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Abstract—The capacity of the intensity-modulation direct-
detection optical broadcast channel (OBC) is investigated, under
both average and peak intensity constraints. An outer bound on
the capacity region is derived by adapting Bergmans’ approach to
the OBC. Inner bounds are derived by using superposition coding
with either truncated-Gaussian (TG) distributions or discrete
distributions. While the discrete distribution achieves higher
rates, the TG distribution leads to a simpler representation of the
achievable rate region. At high signal-to-noise ratio (SNR), it is
shown that the TG distribution is nearly optimal. It achieves the
symmetric-capacity within a constant gap (independent of SNR),
which approaches half a bit as the number of users grows. It also
achieves the capacity region within a constant gap. At low SNR,
it is shown that on-off keying (OOK) with time-division multiple-
access (TDMA) is optimal. This is interesting in practice since
both OOK and TDMA have low complexity. At moderate SNR
(typically [0,8] dB), a discrete distribution with a small alphabet
size achieves fairly good performance.

Index Terms—Intensity-modulation; optical broadcast; capac-
ity region; truncated-Gaussian; discrete inputs.

I. INTRODUCTION

Optical wireless communication (OWC) refers to commu-
nication through an unguided medium using modulated light
[2]–[4]. It has many advantages in comparison to RF, including
higher data-rates and higher security/locality. Moreover, OWC
has reduced electromagnetic interference in comparison to RF,
which makes it an excellent candidate for communication in
hospitals or airplanes, where electromagnetic compatibility is
an essential requirement. Indoor OWC using visible-light is
known as visible-light communications (VLC), and is the main
topic of this paper.

For these reasons, interest in OWC has increased recently
[5]–[10]. Focus has been towards studying the performance
of OWC systems employing intensity modulation and direct
detection (IM-DD), established by modulating light intensity
at the source and using an intensity detector at the destination.
Studying the performance of this simple implementation in
terms of capacity is rather difficult. IM-DD systems are not
captured by the intensively-studied Gaussian point-to-point
(P2P) channel with a second-moment constraint [11]. The
reason is that the transmit signal of an IM-DD system has
to satisfy non-negativity, peak, and average constraints [9].
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Although the capacity of the IM-DD P2P channel is still
unknown in closed-form, some fairly tight bounds exist [8]–
[10], and the high- and low-SNR capacity is known [9], [10].

Consider a scenario where an office light fixture is used
to send information to multiple work-stations (users) using
IM-DD for instance. The resulting system is an optical broad-
cast channel (OBC), and has been studied in [12]–[16]. In
[12], the authors study the capacity of the Poisson broadcast
channel. In [13]–[15], the authors analyze the performance
of orthogonal code-division multiple-access. Orthogonalizing
users this way allows serving multiple users in the OBC
without interference. Hence, the channel from the transmitter
to each receiver reduces to an IM-DD P2P, and capacity results
on IM-DD P2P channels can be applied. However, as shown
in [19], for a Gaussian broadcast channel which is physically
degraded by nature, superposition coding (SC) is optimal and
orthogonalizing users is not efficient. The performance of SC
in the OBC in terms of bit-error rate and throughput has been
recently studied in [16]. The MISO OBC was studied recently
in [17], [18].

Thus, one should apply SC in the OBC. However, it is not
clear which input distribution is optimal. Since the optimal
distribution for the IM-DD P2P is unknown, finding the
optimal distribution for the OBC is even more challenging.
One expects the optimal distribution to be discrete as in the
IM-DD P2P channel [20]. One could also use an exponential
or a TG distribution [9], [10] to achieve good performance at
high SNR. The advantage of those distributions is that their
achievable rate can be expressed in a simpler form contrary
to a discrete input distribution.

The goal of this paper is to study the capacity of the N -
user OBC, which models the downlink in VLC. The main
focus is finding simple closed-form statements on the channel
capacity. This requires developing outer and inner bounds on
the capacity region of the channel. To this end, we modify
Bergmans’ outer bound [21] to obtain outer bounds on the
capacity region of the OBC. Then, we develop inner bounds
on the capacity region based on SC, where the source sends
the sum of several symbols, each of which is desired by one
user. To obtain the desired signal, assuming users are ordered
in decreasing order of their received SNR, user i decodes the
signals intended to users N,N − 1, · · · , i successively in this
order, each time treating the remaining signals as noise. We
derive the rate region achievable by SC with a TG distribution.
We also use a discrete input distributions with finitely many
uniformly spaced points [22] to develop an achievable rate
region, where we use a successive optimization approach to
optimize the distribution of the users. Then, we focus on three
SNR regimes: high, low, and moderate.
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At high SNR, we provide an outer bound that can be written
in a simple closed-form. Then, we study the symmetric-
capacity at which we can transmit simultaneously to all
users. We show that a TG distribution achieves the high-
SNR symmetric-capacity of the channel within a gap of 0.34
nats/transmission for the 2-user case. This gap is proportional
to 1

N log(N) for the N -user case. SC with a TG distribution
is better than TDMA with the same distribution in general.
We also show that the same distribution achieves the high-
SNR capacity region within a small gap. In particular, for
an N -user OBC, if the rate tuple (R1, R2, · · · , RN−1, RN )
is inside our capacity outer bound, then the rate tuple
(R1, R2, · · · , RN−1, RN − δ) is achievable, where δ = 0.68
nats/transmission at most for N = 2, and δ scales as 1

2 log(N)
in the N -user case.

At low SNR, we show that coded OOK combined with
TDMA is optimal as it achieves the channel’s low-SNR
capacity region, and hence also the low-SNR symmetric-
capacity. The capacity region in this case is also given in a
simple closed-form. At moderate SNR (typically [0, 8] dB),
the discrete distribution achieves a larger rate region than TG.
Furthermore, using a small number of mass points suffices to
approach the symmetric-capacity. For instance, for a 2-user
OBC with average and peak constraints E and A = 2E, and
noise variances σ2

1 and σ2
2 = 4σ2

1 at users 1 and 2, respectively,
with E

σ2
= 5 dB, an input distribution with 4 symbols achieves

a fair performance in terms of symmetric-rate.
The main contributions of the paper can thus be summarized

as providing:
1) outer and inner bounds on the OBC capacity region,
2) the high-SNR capacity within a small constant gap, and
3) the low-SNR capacity.

Organization: The paper is organized as follows. We define
the OBC formally in Sec. II. Then, for the 2-user case, we
derive capacity outer bounds in Sec. III and inner bounds in
Sec. IV. We focus on the high SNR and low/moderate SNR
regimes in Sections V and VI, respectively. The results are
extended to the N -user case in Sec. VII, and we conclude in
Sec. VIII.
Notation: Throughout the paper, we use gµ,ν(x) to denote
the Gaussian distribution with mean µ and variance ν2, and
Gµ,ν(x) to denote its CDF. We use normal-face fonts to
denote scalars and bold-face fonts to denote vectors, and CH(·)
denote the convex hull of a set. We write f(x)

x→∞−−−−→ g(x) if
limx→∞(f(x) − g(x)) = 0 and we write f(x)

x→0−−−→ g(x) if
limx→0

f(x)
g(x) = 1.

II. THE OPTICAL BROADCAST CHANNEL

Consider an N -user optical broadcast system, where infor-
mation needs to be conveyed from a light source to users
i ∈ N = {1, · · · , N} using IM-DD (Fig. 1). The light intensity
X ≥ 0 has to satisfy peak and average constraints X ≤ A

and E[X] ≤ E due to safety and practical considerations.1 We
denote the ratio E

A
by α ∈ [0, 1].

1It might be further required that E[X] = E to guarantee a desired lighting
condition in an office environment for instance.

Source

User 1 User 2

Fig. 1: An optical broadcast channel where light is used to
send information to 2 users.

The received signal at user i ∈ N is Yi = X + Zi, where
Zi represents the input-independent noise at user i, distributed
according to g0,σi(zi). Without loss of generality, σ2

i ≥ σ2
i−1

for all i ∈ N, where we formally define σ2
0 = 0. We say that

the resulting optical broadcast channel (OBC) has high SNR if
E� σN and low SNR if A� σ1, which implies that both A

and E are either much larger or smaller than σi for all i ∈ N.
The desired message at user i is represented by a uniformly

distributed random variable Wi ∈ {1, · · · , 2nRi} for some n ∈
N and Ri ≥ 0. The source encodes the independent messages
(W1, · · · ,WN ) to a codeword X ∈ [0,A]n and sends this
codeword. User i receives Y i ∈ Rn and uses a decoder Di to
recover Wi. A rate tuple (R1, · · · , RN ) is said to be achievable
if there exists a coding scheme that satisfies Pe = Prob{Wi 6=
Di(Y i), i ∈ N} → 0 as n → ∞. The set of all achievable
rate tuples is the capacity region of the channel, denoted C.

Due to the symmetry of the noise distribution, using E[X] =
E or E[X] = A−E achieves the same rate [9]. Thus, we restrict
E to (0, A2 ], i.e., α ∈ (0, 12 ]. Next, we focus on N = 2. We
generalize the results to N ≥ 2 in Sec. VII.

III. OUTER BOUND

The OBC considered in this work belongs to the class of
physically-degraded broadcast channels, for which the capac-
ity is known [23]. The capacity region of a degraded broadcast
channel satisfying the Markov chain X → Y1 → Y2 is given
by convex-hull of the closure of all rate pairs (R1, R2) ∈ R2

+

satisfying

R2 ≤ I(U ;Y2), (1)
R1 ≤ I(X;Y1|U), (2)

for some distribution p(u)p(x|u)p(y1, y2|x) over U × X ×
Y1 × Y2, where the cardinality of U is bounded by |U| ≤
min{|X|, |Y1|, |Y2|}, and where X ∈ [0,A] and E[X] ≤ E.
Specifying the optimal distribution p(u)p(x|u) is a challenging
problem in general. Our goal here is to obtain computable
bounds which give better insights on the channel capacity. To
compute such bounds, we need some upper bounds on the
IM-DD P2P channel capacity, which are given next.

A. Review of P2P Capacity Upper Bounds

The next lemma reviews bounds on the IM-DD P2P channel
capacity which were given in [9].
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(a) α = 1/10.
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(b) α = 1/2.

Fig. 2: IM-DD P2P channel capacity upper bounds from [9]. None of the bounds uniformly dominates the others at all SNR.

Lemma 1 ( [9]): The capacity of the IM-DD P2P channel
Y = X + Z where X ∈ [0,A], E[X] ≤ E = αA, α ≤ 1

2 , and
Z ∼ g0,σ(z), is upper bounded by the following quantities

C
[1]

α (A, σ) = inf
β,δ>0

B1(β, δ), (3)

C
[2]

α (A, σ) = inf
δ>0

B2(δ), (4)

C
[3]

α (A, σ) =
1

2
log

(
1 +

α(1− α)A2

σ2

)
, (5)

where B1(β, δ) and B2(δ) are given in (6) and (7) at the top
of next page.

It is worth to note that none of those bounds uniformly
dominates the others over the whole SNR range. Namely,
C

[1]

α (A, σ) dominates at high SNR if α < 1/e, C
[2]

α (A, σ)

dominates at high SNR if α > 1/e, and C
[3]

α (A, σ) dominates
at low SNR (see Fig. 2). Thus, in the sequel, we will need all
those three bounds.

The high-SNR asymptotic expressions of C
[1]

α (A, σ) and
C

[2]

α (A, σ) will also be useful in the sequel. From [9], we have
that C

[1]

α (A, σ) and C
[2]

α (A, σ) approach 1
2 log

(
1 + eα2A2

2πσ2

)
and 1

2 log
(

1 + A2

2πeσ2

)
respectively as E

σ → ∞. Those two
bounds can be combined into the following high-SNR upper
bound

C
[h]

α (A, σ) =
1

2
log

(
1 +

cA2

σ2

)
, (8)

c = min

{
1

2πe
,
eα2

2π

}
. (9)

Having the necessary ingredients, we can now derive an outer
bound on the OBC capacity.

B. Bergmans’ Approach

An outer bound on the OBC capacity region C can be de-
rived by adapting Bergmans’ approach [21]. For the Gaussian
broadcast channel satisfying E[X2] ≤ P only, an important
step in this approach involves using the fact that h(X +Z) ≤

1
2 log(2πe(σ2 + P )) when Z ∼ g0,σ(z), with equality if
X ∼ g0,

√
P (x). Unfortunately, while the input distribution

maximizing h(X + Z) is known if X ∈ R and E[X2] ≤ P ,
it is unknown when X ∈ [0,A] and E[X] ≤ E instead. To
circumvent this problem, we use

h(X + Z) = I(X;X + Z) + h(Z)

≤ Cα(A, σ) + log(
√

2πeσ), (10)

where Cα(A, σ) is an upper bound on the IM-DD P2P channel
capacity with the same constraints A and E, and noise variance
σ2. The bound (10) is generalized to the vector case h(X+Z)
next.

Lemma 2: For X ∈ [0,A] satisfying E[X] ≤ E, and Z ∼
g0,σ(z), the entropy of the n-tuple Y = X + Z is upper
bounded by h(Y ) ≤ nC

[i]

α (A, σ) + n log(
√

2πeσ) for any
i ∈ {1, 2, 3}.

Proof: By the subadditivity of entropy, we have h(Y ) ≤∑n
i=1 h(Yi) where Yi is the i-th component of Y . Then, using

(10) and Lemma 1 leads to the desired result.
Lemma 2 is useful in combination with Bergmans’ approach
to derive the following theorem.

Theorem 1: The capacity region C of the 2-user OBC is
outer bounded by C

[j]
=
⋃
ρ∈[0,1] R

[j]
(ρ) for any j ∈ {1, 2, 3},

where R
[j]

(ρ) is the set of (R1, R2) ∈ R2
+ that satisfy

R1 ≤
1

2
log

(
1 +

σ2
2

σ2
1

(
e2C

[j]
α (ρA,σ2) − 1

))
, (11)

R2 ≤ C
[j]

α (A, σ2)− C [j]

α (ρA, σ2). (12)

Proof: We have

h(Y 2|W2) ≥ h(Y 2|W2,X) = h(Z2) = n log(
√

2πeσ2),

h(Y 2|W2) ≤ h(Y 2) ≤ nC [j]

α (A, σ2) + n log(
√

2πeσ2),

where the second line follows using Lemma 2 and since condi-
tioning reduces entropy. Thus, since C

[j]

α (A, σ2) is increasing



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2016.2517152, IEEE
Transactions on Wireless Communications

B1(β, δ) = log

βe− δ2

2σ2

√
2πeσ

+
Q( δσ )
√
e

+
Q( δσ )

2
+

( δ
2σ + σ

β )e−
δ2

2σ2

√
2π

+
δ2(1− Q( δ+E

σ ))

2σ2
+
δ + E

β
, (6)

B2(δ) =

(
1− 2Q

(
2δ + A

2σ

))
log

(
A + 2δ

σ
√

2π(1− 2Q( δσ ))

)
− 1

2
+ Q

(
δ

σ

)
+
δe−

δ2

2σ2

√
2πσ

. (7)

in A and approaches zero as A → 0, then we can write for
some ρ ∈ [0, 1]

h(Y 2|W2) = nC
[j]

α (ρA, σ2) + n log(
√

2πeσ2). (13)

To bound R2, we write

n(R2 − ε2n) ≤ I(W2;Y 2) = h(Y 2)− h(Y 2|W2)

using Fano’s inequality with ε2n
n→∞−−−−→ 0. By applying

Lemma 2 and (13) we have

h(Y 2)− h(Y 2|W2) ≤ nC [j]

α (A, σ2)− nC [j]

α (ρA, σ2).

Finally, by dividing by n and letting n→∞, we get (12). To
bound R1, we write

n(R1 − ε1n) ≤ I(W1;Y 1) ≤ I(W1;Y 1|W2)

using Fano’s inequality with ε1n
n→∞−−−−→ 0 and using

I(W1;Y 1) ≤ I(W1;Y 1,W2) = I(W1;Y 1|W2)+I(W1;W2)
with I(W1;W2) = 0 by the independence of W1 and W2. But
I(W1;Y 1|W2) ≤ h(Y 1|W2)−h(Z1) since h(Y 1|W1,W2) ≥
h(Y 1|W1,W2,X) = h(Y 1|X) = h(Z1) due to the Markov
chain (W1,W2)→X → Y 1 and the independence of X and
Z1. Thus,

n(R1 − ε1n) ≤ h(Y 1|W2)− h(Z1). (14)

Since σ2
2 ≥ σ2

1 , and since the capacity of the broadcast channel
depends only on the marginal distribution of Yi given X
[24], we write Z2 = Z1 + Z̃2 where Z̃2 ∼ g

0,
√
σ2
2−σ2

1

(z̃2)

independent of Z1. Thus, Y 2 = Y 1 + Z̃2. Using the condi-
tional entropy-power inequality stating that e

2
nh(V 1+V 2|W ) ≥

e
2
nh(V 1|W )+e

2
nh(V 2|W ) for conditionally independent V 1 and

V 2, we write

h(Y 1|W2) ≤ n

2
log
(
e

2
nh(Y 2|W2) − e 2

nh(Z̃2|W2)
)

=
n

2
log
(
e

2
nh(Y 2|W2) − 2πe(σ2

2 − σ2
1)
)

=
n

2
log
(

2πeσ2
1 + 2πeσ2

2

(
e2C

[j]
α (ρA,σ2) − 1

))
,

where the last step follows using (13). Plugging this inequality
in (14), using h(Z1) = n log(

√
2πeσ1), dividing by n, and

letting n → ∞ yields (11). Finally, by taking the union over
all ρ ∈ [0, 1], we get the statement of the theorem.

To assess the tightness of this bound, we derive capacity
inner bounds in the next section.

IV. INNER BOUNDS

An inner bound on C can be obtained using Cover’s super-
position coding (SC) technique [24, Theorem 1]. For N = 2,
this inner bound can be expressed as (1)-(2). To obtain the
best inner bound, this region has to be maximized over input
distributions p(u, x) with X ∈ [0,A] and E[X] ≤ E. Since
the capacity achieving distribution of the IM-DD P2P channel
is discrete [20], we expect the optimal p(u, x) to be also
discrete. Unfortunately, this leads to a rate region which is
not computable in closed-form. We seek a simple computable
rate region. To this end, we derive an inner bound based on
truncated-Gaussian (TG) distributions, motivated by its simple
rate expression and high SNR near-optimality for the IM-DD
P2P channel [10].

A. Truncated-Gaussian

The TG distribution is described by the probability density
function

g̃(x) = ηgµ,ν(x) for x ∈ [0,A], (15)

and g̃(x) = 0 elsewhere, where η = (Gµ,ν(A)−Gµ,ν(0))
−1.

This distribution is completely characterized by the mean
µ and the standard deviation ν of the entailed Gaussian
distribution, and by its support [0,A]. The parameter η is a
scaling factor required to ensure

∫
g̃(x)dx = 1. The mean and

variance of this distribution are respectively

µ̃ = ν2(g̃(0)− g̃(A)) + µ, (16)

ν̃2 = ν2 (1−Ag̃(A)− µ̃(g̃(0)− g̃(A))) . (17)

In what follows, we call such a distribution a (A, µ, ν)-TG
distribution. Since we are dealing with a multi-user scenario,
we will need multiple TG distributions with different µ, ν, and
A. For simplicity of notation, we will index these distributions
by i. That is, for user i, we will use a (Ai, µi, νi)-TG distri-
bution with distribution function g̃i(xi), where the induced
scaling, mean, and variance are ηi, µ̃i, and ν̃2i , respectively.

1) Achievable Rate Region: We first provide a general
achievable rate region corresponding to this distribution, and
then simplify it.

Definition 1: Let P be defined as

P =
{

(p1,p2)
∣∣ pi = (Ai, µi, νi) ∈ R3, Ai, νi > 0,

i = 1, 2, A1 + A2 = A, µ̃1 + µ̃2 = E} .
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Theorem 2: The region RT (p1,p2) described by rate pairs
(R1, R2) ∈ R2

+ satisfying

R2 ≤
1

2
log

(
ν22
ν̃22

+
ν22

ν̃21 + σ2
2

)
− φ2, (18)

R1 ≤
1

2
log

(
ν21
ν̃21

+
ν21
σ2
1

)
− φ1, (19)

is achievable, where (p1,p2) ∈ P, pi = (Ai, µi, νi), φi =
log(ηi) + 1

2 ((Ai − µi)g̃i(Ai) + µig̃i(0)), and where g̃i(xi) is
the distribution function of a (Ai, µi, νi)-TG random variable.
The capacity region C of the 2-user OBC thus satisfies C ⊇
CT =

⋃
(p1,p2)∈P

RT (p1,p2).
Proof: The transmitter encodes the codewords W1 and

W2 to two independent signals X1 and X2 so that the
instances of Xi are i.i.d. according to a (Ai, µi, νi)-TG
distribution. The transmitter sends X = X1 + X2. Due to
the average and peak constraints, we require A1 + A2 = A

and µ̃1 + µ̃2 = E. Both users decode X2, and user 1 decodes
X1 after subtracting X2 from Y 1. The achievable rates can
be expressed as R2 ≤ I(X2;Y2) and R1 ≤ I(X1;Y1|X2),
which corresponds to choosing U = X2 in (1)-(2). This inner
bound can be computed numerically. An inner bound which
is simpler to compute can be obtained as follows. Consider
I(X2;Y2) first which can be written as h(X2)−h(X2|Y2). The
entropy of X2 is given by h(X2) = 1

2 log(2πeν22) − φ2. On
the other hand, h(X2|Y2) can be upper bounded by h(X2|Y 2)
where (X2, Y 2) is jointly Gaussian with covariance matrix(
ν̃2
2 ν̃2

2

ν̃2
2 ν̃

2
1+ν̃

2
2+σ

2
2

)
, since the Gaussian distribution maximizes

conditional differential entropy under a covariance constraint
[25]. Thus, h(X2|Y2) ≤ 1

2 log
(

2πe
ν̃2
2 (ν̃

2
1+σ

2
2)

ν̃2
1+ν̃

2
2+σ

2
2

)
. Therefore,

I(X2;Y2) ≥ 1
2 log

(
ν2
2

ν̃2
2

+
ν2
2

ν̃2
1+σ

2
2

)
−φ2 and we get (18). Simi-

larly, we can show that I(X1;Y1|X2) ≥ 1
2 log

(
ν2
1

ν̃2
1

+
ν2
1

σ2
1

)
−φ1

leading to (19). This proves the achievability of RT (p1,p2).
By taking the union over P, we obtain the capacity region
inner bound CT .

Since the optimal (p1,p2) is difficult to find, we propose p1
and p2 which lead to a simpler inner bound, within a constant
gap of the outer bound C at high SNR.

2) Achievable Region Simplification: Note that if we
choose µ ∈ [0,A] and ν = 1

3 min{µ,A−µ}, the (A, µ, ν)-TG
distribution becomes almost identical to a Gaussian distribu-
tion gµ,ν(x), since in this case, η is close to 1. We use this to
simplify R(p1,p2) as follows.

Proposition 1: Let R′T (β), β ∈ [0, 1], be the set of rate pairs
(R1, R2) ∈ R2

+ satisfying

R2 ≤
1

2
log

(
1 +

α2(1− β)2A2

(α2β2A2 + 9σ2
2)(1 + εµ)2

)
− εφ, (20)

R1 ≤
1

2
log

(
1 +

α2β2A2

9σ2
1(1 + εµ)2

)
− εφ, (21)

with εφ = 0.016 and εµ = 0.0015. Then, the rate region
C′T =

⋃
β∈[0,1] R

′
T (β) is achievable.

Proof: First, we choose A1 = βA and A2 = (1 − β)A,
and we fix µ̃i = αAi. This guarantees µ̃1+µ̃2 = E. Since α ≤
1
2 , then µi ≤ µ̃i ≤ Ai

2 , i = 1, 2. Then we choose νi = µi
3 with

µi ≥ 0. This choice leads to φi ≤ εφ, µi ≤ µ̃i < µi(1 + εµ),

and (1 − εν)ν2i ≤ ν̃2i ≤ ν2i , where εφ = 0.016, εµ = 0.0015,
and εν = 0.0267 (cf. Appendix A). Thus we can write

1

2
log

(
ν22
ν̃22

+
ν22

ν̃21 + σ2
2

)
− φ2 ≥

1

2
log

(
1 +

ν22
ν21 + σ2

2

)
− εφ

1

2
log

(
ν21
ν̃21

+
ν21
σ2
1

)
− φ1 ≥

1

2
log

(
1 +

ν21
σ2
1

)
− εφ.

Since µ̃1 = αβA, ν1 = µ1

3 , and µ1 ≤ µ̃1 ≤ µ1(1 + εµ), we
have αβA

3(1+εµ)
≤ ν1 ≤ αβA

3 , and thus, ν21 ≥
(αβA)2

9(1+εµ)2
. Similarly,

we have ν2
2

ν2
1+σ

2
2
≥ (α(1−β)A)2

(α2β2A2+9σ2
2)(1+εµ)

2 which concludes the
proof.

Since εµ and εφ are small, they will be neglected henceforth.
While this inner bound is simple and fairly tight at high SNR,
it is not at moderate/low SNR. Next, we provide another inner
bound using a discrete input distribution in the spirit of [22].

B. Discrete Input

Similar to [22], we consider distributions of the form

pXi(xi) =

Ki∑
k=0

aikδ(x− k`i), i = 1, 2, (22)

where δ(·) is the Dirac delta, for some Ki and `i such that
Ki`i = Ai, E[Xi] = Ei , A1 + A2 = A, and E1 + E2 = E.
The transmitter sends X = X1 + X2. Note that if K + 1
is the number of mass points of X , then K1 + K2 + 1 ≤
K+1 ≤ (K1+1)(K2+1), where the lower bound corresponds
to the case `1 = `2, and the upper bound to the case where
k1`1 6= k2`2 for all ki ∈ {1, · · · ,Ki}, i = 1, 2. For simplicity,
we focus on the second case.

1) Sequential Distribution Optimization: To derive distri-
butions pX1

and pX2
which achieve good performance, we

use a sequential approach. In this approach, we first find the
distribution pX1

which maximizes H(X1) for a given K1.
This problem has been solved in [22]. Then, given H(X1),
we find the distribution pX2 which maximizes H(X1 + X2)
for a given K2. This optimization determines the probabilities
aik, i ∈ {1, 2}, k ∈ {0, · · · ,Ki}, and allows us to evaluate
the achievable rates R1 = I(X1;Y1|X2) and R2 = I(X2;Y2).

We use this approach for the following reason. The achiev-
able rate of user 1 is given by R1 = I(X1;Y1|X2) = h(X1 +
Z1)−h(Z1). The noise entropy is h(Z1) = log(

√
2πeσ1), and

h(X1 +Z1) ≥ 1
2 log(e2H(X1) + 2πeσ2

1) by the entropy power
inequality (EPI). Thus, R1 ≥ 1

2 log
(
e2H(X1)

2πeσ2
1

+ 1
)

. To max-
imize this rate, instead of maximizing I(X1;Y1|X2) which
is a difficult problem, one can resort to maximizing H(X1)
instead. This does not necessarily maximize I(X1;Y1|X2), but
leads to a fairly good performance [22].

Given H(X1), a similar argument can be applied to
I(X2;Y2). We have R2 = I(X2;Y2) = h(X1 + X2 +
Z2) − h(X1 + Z2). For a given pX1

, the last term is fixed.
The first term can be lower bounded by h(X1 + X2 +
Z2) ≥ 1

2 log(e2H(X1+X2) + 2πeσ2
2) using the EPI. This lower

bound can be maximized by finding pX2 which maximizes
H(X1 + X2) given pX1 . Due the imposed condition k1`1 6=
k2`2 ∀ki ∈ {1, · · · ,Ki}, the mapping from (X1, X2) to
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Fig. 3: Capacity region outer and inner bounds for an OBC with E
σ2

= 25 dB and σ2 = 2σ1.

X = X1 + X2 is one-to-one, and thus H(X1|X) = 0.
Hence, H(X) = H(X,X1) − H(X1|X) = H(X,X1) =
H(X1) + H(X2). Consequently, to maximize H(X) for a
given H(X1), it suffices to maximize H(X2).

The optimization problem for H(Xi) can be written as

max
aik

H(Xi), s.t.
Ki∑
k=0

aik = 1,

Ki∑
k=0

aikk`1 = Ei, (23)

with Ki`i = Ai. The solution of this optimization problem
has been given in [22] as

aik =
tki∑Ki
j=0 t

j
i

, k = 0, · · · ,Ki, (24)

where ti ∈ [0, 1] is the solution of
∑Ki
k=0

(
1− kAi

KiEi

)
tk = 0,

which exists if Ei ≤ Ai
2 [22]. To guarantee the existence of

ti ∈ [0, 1], we choose Ei = αAi which suffices since α ≤ 1
2 .

Note that the obtained distribution maximizes H(X1) and
H(X1 + X2) as long as k1`1 6= k2`2 ∀ki ∈ {1, · · · ,Ki}.
However, if this condition is not satisfied, then we can still
use these distribution to obtain an achievable rate.

2) Achievable Rate Region: The achievable rate region
corresponding to these distributions is obtained using the
following steps. First A is split to A1 and A2. Then, we set
Ei = αAi, i = 1, 2, and we choose K1,K2 ≥ 1. Given Ai
and Ei, we obtain the distributions on X1 and X2 from (22)
and (24), which are then used to evaluate R2 and R1. This is
stated formally next.

Definition 2: Let Q be defined as

Q = {(q1, q2)|qi = (Ai,Ki) ∈ R+ × N+, i ∈ {1, 2},
A1 + A2 = A} .

Further, denote by p∗Xi the distribution of Xi satisfying
E[Xi] = Ei = αAi obtained from (22) and (24), i ∈ {1, 2}.

Theorem 3: The region RD(q1, q2) described by rate pairs
(R1, R2) ∈ R2

+ satisfying

R2 ≤ I(X2;Y2), (25)
R1 ≤ I(X1;Y1|X2) (26)

is achievable, where (q1, q2) ∈ Q, qi = (Ai,Ki) i = 1, 2,
and Xi is distributed according to p∗Xi . Thus, the capac-
ity region C of the 2-user OBC satisfies C ⊇ CD =⋃

(q1,q2)∈Q
RD(q1, q2).

Proof: The achievability of RD(q1, q2) follows by SC
[24], [26] and the inner bound follows by taking the union
over the set of feasible parameters Q.

Next, we focus on the capacity region at high SNR.

V. HIGH SNR ANALYSIS

The channel has high SNR if E
σ2
� 1. In this case, the

upper bound C
[h]

α (A, σ) = 1
2 log

(
1 + cA2

σ2

)
given in (8) will

be useful, where c = min
{

1
2πe ,

eα2

2π

}
. Using this bound, the

outer bound of Theorem 1 becomes as given in the following
corollary.

Corollary 1: Let R
[h]

(ρ) be the set of rate pairs (R1, R2) ∈
R2

+ satisfying

R1 ≤
1

2
log

(
1 +

cρ2A2

σ2
1

)
(27)

R2 ≤
1

2
log

(
1 +

c(1− ρ2)A2

σ2
2 + cρ2A2

)
, (28)

where ρ ∈ [0, 1] and c is given in (9). Then C ⊆ C
[h]

=⋃
ρ∈[0,1] R

[h]
(ρ) at high SNR.

Proof: Follows from Theorem 1 and the upper bound (8).

This outer bound is easily computable. Fig. 3 shows this
bound for α = 1/2 and α = 1/5, along with the TG inner
bounds CT and C′T (Theorem 2 and Proposition 1), and the
convexified inner bounds CH(CT ) and CH(C′T ). Convexifi-
cation is achieved by time-sharing. The achievable rate due
Theorem 3 is not shown since its performance at high SNR
is comparable to CH(CT ). This figure shows that CH(CT ) is
fairly tight. The simpler inner bound CH(C′T ) is not as tight,
but it is useful for bounding the capacity within a constant
gap as we show next.
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A. High SNR Symmetric-Capacity within a Constant

The symmetric-capacity is defined as max(R,R)∈CR. We
denote this capacity at high SNR by Ch. An upper bound
on Ch can be found by enlarging the feasible set of this
maximization from C to an outer bound on C. Thus, Ch ≤
Ch = max

(R,R)∈C[h] R. Solving this problem is equivalent to

finding the point on the boundary of C
[h]

that lies on the line
R2 = R1.

Thus, we first have to characterize the boundary of C
[h]

.
The region C

[h]
is defined by the union of rectangles given by

(R1, R2) ∈ R2
+ that satisfy (27)-(28). The boundary of C

[h]

clearly consists of the union of the outermost corner points of
such rectangles. Thus, this boundary is characterized by the
following parametric curve

R1 =
1

2
log

(
1 +

cρ2A2

σ2
1

)
(29)

R2 =
1

2
log

(
1 +

c(1− ρ2)A2

σ2
2 + cρ2A2

)
, (30)

with ρ ∈ [0, 1]. Now, we can solve Ch = max
(R,R)∈C[h] R by

finding the point on this curve that satisfies R1 = R2. This
point corresponds to

ρ2 = −
(
σ2
2 + σ2

1

2cA2

)
+

√(
σ2
2 + σ2

1

2cA2

)2

+
σ2
1

cA2
.

Note that ρ2 > 0 and ρ2 < σ1√
cA

which is smaller than 1 at
high SNR. Substituting in (29) yields

R1 ≤
1

2
log

1

2
+

1

2

√(
1 +

σ2
2

σ2
1

)2

+
4cA2

σ2
1

 .

Since we are concerned with the high-SNR symmetric rate,

we can neglect
(

1 +
σ2
2

σ2
1

)2
in comparison with 4cA2

σ2
1

to obtain
the symmetric capacity upper bound

Ch ≤ Ch =
1

2
log

(
1

2
+

√
cA

σ1

)
. (31)

A lower bound on Ch can be obtained from the achievable
rate region in Proposition 1. We will neglect σ2

2 in the
constraint on R2 at high SNR to obtain the rate constraint
R2 ≤ 1

2 log
(

1 + (1−β)2
β2

)
. Similar to above, to obtain an

achievable symmetric-rate, we equate the rate constraint on
R1 from Proposition 1 and this constraint on R2, and solve
for β. This yields

β∗ =

√
2σ1
αA

, (32)

which is in [0, 1] for high SNR, and which when substituted
in one of the constraints leads to an achievable symmetric-rate
given by

Ch =
1

2
log

(
1 +

αA

3σ1

)
. (33)

This leads to the following corollary.
Corollary 2: The high-SNR symmetric-capacity Ch of the

2-user OBC satisfies Ch ≤ Ch ≤ Ch where Ch and Ch
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Fig. 4: Symmetric capacity bounds versus SNR for an OBC
with σ2 = 2σ1.

are given in (31) and (33). Furthermore, the gap between the

two bounds satisfies Ch − Ch
E
σ2
→∞

−−−−−→ 1
2 log

(
3
√
c

α

)
≤ 0.34

nats/transmission.
Proof: The bounds follow from the above discussion. By

approximating the bounds at high SNR by 1
2 log

(
αA
3σ1

)
and

1
2 log

(√
cA
σ1

)
, we get the gap 1

2 log
(

3
√
c

α

)
. For α < 1

e , c =

eα2

2π and this gap evaluates to 0.34 nats. Otherwise, c = 1
2πe

and the gap is ≤ 0.34 nats.
We recall that the achievability of Ch is simple. The trans-

mitter simply splits A into A1 = β∗A and A1 = (1 − β∗)A
where β∗ is given in (32), and sends X = X1 + X2 where
Xi follows a TG distribution over [0,Ai] with the parameters
given in Sec. IV-A2. To see at which SNR the statement of
Corollary 2 starts to hold, we plot symmetric rate upper and
lower bounds in Fig. 4. The asymptotic upper bound Ch is
also plotted. The upper and lower bounds are obtained from
the regions C

[i]
, i ∈ {1, 2}, and CT , respectively, by finding

the intersection of the boundary of those regions with the line
R1 = R2. Those bounds are found numerically, where the
tighter between C

[1]
and C

[2]
is selected. This figure shows that

bounds become parallel (constant gap) around A
σ1

= 25dB for
α = 1/2, and around A

σ1
= 35dB for α = 1/10. This threshold

is higher for smaller α because the statement of Corollary 2
requires αA/σ1 to be large (see (31) and (33)).

B. Symmetric-Capacity versus TDMA

It is interesting to compare the achievable symmetric-rate
using SC with that of simple time-division multiple access
(TDMA), both under TG distributions. In TDMA, the trans-
mitter decomposes the OBC into two P2P channels by sending
to user 1 in a fraction τ ∈ [0, 1] of time, and to user 2 in the
remaining time. Over each P2P channel, the transmitter uses
a (A, µ, ν)-TG distribution with mean µ̃ = E (16). Denote
the highest achievable rate of users i using this scheme by
Ri. According to Theorem 2, this rate can be written as
Ri = maxµ,ν

1
2 log

(
ν2

ν̃2 + ν2

σ2
i

)
− φ, where φ is defined in
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Fig. 5: Achievable symmetric-rates as a function of α for an OBC with A
σ1

= 40 dB. The upper bound (31) is also shown for
comparison.

Theorem 2, ν̃ in (17), and where the maximization is over all
µ and ν such that µ̃ = E. Thus, for a given τ ∈ [0, 1], TDMA
achieves R1 ≤ τR1 and R2 ≤ (1 − τ)R2. The maximum
achievable symmetric-rate is thus

RTDMA
h =

R1R2

R1 +R2

. (34)

Let us study RTDMA
h at high SNR. Since the TG distribution

approaches the high SNR capacity of the P2P IM-DD channel
[10] which is closely captured by log (

√
cA/σi),2 then we

have Ri
αA
σi
→∞

−−−−−→ log (
√
cA/σi). Thus, by writing σ2 = kσ1

with k ≥ 1, we have

RTDMA
h

αA
σ2
→∞

−−−−−→ log

(√
cA

σ1

) log
(√

cA
σ1

)
− log(k)

log
(
cA2

σ2
1

)
− log(k)

αA
σ2
→∞

−−−−−→ log

(√
cA

σ1

)1

2
− log(

√
k)

log
(
cA2

σ2
1

)


=
1

2
log

(√
cA

σ1

)
− 1

2
log(
√
k).

Now we compare RTDMA
h with the high-SNR symmetric ca-

pacity Ch. By Corollary 2 we have

RTDMA
h − Ch ≤RTDMA

h − Ch
αA
σ2
→∞

−−−−−→1

2
log

(√
cA

σ1

)
− 1

2
log(
√
k)− 1

2
log

(
αA

3σ1

)
=

1

2
log

(
3
√
c

α

)
− 1

2
log(
√
k).

This quantity becomes negative if k is large. In this case,
which occurs if user 1 is much close to the transmitter than
user 2 e.g., TDMA is suboptimal at high SNR. On the other

hand, if k = 1, then R1 = R2, and RTDMA
h = R1

2

αA
σ2
→∞

−−−−−→

2The gap between log
(√
cA/σi

)
and capacity is < 0.1 nats [10], and will

be ignored here.

1
2 log

(√
cA
σ1

)
which coincides with the upper bound given in

Corollary 2. Thus, TDMA is optimal at high SNR if σ1 = σ2.
Since RTDMA

h is achieved by time-sharing between achiev-
able rate pairs in CT , then the achievable symmetric-rate in
CH(CT ) is generally higher than RTDMA

h . Fig. 5 shows the
achievable symmetric-rate versus α at high SNR. From this
figure, we can see that when σ1 = σ2, TDMA becomes nearly
optimal confirming the above statement. When σ2 > σ1, SC
outperforms TDMA. We can also note that the achievable
symmetric-rates due to CT and C′T are almost equal to those
due to CH(CT ) and CH(C′T ), respectively. Consequently, time-
sharing is not necessary at high SNR from a symmetric-
capacity perspective. The gap between the symmetric rate
corresponding to CH(C′T ) and Ch can be seen to be less than
0.34 nats, confirming Corollary 2.

In conclusion, TDMA is a good strategy in terms of
symmetric rate at high SNR if the receivers have similar
channel qualities to the transmitter (similar relative position
with respect to the light source e.g.). Otherwise, SC is better,
but time-sharing is not necessary at high SNR. Next, we extend
this result to prove that C′T and C

[h]
are within a constant gap

at high SNR.

C. High SNR Capacity Region within a Constant

First, we describe the boundaries of C
[h]

and C′T by a
function R2 = f(R1). We start with the outer bound whose
boundary3 is described by

R2 =
1

2
log

(
σ2
2 + cA2

σ2
2 + σ2

1(e2R1 − 1)

)
. (35)

On the other hand, the boundary of the inner bound C′T is
described by

R2 =
1

2
log

(
9σ2

2 + α2β2A2 + α2(1− β)2A2

9σ2
2 + 9σ2

1(e2R1 − 1)

)
. (36)

3We refer here and henceforth to the Pareto-boundary, which is in this case
the boundary of the region excluding the axes.
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Hence, the gap between the two functions is

∆ =
1

2
log

(
σ2
2 + cA2

σ2
2 + 1

9α
2A2(β2 + (1− β)2)

)
. (37)

This gap is maximum at β = 1
2 . Since C′T is not convex, this

maximium lies in the region of non-convexity of C′T (Fig. 3).
To reduce this gap, we should convexify this region.

To obtain the boundary of CH(C′T ), one has to find β
for which the tangent to the boundary of C′T passes through
(R
′
1, 0), where R

′
1 = max(R1,R2)∈C′T R1. Instead of finding

this β, motivated by the above observation that the symmetric-
rates due to C′T and CH(C′T ) are close at high SNR, we use
β∗ from (32). This does not necessarily convexify the region,
but serves our goal.

The boundary of the inner bound obtained by combining
the region C′T with time-sharing between (R

′
1, 0) and the

symmetric-rate point (Ch, Ch) is described by

R2 =


1
2 log

(
9σ2

2+(α2β2+α2(1−β)2)A2

9σ2
2+9σ2

1(e
2R1−1)

)
, R1 ≤ Ch

Ch(R1−R
′
1)

Ch−R
′
1

, R1 > Ch,
(38)

where R
′
1 = 1

2 log
(

1 + α2A2

9σ2
1

)
(21). The first case corre-

sponding to condition R1 ≤ Ch describes the portion of
the boundary for β ∈ [0, β∗], and the second describes the
remaining portion. It is worth to note that the slope of the
second portion of this boundary is −1 at high SNR.

For R1 ≤ Ch, ∆ is maximum for β = β∗ since ∆ is
increasing in β ∈ [0, 12 ] and β∗ < 1

2 for A large. By noting

that β∗
E
σ2
→∞

−−−−−→ 0, we conclude that ∆
E
σ2
→∞

−−−−−→ log
(

3
√
c

α

)
.

For R1 > Ch, we bound the gap by noting that the slope of the
boundary of C

[h]
described by (35) is in > −1. In particular,

it is equal to −1 at the point of intersection of the outer bound
with the R1 axis, (C1, 0), where C1 = 1

2 log
(

1 + cA2

σ2
1

)
(8).

Therefore, the region defined by the two axes and the line
R2 = −R1 + C1 is an outer bound on the capacity region.
Since the boundaries of both the inner bound (38) and this
outer bound are linear with slopes −1 at high SNR, the gap
can be calculated at one of the extremes R1 = Ch or R1 =

R
′
1. This gap is given by log

(
3
√
c

α

)
as for the first portion.

Consequently, we have the following corollary.
Corollary 3: At high SNR, the capacity region of the 2-

user OBC is bounded as C[h] ⊂ C ⊆ C
[h]

where C[h] =

{(R1, R2) ∈ R2
+|(R1, R2 + δ) ∈ C

[h]} with δ = log
(

3
√
c

α

)
and C

[h]
is defined in Corollary 1. Furthermore, δ ≤ 0.68

nats/transmission.
Proof: The outer bound follows from Corollary 1. The

inner bound follows from the above discussion showing that
the gap between the inner and outer bounds in the R2 direction
is log

(
3
√
c

α

)
. This gap is equal to 0.68 nats for α < 1/e and

less than 0.68 nats otherwise.
Using this corollary, the boundary of C at high SNR lies

between f(R1) − 0.68 nats and f(R1) where f(R1) is the
function defined by the right-hand side of (35). It is important
to note here that the inner bound CT (Theorem 2) combined
with time-sharing, i.e., CH(CT ), is closer to the outer bound
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Fig. 6: The maximum gap between the outer bound C
[h]

and
the inner bound CH(CT ) in the R2 direction for an OBC with
E
σ2

= 40dB and σ2 = 2σ1.

than CH(C′T ), and hence the gap is smaller than 0.68 nats. Fig.
6 shows the maximum over R1 of the gap in the R2 direction
between C

[h]
and CT at high SNR.

VI. LOW AND MODERATE SNR

This section focuses on the OBC with low/moderate SNR.
We characterize the channel capacity and low SNR first, and
discuss its capacity at moderate SNR afterwards.

A. Low SNR

The tightest upper bound on the IM-DD P2P channel
capacity at low SNR is given by C

[3]

α (A, σ) in Lemma 1, since
it coincides with the low-SNR capacity [9]. We shall see that
C

[3]

α (A, σ) leads to an outer bound which is tight at low SNR.
At low SNR, the inner bound CD becomes better than

CT . The reason is that discrete input distributions generally
outperform continuous ones in IM-DD channels [20], [22],
especially at moderate/low SNR. Unfortunately, CD does not
have a closed-form expression. However, we know that the
discrete distribution in Sec. IV-B achieves the low-SNR IM-
DD P2P channel capacity [9]. In particular, at low SNR, on-off
keying (OOK) is optimal leading to the following statement.

Theorem 4: At low SNR, the capacity region C of the 2-user
OBC is achieved by OOK and TDMA, and it asymptotically
coincides with

Ĉ[3] =

{
(R1, R2) ∈ R2

+

∣∣∣∣σ2
1R1 + σ2

2R2 ≤
α(1− α)A2

2

}
.

Proof: We start with the outer bound C
[3]

=⋃
ρ∈[0,1] R

[3]
(ρ) given in Theorem 1, where R

[3]
(ρ) is the set

of rate pairs (R1, R2) ∈ R2
+ that satisfy

R1 ≤
1

2
log

(
1 +

ρ2α(1− α)A2

σ2
1

)
, (39)

R2 ≤
1

2
log

(
1 +

(1− ρ2)α(1− α)A2

σ2
2 + ρ2α(1− α)A2

)
. (40)
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Fig. 7: Low SNR capacity region and symmetric capacity bounds.

Then, we relax those constraints to R1 ≤ ρ2α(1−α)A2

2σ2
1

and

R2 ≤ (1−ρ2)α(1−α)A2

2σ2
2

using log(1 + x) ≤ x and a
b+c ≤

a
b for

positive a, b, and c. This leads to an outer bound given by Ĉ[3]

in the statement of the Theorem. The region Ĉ[3] is triangular
shaped, with boundary described by the line segment joining
the points P1 =

(
α(1−α)A2

2σ2
1

, 0
)

and P2 =
(

0, α(1−α)A
2

2σ2
2

)
.

Now consider OOK combined with TDMA. Denote the rate
achieved by using OOK to send information to user i only
by Rα(A, σi). Clearly, the points P ′1 = (Rα(A, σ1), 0) and
P ′2 = (0, Rα(A, σ2)) are achievable. Time sharing between
those points achieves any rate pair on the line segment between
them. This defines a triangular shaped inner bound R̂.

At this point, we have R̂ ⊆ C ⊆ C
[3] ⊆ Ĉ[3]. Hence,

C and Ĉ[3] asymptotically coincide at low SNR if Ĉ[3] and
R̂ asymptotically coincide. Since those latter have triangular
shapes, it suffices to show that their corners coincide. Both
Ĉ[3] and R̂ have a corner at (0, 0). Further, from [9], we know

that Rα(A, σi)
A
σi
→0

−−−−→ α(1−α)A2

2σ2
i

. Thus, Pi and P ′i converge

as SNR decreases. Therefore, Ĉ[3] and R̂ converge to the same
region, which completes the proof.

As a conclusion, the simple combination of (coded) OOK
and TDMA suffices for achieving the capacity region at low
SNR. Fig. 7a shows the capacity region of the OBC at low
SNR, for a setting with σ2 = 2σ1. In this figure, CD is plotted
with K1 = K2 = 1. Keep in mind that while in this case X1

and X2 are binary, X is not binary but quaternary. However,
the points of maximum R1 and R2 (intersection with the axes)
correspond to A2 = 0 and A1 = 0, respectively, and the
channel input X is binary at these points. Thus, the extremes
of CD are achievable by OOK. The figure shows that time-
sharing between these extremes is optimal.

Based on Theorem 4, we have the following corollary.
Corollary 4: The symmetric-capacity of the OBC satisfies

Cl

A
σ1
→0

−−−−→ α(1−α)A2

2(σ2
1+σ

2
2)

.

Proof: By finding the point (R,R) which lies on the
boundary of Ĉ[3] in Theorem 4.

Alternatively, this corollary can be proved by finding a
symmetric capacity upper bound based on C

[3]
, and then

comparing with the achievable symmetric rate of OOK with
TDMA. An upper bound based on C

[3]
is obtained by finding

ρ̃ ∈ [0, 1] which makes the right-hand-sides of (39) and (40)
equal. Substituting this ρ̃ in (39) yields the symmetric capacity
upper bound Cl ≤ Cl = 1

2 log(1 + ρ̃2α(1 − α)A2/σ2
1). On

the other hand, OOK combined with TDMA achieves rate
pairs (R1, R2) ∈ R2

+ which satisfy R1 ≤ τI(X;Y1) and
R2 ≤ (1 − τ)I(X;Y2), where τ ∈ [0, 1] and X ∈ {0,A}
is distributed according to pX(0) = 1 − α and pX(A) = α.
A symmetric capacity lower bound can thus be obtained as
Cl ≥ Rl = τ̃ I(X;Y1) where τ̃ is the solution of τI(X;Y1) =
(1−τ)I(X;Y2). Now we focus on low SNR. It is easy to show

that ρ̃2 =
σ2
1

σ2
1+σ

2
2

at low SNR. Thus, Cl
A
σ1
→0

−−−−→ α(1−α)A2

2(σ2
1+σ

2
2)

.

On the other hand, I(X;Yi)
A
σ1
→0

−−−−→ Var(X)
2σ2
i

= α(1−α)A2

2σ2
i

[9],
where Var(X) is the variance of X . This leads to τ̃ = ρ̃2 and

Rl

A
σ1
→0

−−−−→ α(1−α)A2

2(σ2
1+σ

2
2)

leading to the statement of Corollary 4.
Fig. 7b shows the bounds Cl and Rl versus SNR for a channel
with different values of σ2 and α, where the convergence of
the bounds at low SNR is obvious.

B. Moderate SNR

We have seen that TG inputs achieve the capacity region
within a small gap at high SNR. We have also seen that
OOK combined with TDMA is optimal at low SNR. Next, we
investigate the moderate SNR regime, where SNR can neither
be described as high nor low. At moderate SNR, the discrete
input distribution discussed in Sec. IV-B performs fairly good,
and outperforms TG.

Fig. 8 shows achievable rate regions and outer bounds
for a channel with E

σ2
= 5 dB. It can be seen that CD is
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Fig. 8: Capacity region outer and inner bounds for an OBC with E
σ2

= 5 dB and σ2 = 2σ1.

fairly close to the outer bound. We have restricted each of
K1 and K2 to {1, · · · , 4} in Fig. 8a and to {1, · · · , 10} in
Fig. 8b. We have also plotted the achievable rate region for
some K1 and K2. This shows that even with small K1 and
K2, a discrete input outperforms TG at moderate SNR. This
observation has several practical implications. First, a discrete
input distribution which is practically simpler to realize than
a continuous distribution achieves good performance. Second,
an acceptable symmetric-rate is achieved at moderate SNR
with a low number of mass points (K1 = K2 = 1 in Fig. 8a
and K1 = K2 ≤ 3 in Fig. 8b).

VII. N -USER OBC

In this section, we extend the above results to the N -user
case. We start with the outer bound.

Theorem 5: The capacity region C of the N -user OBC is
outer bounded by C

[j]
=
⋃
ρ∈Sρ

R
[j]

(ρ) where j ∈ {1, 2, 3},
R

[j]
(ρ) is the set of (R1, · · · , RN ) ∈ RN+ that satisfy

Ri ≤
1

2
log

σ2
i + σ2

N

(
e2C

[j]
α (ρi+1A,σN ) − 1

)
σ2
i + σ2

N

(
e2C

[j]
α (ρiA,σN ) − 1

)
 , (41)

i ∈ N, ρ = (ρ1, · · · , ρN ), and Sρ = {ρ ∈ [0, 1]N |ρi ≤
ρi+1 ∀i ∈ N, ρ1 = 0, ρN+1 = 1}.

Proof: The proof is similar to that of Theorem 1. Details
are given in Appendix B.

The achievable rate region by the TG distribution is stated
next for the N -user case, followed by the simplified version
of this region.

Theorem 6: For (p1, · · · ,pN ) ∈ P defined as

P =
{

(p1, · · · ,pN )
∣∣ pi = (Ai, µi, νi) ∈ R3, Ai, νi > 0,

i ∈ N,
∑
i∈N

Ai = A,
∑
i∈N

µ̃i = E
}

where µ̃i is given in (16), the region RT (p1, · · · ,pN ) de-
scribed by the set of (R1, · · · , RN ) ∈ RN+ bounded by

Ri ≤
1

2
log

(
ν2i
ν̃2i

+
ν2i∑i−1

j=1 ν̃
2
j + σ2

i

)
− φi, i ∈ N, (42)

is achievable, where φi = log(ηi) +
1
2 ((Ai − µi)g̃i(Ai) + µig̃i(0)), g̃i(xi) is the distribution func-
tion of a (Ai, µi, νi)-TG random variable, and ν̃i is its standard
deviation (17). The capacity region of the N -user OBC thus
satisfies C ⊇ CT =

⋃
(p1,··· ,pN )∈P RT (p1, · · · ,pN ).

Proof: The transmitter sends X = X1 +X2 + · · ·+XN

where Xi follows a (Ai, µi, νi)-TG distribution g̃i(xi) as
defined in (15). User i decodes XN , XN−1, · · · , Xi in this
order. The derivation of the achievable rates is similar to
Theorem 2.

Proposition 2: The region C′T =
⋃
β∈Sβ

R′T (β) is achiev-
able, where R′T (β) is the set of rate tuples (R1, · · · , RN ) ∈
RN+ satisfying

Ri ≤
1

2
log

(
1 +

α2β2
iA

2(1 + εµ)−2∑i−1
j=1 α

2β2
jA

2 + 9σ2
i

)
− εφ, (43)

i ∈ N, with εφ = 0.016, εµ = 0.0015, β = (β1, · · · , βN ), and
Sβ = {β ∈ [0, 1]N |

∑
i∈N βi = 1}.

Proof: Follows from Theorem 6 using Ai = βiA where∑
i∈N βi = 1, and choosing µi and νi = µi

3 such that
µ̃i = αAi. The derivation of the achievable rates is similar
to Proposition 1.

Next, we extend the achievable inner bound using the
discrete input distribution to the N -user case. Let X =
X1 +X2 + · · ·+XN , where Xi ∈ [0,Ai] has mean Ei = αAi
and distribution

p∗Xi(xi) =

Ki∑
k=0

aikδ(x− k`i), (44)

with aik =
tki∑Ki
j=0 t

j
i

for k = 0, · · · ,Ki, Ki ∈ N+, `i =

Ai
Ki

, and ti ∈ [0, 1] is the solution of
∑Ki
k=0

(
1− kAi

KiEi

)
tk =
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0. Furthermore,
∑
i∈N Ai = A. User i decodes the signals

XN , · · · , Xi successively in this order. The achievable rate
region is given as follows.

Theorem 7: For (q1, · · · , qN ) ∈ Q defined as

Q =
{

(q1, · · · , qN )|qi = (Ai,Ki) ∈ R+ × N+, i ∈ N,∑
i∈N

Ai = A
}

the region RD(q1, · · · , qN ) described by the set of
(R1, · · · , RN ) ∈ RN+ bounded by

RN ≤ I(XN ;YN ) (45)
Ri ≤ I(Xi;Yi|Xi+1, · · · , XN ), i ∈ N \ {N}, (46)

is achievable, where Xi follows the distribution p∗Xi defined in
(44). The capacity region C of the N -user OBC thus satisfies
C ⊇ CD =

⋃
(q1,··· ,qN )∈Q RD(q1, · · · , qN ).

Proof: Using superposition coding as in [24], [26] with
the distribution p∗Xi (44).

A. High SNR Analysis

By replacing the upper bound C
[j]

α (A, σ) in Theorem 5 by
C

[h]

α (A, σ) (8), we obtain the following high-SNR outer bound
for the N -user OBC.

Corollary 5: The high-SNR capacity region of the N -
user OBC is outer bounded by C

[h]
=
⋃
ρ∈Sρ

R
[h]

(ρ) where

R
[h]

(ρ) is the set of (R1, · · · , RN ) ∈ RN+ satisfying

Ri ≤
1

2
log

(
σ2
i + cρ2i+1A

2

σ2
i + cρ2iA

2

)
, i ∈ N,

with Sρ = {(ρ1, · · · , ρN ) ∈ [0, 1]N |ρi ≤ ρi+1 ∀i ∈ N, ρ1 =
0, ρN+1 = 1} and c as given in (9).

Proof: Follows from Theorem 5 and the upper bound (8).

Using this corollary, we can bound the high-SNR
symmetric-capacity of the N -user OBC as follows.

Corollary 6: At high SNR, the symmetric-capacity of the
N -user OBC satisfies Ch ≤ Ch ≤ Ch, where Ch =
1
2 log

(
1 + 1

2
N

√
2α2A2

9N2σ2
1

)
and Ch = 1

2 log
(

1 + N

√
cA2

σ2
1

)
.

Furthermore, Ch − Ch

E
σN
→∞

−−−−−→ 1
2 log

(
2 N

√
9cN2

2α2

)
≤

1
2 log

(
2 N

√
9eN2

4π

)
nats/transmission.

Proof: See Appendix C.

The maximum gap 1
2 log

(
2 N

√
9eN2

4π

)
decreases in N from

0.86 nats for N = 2 to 1
2 log(2) nats ( 12 bits) for large N .

Corollary 2 provides a tighter characterization for N = 2. The
high-SNR capacity region of the N -user OBC can be bounded
as given next.

Corollary 7: At high SNR, for the N -user OBC, we
have C[h] ⊂ C ⊆ C

[h]
, where C

[h]
= {(R1, · · · , RN ) ∈

RN+ |(R1, · · · , RN−1, RN + δ) ∈ C
[h]} with δ = log

(
3
√
cN
α

)
and C

[h]
as in Corollary 5. Furthermore, δ ≤ 0.68 + 1

2 log(N)
nats/transmission.

Proof: See Appendix D.
Note that the gap here is in one direction only, namely, in the
RN direction. If we fix a tuple R = (R1, · · · , RN−1, RN +

δ) on the boundary of C
[h]

, and choose an achievable rate
tuple with back-off ξi from R in the i-th direction, i ∈ N \
{N}, then the achievable rate of the N -th user becomes higher
than RN . The achievable rate in this case can be expressed as
(R1 − ξ1, · · · , RN−1 − ξN−1, RN + ξN ). Roughly speaking,
this distributes the gap δ between the N directions, so that the
gap per user becomes proportional to 1

N log(N). The gap here
is bounded without using time-sharing in combination with the
inner bound in Proposition 2. Hence, this gap can be reduced
by incorporating time-sharing in a manner similar to the proof
of Corollary 3. Next, we consider the low SNR regime.

B. Low SNR Analysis

Using the upper bound C
[3]

α (A, σ) given in Lemma 1 in
conjunction with Theorem 5, we can obtain a simple outer
bound on C which is tight at low SNR. This is stated next.

Theorem 8: The capacity region of the N -user OBC asymp-
totically coincides at low SNR with the region

Ĉ[3] =

{
(R1, · · · , RN ) ∈ RN+

∣∣∣∣∣∑
i∈N

σ2
iRi ≤

α(1− α)A2

2

}
,

which is achievable by OOK combined with TDMA.
Proof: Using Theorem 5 and the upper bound C

[3]

α (A, σ)

in Lemma 1, we obtain the outer bound C
[3]

=
⋃
ρ∈Sρ

R
[3]

(ρ)

where R
[3]

(ρ) is the set of (R1, · · · , RN ) ∈ RN+ that satisfy

Ri ≤
1

2
log

(
σ2
i + ρ2i+1α(1− α)A2

σ2
i + ρ2iα(1− α)A2

)
, ∀ i ∈ N, (47)

for ρ = (ρ1, · · · , ρN ), and Sρ = {ρ ∈ [0, 1]N |ρi ≤ ρi+1 ∀i ∈
N, ρ1 = 0, ρN+1 = 1}. By defining γ2i = ρ2i+1 − ρ2i , we
write (47) as follows

Ri ≤
1

2
log

(
1 +

γ2i α(1− α)A2

σ2
i +

∑i−1
j=0 γ

2
jα(1− α)A2

)
, (48)

i ∈ N, where γ0 = 0 and
∑
i∈N γ

2
i = 1. This rate constraint

can be relaxed to Ri ≤ γ2
i α(1−α)A

2

2σ2
i

using log(1 + x) ≤ x

and a
b+c ≤

a
b for positive a, b, and c, leading to an outer

bound given by Ĉ[3] in the theorem. The boundary of Ĉ[3]

is the plane defined by
∑
i∈N σ

2
iRi = α(1−α)A2

2 for Ri ≥
0. This plane intersects with the Ri-axis at Ri = α(1−α)A2

2σ2
i

.
Let the rate achievable by using OOK to send information to
user i only be denoted Rα(A, σi). We know from [9] that

Rα(A, σi)
A
σ1
→0

−−−−→ α(1−α)A2

2σ2
i

. Thus, the corners of the outer
bound are achievable. Since the boundary of this outer bound
is a plane, it can be achieved by time-sharing between its
N corners with time-sharing parameters γ2i . This proves the
achievability of Ĉ[3] and completes the proof.

This theorem leads to the low-SNR symmetric capacity of
the N -user OBC, as follows.

Corollary 8: The symmetric-capacity of the N -user OBC

satisfies Cl
A
σ1
→0

−−−−→ α(1−α)A2

2
∑N
i=1 σ

2
i

.
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Fig. 9: Symmetric capacity bounds versus A
σ1

for a 3-user
OBC.

Proof: By finding the point (R1, · · · , RN ) satisfying
Ri = R for all i ∈ N, which lies on the boundary of Ĉ[3]

in Theorem 8.
Fig. 9 shows symmetric-capacity upper and lower bounds

for a 3-user OBC. The upper bound is obtained by finding
the intersection of the outer bound C

[3]
given in (47) with

the line R3 = R2 = R1. The lower bound is obtained
by a combination of OOK and TDMA, i.e., by solving
τiRα(A, σi) = τjRα(A, σj), i, j ∈ {1, 2, 3}, i 6= j, for τi,
such that τ1 + τ2 + τ3 = 1, where Rα(A, σi) is the rate
achieved by using OOK to send to user i only. At low-SNR,
the symmetric-capacity achieving time-sharing parameters are
τi = γ2i with γ2i =

σ2
i∑N

j=1 σ
2
j

, which follows by solving
γ2
i α(1−α)A

2

2σ2
i

=
γ2
jα(1−α)A

2

2σ2
j

for all i, j ∈ N, i 6= j. In

particular, for N = 3, we have τi =
σ2
i

σ2
1+σ

2
2+σ

2
3

. Note the
convergence of the bounds at low SNR in Fig. 9.

This concludes the high and low SNR analysis of the N -
user OBC. It remains to say that at moderate SNR, the discrete
input distribution performs better than the TG distribution.

VIII. CONCLUSION

In this paper, we studied the capacity of the IM-DD optical
broadcast channel (OBC). For this channel, we have derived
capacity region outer and inner bounds. The outer bounds are
derived by combining existing upper bounds on the capacity of
the IM-DD P2P channel and Bergmans’ approach. The inner
bounds are achieved using superposition coding and either
truncated-Gaussian distributions or discrete input distributions.

We have shown that a superposition of truncated-Gaussian
inputs achieves the capacity region within a constant gap at
high SNR. We have also shown that as far as the symmetric-
capacity is concerned, time-sharing between superposition
coding strategies is not necessary at high SNR. On the other
hand, we have shown that on-off keying (OOK) combined
with TDMA is optimal at low SNR. This is particularly
interesting since both OOK and TDMA are practically simple

to implement. Thus, in an office environment with strong noise
for instance (strong background radiation or noisy equipment),
the optimal scheme is simply OOK with TDMA. For moderate
SNR, a discrete input distribution is better than truncated-
Gaussian.

As an extension of this work, it would be interesting to
study the impact of fading on the capacity of the OBC. This
can be studied using frameworks similar to [27]–[29]. Another
important aspect is secrecy since broadcasting is vulnerable
to eavesdropping. As such, an interesting direction for future
work is investigating secure broadcast and optical wiretap
channels.

APPENDIX A
BOUNDING µ̃, ν̃ , AND φ FOR ν = µ

3

Consider a (A, µ, ν)-TG distribution g̃(x) with ν = µ
3 and

0 ≤ µ ≤ A
2 . Its mean is

µ̃ = ν2(g̃(0)− g̃(A)) + µ (49)

=
ην√
2π

(
e−

µ2

2ν2 − e−
(A−µ)2

2ν2

)
+ µ, (50)

where η = (Gµ,ν(A) − Gµ,ν(0))−1. Since ex > 0, we have

µ̃ < ην√
2π
e−

µ2

2ν2 + µ = η

3
√
2πe9

µ+ µ. Moreover, since µ ≤ A
2 ,

then Gµ,ν(A) − Gµ,ν(0) > Gµ,ν(2µ) − Gµ,ν(0) > 0.997,
which implies that η < 1.0027. Therefore, µ̃ < µ(1+0.0015).
On the other hand, clearly for µ ≤ A

2 , µ ≤ µ̃, and hence
µ ≤ µ̃ < µ(1 + 0.0015). Similarly we can bound the variance
ν̃2 given by (17) as

ν̃2 = ν2
(

1− (A− µ)g̃(A)− µg̃(0)− ν2 (g̃(0)− g̃(A))
2
)
.

First note that g̃(0) ≥ g̃(A) for µ ≤ A
2 . Thus,

ν2 (g̃(0)− g̃(A))
2 ≤ (νg̃(0))

2
= η2

2πe9 . Moreover, since the
function xe−x

2

is decreasing for x > 1√
2

, and since A−µ ≥ µ
for µ ≤ A

2 , we have (A − µ)g̃(A) ≤ µg̃(0) = 3η√
2πe9

. Thus,

ν̃2 ≥ ν2
(

1− 6η√
2πe9

− η2

2πe9

)
= 0.9733ν2. Furthermore,

since A ≥ µ ≥ 0, then ν̃2 ≤ ν2, and hence (1− 0.0267)ν2 ≤
ν̃2 ≤ ν2. Finally,

φ = log(η) +
1

2
((A− µ)g̃(A) + µg̃(0)) , (51)

can be bounded using (A − µ)g̃(A) ≤ µg̃(0) = 3η√
2πe9

and
η < 1.0027 to obtain φ ≤ 0.016.

APPENDIX B
OUTER BOUND FOR THE N -USER OBC

Here, we prove Theorem 5. Similar to the proof of Theorem
1, we can write

h(Y N |WN )

= nC
[j]

α (ρNA, σN ) + n log(
√

2πeσN )

=
n

2
log
(

2πeσ2
N + 2πeσ2

N

(
e2C

[j]
α (ρNA,σN ) − 1

))
, (52)
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for some ρN ∈ [0, 1]. On the other hand,

h(Y N ) ≤ nC[j]

α (A, σN ) + n log(
√

2πeσN )

=
n

2
log
(

2πeσ2
N + 2πeσ2

N

(
e2C

[j]
α (A,σN ) − 1

))
.

Therefore, we can upper bound RN as given in (41). Now we
start an induction to bound Ri for i ∈ N \ {N}. Assume that
h(Y i+1|Wi+1, · · · ,WN ) can be written similar to (52) as

h(Y i+1|Wi+1, · · · ,WN ) (53)

=
n

2
log
(

2πeσ2
i+1 + 2πeσ2

N

(
e2C

[j]
α (ρi+1A,σN ) − 1

))
,

for some i ∈ N \ {N}, and some ρi+1 ∈ [0, 1]. Note that this
is true for i = N − 1. Then, we have

h(Y i|Wi, · · · ,WN ) ≥ h(Y i|Wi · · · ,WN ,X) (54)
= h(Zi) (55)

= n log(
√

2πeσi) (56)

and

h(Y i|Wi, · · · ,WN )

≤ h(Y i|Wi+1, · · · ,WN ) (57)

≤ n

2
log
(
e

2
nh(Y i+1|Wi+1,··· ,WN ) − 2πe(σ2

i+1 − σ2
i )
)

(58)

=
n

2
log
(

2πeσ2
i + 2πeσ2

N

(
e2C

[j]
α (ρi+1A,σN ) − 1

))
, (59)

where the first step follows since conditioning reduces entropy
and the second by using the EPI with σ2

i+1 ≥ σ2
i . Thus, we

can write

h(Y i|Wi, · · · ,WN )

=
n

2
log
(

2πeσ2
i + 2πeσ2

N

(
e2C

[j]
α (ρiA,σN ) − 1

))
, (60)

for some ρi ∈ [0, ρi+1]. Using this equality, we can bound
h(Y i|Wi+1, · · · ,WN ) as follows

h(Y i|Wi+1, · · · ,WN )

≤ n

2
log
(
e

2
nh(Y i+1|Wi+1,··· ,WN ) − e 2

nh(Z̃i+1|Wi+1,··· ,WN )
)

=
n

2
log
(
e

2
nh(Y i+1|Wi+1,··· ,WN ) − 2πe(σ2

i+1 − σ2
i )
)

(61)

=
n

2
log
(

2πeσ2
i + 2πeσ2

N

(
e2C

[j]
α (ρi+1A,σ2) − 1

))
, (62)

where the first step follows by writing Y i+1 = Y i+Z̃i+1 with
Zi+1 = Zi + Z̃i+1 and Z̃i+1 ∼ g0,√σ2

i+1−σ2
i
(z̃2) independent

of Zi, and by using the conditional EPI, and the last step
follows by applying (53). Now we can write the following
bound on Ri

n(Ri − εin) ≤ I(Wi;Y i) (63)
≤ I(Wi;Y i|Wi+1, · · · ,WN ) (64)
≤ h(Y i|Wi+1, · · · ,WN )− h(Y i|Wi, · · · ,WN ),

which follows similar to the proof of Theorem 1. Substituting
(60) and (62) in this last inequality and letting n → ∞
yields the desired bound on Ri. Finally, by taking the union
over all ρi ∈ [0, 1] with ρi ≤ ρi+1, we get the state-
ment of the Theorem 5. Note that we can set ρ1 = 0
since h(Y 1|W1, · · · ,WN ) ≥ h(Y 1|W1, · · · ,WN ,X) =
n log(

√
2πeσ1).

APPENDIX C
SYMMETRIC-CAPACITY BOUNDS FOR THE N -USER OBC

To prove Corollary 6, we start by deriving a symmetric-
capacity upper bound. From Corollary 5, we have Ri ≤
1
2 log

(
σ2
i+cρ

2
i+1A

2

σ2
i+cρ

2
iA

2

)
, for all i ∈ N, where 0 ≤ ρi ≤ ρi+1 ≤ 1,

ρ1 = 0 and ρN+1 = 1. For convenience, we write this bounds
as

Ri ≤
1

2
log

(
1 +

cγ2iA
2

σ2
i + c

∑i−1
j=0 γ

2
jA

2

)
, i ∈ N, (65)

where γ2i = ρ2i+1 − ρ2i , γ0 = 0, and
∑
i∈N γ

2
i = 1. Thus,

we have R1 ≤ 1
2 log

(
1 +

cγ2
1A

2

σ2
1

)
. In the remaining rate

constraints, we will neglect σ2
i in comparison to c

∑i−1
j=0 γ

2
jA

2

since we are focusing on the high SNR regime. Thus for those

rates, we have Ri ≤ 1
2 log

(
1 +

γ2
i∑i−1

j=0 γ
2
j

)
for i ∈ N\{1}. To

find an upper bound on the symmetric-rate, we have to equate
the rate constraints for all i ∈ N. This yields γ2

1

γ2 =
γ2
i∑i−1

j=0 γ
2
j

∀i ∈ N \ {1}, where γ2 =
σ2
1

cA2 . The solution of this system
gives

γ2i =
γ21
γ2

(
1 +

γ21
γ2

)i−2
γ21 . (66)

Substituting in
∑
i∈N γ

2
i = 1 leads to f

(
γ21
)

= 1 where

f
(
γ21
)

= γ21

(
1 +

γ21
γ2

N∑
i=2

(
1 +

γ21
γ2

)i−2)
. (67)

By solving this expression for γ2
1

γ2 and substituting in R1 ≤
1
2 log

(
1 +

γ2
1

γ2

)
, we get a symmetric-capacity upper bound.

Instead of solving this equation for γ2
1

γ2 , we upper bound the

solution. First, we note that f
(
γ21
)

is increasing in γ2
1

γ2 . Thus,
by lower bounding f

(
γ21
)

by some function f0
(
γ21
)

and
solving f0

(
γ21
)

= 1, we get an upper bound on the solution
of f

(
γ21
)

= 1. To this end, we lower bound f(γ21) as follows

f(γ21) > γ21

(
1 +

γ21
γ2

N∑
i=2

(
γ21
γ2

)i−2)
(68)

= γ2
N∑
i=1

(
γ21
γ2

)i
(69)

> γ2
(
γ21
γ2

)N
(70)

= f0(γ21). (71)

Setting f0(γ21) = 1 yields γ2
1

γ2 = N

√
1
γ2 . Therefore, the high-

SNR symmetric-capacity upper bounded by

Ch =
1

2
log

(
1 + N

√
cA2

σ2
1

)
, (72)

which proves the upper bound in Corollary 6.
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Now we prove the lower bound. Based on Proposition 2,
the rates given by

Ri ≤
1

2
log

(
1 +

α2β2
iA

2(1 + εµ)−2∑i−1
j=1 α

2β2
jA

2 + 9σ2
i

)
− εφ, (73)

i ∈ N, are achievable, where βi ∈ [0, 1], and
∑
i∈N βi =

1. Let us first neglect εφ and εµ. Then, we neglect 9σ2
i in

comparison to
∑i−1
j=1 α

2β2
jA

2 at high SNR. This yields,

R1 ≤
1

2
log

(
1 +

α2β2
1A

2

9σ2
1

)
(74)

Ri ≤
1

2
log

(
1 +

β2
i∑i−1

j=1 β
2
j

)
, i ∈ N \ {1}. (75)

To find the achievable symmetric-rate, we have to equate the
rate constraints as we have done above. This yields the same
solution as (66), with γi replaced by βi, and γ by β =

9σ2
1

α2A2 .
However, contrary to γi, the constraint on βi is linear, given
by
∑
i∈N βi = 1. Thus, we have f ′(β1) = 1 where

f ′ (β1) = β1

(
1 +

β1
β

N∑
i=2

(
1 +

β2
1

β2

) i−2
2

)
. (76)

Similar to above, this function is increasing in β1 > 0, and
thus, a lower bound on the solution of f ′(β1) = 1 can be
obtained by upper bounding f ′(β1). To this end, we write

f ′ (β1) < β1

(
1 +

√
2β1
β

N∑
i=2

(
2
β2
1

β2

) i−2
2

)
(77)

=
β√
2

N∑
i=1

(
β1
√

2

β

)i
(78)

< N
β√
2

(
β1
√

2

β

)N
(79)

= f ′0(β1), (80)

where we have chosen β1 > β since choosing β1 < β leads
to the trivial zero symmetric-rate. Setting f ′0(β1) = 1 yields
β1

β = 1√
2
N

√√
2

Nβ . Recall that this is a lower bound on the
solution of f ′(β1) = 1. Substituting this lower bound in (74)
leads to the symmetric-capacity lower bound

Ch =
1

2
log

(
1 +

1

2
N

√
2α2A2

9N2σ2
1

)
, (81)

which proves the lower bound in Corollary 6.
With these upper and lower bounds, bounding the gap

becomes simple. We calculate the difference Ch − Ch after
using log(1 + x)

x→∞−−−−→ log(x), to obtain Ch − Ch ≤
1
2 log

(
2 N

√
9cN2

2α2

)
. By substituting the value of c, we get the

maximum gap 1
2 log

(
2 N

√
9eN2

4π

)
as in Corollary 6.

APPENDIX D
CAPACITY REGION GAP FOR THE N -USER OBC

Here, we prove Corollary 7. Using (65), we upper bound
RN for a given (R1, · · · , RN−1) by

RN ≤
1

2
log

(
σ2
N + cA2

σ2
N +

∑N−1
i=1 σ2

i (e2Ri − 1)
∏N−1
k=i+1 e

2Rk

)
.

(82)

Similarly, using (73) (after neglecting εφ and εν), the achiev-
able rate RN for a given achievable (R1, · · · , RN−1) is
constrained by

RN ≤
1

2
log

(
9σ2

N + α2
∑
i∈N β

2
iA

2

9σ2
N + 9

∑N−1
i=1 σ2

i (e2Ri − 1)
∏N−1
k=i+1 e

2Rk

)
,

(83)

given
∑
i∈N βi = 1. The gap between (82) and RN (83) is

thus

∆ =
1

2
log

(
σ2
N + cA2

σ2
N + 1

9α
2
∑
i∈N β

2
iA

2

)
. (84)

The gap is maximum if
∑N
i=1 β

2
i is minimum, subject to∑

i∈N βi = 1. This is achieved if βi = 1
N for all i ∈ N.

Thus ∆ ≤ 1
2 log

(
σ2
N+cA2

σ2
N+ 1

9N α
2A2

)
. At high SNR, this upper

bound on the gap can be approximated by δ = log
(

3
√
cN
α

)
.

By substituting c by its value and maximizing δ with respect
to α, we conclude that δ ≤ log

(
3
√
eN√
2π

)
= 0.68 + 1

2 log(N)

which proves Corollary 7.
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d’Ingénieur degree from the École Nationale de
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and the Ph.D. degree from École Polytechnique,
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