexing (OFDM)-based
spatial multiplexing systems in broad-band fading environments
for the case where the channel is unknown at the transmitter and
perfectly known at the receiver. Introducing a physically moti-
vated multiple-input multiple-output (MIMO) broad-band fading
channel model, we study the influence of physical parameters such
as the amount of delay spread, cluster angle spread, and total angle
spread, and system parameters such as the number of antennas
and antenna spacing on ergodic capacity and outage capacity. We
find that, in the MIMO case, unlike the single-input single-output
(SISO) case, delay spread channels may provide advantages over
flat fading channels not only in terms of outage capacity but
also in terms of ergodic capacity. Therefore, MIMO delay spread
channels will in general provide both higher diversity gain and
higher multiplexing gain than MIMO flat-fading channels.

Index Terms—Broad-band fading channels, diversity gain, er-
godic capacity,MIMO,multiplexing gain, OFDM, outage capacity.

I. INTRODUCTION AND OUTLINE

T
HEUSEOFmultipleantennasatbothendsofawireless link

has recently been shown to have the potential of achieving

extraordinary bit rates [1]–[4]. The corresponding technology is

known as spatial multiplexing [1] or BLAST [2], [5] and allows

an increase in bit rate in a wireless radio link without additional

power or bandwidth consumption. So far, most of the research in

this context has focused on the narrow-band flat-fading case. Ex-

tensive investigations on the capacity of narrow-band flat-fading

(deterministic and stochastic) multiple-input multiple-output

(MIMO) channels (assuming different levels of channel state

information at the transmitter and the receiver) can be found in

[2], [3], and [5]–[8].

1) Contributions: For a broad-band MIMO fading channel

model, which is based on previous work reported in [9], [10], we

provide expressions for the ergodic capacity and the outage ca-

pacity of orthogonal frequency-division multiplexing (OFDM)-
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based spatial multiplexing systems [4], [11] considering the case

where the channel is unknown at the transmitter and perfectly

known at the receiver. These expressions are then used to study

(analytically and numerically) the influence of propagation pa-

rameterssuchasdelayspread,clusteranglespread,andtotalangle

spread, and system parameters such as the number of antennas

and antenna spacingon capacity.We find that, in theMIMOcase,

unlike the single-input single-output (SISO) case, delay spread

channelsmay provide an advantage over flat-fading channels not

only in terms of outage capacity but also in terms of ergodic ca-

pacity. Consequently, MIMO delay spread channels provide not

only higher diversity gain than MIMO flat-fading channels but

also higher multiplexing gain.

2) Relation to Previous Work: Our channel model builds on

research reported in [9] and [10]. In particular, it is an extension

of the space–time channel model proposed in [9] to the case of

multiple antennas at both the transmitter and the receiver. The ca-

pacity of deterministic MIMO channels with memory and full

channel knowledge at the transmitter and the receiver was de-

rived in [12]. In [13], the capacity of deterministic two-user mul-

tiaccess channels with memory is computed. Using a parametric

MIMOchannelmodel inwhicheachpath isdescribedbyanangle

of departure, an angle of arrival, a (complex) path gain, and a

pathdelay, thecapacityofthecorrespondingdeterministicMIMO

delay spread channel (full channel knowledge at the transmitter

and the receiver) has been provided in [4]. Using the same para-

metric channel model and defining the underlying parameters as

random variables, a parametric MIMO fading channel model is

established in [11], and an expression for the ergodic capacity is

provided for the caseswhere the channel is either knownat the re-

ceiver only or known at both the transmitter and the receiver. The

channel model used in [4] and [11] does not capture the effects

of spatial fading correlation, diffuse scattering, and scattering ra-

diusoncapacityand is therefore fundamentallydifferent fromthe

MIMO fading channel model used in this paper. Furthermore, in

the channel model used in [4] and [11], each path can only be a

rank-1contributor tocapacity,1 whereas inourmodel the rankde-

pends on physicallymeaningful parameters such as cluster angle

spread and antenna spacing. OurMIMO fading channelmodel is

therefore more flexible than the one used in [4] and [11]. An in-

terestingasymptotic (in thenumberofantennaelements)analysis

for both the flat-fading and the frequency-selective fading cases

appears in [14].

The use of OFDM in the context of spatial multiplexing has

been proposed previously in [4], [11], [15], and [16]. However,

it appears that no capacity studies of OFDM-based spatial mul-

tiplexing systems using the physically motivated MIMO fading

1This statement will be made more precise in Section II-B.
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channel model provided in this paper have been performed so

far. For the single-carrier narrow-band flat-fading case, the im-

pact of spatial fading correlation and antenna array geometry

on capacity has been studied in [7] and [8]. To the best of our

knowledge, the impact of physical parameters (delay spread,

cluster angle spread, and total angle spread) and system param-

eters (number of antennas and antenna spacing) on ergodic ca-

pacity and outage capacity in the broad-band OFDM case has

not been studied in the literature so far.

3) Organization of the Paper: The rest of this paper is or-

ganized as follows. In Section II, we introduce our broad-band

MIMO fading channel model. In Section III, we derive expres-

sions for the ergodic capacity and the outage capacity of OFDM-

based spatial multiplexing systems taking into account the new

channel model. In Section IV, we study the influence of prop-

agation parameters and system parameters on ergodic capacity

and outage capacity. We furthermore demonstrate that, in the

MIMO case, delay spread channels may provide advantage over

flat-fading channels not only in terms of outage capacity but also

in terms of ergodic capacity. In Section V, we provide numer-

ical results complementing the analytical results in Section IV.

Finally, Section VI provides our conclusions and some future

research directions.

II. BROAD-BANDMIMO FADING CHANNELMODEL

In this section, we shall introduce a newmodel for broad-band

MIMO fading channels based on a physical description of the

propagation environment. Our channel model builds on pre-

vious work reported in [9] and [10].

A. General Assumptions

1) Propagation Scenario: We assume that the subscriber

unit (SU) is surrounded by local scatterers so that fading at

the SU antennas is spatially uncorrelated. The base transceiver

station (BTS), however, is sufficiently high so that it is un-

obstructed and no local scattering occurs. Therefore, spatial

fading at the BTS will be correlated with the exact correlation

depending on the BTS antenna spacing and the angle spread

observed at the BTS array [17]. Our model incorporates the

power delay profile of the channel, but neglects shadowing.

These assumptions on the propagation scenario are typical for

cellular suburban deployments [17], where the BTS is on a

tower or on the roof of a building and the terminal is on the

street level and experiences local scattering. For the sake of

simplicity, throughout the paper, we restrict our attention to the

uplink case. The results for the downlink case are similar. In

the following, and denote the number of transmit (i.e.,

SU) and receive (i.e., BTS) antennas, respectively.

2) Channel: Following [9] and [10], we model the delay

spread by assuming that there are significant scatterer clusters

(see Fig. 1) and that each of the paths emanating fromwithin the

same scatterer cluster experiences the same delay. In practice,

local scatterers in the cluster introduce micro delay variations,

which will be neglected in our model. With denoting the

discrete-time transmitted signal vector and the dis-

crete-time received signal vector, respectively, we can

Fig. 1. Schematic representation of theMIMOdelay spread channel composed
of multiple clustered paths. Each path cluster has a mean angle of arrival and
an angle spread . The absolute antenna spacing is denoted by .

write

(1)

where the complex-valued random matrix repre-

sents the th tap of the discrete-time MIMO fading channel im-

pulse response. Note that in general there will be a continuum

of delays. The channel model (1) is derived from the assump-

tion of having resolvable paths, where with and

denoting the signal bandwidth and delay spread, respectively.

The elements of the individual are (possibly correlated) cir-

cularly symmetric complex Gaussian random variables.2 Dif-

ferent scatterer clusters are uncorrelated, i.e.,3

for (2)

where

with denoting the th

column of the matrix , and denoting the all-zero ma-

trix of size . Each scatterer cluster has a mean

angle of arrival at the BTS denoted as , a cluster angle spread

(proportional to the scattering radius of the cluster), and a path

gain (derived from the power delay profile of the channel).

3) Array Geometry: For the sake of simplicity, we assume

a uniform linear array (ULA) at both the BTS and the SU with

identical antenna elements. Most of our results, can however, be

extended to nonuniform arrays. The relative antenna spacing is

denoted as , where is the absolute antenna spacing

and is the wavelength of a narrow-band signal with

center frequency .

4) Fading Statistics: We assume that the (

; ) have zero mean (i.e.,

2A circularly symmetric complex Gaussian random variable is a random vari-
able , where and are i.i.d.
3 denotes the expectation operator and the superscript stands for conjugate

transposition.
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pure Rayleigh fading) and that the correlation matrix

is independent of , or, equivalently, the

fading statistics are the same for all transmit antennas. Defining

for ,

to be the fading correlation between

two BTS antenna elements spaced wavelengths apart, the

correlation matrix can be written as

(3)

Note that we have absorbed the power delay profile of the

channel into the correlation matrices.

Factoring the correlation matrix according to

, where is of size , the

matrices can be written as

(4)

with the being uncorrelated matrices with i.i.d.

entries. We have therefore decomposed the th tap of

the stochastic MIMO channel impulse response into the product

of a deterministic matrix taking into account the spatial

fading correlation at the BTS and a stochastic matrix of i.i.d.

complex Gaussian random variables.

Let us next assume that the angle of arrival for the th

path cluster at the BTS is Gaussian distributed

around the mean angle of arrival , i.e., the actual angle of ar-

rival is given by with . The variance

is proportional to the angular spread and hence the scat-

tering radius of the th path cluster. It is shown in [9] that for

small angular spread the correlation function can be approxi-

mated as

(5)

Although this approximation is accurate only for small angular

spread, it does provide the correct trend for large angular spread,

namely uncorrelated spatial fading. Note that in the case

, the correlation matrix collapses to a rank-1 matrix and

can be written as with the array response

vector of the ULA given by

(6)

B. Differences to the Parametric Fading Channel Model

In the parametric fading channelmodel proposed in [11], each

tap can be written as

where denotes the complex Gaussian distributed path gain,

and are the random angle-of-arrival and angle-of-de-

parture, respectively, of the th path, and and the

and receive and transmit array response vectors

(cf. (6)), respectively. Note that in this model every realization

of has rank 1. In our MIMO fading channel model, the rank

of the matrices is controled by the fading correlation at the

BTS. If the angular spread of the th path cluster is large, will

have high rank; for decreasing angular spread the rank of

will decrease. This follows from (4) and the fact that the corre-

lation matrix loses rank if the angular spread decreases. The

MIMO fading channel model proposed in this paper is therefore

more flexible than the parametric fading channel model [11] and

seems to be a more adequate description of a real-world scat-

tering environment.

III. MUTUAL INFORMATION AND CAPACITY OF OFDM-BASED

SPATIAL MULTIPLEXING SYSTEMS

In this section, we derive an expression for the mutual infor-

mation of OFDM-based spatial multiplexing systems. This ex-

pression is then used to compute the ergodic capacity and study

the outage properties of the system.

A. OFDM-Based Spatial Multiplexing

Spatial multiplexing [1], also refered to as BLAST [2], [5],

has the potential to drastically increase the capacity of wireless

radio links with no additional power or bandwidth consump-

tion. The technology requires multiple antennas at both ends of

the wireless link. The gain in terms of ergodic capacity over

SISO systems resulting from the use of multiple antennas is

termed multiplexing gain. The main reason for using OFDM

in this context is the fact that OFDM modulation turns a fre-

quency-selectiveMIMO fading channel into a set of parallel fre-

quency-flat MIMO fading channels. This renders multichannel

equalization particularly simple, since for each OFDM tone a

narrow-band receiver can be employed [4], [11]. In OFDM-

based spatial multiplexing, the (possibly coded) data streams

are first passed through OFDM modulators and then launched

from the individual antennas. Note that this transmission takes

place simultaneously from all transmit antennas. In the re-

ceiver, the individual signals are passed through OFDM demod-

ulators, separated, and then decoded. Fig. 2 shows a schematic

of anOFDM-based spatial multiplexing system. Throughout the

paper, we assume that the length of the cyclic prefix (CP) in the

OFDM system is greater than the length of the discrete-time

baseband channel impulse response. This assumption guaran-

tees that the frequency-selective fading channel indeed decou-

ples into a set of parallel frequency-flat fading channels [18].

Organizing the transmitted data symbols into frequency

vectors with

denoting the data symbol transmitted from the th an-

tenna on the th tone and defining

, it can be shown

that

(7)

where denotes the reconstructed data vector for the th tone,

and is additive white Gaussian noise (AWGN) satisfying

(8)

where is the identity matrix of size . From (7), it can

be seen that equalization requires application of a narrow-band

receiver for each tone .
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Fig. 2. OFDM-based spatial multiplexing system (OMOD and ODEMOD denote an OFDM-modulator and demodulator, respectively).

B. Mutual Information

We start by stacking the vectors , , and according to

where and are vectors and is an

vector. Note that (8) implies that the noise vector is white,

i.e.,

We furthermore define the block-diagonal ma-

trix

With these definitions, (7) can be rewritten as

(9)

In the following we assume that for each channel use (corre-

sponding to at least one OFDM symbol) an independent real-

ization of the random channel impulse response matrices is

drawn and that the channel remains constant within one channel

use. Using (9), the mutual information (in b/s/Hz) of the OFDM-

based spatial multiplexing system under an average transmitter

power constraint is given by4 [19], [20]

(10)

where with5 is the covariance matrix of the

Gaussian input vector and is the maximum overall transmit

power. Note that mutual information is normalized by , since

data symbols are transmitted in one OFDM symbol and that

we ignored the loss in spectral efficiency due to the presence of

the CP. The matrix is a block-diagonal matrix

given by

4Throughout the paper, all logarithms are to the base 2.
5 stands for the trace of the matrix .

where the matrices are the covariance matrices

of the Gaussian vectors , and as such determine the power

allocation across the transmit antennas and across the OFDM

tones. If the channel is perfectly known at the transmitter, the

optimum power allocation is obtained by distributing the total

available power according to the water-filling solution [4].

In OFDM-based spatial multiplexing systems, statistically in-

dependent data symbols are transmitted from different antennas

and different tones and the total available power is allocated uni-

formly across all space–frequency subchannels [4], [11]. In the

following, we set

, which is easily verified to result in . Using (10),

we therefore obtain

(11)

where . The quantity is the mutual infor-

mation of the th MIMO OFDM subchannel. Note that, since

is random, is a random entity as well. We

shall next show that the distribution of is independent of

and hence all the have the same dis-

tribution. In the following, the notation means that the

distribution of the random variable is equal to the distribution

of the random variable .

Proposition 1: The distribution of

is independent of and given by

for

(12)

where , is an i.i.d.

random matrix with entries, and . Fi-

nally, denotes the th eigenvalue of .

Proof: Gaussianity of the implies Gaussianity of

for . Now, using

(13)
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it follows that the columns of

are uncorrelated and have the same statistics.

Denoting the first column of as

and the first column of as and using (2) it follows

that

Note that the correlation matrix is independent of . We have

thus shown that

with denoting an i.i.d. matrix with entries. Hence,

it follows that

which can be rewritten as

Using the fact that [21], we obtain

Now, without changing the distribution, we can right-multiply

by to obtain

Using and exploiting the unitarity

of , we finally get

which concludes the proof.

C. Ergodic Capacity and Outage Capacity

We shall next establish the information-theoretic value of the

results derived in Section III-B. Two scenarios are considered,

the ergodic and the nonergodic case. In both cases, we assume

that the channel remains fixed within one channel use (at least

one OFDM symbol) and then changes in an independent fashion

to a new realization.

1) Ergodic Case: The basic assumption here is that the

transmission time is long enough to reveal the long-term er-

godic properties of the fading channel. In this case, a Shannon

capacity exists and is given by with defined in

(11). At rates lower than , the error probability (for a good

code) decays exponentially with the transmission length. The

assumption here is that the fading process is ergodic, coding

and interleaving are performed across OFDM symbols, and

that the number of fading blocks spanned by a codeword goes

to infinity whereas the block size (which equals the number of

tones in the OFDM system multiplied by the number of OFDM

symbols spanning one channel use) remains constant (and

finite). Capacity can be achieved in principle by transmitting

a codeword over a very large number of independently fading

blocks. We furthermore note that the capacity obtained for an

OFDM-based spatial multiplexing system is a lower bound

for the capacity of the underlying broad-band MIMO fading

channel.

2) Nonergodic Case: In this case, we assume that a code-

word spans an arbitrary but fixed number of blocks while the

block size goes to infinity. This situation typically occurs when

stringent delay constraints are imposed, as is the case, for ex-

ample, in speech transmission over wireless channels. These as-

sumptions give rise to error probabilities which do not decay

with an increase of block length. A capacity in the Shannon

sense does not exist since, with nonzero probability, which is in-

dependent of the code length, the mutual information in (11)

falls below any positive rate, as small as it may be. Thus, the

concept of capacity versus outage [22], [23] has to be invoked.

Assuming that codewords extend over a single block, the outage

(or failure) probability for a given rate is the probability that

falls below that rate. In this case, capacity is viewed as a random

entity [22], [23] since it depends on the instantaneous random

channel parameters.

IV. INFLUENCE OF CHANNEL AND SYSTEM PARAMETERS ON

CAPACITY

In this section, we study the influence of channel and system

parameters on ergodic capacity and outage capacity. In partic-

ular, we demonstrate that in the MIMO case, unlike the SISO

case, delay spread channels may provide advantage over flat-

fading channels in terms of ergodic capacity. While the ergodic

case is to some extent amenable to analytic studies, the non-

ergodic case will mainly be discussed by means of simulation

results in Section V. Analytic results seem hard to obtain in the

nonergodic case. Some statements of qualitative nature on the

nonergodic case will be made in this section.

A. The Ergodic Case

The ergodic capacity is obtained from (11) as

Now, using Proposition 1, which says that the

all have the same distribution given by (12),

the ergodic capacity is obtained as

(14)

where expectation is taken with respect to . A semi-analytic

result for this expectation has been provided by Telatar in [3] for

the case where . In the general case, the evaluation of the

expectation in (14) requires the concept of zonal polynomials

[21] and is significantly more complicated. We shall therefore

resort to a simple asymptotic analysis by assuming that is

large. It follows from the law of large numbers that, for fixed
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as gets large, . Hence, in the

large limit, we get

(15)

where . In the low SNR regime, i.e.,

for small , it follows from (15) that in the large limit

where all the higher order terms in have been neglected. Thus,

in the low SNR regime, the ergodic capacity is driven by the

Trace of the sum correlation matrix . Here, comparing chan-

nels on the basis of fixed energy, i.e., fixed leads to the

conclusion that delay spread has no impact on ergodic capacity.

In the high- SNR case, we obtain

(16)

The eigenvalue spread of the sum correlation matrix

therefore critically determines ergodic

capacity. In fact, we have

Lemma 2: For , the right-hand side (RHS) in (16)

is maximized for .

Proof: The proof follows easily by applying Jensen’s in-

equality to the RHS of (16).

Using the developments in Section IV-A and [3, The-

orem 1], it can even be shown that, for ,

maximizes the

exact (finite ) expression (14). A deviation of as

a function of from a constant function will therefore result

in a loss in terms of ergodic capacity or equivalently reduced

multiplexing gain. In the following, we restrict our attention to

the high SNR case. We shall next show how the propagation

and system parameters impact the eigenvalues of and hence

ergodic capacity. Since the individual correlation matrices

are Toeplitz, the sum correlation matrix is Toeplitz as well.

We can thus invoke Szegö’s theorem [24] to obtain the limiting

distribution6 of the eigenvalues of as

Using (5), we obtain

(17)

with the third-order theta function given by [25]

. Although this expression yields the exact

eigenvalue distribution only in the limiting case , in

6Note that for the eigenvalues of are characterized by a periodic
continuous function [24]. Thus, whenever we use the term eigenvalue distribu-
tion, we actually refer to this function.

(a)

(b)

Fig. 3. Limiting eigenvalue distribution of the correlation matrix for the
cases of (a) high spatial fading correlation and (b) low spatial fading correlation.

the case of finite good approximations of the eigenvalues

can be obtained by sampling uniformly on the unit circle

[24], which allows us to assume that the eigenvalue distribution

in the finite case follows the distribution given by . We are

now able to study the impact of various propagation and system

parameters on the eigenvalue distribution of and hence the

ergodic capacity.

1) Impact of Cluster Angle Spread and Antenna

Spacing: Let us first investigate the influence of cluster angle

spread and antenna spacing on ergodic capacity. For the sake

of simplicity, take one path only and its associated correlation

matrix . The limiting eigenvalue distribution of is given

by .

Now, noting that the correlation function as a

function of is essentially a modulated Gaussian function with

its spread increasing for increasing antenna spacing and/or

increasing cluster angle spread and vice versa, it follows that

will be more flat in the case of large antenna spacing

and/or large cluster angle spread (i.e., low spatial fading cor-

relation). For small antenna spacing and/or small cluster angle

spread, will be peaky. Fig. 3(a) and (b) show the limiting

eigenvalue distribution of for high and low spatial fading

correlation, respectively. From our previous discussion, it thus

follows that the ergodic capacity will decrease for increasing

concentration of and vice versa.

2) Impact of Total Angle Spread: We shall next study the

impact of total angle spread on ergodic capacity. Assume that

either the individual scatterer cluster angle spreads are small

or that antenna spacing at the BTS is small or both. Hence,

the individual are peaky. Now, from (17), we can see

that the limiting distribution is obtained by adding the

individual limiting distributions . Note furthermore that

is essentially a Gaussian centered around .

Now, if the total angle spread, i.e., the spread of the , is large,

the sum-limiting distribution can still be flat even though

the individual are peaky. For a given small cluster angle

spread, Fig. 4(a) and (b) show example limiting distributions

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 1, 2010 at 04:36 from IEEE Xplore.  Restrictions apply. 



BOLCSKEI et al.: CAPACITY OF OFDM-BASED SPATIAL MULTIPLEXING SYSTEMS 231

(a)

(b)

Fig. 4. Limiting eigenvalue distribution of the sum correlation matrix
for fixed cluster angle spread and for the cases of (a) small total

angle spread and (b) large total angle spread.

for a three-path channel with a total angle spread of 22.5

degrees and a total angle spread of 90 degrees, respectively.

We can clearly see the impact of total angle spread on the

limiting eigenvalue distribution and hence on ergodic

capacity. Large total angle spread renders flat and there-

fore increases ergodic capacity, whereas small total angle

spread makes peaky and hence reduces ergodic capacity.

This impact can further be illustrated by studying the extreme

case , i.e., small cluster angle spread (or equivalently

large distance between BTS and SU). In this case, the sum

correlation matrix is given by

with defined in (6). Take the simple example ,

, and . In this case, for and , we

get and for and we have

. For , the ergodic capacities obtained by

Monte Carlo evaluation of (14) are b/s/Hz in the case

of small total angle spread and b/s/Hz in the case of

large total angle spread.

3) Ergodic Capacity in the SISO and in the MIMO Case: It

is well known that in the SISO case delay spread channels do not

offer advantage over flat-fading channels in terms of ergodic ca-

pacity[22],[23].Thiscaneasilybeseenfrom(14)bynotingthat in

theSISOcase andhenceergodiccapacity

is only a function of the total energy in the channel. In theMIMO

case, the situation is in general different. Fix , and take a

flat-fading scenario with small cluster angle spread where

has rank 1. In this case, the matrix has rank 1 with

probabilityoneandhenceonlyonespatialdatapipecanbeopened

up, or equivalently there is no multiplexing gain. Now, compare

this scenario to a delay-spread scenariowhere and each

of the has rank 1 but the sum-corre-

lation matrix has full rank. For this to happen, a sufficiently

large total anglespread isnecessary.Clearly, in thiscase, spa-

(a)

(b)

Fig. 5. Example histograms of the mutual information in b/s/Hz in the (a)
flat-fading case and (b) the high delay-spread case.

tial data pipes can be opened up and we will get a higher ergodic

capacity because the rank of is higher than in the flat-fading

case. We note that in the case where all the correlation matrices

satisfy this effect does not

occur. However, since this scenario corresponds to fully uncorre-

lated spatial fading it is very unlikely.We can therefore conclude

that inpracticeMIMOdelayspreadchannelsofferadvantageover

MIMOflat-fading channels in termsof ergodic capacity.Wecau-

tion the reader that this conclusion is a result of the assumption

thatdelayedpathsincreasethetotalanglespread.Thisassumption

hasbeenverifiedbymeasurement foroutdoorMIMObroad-band

channels in the 2.5-GHz band [26].

B. The Nonergodic Case

In [22], it has been demonstrated that SISO delay-spread

channels offer significant advantage over flat-fading channels

in terms of outage probabilities or outage capacity. The outage

properties are determined by the number of diversity degrees

of freedom in the channel. In our case, we have both spatial

diversity and frequency diversity available. We can therefore

expect that both diversity sources will contribute to the outage

characteristics of the system. Assuming that a codeword spans

one block, we recall that the outage probability for a given rate

is the probability that falls below that

rate. The distribution of is hard to compute analytically7 . We

7In this context, we would like to point out an error in [27] and simplifications
of some of the results reported in [27], in which the defined in [27, eq.
(9)] should read

and [27, eq. (11)] should be replaced by

. Furthermore, it follows from
Proposition 1 in this paper that [27eq. (11)] can be simplified to yield

with defined in
Proposition 1 in this paper. It can also be shown that the in [27]
are independent of and equal the defined in Proposition 1 in this
paper, and that the in [27] are independent of and equal rank
with . With this, [27, eq. (12)] can be simplified to
yield . Furthermore, [27, eq. (13)]
should be replaced by
and the last equation in [27] has to be replaced by

.
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therefore resort to numerical studies presented in Section V and

make a few qualitative statements below.

The individual all have the same distribution. The correla-

tion between the , however, strongly depends on the amount

of delay spread in the system. In order to establish the value of

space–frequency diversity in terms of outage properties, let us

consider the two limiting cases of flat-fading (i.e., no frequency

diversity) and high delay spread. In the high delay spread case,

we assume that the correlation between the is small, which

corresponds to the assumption of a high number of indepen-

dently fading taps in the channel. The mean of is indepen-

dent of the correlation between the and is given by (14).

The variance of , however, and hence the outage properties

depend significantly on the amount of space–frequency diver-

sity. Denote the variance of as (recall that the distribu-

tion of is independent of ). In the flat-fading case, we have

, whereas in the high delay-spread case (under

the idealistic assumption of full decorrelation of the ) we ob-

tain . Fig. 5(a) and (b) illustrate example

histograms of for a 64-tone OFDM system in the flat-fading

case and in the high delay-spread case, respectively. It can be

seen that in the high delay-spread case the distribution is signif-

icantly more concentrated around the mean. Take a rate of say

7.5 b/s/Hz. For this rate, clearly from Fig. 5 the outage proba-

bility will be much lower for the high delay-spread case than for

the flat-fading case.

Since the rank of the individual correlation matrices

determines the number of spatial degrees of

freedom in each path of the MIMO channel, it is to be expected

that the rank of the individual correlation matrices and not the

rank of the sum correlation matrix determines the outage

properties. This can be illustrated by assuming a simple example

where all the have rank 1 but are such that the sum correla-

tion matrix has full rank. In this case, it readily follows from (4)

that the number of degrees of freedom in each path is and

hence the total number of degrees of freedom in the channel is

, irrespectively of the rank of the sum correlation matrix

. In the case where the individual correlation matrices are

full rank, the sum correlation matrix is also full rank,8 but the

number of degrees of freedom in the channel will be ,

and hence significantly better outage properties than in the fully

correlated case can be expected. These statements will be cor-

roborated by means of simulation results in Section V. We con-

clude by noting that, while the multiplexing gain is determined

by the rank of the sum correlation matrix , the diversity gain

will be governed by the rank of the individual correlation ma-

trices .

V. SIMULATION RESULTS

In every simulation example, 1000 independent Monte Carlo

runs were performed. Unless specified otherwise, the power

delay profile was taken to be exponential, the number of tones

in the OFDM system was , the CP length was 64, and

the relative antenna spacing was set to . For the sake

of simplicity, we assume uniform tap spacing in all simulation

8This follows from application of [28, Lemma 4.1] to and
noting that is nonnegative.

(a)

(b)

Fig. 6. Ergodic capacity (in b/s/Hz) as a function of SNR for various values of
and (a) small cluster angle spread and (b) large cluster angle spread.

examples. Finally, the SNR was defined as SNR

.

A. Simulation Results

1) Simulation Example 1: In the first simulation example,

we study the impact of delay spread on ergodic capacity cor-

roborating the statement that in the MIMO case delay spread

may provide advantage over the flat-fading case in terms of er-

godic capacity (provided that the total angle spread is large).

The number of antennas was . In order to make

the comparison fair, we normalize the energy in the channel by

setting for all cases. The cluster angle spread was

assumed to be . In the flat-fading

case, the mean angle of arrival was set to . In the

delay-spread case, we assumed a total angle spread of 90 de-

grees. Fig. 6(a) shows the ergodic capacity (in b/s/Hz) as a func-

tion of SNR for different values of . We can see that ergodic

capacity indeed increases for increasing delay spread. We can

furthermore observe that increasing the number of resolvable
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Fig. 7. Outage probability for , 5, and 16 at an SNR of 10 dB.

Fig. 8. Outage probability for various values of at an SNR of 10 dB.

taps beyond 4 does not further increase ergodic capacity. The

reason for this is that the number of transmit and receive an-

tennas was set to 4 and hence the maximum rank of the sum

correlation matrix is 4. Fig. 6(b) shows the ergodic capacity

for the same parameters as above except for the cluster angle

spreadwhichwas increased to .

In this case, the rank of the individual correlation matrices is

higher than 1 and the improvement in terms of ergodic capacity

resulting from the presence of multiple taps is less pronounced.

We emphasize that, as already stated in Section IV-A, this re-

sult is a consequence of the assumption that delayed paths tend

to increase the total angle spread.

2) Simulation Example 2: In the second simulation ex-

ample, we investigate the impact of delay spread on the outage

properties of the system. Again, for fixed , Fig. 7

shows the outage probability for , 5 and 16 and an

SNR of 10 dB. Here, we assumed that there is no spatial

fading correlation. It is clearly seen that the outage probability

decreases significantly with increasing delay spread.

3) Simulation Example 3: In the last simulation example,

we investigate the impact of spatial fading correlation on outage

probability. For , and ,

0.5, and 0.7, Fig. 8 shows the outage probability as a function

of rate for an SNR of 10 dB. In all three simulations, the mean

angles of arrival were chosen such that the sum correlation ma-

trix was full rank. Again, in all cases . It can be

seen that, even though the sum correlation matrix has full

rank, the outage probability depends critically on the individual

cluster angle spreads and hence the rank of the individual cor-

relation matrices .

VI. CONCLUSION

Based on a physically motivated model for broad-band

MIMO fading channels, we derived expressions for the ergodic

capacity and for outage capacity of OFDM-based spatial mul-

tiplexing systems for the case where the channel is unknown at

the transmitter and perfectly known at the receiver. We studied

the influence of propagation parameters and system parameters

on ergodic capacity and outage probability and demonstrated

the beneficial impact of delay spread and angle spread on

capacity. Specifically, we showed that, in the MIMO case as

opposed to the SISO case, delay-spread channels may provide

advantage over flat-fading channels not only in terms of outage

capacity but also in terms of ergodic capacity (provided the

assumption that delayed paths tend to increase the total angle

spread is true). We furthermore found that, while the multi-

plexing gain is governed by the rank of the sum correlation

matrix , the diversity gain seems to be governed by the rank

of the individual correlation matrices .

Directions for further work include the analysis of the case

where there is scattering at both the transmitter and the receiver.

A question of particular importance seems to be the analysis

of the influence of scattering radii and distance between BTS

and SU on capacity. Furthermore, a detailed study of the influ-

ence of different antenna geometries on the capacity of OFDM-

based spatial multiplexing systems appears to be of interest.

This problem has been studied to some extent in [7] for the

narrow-band frequency-flat fading case.
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