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On the Capacity of the Discrete-Time
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Abstract—The large-inputs asymptotic capacity of a peak-
power and average-power limited discrete-time Poisson channel
is derived using a new firm (nonasymptotic) lower bound and
an asymptotic upper bound. The upper bound is based on the
dual expression for channel capacity and the notion of capacity-
achieving input distributions that escape to infinity. The lower
bound is based on a lower bound on the entropy of a conditionally
Poisson random variable in terms of the differential entropy of
its conditional mean.

Index Terms—Channel capacity, direct detection, high signal-
to-noise ratio (SNR), optical communication, PAM, photon,
Poisson channel.

I. INTRODUCTION

W
E consider a memoryless discrete-time channel whose

output Y takes value in the set of nonnegative integers

Z
+
0 and whose input takes value in the set of nonnegative

real numbers R
+
0 . Conditional on the input x ≥ 0, the

output is Poisson distributed with mean x + λ0, where λ0

is some nonnegative constant, called dark current. Thus, the

conditional channel law is given by

W (y|x) = e−(x+λ0)
(x+ λ0)

y

y!
, y ∈ Z

+
0 , x ∈ R

+
0 . (1)

This channel is often used to model pulse-amplitude mod-

ulated (PAM) optical communication with a direct-detection

receiver [1]. Here the input x is proportional to the product of

the transmitted light intensity by the pulse duration; the dark

current λ0 similarly models the time-by-intensity product of

the background radiation; and the output Y models the number

of photons arriving at the receiver during the pulse duration.

A peak-power constraint on the transmitter is accounted for

by the peak-input constraint

Pr[X > A] = 0 (2)
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and an average-power constraint by

E[X] ≤ E . (3)

Note that since the input is proportional to the light intensity,

the power constraints apply to the input directly and not to the

square of its magnitude (as is usually the case for electrical

transmission models).

We use 0 < α ≤ 1 to denote the average-to-peak-power

ratio

α ,
E
A
. (4)

The case α = 1 corresponds to the absence of an average-

power constraint, whereas α ≪ 1 corresponds to a very weak

peak-power constraint.

Although we also provide firm lower bounds on channel

capacity that are valid for all values of the peak and average

power, our main interest in this paper is mostly in the case

where both the allowed average power and the allowed peak

power are large. In fact, we shall compute the asymptotic

behavior of channel capacity as both A and E tend to infinity

with the ratio α held fixed. The low-input regime where the

input power is small was studied in [2] and [3].

No analytic expression for the capacity of the Poisson chan-

nel is known. In [1] Shamai showed that capacity-achieving

input distributions are discrete with a finite number of mass

points, where the number of mass points increases to infinity

as the constraints are relaxed.

In [4] Brady & Verdú considered the case of the Poisson

channel with only an average-power constraint. The following

bounds were derived. Let E and λ0 tend to infinity with their

ratio SNR , E
λ0

held fixed. Given ǫ > 0 there exists an Eǫ
such that for all E > Eǫ the capacity is bounded by

C(E) ≥ 1

2
log

E
2π

− 1

2
log

(

1 +
1

SNR

)

− ǫ (5)

C(E) ≤ 1

2
log

E
2π

+ log

(√
SNR

(

1 +
1

Eǫ

)

+
1√
SNR

)

+ 1 + log
3

2
+ ǫ. (6)

Note that the difference between the upper and lower bound is

unbounded if the dark current is held constant while E tends

to infinity.

While the capacity of the discrete-time Poisson channel is

unknown, the capacity of the general continuous-time Poisson

channel where the input signal is not restricted to be pulse-

amplitude modulated (PAM) has been derived exactly: the case

with a peak-power constraint only was solved by Kabanov

[5]; the more general situation of peak- and average-power
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constraints was treated by Davis [6]; Wyner [7] found the

reliability function of the channel; and Frey [8] [9] studied the

capacity of the Poisson channel under an L-norm constraint.

The capacity of the continuous-time Poisson channel can

only be achieved by input processes that have unbounded

bandwidth. Since this is not realistic Shamai and Lapidoth

[10] investigated the channel capacity of a Poisson channel

with some spectral constraints, but without restricting the input

to use PAM. Note that even though the penalty incurred by the

PAM scheme tends to zero once the pulse duration is shortened

to zero, a PAM scheme is not optimal if we only limit the

minimal pulse width, but not the pulse shape [11].

Besides the Poisson channel model there are a few related

channel models used to describe optical communication. The

free-space optical intensity channel has been investigated in

[12, Ch. 3], [13], [14], [15], [16], [17], [18]. A variation of

this model where the noise depends on the input has been

studied in [12, Ch. 4], [19].

One of the obstacles to an exact expression for the capacity

of the Poisson channel is that the Poisson distribution does not

seem to admit a simple analytic expression. Recently, however,

Martinez [20] derived a new expression for the entropy of a

Poisson random variable based on an integral representation

that can be easily computed numerically. Using this expression

he derived firm lower and upper bounds on the capacity for

the discrete-time Poisson channel with only an average-power

constraint and no dark current:

C(E) ≥ 1

2
log(1 + E) (7)

C(E) ≤
(

E +
1

2

)

log

(

E +
1

2

)

− E log E − 1

2

+ log

(

1 +

√
2e− 1√
1 + 2E

)

. (8)

Similarly to the bounds presented here, the derivation of (8) is

based on a duality approach. We would like to emphasize that

(8) is a firm bound valid for all values of E whereas we will

present upper bounds that are only valid asymptotically as the

available power tends to infinity. However, in the derivation

in [20] there is a tiny gap in the proof that is shown only

numerically. Nevertheless Martinez’ bounds are very close and

actually tighter than the bounds presented here (see Figure 2

in Section II below).

Here we present results for the more general case where we

enforce both peak- and average-power constraints and assume

a general (nonnegative) dark current λ0. We will derive new

lower bounds on channel capacity that are tighter than previous

bounds. These bounds are based on a new result that proves

that the entropy of the output of a Poisson channel is always

larger than the differential entropy of the channel’s input (see

Section III-B for more details).

We will also introduce an asymptotic upper bound on chan-

nel capacity, where “asymptotic” means that the bound is valid

when the available peak and average power tend to infinity

with their ratio held fixed.1 The upper and lower bounds

1In contrast to [4] we regard the dark current as a parameter of the channel
that remains unchanged, i.e., we will always keep λ0 constant.

asymptotically coincide, thus yielding the exact asymptotic

behavior of channel capacity.

The derivation of the upper bounds is based on a technique

introduced in [21] using a dual expression for mutual infor-

mation. We will not state it in its full generality but adapted

to the form needed in this paper. For more details and for a

proof we refer to [21, Sec. V], [12, Ch. 2].

Proposition 1. Assume a channel2 W̃ (·|·) with input alphabet

X = R
+
0 and output alphabet Y = R

+
0 . Then for an arbitrary

distribution R(·) over the channel output alphabet, the channel

capacity is upper-bounded by

C ≤ EQ∗

[

D
(
W̃ (·|X)

∥
∥R(·)

)]

. (9)

Here, D(·‖·) stands for the relative entropy [22, Ch. 2], and

Q∗(·) denotes the capacity-achieving input distribution.

Proof: See [21, Sec. V].

The challenge of using (9) lies in a clever choice of the

arbitrary law R(·) that will lead to a good upper bound. More-

over, note that the bound (9) still contains an expectation over

the (unknown) capacity-achieving input distribution Q∗(·). To

handle this expectation we will need to resort to the concept of

input distributions that escape to infinity as introduced in [21],

[23]. This concept will be briefly reviewed in Section IV-B1.

The results of this paper are partially based on [24] and

have appeared in the Ph.D. thesis [12, Ch. 5].

The remainder of this paper is structured as follows. After

some brief remarks about our notation, we summarize our

main results in the subsequent section. The derivations are

then given in Section III (lower bounds) and Section IV

(upper bounds). These two derivation sections both contain

a subsection with mathematical preliminaries. In particular, in

Section III-B we prove that the entropy of the output of a

Poisson channel is lower-bounded by the differential entropy

of its input, in Section IV-B1 we review the concept of input

distributions that escape to infinity, and in Section IV-B2 we

show an adapted version of the channel model with continuous

channel output. We will conclude in Section V.

We try to distinguish between those quantities that are

random and those that are constant: for random quantities

we use uppercase letters and for their realizations lower-

case letters. Scalars are typically denoted using Greek letters

or lower-case Roman letters. However, there will be a few

exceptions to these rules. Since they are widely used in the

literature, we will stick with the common customary shape of

the following symbols: C stands for capacity, H(·) denotes

the entropy of a discrete random variable, D(·‖·) denotes the

relative entropy between two probability measures, and I(·; ·)
stands for the mutual information functional. Moreover, we

have decided to use the capitals Q, W , and R to denote

probability mass functions (PMF) in case of discrete random

variables or cumulative distribution functions (CDF) in case

of continuous random variables, respectively:

• Q(·) denotes a distribution on an input of a channel;

2There are certain measurability assumptions on the channel that we omit
for simplicity. See [21, Sec. V], [12, Ch. 2].
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• W (·|·) denotes a channel law, i.e., the distribution of the

channel output conditioned on the channel input; and

• R(·) denotes a distribution on the channel output.

In the case when Q(·) or R(·) represents a CDF, the cor-

responding probability density function (PDF) is denoted by

Q′(·) and R′(·), respectively.

The symbol E denotes average power and A stands for

peak power. We shall denote the mean-η Poisson distribution

by Po(η) and the uniform distribution on the interval [a, b)
by U ([a, b)). All rates specified in this paper are in nats per

channel use, and all logarithms are natural logarithms.

Finally, we give the following definition.

Definition 2. Let f : R+
0 → R be a function that tends to

zero as its argument tends to infinity, i.e., for any ǫ > 0 there

exists a constant z0 such that for all z > z0

|f(z)| < ǫ. (10)

Then we write3

f(z) = oz(1). (11)

II. MAIN RESULTS

We present upper and lower bounds on the capacity of

channel (1). While the lower bounds are valid for all values

of the power, the upper bounds are valid asymptotically only,

i.e., only in the limit when the average power and the peak

power tend to infinity with their ratio kept fixed. It will turn

out that in this limit the lower and upper bounds coincide, i.e.,

asymptotically we can specify the capacity precisely.

We distinguish between three cases: in the first case we

have both an average- and a peak-power constraint where the

average-to-peak-power ratio (4) is in the range 0 < α < 1
3 .

In the second case 1
3 ≤ α ≤ 1, which includes the situation

with only a peak-power constraint α = 1. And finally, in the

third case we look at the situation with only an average-power

constraint.

We begin with the first case.

Theorem 3. The channel capacity C(A, E) of a Poisson

channel with dark current λ0 under a peak-power constraint

(2) and an average-power constraint (3), where the ratio

α = E
A

lies in
(
0, 1

3

)
, is bounded as follows.

C(A, E) ≥ 1

2
logA − (1− α)µ− log

(
1

2
− αµ

)

− eµ
(
1

2
− αµ

)


log

(

1 +
λ0 +

1
12

A

)

+ 2

√

λ0 +
1
12

A
arctan

(√

A

λ0 +
1
12

)



+ (E + 1) log

(

1 +
1

E

)

− 1− 1

2
log 2πe

(12)

3Note that by this notation we want to imply that oz(1) does not depend
on any other nonconstant variable apart from z.

C(A, αA) ≤ 1

2
logA − (1− α)µ− log

(
1

2
− αµ

)

− 1

2
log 2πe+ oA(1). (13)

Here µ is the solution to

α =
1

2µ
− e−µ

√
µ
√
πerf

(√
µ
) (14)

where the error function erf (·) is defined as

erf (ξ) ,
2√
π

∫ ξ

0

e−t2 dt = 1− 2Q
(√

2ξ
)

, ∀ ξ ∈ R (15)

with the Gaussian Q-function

Q (ξ) ,

∫ ∞

ξ

1√
2π

· e− t2

2 dt, ∀ ξ ∈ R. (16)

Note that the function µ 7→ 1
2µ− e−µ

√
µ
√
πerf(

√
µ)

is monotonically

decreasing in [0,∞) and tends to 1
3 for µ ↓ 0 and to 0 for

µ ↑ ∞.

The error term oA(1) tends to zero as the average power

and the peak power tend to infinity with their ratio held fixed

at α, 0 < α < 1
3 . Hence, the asymptotic expansion of channel

capacity is

lim
A↑∞

{

C(A, αA)− 1

2
logA

}

= −1

2
log 2πe− (1− α)µ− log

(
1

2
− αµ

)

,

0 < α <
1

3
(17)

where µ is defined as above to be the solution to (14).

In the second case α ≥ 1
3 , we have the following bounds.

Theorem 4. The channel capacity C(A, E) of a Poisson

channel with dark current λ0 under a peak-power constraint

(2) and an average-power constraint (3), where the ratio

α = E
A

lies in
[
1
3 , 1
]
, is bounded as follows:

C(A, E) ≥ 1

2
logA +

(
A

3
+ 1

)

log

(

1 +
3

A

)

− 1

−

√

λ0 +
1
12

A

(
π

4
+

1

2
log 2

)

− 1

2
log

πe

2

(18)

C(A, αA) ≤ 1

2
logA − 1

2
log

πe

2
+ oA(1). (19)

Here the error term oA(1) tends to zero as the average power

and the peak power tend to infinity with their ratio held fixed

at α, 1
3 ≤ α ≤ 1. Hence, the asymptotic expansion for the

channel capacity is

lim
A↑∞

{

C(A, αA)− 1

2
logA

}

= −1

2
log

πe

2
,

1

3
≤ α ≤ 1. (20)



306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

C
[n

at
s

p
er

ch
an

n
el

u
se

]

A [dB]

lower bound (18), α ≥ 1/3, λ0=3

asymptotic upper bound (19), α ≥ 1/3

lower bound (12), α = 0.06, λ0=3

asymptotic upper bound (13), α = 0.06
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asymptotic upper bound (13), α = 0.2

lower bound (12), α = 0.02, λ0=3

asymptotic upper bound (13), α = 0.02

Fig. 1. This plot depicts the firm lower bounds (12) and (18) (valid for all values of A) and the asymptotic upper bounds (13) and (19) (valid only in the
limit when A ↑ ∞) on the capacity of a Poisson channel under an average- and a peak-power constraint with average-to-peak-power ratio α. For α ≥ 1

3

(including the case of only a peak-power constraint α = 1) the bounds do not depend on α. The upper bounds do not depend on the dark current. For the
lower bounds the dark current is assumed to be λ0 = 3. The horizontal axis is measured in dB where A [dB] = 10 log

10
A.

The bounds of Theorem 3 and 4 are depicted in Figure 1

for different values of α.

Remark 5. For α ↑ 1
3 the solution µ to (14) tends to zero. If

in (13) µ is chosen to be zero, then (13) coincides with (19).

On the other hand the lower bound (12) does not converge

to (18) for µ ↓ 0. The reason for this lies in a detail of

the derivations shown in Section III-D: in the case of only

a peak-power constraint we are able to derive the value of

E
[
log
(
1 + a

X

)]
exactly (see (49)), whereas in the case of a

peak- and average-power constraint we need to bound this

value (see (45)).

Remark 6. Note that in Theorem 4 both the lower and the

upper bound do not depend on α. Asymptotically, the average-

power constraint becomes inactive for α ∈
[
1
3 , 1
]

so the

transmitter uses less than the available average power.

Finally, for the case with only an average-power constraint

the results are as follows.

Theorem 7. The channel capacity C(E) of a Poisson channel

with dark current λ0 under an average-power constraint (3)

is bounded as follows:

C(E) ≥ 1

2
log E −

√

π
(
λ0 +

1
12

)

2E

+ (E + 1) log

(

1 +
1

E

)

− 1 (21)

C(E) ≤ 1

2
log E + oE(1). (22)

Here the error term oE(1) tends to zero as E ↑ ∞. Hence, the

asymptotic expansion for the channel capacity is

lim
E↑∞

{

C(E)− 1

2
log E

}

= 0. (23)

The bounds of Theorem 7 are shown in Figure 2, together

with the lower and upper bound (5) and (6) from [4] and (7)

and (8) from [20].

Remark 8. If we keep E fixed and let A ↑ ∞, we get α ↓ 0.

For α ≪ 1 the solution µ to (14) tends to 1
2α ≫ 1 which

makes sure that (13) tends to (22). To see this note that for
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lower bound (7) [20], valid for λ0=0

asymptotic upper bound (22)

lower bound (21), λ0=3

lower bound (5) [4], λ0=3

Fig. 2. This plot depicts the firm lower bound (21) (valid for all values of E) and the asymptotic upper bound (22) (valid only in the limit when E ↑ ∞)
on the capacity of a Poisson channel with average-power constraint E[X] ≤ E . The lower bound assumes a dark current λ0 = 3. Additionally asymptotic
versions of the lower and upper bound (5) and (6) by Brady & Verdú [4] are plotted where we have assumed Eǫ ↑ ∞, ǫ = 0, and λ0 = 3, and the firm
lower and upper bounds (7) and (8) by Martinez [20] are shown. Note that the lower bound (7) assumes λ0 = 0 and is therefore not directly comparable
with (21). The horizontal axis is measured in dB where E [dB] = 10 log

10
E .

µ ≫ 1 we can approximate erf
(√

µ
)
≈ 1. Then we get from

(14) that

1

2
− αµ ≈

√
µ

π
e−µ. (24)

Using this together with

1

2
logA =

1

2
log E − 1

2
logα (25)

≈ 1

2
log E +

1

2
log 2µ (26)

we get from (13)

1

2
logA − µ+ αµ

︸︷︷︸

≈ 1
2

− log

(
1

2
− αµ

)

− 1

2
log 2πe

≈ 1

2
log E +

1

2
log 2µ− µ+

1

2
− log

√
µ

π
e−µ

− 1

2
log 2πe (27)

=
1

2
log E . (28)

Similarly, (12) converges to (21) which can be seen by

noting that for E fixed and A ↑ ∞ such that α ↓ 0 we get

eµ
(
1

2
− αµ

)


log

(

1 +
λ0 +

1
12

A

)

+2

√

λ0 +
1
12

A
arctan

(√

A

λ0 +
1
12

)



→

√

π
(
λ0 +

1
12

)

2E , α ↓ 0. (29)

Hence Theorem 7 can be seen as corollary to Theorem 3.

III. DERIVATION OF THE LOWER BOUNDS

A. Overview

The key ideas of the derivation of the lower bounds are as

follows. We drop the optimization in the definition of capacity

and simply choose one particular Q(·):

C = sup
Q(·)

I(X;Y ) ≥ I(X;Y )
∣
∣
for a specific Q(·). (30)

This leads to a natural lower bound on capacity.
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We would like to choose a distribution Q(·) that is rea-

sonably close to the capacity-achieving input distribution in

order to get a tight lower bound. However, we might have

the difficulty that for such a Q(·) the evaluation of I(X;Y ) is

intractable. Note that even for relatively “simple” distributions

Q(·) the distribution of the corresponding channel output Y
may be difficult to compute, let alone H(Y ).

To avoid this problem we lower-bound H(Y ) in terms of

h(X) and upper-bound H(Y |X) in terms of E [logX]. This

will lead to a lower bound on C that only depends on Q(·)
through the expression

h(X)− 1

2
E[logX] . (31)

We then choose the CDF Q(·) to maximize this expression

under the given power constraints.

B. Mathematical Preliminaries

The following lemma summarizes some basic properties of

a Poisson distribution.

Lemma 9. Let K be Poisson distributed with mean η, K ∼
Po(η), i.e.,

Pr[K = k] = e−η η
k

k!
, k ∈ Z

+
0 . (32)

Then the following holds:

E[K] = η (33)

Var(K) = η (34)

E
[
(K − E[K])3

]
= η (35)

and Pr[K = k] is monotonically nondecreasing for k ≤ E[K]
and monotonically nonincreasing for k ≥ E[K].

Proof: See, e.g., [25].

Since no simple analytic expression for the entropy of a

Poisson random variable is known, we shall resort to simple

bounds. We begin with an upper bound.

Lemma 10. If K ∼ Po (η) is a mean-η Poisson random

variable, then its entropy H(K) is upper-bounded by

H(K) ≤ 1

2
log 2πe

(

η +
1

12

)

. (36)

Proof: See [22, Theorem 16.3.3].

In Section IV-B2 we will present a lower bound on H(K)
that is valid asymptotically when the mean η tends to infinity.

The following proposition is the key in the derivation of

the lower bounds on channel capacity. It demonstrates that

if Y is conditionally Poisson given a mean X + λ0 ≥ 0,

then the entropy H(Y ) can be lower-bounded in terms of the

differential entropy h(X).

Proposition 11. Let Y be the output of a Poisson channel with

input X ≥ 0 and dark current λ0 according to (1). Assume

that X has a finite positive expectation E[X] > 0. Then

H(Y ) ≥ h(X) +
(
1 + E[X]

)
log

(

1 +
1

E[X]

)

− 1 (37)

> h(X). (38)

Proof: A proof is given in Appendix A.

C. Proof of the Lower Bound (12)

Using Lemma 10 and Proposition 11 we get

I(X;Y ) ≥ h(X) +
(
E[X] + 1

)
log

(

1 +
1

E[X]

)

− 1

− 1

2
log 2πe− 1

2
E[logX]

− 1

2
E

[

log

(

1 +
λ0 +

1
12

X

)]

. (39)

We choose an input distribution Q(·) with the following

density:

Q′(x) =

√
µ√

Aπx · erf
(√

µ
) · e−

µ
A
x, 0 ≤ x ≤ A (40)

where erf (·) is defined in (15) and where µ is chosen to

achieve the average-power constraint:

E[X] =
A

2µ
− Ae−µ

√
πµ · erf

(√
µ
)

!
= αA (41)

i.e., µ is the solution to (14). Note that the choice (40)

corresponds to the distribution that maximizes (31) under the

constraints (2) and (3) [22, Ch. 12]. We then have

h(X) =
1

2
log

A

µ
+ log

√
πerf (

√
µ) + αµ+

1

2
E[logX] (42)

and for a ≥ 0

E

[

log
(

1 +
a

X

)]

=

∫ A

0

log
(

1 +
a

x

)

·
√
µ√

Aπx · erf
(√

µ
) · e−

µ
A
x

︸ ︷︷ ︸

≤1

dx (43)

≤
∫ A

0

log
(

1 +
a

x

)

·
√
µ√

Aπx · erf
(√

µ
) dx (44)

=

4
√

a
A

√
µ arctan

(√
A

a

)

+ 2
√
µ log

(
1 + a

A

)

√
π · erf

(√
µ
) . (45)

The result (12) now follows from (39) with (14), (42), and

(45) where a is replaced by λ0 +
1
12 .

D. Proof of the Lower Bounds (18) and (21)

The lower bound (18) follows from (39) with the following

choice of an input distribution Q(·):

Q′(x) ,
1√
4Ax

, 0 ≤ x ≤ A. (46)

Note that this choice corresponds to (40) with µ ↓ 0. It is

the distribution that maximizes (31) under the peak-power

constraint (2) [22, Ch. 12].

We then get

E[X] =
A

3
(47)

h(X) =
1

2
logA +

1

2
log 4 +

1

2
E[logX] (48)

E

[

log
(

1 +
a

X

)]

=

√
a

4A
(π + 2 log 2). (49)
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Plugging this into (39) with a substituted by λ0 +
1
12 yields

the desired result.

As noted in Remark 8, (21) can be seen as limiting case of

(12) for α ↓ 0. It could also be derived analogously to (12)

with the choice

Q′(x) ,
1√
2πEx

· e− x
2E , x ≥ 0 (50)

(which is the limiting PDF of (40) for α ↓ 0).

IV. DERIVATION OF THE UPPER BOUNDS

A. Overview

The derivation of the upper bounds is based on the following

key ideas:

• We will assume that the dark current is zero, i.e., λ0 = 0.

This is no loss in generality because any upper bound to

the capacity of a Poisson channel without dark current

is also an upper bound to the case with nonzero dark

current. This can be seen as follows: conditional on X =
x let Y ∼ Po(x+ λ0). Then Y can be written as

Y = Y1 + Y2 (51)

where Y1 ∼ Po(x), Y2 ∼ Po(λ0), and where Y1 ⊥⊥ Y2.

Expanding mutual information twice using the chain rule

we get

I(X;Y1, Y ) = I(X;Y1) + I(X;Y |Y1) (52)

= I(X;Y1) + I(X;Y1 + Y2|Y1) (53)

= I(X;Y1) + I(X;Y2|Y1) (54)

= I(X;Y1) (55)

and

I(X;Y1, Y ) = I(X;Y ) + I(X;Y1|Y ) (56)

≥ I(X;Y ) (57)

where the inequality follows from the nonnegativity of

mutual information. Hence

I(X;Y1) ≥ I(X;Y1 + Y2) (58)

which proves our claim.

Actually, we will show that asymptotically the dark

current has no impact on the capacity.

• One difficulty of the Poisson channel model (1) is that

while we have a continuous input, the output is discrete.

This complicates the application of the technique ex-

plained in Proposition 1 considerably. To circumvent this

problem we slightly change the channel model without

changing its capacity value. The idea is to add some

independent continuous noise U to the channel output

Y that is uniformly distributed between 0 and 1, i.e.,

Ỹ , Y + U (59)

where U ∼ U([0, 1)), independent of X and Y . There is

no loss in information because, given Ỹ , we can always

recover Y by applying the “floor”-operation

Y = ⌊Ỹ ⌋ (60)

where for any a ∈ R, ⌊a⌋ denotes the largest integer

smaller than or equal to a.

• We will rely on Proposition 1 to derive an upper bound

on the capacity of this new channel model with input X
and output Ỹ , i.e., we will choose an output distribution

R(·) and evaluate (9). In various places we will need to

resort to further upper-bounding.

• To evaluate the expectation in (9) over the unknown

capacity-achieving input distribution Q∗(·) we will resort

to the concept of input distributions that escape to infinity

as introduced in [21] and further refined in [23]. In short,

even if Q∗(·) is unknown, this concept allows us to

compute EQ∗[f(X)] for arbitrary bounded functions f(·)
in the asymptotic limit when the available power E tends

to infinity. The price we pay is that our upper bounds are

only valid asymptotically for infinite power. For more

details, see Section IV-B1.

• As mentioned before no strictly analytic expression for

the entropy of a Poisson distributed random variable is

known. We will resort to an asymptotic lower bound on

H(Y |X = x) that is valid as x tends to infinity. We then

again use the concept of input distributions that escape

to infinity to show that if the available power tends to

infinity also x tends to infinity.

B. Mathematical Preliminaries

In Section IV-B1 we will review the concept of input dis-

tributions that escape to infinity and some of its implications.

Note that the stated results are general and not restricted to

the case of a Poisson channel. Section IV-B2 shows how the

Poisson channel model can be modified to have a continuous

output.

1) Input Distributions that Escape To Infinity: In this

section we will briefly review the notion of input distributions

that escape to infinity as introduced in [21] and further refined

in [23]. Loosely speaking, a sequence of input distributions

parametrized by the allowed cost is said to escape to infinity

if it assigns to any fixed compact set a probability that tends

to zero as the allowed cost tends to infinity.

This notion is important because we can show that for most

channels of interest, the capacity-achieving input distribution

must escape to infinity. In fact, not only the capacity-achieving

input distributions escape to infinity: every sequence of input

distributions that achieves a mutual information having the

same asymptotic growth rate as capacity must escape to

infinity.

The statements in this section are valid in general, i.e., they

are not restricted to the Poisson channel. We will only assume

that the input and output alphabets X and Y of some channel

are separable metric spaces, and that for any set B ⊂ Y the

mapping x 7→ W (B|x) from X to [0, 1] is Borel measurable.4

We then consider a general cost function g : X → [0,∞)
which is assumed measurable.

4In the case of the Poisson channel, the channel output alphabet is discrete.
However, it will be shown in Section IV-B2 that this channel can be easily
modified to have a continuous output without changing its basic properties.



310 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

Recall the following definition of a capacity-cost function

with an average and a peak constraint.

Definition 12. Given a channel W (·|·) over the input alphabet

X and the output alphabet Y and given some nonnegative cost

function g : X → R
+
0 , we define the capacity-cost function

C :
(
[infx∈X g(x),∞)

)2 → R
+
0 by

C(A, E) , sup
Q(·)

I(X;Y ), A, E ≥ inf
x∈X

g(x) (61)

where the supremum is over all input distributions Q(·) that

satisfy

Q
(
{x ∈ X : g(x) > A}

)
= 0 (62)

and

EQ[g(X)] ≤ E . (63)

Note that all following results also hold in the case of only

an average constraint, without limitation on the peak-power.

However, for brevity we will omit the explicit statements for

this case.

We will now define the notion of input distributions that es-

cape to infinity. For an intuitive understanding of the following

definition and some of its consequences, it is best to focus on

the example of the Poisson channel where the channel inputs

are nonnegative real numbers and where the cost function g(·)
is g(x) = x, ∀x ≥ 0.

Definition 13. Fixing α ∈ (0, 1] as ratio of available average

to peak cost

α ,
E
A

(64)

we say that a family of input distributions

{QA,E(·)}A≥infx
g(x)
α ,E=αA

(65)

on X parametrized by A and E escapes to infinity if for any

A0 > 0

lim
A↑∞

QA,αA

(
{x ∈ X : g(x) ≤ A0}

)
= 0. (66)

Based on this definition, in [23] a general theorem was

presented demonstrating that if the ratio of mutual informa-

tion to channel capacity is to approach one, then the input

distributions must escape to infinity.

Proposition 14. Let the capacity-cost function C(·, ·) be finite

but unbounded. Let Casy(·) be a function that captures the

asymptotic behavior of the capacity-cost function C(A, αA)
in the sense that

lim
A↑∞

C(A, αA)

Casy(A)
= 1. (67)

Assume that Casy(·) satisfies the growth condition

lim
A↑∞






sup

µ∈(0,µ0]

µCasy

(
A

µ

)

Casy(A)






< 1, ∀ 0 < µ0 < 1. (68)

Let {QA,αA(·)}A≥0 be a family of input distributions satis-

fying the cost constraints (62) and (63) such that if XA ∼
QA,αA(·)

lim
A↑∞

I(XA;Y )

Casy(A)
= 1. (69)

Then {QA,αA(·)}A≥0 escapes to infinity.

Proof: See [23, Sec. VII.C.3].

Note that in [1] it has been shown that the Poisson channel

has a unique capacity-achieving input distribution. We will

now show that this distribution falls into the setting of Propo-

sition 14, i.e., that it escapes to infinity.

Corollary 15. Fix the average-to-peak-power ratio

α ,
E
A
. (70)

Then the capacity-achieving input distribution {Q∗
A,αA

(·)}A≥0

of a Poisson channel (1) with peak- and average-power

constraints (2) and (3) escapes to infinity. Similarly, for the sit-

uation with only an average-power constraint (3), {Q∗
E(·)}E≥0

escapes to infinity.

Proof: To prove this statement, we will show that the

function

Casy(A) =
1

2
logA (71)

satisfies both conditions (67) and (68) of Proposition 14.

The latter has already been shown in [23, Remark 9] and is

therefore omitted. The former condition is more tricky. The

difficulty lies in the fact that we need to derive the asymptotic

behavior of the capacity at this early stage of the proof, even

though precisely this asymptotic behavior is our main result of

this paper. Note, however, that for the proof of this corollary it

is sufficient to find the first term in the asymptotic expansion

of capacity.

Nevertheless, our proof relies heavily on the lower bounds

derived in Section III, on Proposition 1, and also on Lem-

mas 17 to 19 of Section IV-B2. Of course, we made sure that

none of the used results relies in turn on this corollary!

The details are deferred to the very end of this paper in

Appendix F.

Remark 16. If a family of input distributions {QA,αA(·)}A≥0

escapes to infinity, then for every bounded function f(·) that

decays to zero, i.e., that satisfies

f(x) = ox(1) (72)

we have

lim
A↑∞

EQA,αA
[f(X)] = 0. (73)

2) A Poisson Channel with Continuous Output: In the

following we define an adapted Poisson channel model which

has a continuous output. To this end let Y be the output of

a Poisson channel with input x as given in (1). We define a

new random variable

Ỹ , Y + U (74)
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where U is independent of Y and uniformly distributed

between 0 and 1, U ∼ U ([0, 1)). Then Ỹ ≥ 0 is continuous

with the probability density function5

W̃ (ỹ|x) = W
(
⌊ỹ⌋
∣
∣x
)
= e−(x+λ0)

(x+ λ0)
⌊ỹ⌋

⌊ỹ⌋! ,

ỹ ≥ 0, x ≥ 0, λ0 ≥ 0. (75)

The Poisson channel with continuous output is equivalent to

the Poisson channel as defined in Section I. This is shown in

the following lemma.

Lemma 17. Let the random variables Y , Ỹ , and X be defined

as above. Then

a) I(X; Ỹ ) = I(X;Y ) (76)

b) h(Ỹ |X = x) = H(Y |X = x) (77)

c) h(Ỹ ) = H(Y ). (78)

Proof: Define Y ′ , ⌊Ỹ ⌋. The random variables

X⊸−−Y⊸−−Ỹ⊸−−Y ′ (79)

form a Markov chain. Hence, from the data processing in-

equality it follows

I(X;Y ) ≥ I(X; Ỹ ) ≥ I(X;Y ′). (80)

However, since Y ′ = Y , Part a) is proven.

Part b) follows from the definition of h(·) and H(·), respec-

tively, and the fact that, for any ỹ ≥ 0, W̃ (ỹ|x) = W (⌊ỹ⌋|x):

h(Ỹ |X = x) = −
∫ ∞

0

W̃ (ỹ|x) log W̃ (ỹ|x) dỹ (81)

= −
∞∑

y=0

∫ y+1

y

W (⌊ỹ⌋|x) logW (⌊ỹ⌋|x) dỹ (82)

= −
∞∑

y=0

W (y|x) logW (y|x)
∫ y+1

y

dỹ (83)

= −
∞∑

y=0

W (y|x) logW (y|x) (84)

= H(Y |X = x). (85)

Part c) now follows from a) and b).

We will next derive some more properties of the “continuous

Poisson” distribution (75). Without loss of generality, in the

rest of this section we will restrict ourselves to the case of

λ0 = 0.

The expected logarithm of a Poisson distributed random

variable is unbounded since the random variable takes on the

value zero with a nonzero probability. However, E[log Ỹ |X =
x] is well defined. It can be bounded as follows.

5Slightly misusing our notation we will write W̃ (·|·) to denote a probability
density function rather than a CDF. We believe that it simplifies the reading.

Lemma 18. Let Ỹ be defined as above with PDF W̃ (·|·) given

in (75) and assume that λ0 = 0. Fix an arbitrary 0 < δ < 1.

Then

E[log Ỹ |X = x]

≤ log(1 + x)− log

(

1 +
1

x

)

+ 2 log(1 + δ)

+

(
1

x
+

1

12x2

)
1

(
1 + δ

2

)2

(

1 +
2

δ
+ log

δ/2

1 + δ

)

,

x ≥ 1

δ
(86)

E[log Ỹ |X = x]

≤ log(1 + x) + log(1 + δ) +

(

4x+
1

3

)
1

2x+ 1
,

x <
1

δ
(87)

E[log Ỹ |X = x]

≥ log(1 + x)− log

(

1 +
1

x

)

+ 2 log(1− δ)

− 1
(
δ + 1

2x

)2

(
1

x
+

1

12x2

)

, x ≥ 1

δ
(88)

E[log Ỹ |X = x]

≥ log(1 + x)− 1− log(1 + x), x <
1

δ
. (89)

From this it follows that

E[log Ỹ |X = x] = log(1 + x) + ox(1) (90)

where the ox(1) term is bounded and tends to zero as x tends

to infinity.

Proof: A proof is given in Appendix B.

We next derive a lower bound on the entropy of a Poisson

random variable of sufficiently large mean.

Lemma 19. Let Ỹ be defined as above with PDF W̃ (·|·) given

in (75) and assume that λ0 = 0. Fix an arbitrary 0 < δ < 1
2 .

Then

h(Ỹ |X = x) ≥ 1

2
log 2πe(1 + x) + log(1− δ)

+
1

2
log

x

1 + x
− 1

6x
− e−xx

2

2
log x

− 1

2
e−x log 2π

− 1
(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

, x ≥ 1

δ
(91)

h(Ỹ |X = x) ≥ 0, x ≥ 0. (92)

Consequently,

lim
x→∞

{

h(Ỹ |X = x)− 1

2
log x

}

≥ 1

2
log 2πe (93)

which together with Lemma 10 and Lemma 17b) implies

h(Ỹ |X = x) =
1

2
log 2πe(1 + x) + ox(1) (94)

where the ox(1) term is bounded and tends to zero as x tends

to infinity.



312 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009

Proof: A proof is given in Appendix C.

Finally, we state some other properties of Ỹ .

Lemma 20. Let Ỹ be defined as above with PDF W̃ (·|·) given

in (75) and assume that λ0 = 0. Let x = A and let δ > 0 be

fixed (in particular, δ is not allowed to depend on A). Then

we have the following:

lim
A↑∞

∫ ∞

A(1+δ)

W̃ (ỹ|A) dỹ = 0 (95)

lim
A↑∞

∫ ∞

A(1+δ)

W̃ (ỹ|A) logA dỹ = 0 (96)

lim
A↑∞

∫ ∞

A(1+δ)

W̃ (ỹ|A) log
1

W̃ (ỹ|A)
dỹ = 0. (97)

Proof: A proof is given in Appendix D.

C. Proof of the Upper Bound (13)

The derivation of (13) is based on (9) with the following

choice of an output distribution R(·):

R′(ỹ) ,







p · ỹν−1e
−

ỹ
β

βνγ
(

ν,
A(1+δ)

β

) ∀ 0 ≤ ỹ ≤ A(1 + δ)

(1− p) · e−(ỹ−A(1+δ)) ∀ ỹ > A(1 + δ)
(98)

where ν, β, δ > 0 are free parameters that will be specified

later, where

p = p(A) , Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = A

]

(99)

and where γ(·, ·) denotes the incomplete gamma function

γ(ν, ξ) ,

∫ ξ

0

e−ttν−1 dt, ν > 0. (100)

Note that
ỹν−1e−

ỹ
β

βνγ
(

ν, A(1+δ)
β

) (101)

is the PDF on [0,A(1+δ)] that maximizes differential entropy

under the constraints that E[Ỹ ] and E[log Ỹ ] are constant.

The choice of an exponential distribution on (A(1 + δ),∞)
is motivated by simplicity. It will turn out that asymptotically

this “tail” of our output distribution has no influence on the

result.

With this choice we get

−
∫ ∞

0

W̃ (ỹ|x) logR′(ỹ) dỹ

= − log p · Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]

︸ ︷︷ ︸

ca

−
∫ A(1+δ)

0

W̃ (ỹ|x) log ỹν−1e−
ỹ
β

βνγ
(

ν, A(1+δ)
β

) dỹ

︸ ︷︷ ︸

cb

− log(1− p) · Pr
[

Ỹ > A(1 + δ)
∣
∣
∣X = x

]

︸ ︷︷ ︸

cc

+

∫ ∞

A(1+δ)

W̃ (ỹ|x)
(
ỹ − A(1 + δ)

)
dỹ

︸ ︷︷ ︸

cd

. (102)

We will now consider each term individually. We start with a

simple bound on ca:

ca = Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]

︸ ︷︷ ︸

≤1

log
1

p
︸ ︷︷ ︸

≥0

≤ log
1

p
. (103)

Next, we bound cb as follows:

cb =

∫ A(1+δ)

0

W̃ (ỹ|x) log
βνγ

(

ν, A(1+δ)
β

)

ỹν−1e−
ỹ
β

dỹ (104)

=

(

ν log β + log γ

(

ν,
A(1 + δ)

β

))

·

·Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]

+ (1− ν)

(

E[log Ỹ |X = x]

−
∫ ∞

A(1+δ)

W̃ (ỹ|x) log ỹ dỹ

︸ ︷︷ ︸

≥0 for A>1

)

+
1

β

(

E[Ỹ |X = x]−
∫ ∞

A(1+δ)

ỹW̃ (ỹ|x) dỹ

︸ ︷︷ ︸

≥0

)

(105)

≤
(

ν log β + log γ

(

ν,
A(1 + δ)

β

))

·

·Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]

+ (1− ν)E[log Ỹ |X = x] +
1

β

(

x+
1

2

)

(106)

where for the inequality (106) we have assumed that ν < 1 and

A > 1, and where we have used that E[Ỹ |X = x] = x+ 1
2 .

For cc we use the monotonicity of the Poisson distribution

(Lemma 9) and the peak-power constraint Pr[X > A] = 0 to

get

cc = Pr
[

Ỹ > A(1 + δ)
∣
∣
∣X = x

]

log
1

1− p
(107)

≤ Pr
[

Ỹ > A(1 + δ)
∣
∣
∣X = A

]

log
1

1− p
(108)

= (1− p) log
1

1− p
(109)

where the last equality follows from (99).

Finally, we bound cd as follows:

cd =

∫ ∞

A(1+δ)

ỹW̃ (ỹ|x) dỹ − A(1 + δ)

∫ ∞

A(1+δ)

W̃ (ỹ|x) dỹ

(110)

≤
∫ ∞

⌊A(1+δ)⌋
ỹW̃ (ỹ|x) dỹ − A(1 + δ)

∫ ∞

A(1+δ)

W̃ (ỹ|x) dỹ

(111)

=
∞∑

y=⌊A(1+δ)⌋

(

y +
1

2

)

e−x 1

y!
xy

− A(1 + δ)Pr
[

Ỹ > A(1 + δ)
∣
∣
∣X = x

]

︸ ︷︷ ︸

≥0

(112)
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≤
∞∑

y=⌊A(1+δ)⌋
ye−x 1

y!
xy +

1

2
Pr
[

Y > ⌊A(1 + δ)⌋
∣
∣
∣X = x

]

(113)

= x

∞∑

y=⌊A(1+δ)⌋
e−x 1

(y − 1)!
xy−1

+
1

2
Pr
[

Y > ⌊A(1 + δ)⌋
∣
∣
∣X = x

]

(114)

= x

∞∑

y=⌊A(1+δ)⌋−1

e−x 1

y!
xy

+
1

2
Pr
[

Y > ⌊A(1 + δ)⌋
∣
∣
∣X = x

]

(115)

= x

∫ ∞

⌊A(1+δ)⌋−1

W̃ (ỹ|x) dỹ

+
1

2
Pr
[

Ỹ > ⌊A(1 + δ)⌋
∣
∣
∣X = x

]

(116)

= x Pr
[

Ỹ > ⌊A(1 + δ)⌋ − 1
∣
∣
∣X = x

]

+
1

2
Pr
[

Ỹ > ⌊A(1 + δ)⌋
∣
∣
∣X = x

]

(117)

≤ A Pr
[

Ỹ > A(1 + δ2)
∣
∣
∣X = x

]

+
1

2
Pr
[

Ỹ > A(1 + δ2)
∣
∣
∣X = x

]

(118)

≤
(

A +
1

2

)

Pr
[

Ỹ > A(1 + δ2)
∣
∣
∣X = A

]

(119)

≤
(

A +
1

2

)

E

[

erỸ
∣
∣
∣ X = A

]

e−rA(1+δ2). (120)

Here in (118) we have chosen an arbitrary δ2, 0 < δ2 < δ,

assuming that A is large enough such that

A(1 + δ2) < ⌊A(1 + δ)⌋ − 1 < ⌊A(1 + δ)⌋. (121)

Eq. (119) follows again from monotonicity of the Poisson dis-

tribution; and the final inequality (120) follows from Chernov’s

bound [26]

Pr[V ≥ a] ≤ E
[
erV
]
e−ra, ∀r > 0, ∀a ≥ E[V ] . (122)

Next, we upper-bound the moment-generating function of

Ỹ

E

[

erỸ
∣
∣
∣ X = A

]

=

∫ ∞

0

erỹW̃ (ỹ|A) dỹ (123)

≤
∞∑

y=0

er(y+1)e−A 1

y!
A

y
(124)

= er−A+Aer (125)

and choose r = log(1 + δ2). This yields:

cd ≤
(

A +
1

2

)

(1 + δ2)e
−A

(
(1+δ2) log(1+δ2)−δ2

)

. (126)

Note that (1 + δ2) log(1 + δ2)− δ2 > 0 for δ2 > 0, i.e.,

(

A +
1

2

)

(1 + δ2)e
−A

(
(1+δ2) log(1+δ2)−δ2

)

= oA(1). (127)

Plugging all these bounds together with (102) into (9)

yields:

C ≤ EQ∗

[

− h(Ỹ |X = x) + log
1

p

+

(

ν log β + log γ

(

ν,
A(1 + δ)

β

))

·

·Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]

+ (1− ν)E[log Ỹ |X = x] +
1

β

(

X +
1

2

)

+ (1− p) log
1

1− p

+

(

A +
1

2

)

(1 + δ2)e
−A

(
(1+δ2) log(1+δ2)−δ2

)]

.

(128)

Next, we introduce

p̃(A) , EQ∗

[

Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = x

]]

(129)

and we choose

β ,
A(1 + δ)

µ
(130)

where µ is the solution to (14). Note that such a solution

always exists, is unique, and is nonnegative as long as 0 <
α ≤ 1

3 .

Then, using (90) from Lemma 18 and (94) from Lemma 19

we get

C ≤ −1

2
log 2πe− 1

2
EQ∗ [log(1 +X)] + log

1

p(A)

+

(

ν log
A(1 + δ)

µ
+ log γ(ν, µ)

)

︸ ︷︷ ︸

≥0 if A is large enough

p̃(A)
︸ ︷︷ ︸

≤1

+ (1− ν)EQ∗ [log(1 +X)] +
µ

A(1 + δ)

(

E +
1

2

)

+
(
1− p(A)

)
log

1

1− p(A)

+

(

A +
1

2

)

(1 + δ2)e
−A

(
(1+δ2) log(1+δ2)−δ2

)

︸ ︷︷ ︸

=oA(1)

+ EQ∗ [oX(1)] (131)

≤ −1

2
log 2πe+ log

1

p(A)
+ ν logA + ν log

1 + δ

µ

+ log γ(ν, µ) +

(
1

2
− ν

)

EQ∗ [log(1 +X)]

+
µE

A(1 + δ)
+

µ

2A(1 + δ)
+
(
1− p(A)

)
log

1

1− p(A)

+ oA(1) + EQ∗ [oX(1)] (132)

=
1

2
logA − 1

2
log 2πe+

1

2
log

1 + δ

µ
+ log

√
πerf (

√
µ)

+
αµ

1 + δ
+ log

1

p(A)
+

µ

2A(1 + δ)

+
(
1− p(A)

)
log

1

1− p(A)
+ oA(1) + EQ∗ [oX(1)] .

(133)
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Here, in (132) we upper-bound p̃(A) ≤ 1 assuming that A is

large enough so that the terms in the brackets are larger than

zero. In (133) we choose ν , 1
2 , use the relation

γ

(
1

2
, µ

)

=
√
πerf (

√
µ) (134)

and recall that E
A
= α.

Finally, we recall from Lemma 20 that

lim
A↑∞

p(A) = 1 (135)

and therefore

lim
A↑∞

(
1− p(A)

)
log

1

1− p(A)
= 0. (136)

Together with (73) and (14) this yields

C ≤ 1

2
logA − 1

2
log 2πe+

1

2
log(1 + δ)− µ

− log

(
1

2
− αµ

)

+
αµ

1 + δ
+ oA(1). (137)

Since δ is arbitrary, this concludes our proof.

D. Proof of the Upper Bounds (19) and (22)

The derivation of the asymptotic upper bound (22) could be

done according to the scheme described in Section IV-C with

a different choice of an output distribution6 R(·):

R′(ỹ) ,
ỹν−1e−

ỹ
β

βνΓ(ν)
, ỹ ≥ 0 (138)

where ν, β > 0. However, because (22) can be seen as limiting

case of (13) for α ↓ 0 as explained in Remark 8 we omit the

details of the proof.

The bound (19) could also be derived very similarly. How-

ever, there is an alternative derivation that is less general

than the derivation shown in Section IV-C and implicitly

demonstrates the power of the duality approach (9). We will

derive (19) using this alternative approach. Details can be

found in Appendix E.

V. CONCLUSIONS

New (firm) lower bounds and new (asymptotic) upper

bounds on the capacity of the discrete-time Poisson channel

subject to a peak-power constraint and an average-power

constraint were derived. The gap between the lower bounds

and the upper bounds tends to zero asymptotically as the

peak-power and average-power tend to infinity with their ratio

held fixed. The bounds thus yield the asymptotic expansion of

channel capacity in this regime.

The derivation of the lower bounds relies on a new result

that relates the differential entropy of a Poisson channel’s input

to the entropy of its output (see Proposition 11).

The asymptotic upper bounds were derived in two ways: in

a less elegant version we lower-bound the conditional entropy

h(Y |X) in such a way that we get an expression that depends

6The PDF (138) maximizes the entropy h(Ỹ ) under the constraints that

E[Ỹ ] and E[log Ỹ ] are constant.

solely on the distribution of the channel output. Then we

upper-bound this expression by choosing the maximizing dis-

tribution. In a more powerful approach we rely on a technique

that has been introduced in [21]: we upper-bound capacity

using duality-based upper bounds on mutual information (see

Proposition 1).

In both version we additionally need to rely on another

concept introduced in [21] and [23]: the notion of input distri-

butions that escape to infinity (see Section IV-B1) that allows

us to compute asymptotic expectations over the unknown

capacity-achieving input distribution.

APPENDIX A

A PROOF OF PROPOSITION 11

Given X = x, Y can be written as Y = Y1 + Y2, where

Y1 ∼ Po(x) and Y2 ∼ Po(λ0), Y1 ⊥⊥ Y2. But

H(Y ) = H(Y1 + Y2) (139)

≥ H(Y1 + Y2|Y2) (140)

= H(Y1|Y2) (141)

= H(Y1) (142)

and we can restrict ourselves to the case where λ0 = 0.

The proof is based on the data processing inequality of the

relative entropy [27, Ch. 1, Lemma 3.11(ii)].

Let Q(·) denote an arbitrary CDF on R
+
0 with a certain

finite mean EQ [X] = η > 0. Let QE(·) denote the mean-η
exponential CDF on R

+
0 . Let R(·) be the PMF of Y when Y

is conditionally Poisson given X and X ∼ Q(·), and let RG(·)
be the PMF of Y when Y is conditionally Poisson given X
and X ∼ QE(·). It is straightforward to show that RG(·) is a

mean-η geometric PMF on Z
+
0 .

By the data processing theorem we obtain:

D
(
Q(·)

∥
∥QE(·)

)
≥ D

(
R(·)

∥
∥RG(·)

)
(143)

where D(·‖·) denotes relative entropy. The first inequality in

the proposition’s statement now follows by evaluating the left-

hand side of (143)

D
(
Q(·)

∥
∥QE(·)

)
=

∫ ∞

0

Q′(x) log
Q′(x)
1
η e

− x
η

dx (144)

= −h(X) + log η + 1 (145)

and evaluating the right-hand side of (143)

D
(
R(·)

∥
∥RG(·)

)

=

∞∑

y=0

R(y) log
R(y)

1
1+η

(
η

1+η

)y (146)

= −H(Y ) + (1 + η) log(1 + η)− η log η. (147)

The second inequality in the proposition’s statement follows

by noting that (1 + η) log(1 + η−1) − 1 is monotonically

decreasing in η and approaches zero, as η ↑ ∞.
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APPENDIX B

A PROOF OF LEMMA 18

Everything in the following derivation is conditional on

X = x. Recall that here we assume λ0 = 0. We start with the

proof of (89):

E[log Ỹ |X = x]

=

∫ ∞

0

W̃ (ỹ|x) log ỹ dỹ (148)

=

∫ 1

0

W̃ (ỹ|x)
︸ ︷︷ ︸

≤1

log ỹ
︸︷︷︸

≤0

dỹ +

∫ ∞

1

W̃ (ỹ|x) log ỹ dỹ

︸ ︷︷ ︸

≥0

(149)

≥
∫ 1

0

log ỹ dỹ = −1. (150)

For the derivation of (86)–(88) we let

Zx ,
Ỹ

x
(151)

be a nonnegative continuous random variable with density

fx(z) ,
d

dz
Pr[Zx ≤ z] = − d

dz
Pr[Zx ≥ z] = xW̃ (zx|x).

(152)

Then from the definition of Ỹ in (74) and from Lemma 9 we

have

E[Zx] =
E[Ỹ ]

x
=

x+ 1
2

x
= 1 +

1

2x
(153)

Var(Zx) =
Var

(

Ỹ
)

x2
=

1

x2

(

x+
1

12

)

=
1

x
+

1

12x2
. (154)

Moreover, using the fact that the probability distribution of a

Poisson random variable is monotonically increasing for all

values below its mean (see Lemma 9), we get for z ≤ 1

Pr[Zx ≤ z] = Pr
[

Ỹ ≤ zx
]

(155)

=

∫ zx

0

W̃ (ỹ|x) dỹ (156)

=

∫ zx

0

W
(
⌊ỹ⌋
∣
∣x
)

dỹ (157)

≤
∫ zx

0

W
(
⌊zx⌋

∣
∣x
)

dỹ (158)

= zxW
(
⌊zx⌋

∣
∣x
)

(159)

= zxW̃ (zx|x) (160)

= zfx(z), z ≤ 1. (161)

Here, from Lemma 9 the inequality (158) holds as long as

zx ≤ x, i.e., z ≤ 1. The last equality follows from (152).

We now have

E[log Ỹ |X = x]

= log x+ E[logZx] (162)

= log x+

∫ 1−δ

0

fx(z) log z dz +

∫ 1+δ

1−δ

fx(z) log z dz

+

∫ ∞

1+δ

fx(z) log z dz (163)

where 0 < δ < 1 is arbitrary. We will now find upper and

lower bounds to each of the three integrals separately.

0 ≤ −
∫ 1−δ

0

fx(z) log z dz (164)

= − lim
a↓0

∫ 1−δ

a

fx(z) log z dz (165)

= lim
a↓0

{

− log(1− δ)
︸ ︷︷ ︸

≥0

Pr[Zx ≤ 1− δ]
︸ ︷︷ ︸

≤1

+ Pr[Zx ≤ a] log a
︸ ︷︷ ︸

≤0

+

∫ 1−δ

a

Pr[Zx ≤ z]
1

z
dz

}

(166)

≤ − log(1− δ) +

∫ 1−δ

0

Pr[Zx ≤ z]
1

z
dz (167)

≤ − log(1− δ) +

∫ 1−δ

0

fx(z) dz (168)

= − log(1− δ) + Pr[Zx ≤ 1− δ] (169)

= − log(1− δ)

+ Pr

[

Zx − E[Zx] ≤ 1− δ − 1− 1

2x

]

(170)

= − log(1− δ)

+ Pr

[

(Zx − E[Zx])
2 ≥

(

−δ − 1

2x

)2
]

(171)

≤ − log(1− δ) +
1

(
δ + 1

2x

)2

(
1

x
+

1

12x2

)

. (172)

Here (166) follows from integration by parts; (168) from (161);

and (172) follows from Chebyshev’s inequality [26]

Pr
[∣
∣V − E[V ]

∣
∣
2
> ǫ2

]

≤ Var(V )

ǫ2
. (173)

For the second integral we only use the monotonicity of

log z:
∫ 1+δ

1−δ

fx(z) log z dz ≤ log(1 + δ)

∫ 1+δ

1−δ

fx(z) dz

︸ ︷︷ ︸

≤1

(174)

≤ log(1 + δ) (175)
∫ 1+δ

1−δ

fx(z) log z dz ≥ log(1− δ)
︸ ︷︷ ︸

≤0

∫ 1+δ

1−δ

fx(z) dz

︸ ︷︷ ︸

≤1

(176)

≥ log(1− δ). (177)

For the last integral term we use integration by parts,

similarly to the first integral:

0 ≤
∫ ∞

1+δ

fx(z) log z dz (178)

= lim
a↑∞

∫ a

1+δ

fx(z) log z dz (179)

= lim
a↑∞

{

− Pr[Zx ≥ a] log a
︸ ︷︷ ︸

≤0

+ Pr[Zx ≥ 1 + δ]
︸ ︷︷ ︸

≤1

log(1 + δ)

+

∫ a

1+δ

Pr[Zx ≥ z]
1

z
dz

}

(180)
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≤ log(1 + δ) +

∫ ∞

1+δ

Pr[Zx ≥ z]
1

z
dz. (181)

Now we distinguish between two cases. In the first case we

assume that x ≥ 1
δ . Then

1 + δ ≥ 1 +
1

2x
(182)

and we can use Chebyshev’s inequality (173):
∫ ∞

1+δ

Pr[Zx ≥ z]
1

z
dz

=

∫ ∞

1+δ

Pr

[

(Zx − E[Zx])
2 ≥

(

z − 1− 1

2x

)2
]

1

z
dz (183)

≤
∫ ∞

1+δ

1
(
z − 1− 1

2x

)2
z

(
1

x
+

1

12x2

)

dz (184)

≤
(
1

x
+

1

12x2

)∫ ∞

1+δ

1
(
z − 1− δ

2

)2
z

dz (185)

=

(
1

x
+

1

12x2

)
1

(
1 + δ

2

)2

(

1 +
2

δ
+ log

δ/2

1 + δ

)

(186)

where in (185) we use once more that x ≥ 1
δ .

For x < 1
δ we need to make one additional step:

∫ ∞

1+δ

Pr[Zx ≥ z]
1

z
dz

=

∫ 1+ 1
x

1+δ

Pr[Zx ≥ z]
1

z
dz +

∫ ∞

1+ 1
x

Pr[Zx ≥ z]
1

z
dz (187)

=

∫ 1+ 1
x

1+δ

Pr[Zx ≥ z]
1

z
dz

+

∫ ∞

1+ 1
x

Pr

[

(Zx − E[Zx])
2 ≥

(

z − 1− 1

2x

)2
]

1

z
dz

(188)

≤
∫ 1+ 1

x

1+δ

1

z
dz +

(
1

x
+

1

12x2

)
1

(
1 + 1

2x

)2 ·

·
(

1 + 2x+ log
1
2x

1 + 1
x

)

(189)

= log

(

1 +
1

x

)

− log(1 + δ)

+

(
1

x
+

1

12x2

)
4x2

(2x+ 1)2

(

1 + 2x+ log
1

2x+ 2
︸ ︷︷ ︸

≤0

)

(190)

≤ log

(

1 +
1

x

)

− log(1 + δ) +

(

4x+
1

3

)
1

2x+ 1
(191)

where (189) follows again from Chebyshev’s inequality.

The claimed results now follow by combining the corre-

sponding terms.

APPENDIX C

A PROOF OF LEMMA 19

Everything in the following derivation is conditional on

X = x. Recall that here we assume λ0 = 0. The bound

(92) follows from Lemma 17b) and the fact that entropy is

nonnegative.

To derive (91) we write

h(Ỹ |X = x)

= −
∫ ∞

0

W̃ (ỹ|x) log W̃ (ỹ|x) dỹ (192)

= −
∫ ∞

0

W̃ (ỹ|x) log
(

e−x 1

⌊ỹ⌋!x
⌊ỹ⌋
)

dỹ (193)

= x− E

[⌊
Ỹ
⌋
∣
∣
∣ X = x

]

log x

+

∫ ∞

0

W̃ (ỹ|x) log
(
⌊ỹ⌋!

)
dỹ (194)

= x− E[Y |X = x] log x

+

∫ ∞

1

W̃ (ỹ|x) log
(
⌊ỹ⌋!

)
dỹ (195)

= x− x log x+

∞∑

y=1

W (y|x) log(y!) (196)

where in (195) we use that
⌊
Ỹ
⌋
= Y .

Using Stirling’s bound [28], [29]

√
2πn

(n

e

)n

e
1

12n+1 ≤ n! ≤
√
2πn

(n

e

)n

e
1

12n (197)

and the Taylor expansion of y log y around x

y log y = x log x+ (1 + log x)(y − x) +
1

2x
(y − x)2

− 1

6x2
(y − x)3 +

1

12
(
x+ θ(y − x)

)3 (y − x)4

︸ ︷︷ ︸

≥0

(198)

≥ x log x+ (1 + log x)(y − x) +
1

2x
(y − x)2

− 1

6x2
(y − x)3 (199)

(where 0 < θ < 1), we get

h(Ỹ |X = x)

≥ x− x log x

+
∞∑

y=1

W (y|x)
(
1

2
log 2πy + y log y − y +

1

12y + 1
︸ ︷︷ ︸

≥0

)

(200)

≥ −x log x+
1

2
(1− e−x) log 2π +

1

2

∞∑

y=1

W (y|x) log y

+

∞∑

y=0

W (y|x)y log y (201)

≥ −x log x+
1

2
(1− e−x) log 2π +

1

2

∞∑

y=2

W (y|x) log y

+

∞∑

y=0

W (y|x)
(

x log x+ (1 + log x)(y − x)

+
1

2x
(y − x)2 − 1

6x2
(y − x)3

)

(202)
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=
1

2
log 2π +

1

2
− 1

6x
+

1

2

∞∑

y=2

W (y|x) log y

− 1

2
e−x log 2π. (203)

Here, (200) follows from the lower bound in (197); in (201)

we use the mean of a Poisson distribution, however, noting

that the summation starts at y = 1 instead of y = 0; then in

(202) we insert (199); and in the final step (203) we again use

Lemma 9.

In order to evaluate the remaining sum in (203) we introduce

Zx as shown in (151)–(161) in Appendix B.

∞∑

y=2

W (y|x) log y

≥
∫ ∞

2

W̃ (ỹ|x) log(ỹ − 1) dỹ (204)

=

∫ ∞

1

W̃ (ỹ + 1|x) log ỹ dỹ (205)

=

∫ ∞

1
x

xW̃ (xz + 1|x) log(xz) dz (206)

=

∫ ∞

1
x

fx

(

z +
1

x

)

(log x+ log z) dz (207)

= Pr

[

Zx ≥ 2

x

]

log x+

∫ ∞

1
x

fx

(

z +
1

x

)

log z dz (208)

= Pr

[

Zx ≥ 2

x

]

log x+

∫ 1−δ

1
x

fx

(

z +
1

x

)

log z dz

+

∫ 1+δ

1−δ

fx

(

z +
1

x

)

log z dz

+

∫ ∞

1+δ

fx

(

z +
1

x

)

log z dz (209)

where we introduce an arbitrary 0 < δ < 1
2 and assume that

x ≥ 1
δ .

We will now find bounds for each integral separately,

similarly to the derivation in Appendix B. We again start with

integration by parts:

−
∫ 1−δ

1
x

fx

(

z +
1

x

)

log z dz

= − log(1− δ)
︸ ︷︷ ︸

≥0

Pr

[

Zx ≤ 1− δ +
1

x

]

︸ ︷︷ ︸

≤1

+ Pr

[

Zx ≤ 2

x

]

log
1

x
︸ ︷︷ ︸

≤0 because x≥ 1
δ>2

+

∫ 1−δ

1
x

Pr

[

Zx ≤ z +
1

x

]
1

z
dz

(210)

≤ − log(1− δ) +

∫ 1−δ

1
x

fx

(

z +
1

x

)
z + 1

x

z
dz (211)

≤ − log(1− δ) +
1
x + 1

x
1
x

∫ 1−δ

1
x

fx

(

z +
1

x

)

dz

(212)

= − log(1− δ) + 2Pr

[

Zx ≤ 1− δ +
1

x

]

− 2 Pr

[

Zx ≤ 2

x

]

︸ ︷︷ ︸

≥0

(213)

≤ − log(1− δ)

+ 2Pr

[

Zx − E[Zx] ≤ 1− δ +
1

x
− 1− 1

2x

]

(214)

= − log(1− δ)

+ 2Pr

[

(Zx − E[Zx])
2 ≥

(

δ − 1

2x

)2
]

(215)

≤ − log(1− δ) +
2

(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

. (216)

Here, (211) follows from (161) using our assumption that x ≥
1
δ ; (212) is due to the monotonicity in z of

z+1/x
z ; in (215)

we use that x ≥ 1
δ > 1

2δ ; and the last inequality (216) follows

from Chebyshev’s inequality (173).

For the second integral we use the monotonicity of log z:

∫ 1+δ

1−δ

fx

(

z +
1

x

)

log z dz

≥ log(1− δ)
︸ ︷︷ ︸

≤0

∫ 1+δ

1−δ

fx

(

z +
1

x

)

dz

︸ ︷︷ ︸

≤1

(217)

≥ log(1− δ). (218)

The third integral we simply lower-bound by zero:

∫ ∞

1+δ

fx

(

z +
1

x

)

log z dz ≥ 0. (219)

Combined this yields for x ≥ 1
δ ,

h(Ỹ |X = x)

≥ 1

2
log 2π +

1

2
− 1

6x
+

1

2
Pr

[

Zx ≥ 2

x

]

log x

+ log(1− δ)− 1
(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

− 1

2
e−x log 2π (220)

=
1

2
log 2πe+ log(1− δ) +

1

2
log x− 1

6x

− 1

2
Pr

[

Zx <
2

x

]

log x− 1

2
e−x log 2π

− 1
(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

. (221)

We then again use (161) under the condition x ≥ 1
δ > 2 to

show that

1

2
Pr

[

Zx <
2

x

]

log x ≤ 1

2

2

x
fx

(
2

x

)

log x (222)

=
1

x
xW̃ (2|x) log x (223)

= e−x x
2

2
log x. (224)
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Hence,

h(Ỹ |X = x) ≥ 1

2
log 2πe+ log(1− δ) +

1

2
log x− 1

6x

− e−xx
2

2
log x− 1

2
e−x log 2π

− 1
(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

. (225)

APPENDIX D

A PROOF OF LEMMA 20

Let δ1 , δ
2 > 0. From the definition of W (·|·) we have for

any integer y ≥ ⌊A(1 + δ1)⌋:

W (y + 1|A)

= e−A · A
y+1

(y + 1)!
(226)

= e−A · A
y

y!
· A

y + 1
(227)

≤ e−A · A
y

y!
· A

⌊A(1 + δ1)⌋+ 1
(228)

≤ e−A · A
y

y!
· 1

1 + δ1
(229)

= W (y|A) · 1

1 + δ1
, y ≥ ⌊A(1 + δ1)⌋ (230)

where for (229) we use

⌊A(1 + δ1)⌋+ 1 ≥ A(1 + δ1). (231)

Therefore, knowing that W (·|·) ≤ 1, we get

W (y|A) ≤ W (⌊A(1 + δ1)⌋|A) ·
(

1

1 + δ1

)y−⌊A(1+δ1)⌋
(232)

≤
(

1

1 + δ1

)y−⌊A(1+δ1)⌋
, y ≥ ⌊A(1 + δ1)⌋.

(233)

Hence,
∫ ∞

A(1+δ)

W̃ (ỹ|A) dỹ

≤
∫ ∞

⌊A(1+δ)⌋
W̃ (ỹ|A) dỹ (234)

=

∞∑

y=⌊A(1+δ)⌋
W (y|A) (235)

≤
∞∑

y=⌊A(1+δ)⌋

(
1

1 + δ1

)y−⌊A(1+δ1)⌋
(236)

=

(
1

1 + δ1

)⌊A(1+δ)⌋−⌊A(1+δ1)⌋ ∞∑

y=0

(
1

1 + δ1

)y

(237)

=

(
1

1 + δ1

)⌊A(1+δ)⌋−⌊A(1+δ1)⌋
· 1 + δ1

δ1
(238)

≤
(

2

2 + δ

)A δ
2−1

· 2 + δ

δ
(239)

where for (239) we use

⌊A(1 + δ)⌋ − ⌊A(1 + δ1)⌋
≥ A(1 + δ)− 1− A(1 + δ1) (240)

= A
δ

2
− 1. (241)

Note that the left-hand side of (95) and (96) are trivially lower-

bounded by zero. Hence, (95) and (96) follow from (239).

To prove (97) we again assume y ≥ ⌊A(1 + δ1)⌋:

W (y + 1|A) log
1

W (y + 1|A)

≤ W (y|A)
1

1 + δ1
log

1

W (y|A) 1
1+δ1

(242)

=
1

1 + δ1
W (y|A) log

1

W (y|A)
+

log(1 + δ1)

1 + δ1
·W (y|A)

(243)

≤ 1

1 + δ1
W (y|A) log

1

W (y|A)

+
log(1 + δ1)

1 + δ1
·W (y|A) log

1

W (y|A)
(244)

=
1 + log(1 + δ1)

1 + δ1
·W (y|A) log

1

W (y|A)
,

y ≥ ⌊A(1 + δ1)⌋. (245)

Here, (242) can be argued as follows: for ξ ≪ 1 the function

ξ 7→ ξ log 1
ξ is monotonically increasing. For large A (as a

matter of fact A ≥ 2 is already sufficiently large) W (·|A) is

small enough such that W (·|A) log 1
W (·|A) is monotonically

increasing. Therefore, we can use (230). Inequality (244)

follows because for large A (again A ≥ 2 is sufficiently large)

we have log 1
W (y|A) > 1. Hence,

W (y|A) log
1

W (y|A)

≤ W (⌊A(1 + δ1)⌋|A) log
1

W (⌊A(1 + δ1)⌋|A)
︸ ︷︷ ︸

≤1

·
(
1 + log(1 + δ1)

1 + δ1

)y−⌊A(1+δ1)⌋
(246)

≤
(
1 + log(1 + δ1)

1 + δ1

)y−⌊A(1+δ1)⌋
,

y ≥ ⌊A(1 + δ1)⌋. (247)

Therefore (97) can be derived as follows:

∫ ∞

A(1+δ)

W̃ (ỹ|A) log
1

W̃ (ỹ|A)
dỹ

≤
∫ ∞

⌊A(1+δ)⌋
W̃ (ỹ|A) log

1

W̃ (ỹ|A)
dỹ (248)

=

∞∑

y=⌊A(1+δ)⌋
W (y|A) log

1

W (y|A)
(249)

≤
∞∑

y=⌊A(1+δ)⌋

(
1 + log(1 + δ1)

1 + δ1

)y−⌊A(1+δ1)⌋
(250)
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=

∞∑

y=0

(
1 + log(1 + δ1)

1 + δ1

)y+⌊A(1+δ)⌋−⌊A(1+δ1)⌋
(251)

=
1 + δ1

δ1 − log(1 + δ1)

(
1 + log(1 + δ1)

1 + δ1

)⌊A(1+δ)⌋−⌊A(1+δ1)⌋

(252)

≤ 1 + δ1
δ1 − log(1 + δ1)

(
1 + log(1 + δ1)

1 + δ1

)A δ
2−1

. (253)

Here for (253) we have again used (241). Note that the left-

hand side of (97) is trivially lower-bounded by zero since

W̃ (·|·) ≤ 1. Hence, (97) follows from (253).

APPENDIX E

PROOF OF THE UPPER BOUND (19)

To derive (19) we firstly note that the capacity of a channel

with an imposed peak- and average-power constraint is upper-

bounded by the capacity of the same channel with a peak-

power constraint only. Hence, any upper bound on the capacity

for the case α = 1 is implicitly an upper bound on the capacity

for all 0 < α ≤ 1, i.e., we will derive an upper bound for the

case α = 1 only.

The derivation of this upper bound could be done according

to the scheme in Section IV-C with a choice of an output

distribution R(·) with PDF

R′(ỹ) ,

{

p · β·ỹβ−1

(A(1+δ))β
∀ 0 ≤ ỹ ≤ A(1 + δ)

(1− p) · e−(ỹ−A(1+δ)) ∀ ỹ > A(1 + δ)
(254)

where β > −1, δ > 0, and

p = p(A) , Pr
[

Ỹ ≤ A(1 + δ)
∣
∣
∣X = A

]

. (255)

However, we will show a different approach here that does

not rely on the duality-based technique of Proposition 1. This

approach is more cumbersome and less general, but clearly

illustrates the elegance and power of the duality approach.

The new approach uses the trick to “transfer” the problem of

computing the mutual information between input and output of

the channel to a problem that depends only on the distribution

of the channel output. More specifically, we will lower-bound

h(Ỹ |X = x) by an expression containing 1
2E[log Ỹ ] such that

the mutual information is upper-bounded by an expression that

contains

h(Ỹ )− 1

2
E[log Ỹ ] (256)

and does not directly depend on X . We can then find a

valid upper bound by maximizing this expression over all

allowed output distributions. Unfortunately, this maximum is

unbounded as we do not have a peak-power constraint on the

output. Hence, we additionally need to “transfer” the peak-

power constraint to the output side, i.e., we need to show that

the contribution of the terms for ỹ > A are asymptotically

negligible. As a matter of fact, we will only be able to show

that the terms for ỹ > A(1+ δ) are negligible for an arbitrary

δ > 0.

Interestingly, the PDF that will achieve the maximum in

(256) is (almost) our choice R′(·) of (254). Therefore the

derivations of both approaches are very similar in many

aspects. The main difference—and also the reason why this

alternative derivation is much less powerful—is that in this

alternative derivation we have to transfer the problem to the

output side (including the peak-power constraint!) and then

prove that our choice of R(·) is entropy-maximizing. This

is in stark contrast to the approach of Section IV-C where

we may simply specify R(·) without any justification. In the

case of only a peak-power constraint such a justification is

possible; in the more complicated scenario of both a peak-

and an average-power constraint such a proof may be very

difficult.

We will now show the details. Again assume λ0 = 0. Using

Lemma 17a), Lemma 18, and Lemma 19 we get

I(X;Y )

= h(Ỹ )− EQ

[
1

2
log(1 +X) +

1

2
log 2πe+ oX(1)

]

(257)

= h(Ỹ )− EQ

[
1

2
E[log Ỹ |X = x]− oX(1)

]

− 1

2
log 2πe+ EQ[oX(1)] (258)

= h(Ỹ )− 1

2
E[log Ỹ ]− 1

2
log 2πe+ EQ[oX(1)] (259)

≤
∫ A(1+δ)

0

pỸ (ỹ) log
1

pỸ (ỹ)
dỹ

+

∫ ∞

A(1+δ)

pỸ (ỹ) log
1

pỸ (ỹ)
dỹ

− 1

2

∫ A(1+δ)

0

pỸ (ỹ) log ỹ dỹ − 1

2
log 2πe

+ EQ[oX(1)] (260)

where (260) follows because for large A,
∫ ∞

A(1+δ)

pỸ (ỹ) log ỹ dỹ ≥ 0. (261)

In order to prove that
∫∞

A(1+δ)
pỸ (ỹ) log

1
pỸ (ỹ) dỹ is small

we note that for ỹ > A(1 + δ) the output distribution can be

bounded as follows:

pỸ (ỹ) =

∫ A

0

Q(x)W̃ (ỹ|x) dx (262)

≤ max
0≤x≤A

W̃ (ỹ|x) (263)

= W̃ (ỹ|A), ỹ > A(1 + δ). (264)

Since W̃ (ỹ|A) is small for large A, we can use the mono-

tonicity of ξ log 1
ξ for small ξ to bound

∫ ∞

A(1+δ)

pỸ (ỹ) log
1

pỸ (ỹ)
dỹ

≤
∫ ∞

A(1+δ)

W̃ (ỹ|A) log
1

W̃ (ỹ|A)
dỹ (265)

= oA(1) (266)

where (266) follows from (97).

Let

p̃ = p̃(A) , Pr
[

Ỹ ≤ A(1 + δ)
]

(267)
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where p̃ ↑ 1 as A ↑ ∞. Let further

p̂Ỹ (ỹ) ,

{
1
p̃pỸ (ỹ) for 0 ≤ ỹ ≤ A(1 + δ)

0 otherwise.
(268)

Note that p̂Ỹ (·) is a probability density, i.e., it is nonnegative

and integrates to one. Hence,

I(X;Y )

≤
∫ A(1+δ)

0

p̃ · p̂Ỹ (ỹ) log
1

p̃ · p̂Ỹ (ỹ)
dỹ − 1

2
log 2πe

− 1

2

∫ A(1+δ)

0

p̃ · p̂Ỹ (ỹ) log ỹ dỹ + EQ[oX(1)]

+ oA(1) (269)

= p̃

(
∫ A(1+δ)

0

p̂Ỹ (ỹ) log
1

p̂Ỹ (ỹ)
dỹ

− 1

2

∫ A(1+δ)

0

p̂Ỹ (ỹ) log ỹ dỹ

)

+ p̃ log
1

p̃
− 1

2
log 2πe+ EQ[oX(1)] + oA(1) (270)

≤ p̃ · sup
p̂Ỹ ∈Ỹ

{
∫ A(1+δ)

0

p̂Ỹ (ỹ) log
1

p̂Ỹ (ỹ)
dỹ

− 1

2

∫ A(1+δ)

0

p̂Ỹ (ỹ) log ỹ dỹ

}

+ p̃ log
1

p̃
− 1

2
log 2πe+ EQ[oX(1)] + oA(1) (271)

= p̃ · sup
η

{

sup
p̂Ỹ ∈Ỹη

h(Ỹ )− 1

2
η

}

+ p̃ log
1

p̃
− 1

2
log 2πe

+ EQ[oX(1)] + oA(1) (272)

where Ỹ denotes the set of all distributions over [0,A(1+δ)],
and Ỹη the set of all distributions over [0,A(1+δ)] that satisfy

the constraint E[log Ỹ ] = η.

The supremum over Ỹη is achieved by the distributions [22,

Ch. 11]

p̂∗
Ỹ
(ỹ) =

β · ỹβ−1

(A(1 + δ))β
, β > −1 (273)

with

Ep̂∗

Ỹ

[

log Ỹ
]

= log
(
A(1 + δ)

)
− 1

β
(274)

hp̂∗

Ỹ
(Ỹ ) = log

(
A(1 + δ)

)
− log β +

β − 1

β
. (275)

Hence,

I(X;Y )

≤ p̃ · sup
β

{
1

2
logA +

1

2
log(1 + δ)− log β + 1− 1

2β

}

+ p̃ log
1

p̃
− 1

2
log 2πe+ EQ[oX(1)] + oA(1) (276)

= p̃

(
1

2
logA +

1

2
log(1 + δ)− log

1

2
+ 1− 1

2 · 1
2

)

+ p̃ log
1

p̃
− 1

2
log 2πe+ EQ[oX(1)] + oA(1) (277)

≤ 1

2
logA +

1

2
log(1 + δ) + log 2 + p̃(A) log

1

p̃(A)

− 1

2
log 2πe+ EQ[oX(1)] + oA(1) (278)

=
1

2
logA − 1

2
log

πe

2
+

1

2
log(1 + δ) + EQ[oX(1)]

+ oA(1) (279)

where the supremum in (276) is achieved for β = 1
2 , and

where in (278) we have bounded p̃ ≤ 1.

Finally, we use (73) and Corollary 15. The result now

follows since δ is arbitrary.

APPENDIX F

A PROOF OF COROLLARY 15

To prove the claim of this corollary we rely on Proposi-

tion 14, i.e., we need to derive a function Casy(·) that satisfies

(67) and (68).

From the lower bounds in Theorem 3, 4, and 7 (which are

proven in Section III) we know that

lim
A↑∞

C(A, αA)
1
2 logA

≥ 1 (280)

and

lim
E↑∞

C(E)
1
2 log E

≥ 1 (281)

respectively.

We next derive upper bounds on the channel capacity. Note

that

C(A, αA) ≤ CPP(A) ≤ Cavg(A) (282)

where CPP(·) and Cavg(·) denote the capacity under an peak-

power and average-power constraint, respectively. Hence, it

will be sufficient to show an upper bound for the average-

power constraint case only. Moreover, as shown in (58), we

can further upper-bound capacity by assuming λ0 = 0.

Our derivation is based on Lemma 17a) and on (9) with

the choice of an output distribution R(·) on R
+
0 having the

following density:

R′(ỹ) ,
e−

ỹ
E

√
πỹE , ỹ ≥ 0. (283)

For X = x we get

D
(
W̃ (·|x)

∥
∥R(·)

)

= −h(Ỹ |X = x) +
1

2
E[log Ỹ |X = x]

+
1

2
log E +

1

2
log π +

1

E E[Ỹ |X = x] (284)

= −h(Ỹ |X = x) +
1

2
E[log Ỹ |X = x]

+
1

2
log E +

1

2
log π +

x

E +
1

2E (285)

where we use that E[Ỹ |X = x] = x+ 1
2 (the additional term

1
2 follows from (74)). We fix an arbitrary 0 < δ < 1

2 and
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continue by a case distinction. For x ≥ 1
δ we use the bounds

(86) and (91) to get

D
(
W̃ (·|x)

∥
∥R(·)

)

≤ −1

2
log 2πe− log(1− δ)− 1

2
log x+

1

6x

+ e−xx
2

2
log x+

1

2
e−x log 2π

+
1

(
δ − 1

2x

)2

(
1

x
+

1

12x2

)

+
1

2
log x+ log(1 + δ)

+
1

2

(
1

x
+

1

12x2

)
1

(
1 + δ

2

)2

(

1 +
2

δ
+ log

δ/2

1 + δ

)

+
1

2
log E +

1

2
log π +

x

E +
1

2E (286)

≤ −1

2
− log(1− δ) +

δ

6
+ 1 +

4

δ2

(

δ +
δ2

12

)

+
1

2

(

δ +
δ2

12

)
1

(
1 + δ

2

)2

(

1 +
2

δ
+ log

δ/2

1 + δ

)

+
1

2
log E +

1

2
log π +

x

E +
1

2E + log(1 + δ) (287)

=
1

2
log E +

x

E +
1

2E +O(1) (288)

where in (287) we use e−x x2

2 log x ≤ 1 and e−x ≤ 1, and

where we use in various places that x ≥ 1
δ . Here O(1) denotes

some finite terms that only depend on δ, but not on E or x.

For x < 1
δ we use (87) and (92) to get

D
(
W̃ (·|x)

∥
∥R(·)

)

≤ 1

2
log(1 + x) +

1

2
log(1 + δ) +

1

2

(

4x+
1

3

)
1

2x+ 1

+
1

2
log E +

1

2
log π +

x

E +
1

2E (289)

≤ 1

2
log

(

1 +
1

δ

)

+
1

2
log(1 + δ) +

1

2

(
4

δ
+

1

3

)

+
1

2
log E +

1

2
log π +

x

E +
1

2E (290)

=
1

2
log E +

x

E +
1

2E +O(1) (291)

where we upper-bound 1
2x+1 ≤ 1 and where we use in various

places that x < 1
δ . Again O(1) does not depend on E or x.

Hence, we get

C(E) ≤ EQ∗

[

D
(
W̃ (·|X)

∥
∥R(·)

)]

(292)

≤ 1

2
log E +

E
E +

1

2E +O(1) (293)

=
1

2
log E + oE(1) +O(1) (294)

and therefore

lim
E↑∞

C(E)
1
2 log E

≤ 1. (295)

Hence, we have shown that Casy(ζ) , 1
2 log ζ satisfies the

conditions of Proposition 14. This proves our claim.
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