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Abstract— In this paper we consider the effect of channel esti-
mation error on the capacity region of MIMO Gaussian broadcast
channels. It is assumed that the receivers and the transmitter have
(the same) estimates of the channel coefficients (i.e., the feedback
channel is noiseless). We obtain an achievable rate region based
on the dirty paper coding scheme. We show that this region is
given by the capacity region of a dual multi-access channel with a
noise covariance that depends on the transmit power. We explore
this duality to give the asymptotic behavior of the sum-rate for
a system with a large number of user, i.e., n → ∞. It is shown
that as long as the estimation error is of fixed (w.r.t n) variance,
the sum-capacity is of order M log log n, where M is the number
of antennas deployed at the transmitter. We further obtain the
sum-rate loss due to the estimation error. Finally, we consider a
training-based scheme for block fading MISO Gaussian broadcast
channels. We find the optimum length of the training interval as
well as the optimum power used for training in order to maximize
the achievable sum-rate.

I. INTRODUCTION

There has been recently a great deal of research on the capacity

region of the MIMO Gaussian broadcast channels (e.g. see [1]-

[5]). These channels are of practical importance since they can

be used as a model for the down-link of cellular systems. In [5],

the authors show that the entire capacity region is achieved by

an interference pre-substraction coding scheme known as dirty

paper coding (DPC) first introduced in [6].

While DPC is the optimal transmission scheme, it is computa-

tionally expensive and also requires the transmitter to have per-

fect knowledge of the channel state information for all the users.

Furthermore, the capacity of broadcast channels highly depends

on the amount of channel state information in the transmitter

(CSI). If there is no CSI available at the transmitter employing

multiple antennas does not increase the throughput significantly.

However when perfect CSI is available the throughput scales

linearly with the number of transmit antennas (as the transmit

power or the number of users increases). From a practical point

of view, simple and effective scheduling schemes that are robust

against noisy channel state information (and/or require partial

knowledge of the channel) and also have a good performance

are desirable [21]. There has been some progress on devising

simple scheduling schemes that operate close to boundary points

of the capacity region with limited feedback [15], [16], [20], [18].

1This work is supported in part by the National Science Foundation under
grant nos. CCR-0133818 and CCR-0326554, by the David and Lucille Packard
Foundation, and by Caltech’s Lee Center for Advanced Networking.

However, the requirement of having accurate channel estimation

is a strict constraint.

In this paper we consider the effect of channel estimation

error on the capacity of MIMO Gaussian broadcast channels.

We propose an achievable region based on the dirty paper coding

scheme. This scheme is essentially similar to the achievable rates

obtained for MIMO point to point and multi-access channels with

uncertainty in channel measurements [12], [13]. We further show

a duality between the achievable rate region and the capacity of

a multi-access channel where the noise covariance is dependent

on the transmit power at different users. This duality is explored

to show the effect of the estimation error on the sum-rate for

large number of users. It is shown that as long as the estimation

error is fixed with respect to the number of users, we achieve

the same scaling law as if there was no estimation error. Of

course, there is a loss due to the estimation error in the sum-rate

which is obtained as a function of the variance of the estimation

error. Based on the achievable rate region derived earlier, we

analyze the performance of a training-based scheme for block

fading models. We show that the optimal amount of time used

for training is equal to the number of transmit antennas.

II. SYSTEM MODEL

We consider a block fading Gaussian MIMO broadcast chan-

nel with channel estimation error. The transmitter employs M

transmit antennas. We assume that there are n users in the system

each equipped with ri, i = 1, . . . , n antennas. The channel matrix

between the transmitter and user i is an M × ri matrix and is

denoted by Hi. A block fading model with coherence interval of

length T is considered. We assume that the channel coefficients

for each user are zero mean jointly Gaussian random variables

with covariance matrix cov (Hi) = E (vecHi)(vec Hi)
∗ = RH .

The received signal at user i is given by

yi = Hix + ni

where ni is additive white Gaussian noise with zero mean and

identity covariance matrix. x is the input vector with power

constraint E [x∗x] ≤ P .

In this paper, the users and the transmitters do not have

exact knowledge of the channel matrices. We assume that user

i estimates its channel to Ĥi. This estimate is fed back to the

transmitter through a perfect channel. The channel estimation

error H̃i which is equal to Hi−Ĥi is assumed to be uncorrelated

from the estimate Ĥi (i.e, MMSE estimation). The coordinates
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of H̃i are assumed to be jointly Gaussian random variables

with covariance matrices of form AT
i ⊗ Ki, where Ai and Ki

are positive semi-definite M × M and ri × ri matrices. The

above covariance matrix models the possible correlation at the

transmitter and the receiver side (see [19]).
The capacity region of the aforementioned broadcast channel

is known when Hi is available to the transmitter and to the i’th
receiver for i = 1, . . . , n [5]. Assuming the noise covariance
matrix Ni for the i’th user, and under the transmit covariance
matrix constraint, i.e., E [xx∗] � S, the capacity region is given
by dirty paper coding and can be written as

C(S, {Ni}, {Hi}) = conv
⋃

π,{Bi}

R(π, S, {Bi}, {Ni}, {Hi})

where the union is over all permutations on set {1, . . . , n} and
all positive semi-definite covariance matrices B1, . . . , Bn such
that

∑n

i=1 Bi � S and

R(π, S, {Bi}, {Ni}, {Hi}) = (R1, . . . , Rn)

0 ≤ Rπ(i) ≤ log
|Nπ(i) + Hπ(i)(

∑i

k=1 Bπ(k))H
∗
π(i)|

|Nπ(i) + Hπ(i)(
∑i−1

k=1 Bπ(k))H
∗
π(i)|

Finally, the capacity region of the broadcast channel with

average total transmit power constraint P , i.e., Tr (S) ≤ P , is

given by the

C(P, {Ni}, {Hi}) =
⋃

S:Tr (S)≤P

C(S, {Ni}, {Hi}).

In order to compute any point on the boundary of the capacity

region, [2], [3] establish a duality between the capacity region

of broadcast and multiple access channels under sum power

constraints. This duality is considered in a more general scenario

and based on the mini-max (and the Lagrangian) duality in [7],

[8]. These results are very useful since the multi-access channel

capacity region is much easier to compute [9].

III. INNER-BOUND ON THE CAPACITY REGION

In this section we give an inner bound on the capacity region

of the Gaussian MIMO broadcast channel with estimation error.

The results are based on the fact that the worst uncorrelated

noise with given covariance matrix has Gaussian distribution.

This was in fact used previously to obtain lower bounds on

the capacity of MIMO point-to-point channels and multi-access

channels in [12], [13].

Theorem 1: Consider a Gaussian MIMO broadcast channel
described in section II where the estimated channel for the i’th
user is Ĥi which is known to the transmitter and the correspond-
ing user. The capacity region then includes the capacity region
of a MIMO Gaussian broadcast channel with channel matrices
Ĥi and effective noise covariance I + Tr (Ai(

∑n

l=1 Bl))Ki. In
other words, capacity region includes

conv
⋃

π,{Bi}

Tr (
∑

i Bi)≤P

R π, S, {Bi}, {I+Tr (Ai(

n∑

l=1

Bl))Ki}, {Ĥi} .

Sketch of proof: The proof follows using the dirty paper cod-
ing scheme. Suppose that x1, . . . , xn are independent Gaussian
vectors with zero mean and covariance B1, . . . , Bn that are
generated according to a dirty paper coding scheme with an
order according to permutation π (here we assume the identity

permutation) and that x =
∑n

i=1 xi is the transmitted signal.
The received signal at user i can be written as

yi = Ĥixi + Ĥi(

n∑

j=i+1

xj) + Ĥi(

i−1∑

j=1

xj) + H̃i(

n∑

i=1

xi) + ni

︸ ︷︷ ︸

vi

(1)

Now using the result of [10] on the capacity of memoryless

channels with random state known non-causally by the transmit-

ter, we can show that the following rate is achievable for user i

in (1)

Ri = I(ui; yi) − I(ui; si) (2)

where the random state is si =
∑n

j=i+1 xj and is known

by the encoder and the channel input is xi. Also ui has a

Gaussian distribution and is a function of Ĥi, xi, xi+1, . . . , xn.

The second mutual information term in (2) does not depend on

the distribution of H̃i. The first term in (2) can be written as

I(ui; yi) = h(ui) − h(ui|yi).

We have the following bound on h(ui|yi)

h(ui|yi) ≤ log |πe × cov (ui|yi)|

since, for a given covariance matrix, the Gaussian distribution

has the largest entropy.
Therefore, looking at (1), by considering vi to be a Gaussian

random vector with zero mean and the same covariance matrix
we get a lower bound on Ri in (2). The covariance of vi is

E (viv
∗
i ) = Ĥi(

i−1∑

j=1

Bj)Ĥ
∗
i + E H̃i(

n∑

j=1

Bj)H̃
∗
i + I

The first term on the right hand side is the contribution from
the part of interference that is treated as noise. The second term
comes from the error in estimating the channel. It can be shown

that for H̃i with cov (H̃i) = AT
i ⊗ Ki we have

E (H̃i(

n∑

l=1

Bl)H̃
∗
i ) =

n∑

l=1

Tr (BlAi)Ki.

Therefore the effective noise of the system has covariance

n∑

l=1

Tr (BlAi)Ki + I. (3)

Having this, we get the rate region given in the theorem

statement.

IV. OPTIMAL POWER ALLOCATION

In the previous section an achievable rate region for MIMO

broadcast channels with estimation error was given. This region

is based on dirty paper coding. It is well known that the dirty pa-

per coding region is not convex in input covariance matrices and

finding the boundary points of the capacity region directly from

the dirty paper coding regime is not computationally tractable.

However, using the duality of the broadcast and multiple access

channels [2], [3], and the mini-max duality introduced in [7], [8]

it is possible to find the boundary points of the capacity region

under some class of power constraints using convex optimization.

In this section we consider finding the power allocation for

any boundary point on the achievable rate region described in

Theorem 1.
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It is worth mentioning that since in our case the effective noise

covariance matrix also depends on the input covariance matrices,

it can be verified that the transformations used in [3] do not go

through1. For the presentation of this paper we provide duality

results in the following two cases.

1) For all users Ai = I: It can be easily shown that any

boundary point on the region described in Theorem 1 is

achieved when
∑n

i=1 Tr (Bi) = P . Therefore if Ai = I

for all the channels, the effective noise of (3) does not

depend on Bi anymore and is given by I + PKi. In

this case, one can use the duality of multiple access and

broadcast channels with sum power constraints. Hence

the region of Theorem 1 is equal to the capacity region

of a Gaussian Multiple access channel with sum power

constraint P and channel coefficients Ĥ∗
i (I + PKi)

− 1

2 .

Therefore, any point on the boundary can be computed

using convex optimization. We have summarized this result

as follows.

Theorem 2: Consider the setting of Theorem 1. Further

assume that the covariance matrix of the estimation error

for i-th channel is of the following form cov (H̃i) = I⊗Ki

then the capacity region of the channel includes the capac-

ity region of a multiple access channel with sum power

constraint P and channel coefficients Ĥ∗
i (I + PKi)

− 1

2 .

2) MISO broadcast with estimation error, i.e. ri = 1: In

the rest of this paper, we consider the achievable rates

for MISO broadcast channels with estimation error. For

this case, we can state the achievable region based on the

capacity region of a dual multiple access channel.

Theorem 3: Consider a MISO Gaussian broadcast channel

with estimation error covariance Ai ≻ 0 for user i and total

transmit power constraint of P . Then, the capacity region

includes the capacity region of a multiple access channel

with one antenna at each transmitter and M antennas at

the receiver. The channel coefficient vector for transmitter

i is Ĥ∗
i . The total transmit power constraint is P and the

noise covariance is I+
∑n

i=1 PiAi where Pi is the transmit

power for user i.

Proof: Sketch of the proof of the above theorem is provided

in Appendix A.

Clearly, Theorem 3 implies that for a homogeneous system,

where Ai = A for all users, the capacity region of this channel

includes the capacity region of a multiple access channel with

total transmit power P and noise covariance matrix I + PA.

V. SCALING LAWS OF THE ACHIEVABLE SUM-RATE

Using Theorem 3, we know that the following sum-rate is
achievable for homogeneous MISO broadcast channels.

Rsum = max
Pi≥0∑

n
i=1

Pi≤P

log
|I + PA +

∑n

i=1 PiĤ
∗
i Ĥi|

|I + PA|
(4)

This optimization problem is convex in the Pi’s and can be

therefore solved when n is not too large. The achievable ergodic

sum-rate for fading channels is just the expectation of Rsum over

1The transformation used in [3] is valid for a sum power constraint.

all channel realizations. Clearly when n is large, computing the

average sum-rate becomes computationally intensive. In what

follows, we obtain the scaling law of the ergodic sum-rate for

large number of users.

Defining Gi = Ĥi(I + PA)−
1

2 , the ergodic sum-rate is given
by

R
⋆ = E(Rsum) = E max

Pi≥0,
∑

n
i=1

Pi≤P
log |I +

n∑

i=1

PiG
∗
i Gi| (5)

where the expectation is over Gi’s for i = 1, . . . , n. Here Gi’s
are independent Gaussian vectors with covariance matrix

E (G∗
i Gi) = (I + PA)−

1

2 (RH − A)(I + PA)−
1

2 . (6)

Note that (5) is in fact the ergodic sum-capacity of a MISO

broadcast channel where channels are distributed according to a

Gaussian distribution with covariance matrix given in (6). The

ergodic sum-capacity of MISO broadcast channel with spatial

correlation in channel coefficients is analyzed for large number

of users in [11]. Assuming that RH and A are fixed (in terms of

n), one can use the result of [11] to state the following Theorem.

Theorem 4: Consider the setting of Theorem 3. Assume the

channel covariance matrix is RH and estimation error covariance

is RH � A. Then as the number of users n goes to infinity the

achievable sum-rate scales like

R⋆ = M log log n + M log
P

M
+ log det(RH − A) − log det(I + PA) + o(1) (7)

Theorem 4 suggests that as long as the estimation error covari-

ance matrix is fixed in terms of n, one gets the same scaling as

the case where the channel is known perfectly at the receivers

and the transmitter. In fact, the effect of estimation error shows

up as a constant hit in the achievable rate.

At the end, We should remark that since for a homogeneous

network, the equivalent noise in Theorem 3 is linear in the

transmit power, in the high SNR regime (and for a fixed number

of users), the achievable sum-rate will be of constant order (See

also [17]).

VI. TRAINING

The results obtained so far are based on a given estimation

error covariance. To estimate the channel, a training phase is

often required. During this phase, some portion of the transmis-

sion interval and transmit power is used to send known training

signals. In this section we consider training for block fading

MISO broadcast channels with M transmit antennas, coherence

interval of T ≥ M and total transmit power of P . We further

assume that the channel coefficients are independent zero mean

unit variance Gaussian random variables. We find the optimum

amount of time and power that should be allocated for training

to maximize our achievable sum-rate.
During the training phase, the transmitter send Tτ training

vectors with total transmit energy of PτTτ . Let Xτ be the M×Tτ

matrix consisting of the training vectors. We have

Tr (X∗
τ Xτ ) = PτTτ (8)

The received signal at user i can be written as

yi,τ = hiXτ + vi,τ

ISIT 2006, Seattle, USA, July 9  14, 2006

1853



At the end of the training phase, each user finds the LMMSE
estimate of its channel and feeds it back to the transmitter. In
order to obtain a meaningful estimate of hi

2, we need at least as
many measurements as unknown, which implies that Tτ ≥ M .
The estimate can be written as

ĥi = yi,τ (I + X
∗
τ Xτ )−1

X
∗
τ

Note that y1,τ , . . . , yn,τ are independent and identically dis-
tributed. The estimation error covariance for every user is

Aτ = cov(h̃i) = I − X
∗
τ (I + X

∗
τ XτXτ )−1

Xτ

= (I + XτX
∗
τ )−1

Let Td = T − Tτ and PdTd = PT − PτTτ . After the training
phase, the transmitter starts sending data over the Td time
samples left and with total transmitter energy PdTd. Therefore
for a fixed Pτ , Tτ , using the result of Theorem 3, the following
sum-rate is achievable

Rτ =
Td

T
E max

Pi≥0,
∑

i Pi≤Pd

log
|I + PdAτ +

∑n

i=1 Piĥ
∗
i ĥi|

|I + PdAτ |
, (9)

where his are independent vectors whose elements are jointly
Gaussian random variables with covariance matrix I−Aτ (which
follows from the orthogonality principle). Now consider the
eigenvalue decomposition of XτX∗

τ = UΩU∗, where U is
unitary and Ω is diagonal and from (8) we have Tr (Ω) ≤ PτTτ .
After some manipulation of (9) we can rewrite the achievable
rate as

Rτ =
Td

T
E max

Pi≥0∑
i Pi≤Pd

log
|I + (1 + Pd)Ω−1 +

∑n

i=1 Pig
∗
i gi|

|I + (1 + Pd)Ω−1|
. (10)

The gi’s are independent vectors whose elements are indepen-

dent zero mean unit variance Gaussian random variables and the

expectation is over gi. Now let us consider the case where Ω is

a scaled version of identity. Using the trace constraint we have

Ω =
PτTτ

M
I

This Ω corresponds to the case where the training matrix Xτ is

a multiple of a matrix with orthonormal columns. Also it can be

shown that this choice of Ω corresponds to the worst case noise

in (10), i.e.,
PτTτ

M
I = argmin

Ω,Tr(Ω)≤Pτ Tτ

Rτ

Using this Ω and simplifying (10), the following rate is achiev-

able

Rτ =
Td

T
E max

Pi≥0,
∑

i
Pi≤Peff

log |I +

n∑

i=1

Pig
∗
i gi| (11)

where for each i, gi is a vector of i.i.d zero mean unit variance

Gaussian random variables. Peff is the effective power and is

given as

Peff =
PdPτTτ

PτTτ + (1 + Pd)M
.

We can maximize the achievable lower bound of (11) over power
and time allocated for training. Note that for a fixed Tτ (and Td),

2Throughout this section we use hi rather than Hi to represent the channel
vector for i-th user.

the optimal power allocation is one that maximizes the effective
transmit power Peff . By maximizing Peff over Pτ and Pd we get

P
⋆
eff(Td) =

(PT )2

√
(PT + Td)M +

√
(M + PT )Td

2 . (12)

Also the maximizing Pτ is given by

P
∗
τ (Td) =

PT
√

(Td + PT )M

(T − Td)(
√

(PT + Td)M +
√

(M + PT )Td)
(13)

In order to maximize the achievable rate over Td we have to
solve the following optimization problem

R
⋆ = max

Td,0≤Td≤T−M

Td

T
E {gi}f(P ⋆

eff(Td)) (14)

where P ⋆
eff(Td) is given in (12) and f(x) is defined as

f(x) = max
pi,
∑

i
pi≤1

log |I + x

n∑

i=1

pig
∗
i gi|

It is shown in [14] that the cost function in (14) is increasing

in Td. Therefore the optimal Td is T − M . The next theorem

summarizes the above arguments.
Theorem 5: Consider a block fading MISO broadcast chan-

nels with M transmit antennas, coherence interval of T ≥ M
and total transmit power of P . Further assume that the channel
coefficients are independent zero mean unit variance Gaussian
random variables. The following sum-rate is achievable using
training

R
⋆ =

T − M

T
E {gi} max

pi,
∑

i pi≤1
log |I+P

⋆
eff(T −M)

n∑

i=1

pig
∗
i gi| (15)

where P ⋆
eff(·) is defined in (12). Furthermore this rate is achieved

by using orthogonal and fixed power training vectors over the

first M time samples and transmitting data over the remaining

portion of the coherence interval. The power of each training

vector is P ⋆
τ (T − M) and is given in (13).

The following Corollary gives further insights on the behavior

of the sum-rate in different regimes.

Corollary 1: Consider the MISO broadcast channel model

described in Theorem 5. Then the achievable sum-rate

• For large P scales like

R
⋆ = min{M, n}(1 −

M

T
) log P.

• For small P scales like

R
⋆ =

Tc log e

4M
P

2

where c is the mean of the maximum of n i.i.d random

variables with χ2(2M) distribution.
• For large number of users (n) scales like

R
⋆ = M(1 −

M

T
) log(1 + P

⋆
eff(T − M) log n)

In particular, Corollary 1 shows that using training-based

schemes one can achieve the multiplexing gain of a MIMO point-

to-point channel with M transmit and n receive antennas in the

high SNR regime. However the power invested in the training

phase increases linearly with P (see (13) for large P ). Also the

required feedback rate for sending the estimates to the transmitter

should increase with P .
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VII. CONCLUSION

This paper considers the effect of channel estimation error on

the capacity region of MIMO Gaussian broadcast channels. An

achievable rate region based on dirty paper coding is derived. It is

further shown that for MISO case this region is equivalent to the

capacity region of a multi-access channel with noise covariance

matrix that depends on the transmit power and the estimation

error. A training-based scheme for block fading MISO Gaussian

broadcast channels is analyzed and the optimal length of training

interval and the power used for training is derived. Designing

practical schemes in the presence of channel estimation error

is an important future work. Also finding outer bounds on the

capacity region of broadcast channels with estimation error is an

interesting problem (see [17]).

VIII. APPENDIX A

In this section we sketch the proof of Theorem 3. We will use
the approach taken in [7]. Instead of looking at the achievable
rate, we will look at the feasibility of a set of SINR constraints
in the broadcast and the dual multi-access scenario. Similar to
[8], we consider beam-forming with dirty paper precoding. The
transmitted signal in this case can be written as

x =
∑

i

Wiui

where Wi is the i-th beam that carries ui the information for
user i. Without loss of generality we assume that E |ui|

2 = 1.
Looking back at the definition of Bi in Theorem 1, here we
have assumed that Bi = WiW

∗
i . Next we consider the problem

of minimizing total transmit power subject to a set of SINR
constraints for broadcast channel

L
BC = min

P,wi

P

subject to
|hiwi|

2

∑

j>i |hiwj |2 + 1 +
∑n

l=1 w∗
l Aiwl

≥ γi

n∑

i=1

w
∗
i wi ≤ P.

Similarly we can write the following problem for the dual
multiple access channel. The SINR’s shown below are achieved
by using vi as a filter for i-th user information and using
interference cancelation.

L
MA = min

Pi≥0,vi

n∑

i=1

Pi

subject to
Pi|hivi|

2

∑

j<i |hjvi|2 + v∗
i (
∑n

l=1 PlAl)vi

≥ γi

Following the steps of [8], we can show that both of the above
problems have the following dual

max
Pi≥0

n∑

i=1

Pi

subject to
∑

j<i

Pjh
∗
j hj +

n∑

l=1

PlAl + I �
Pi

γi

h
∗
i hi

Furthermore the strong duality holds and the two problems

have the same minimum power and are equivalent. Therefore the

achievable rate region of MISO broadcast channel is equivalent

to the capacity region of a multiple access channel with M

antennas at the receiver, total power constraint P and a noise

covariance Qeq that depends on the different users’ transmit

powers in the following form

Qeq = I +

n∑

l=1

PlAl,

and this proves Theorem 3.
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