On the Cartesian Product of Two Compact Spaces
By
J. Novék (Praha)

A. Tychonoff?!) established that the Cartesian product of two
bicompact spaces is a bicompact space. In this paper the solution of
the following problem of Cech is given: Is the Cartesian product of
two compact ?) spaces always compact? Cech posed this problem in 1938
at the topological seminar in Brno. In the year 1949 at the Czechoslovak-
Polish Congress of Mathematicians in Prague, I gave the solution 3),
namely that there exist two compact spaces whose Cartesian product
fails to be compact. The present paper contains the complete proof of
this assertion. The Gech bicompactification 4) A(N) of the countable
isolated set (the set of naturals N) was a useful tool for the solution of
the problem. Using a theorem by Cech, Pospikil proved ) that the

cardinality of A{N) is ‘22}". In this paper I shall prove this statement
directly without any reference to Cech’s theorem. At the end I shall
add a remark concerning the Cartesian product of two spaces one of
which is compact whereas the other is bicompact. M. Katétov proved
that this type of Cartesian product is compact.

Definition. Let X be a given point-set. Let I be a system of
subsets of X. The elements of M are said to be independent if the pro-

duct kn HEBL for every natural n and M, e M where A(k)=—1 or =1
=1

- and Mi=M, whereas My =X—M,.
Lemma 1. There is a system N of power 2% of independent sets
whose elements are subsets of the set N of all naturals. Moreover, the pro-

n
duet of any finite number N N+® where Nie W is infinite.
] k=1

') A. Tychonoff, ['ber die topologische Erweiterung von Raumen, Math. Annalen
102 (1930), p. 544561,
*) A topological space is called (compact) bicompact provided that every (coun-
Atablc) open covering coutains a finite subcovering.
%) J. Novak, On the Bicompact Space g (N )-N,
T4 (1949), p. 238.
4 E. Cech, On Bicompact Spaces, Annals of Math. 38 (1937), p. 823.
%) B. Pospisil, Remark on Bicompact Spaces, Annals of Math. 38 (1937), p. 845.
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Proof. Let U denote the space the elements of which are infinite

.
sequences (&;,&s,...,&n,...) of real numbers z, such that Y rh<co. A point
1

(T1372y+eesTny-..) Will be called a rational point if every r, is a rational
number and if 7,=0 except for a finite number of values of . Evidently,
the set of all rational points is countable. Hence, there is a one-to-one
mapping ¢(n) of N onto the set of all rational points. Let

o

) 3 i1 ‘

B (213005 eeny Tnyen) = 2 ey =10
i=1

te(0.1)

be the equation of a hyperplane A, in the space U. The elements of the
system N will be infinite sets N,CN defined as follows: m e N, if and
only if F, (p(m))>=0.

Let 0<i<u<l and let r,, v, he two rational numbers such that
—ury< 1;<—1rs. Then me N,—N, where ¢{m)=(r,,7,,0,0,...). From this
it follows that the power of the system R is 2%,

Let N, eM, k=1,2,...,n, where #¢(0,1) and §=1 for k=l We

" -
shall now prove that the product N .Yf,f”" is infinite. Let
k=1

o
)=t =0

By, yg e Lny e
i1

(k=1,2,...,n)
be n equations of the hyperplanes 4, in U7 and let

Gy {1y Loy een sil) Eftx (k=1,2,...,n)
be n corresponding equations of hyperplanes in n-dimensional Euclidean

space E, all containing the point (0,0,...,0)¢ E,. Since f==t; for k31
we get

! 141 it l
—1 |
t B = ] (ti—t)=0.
t k<Ii<n )
1 i, . ot

Therefore all these hyperplanes are linearly independent in E, and
the set C of all points (ry,r,,...,7) € E, where 7, are rational numbers
such that (&) G (ry,7e,...,7%) >0 for k=1,2,...,n, is infinite. Since

’ G (843 Ty oy ) = Fo Ly, Ly ooey 20y 0,0,.0)

n -
we have (r;,rs,..,7,,0,0,...)e N l\"{,:"‘) for every (ry,”s,...,m)eC. This
k=1

n - -
proves that the product N N,‘,f”‘) is an infinite set.
k=1
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Let fi(x), r e N, t € (0,1), be real valued continuous funetions defined
in the following manner:

Fix) for xeN7H,
(%) N
]’,(x):l ] for zeNF,
where N¥/7¢ M. Let 0<t<t'< 1. Then, according to Lemma 1, there

is an element ne NN N7 Hence, we have

1

fitm) =53 Ffeln)=

80 that f(r)==fc(r). Therefore the cardinal number of the system of all
functions fi(x) is 2%. Clearly f(N71)C(0,1/3;, £(X,)C{1/2,1) and 7N )C(0,1).

Let fulr), re N, ve(0,2), be real valued continuous and bounded
functions whereby f,(x), ve(0,1), are functions defined by (). Let
Typ={inf fo(x}, sup f,()>; hence T,=<0,1> for ve{0,1>. The Cartesian
produet PTI,, v¢(0,2), is a bicompact Hausdorff space®). The trans-
formation P(x) ={&,} where e N, {&} e BT, and &, =f,(x) for ve(0,2)
is a homeomorphisrg of N onto @(N)CPBT,. After identifying x=0(x)
for zeN we have N=0(N)CBT,. The space H(N) which is immerged
in BTy, v €(0,2), is the Cech bicompactification of the isolated set N
of all naturals; it will be denoted by B(N). In.the rest of this paper the
closure of a subset 4 in B(N) will be denoted by p4.

TIIGOI'("IIL 1. Let {£} e BTy, t € (0,1), where &=0 or =1 for te(0,1).
Then there exists a-point {£,} ef(N)—X such that &,=¢, for every ve(0,1)

Proof. Let {Z,}, where 7, =0 or —1 for te (0,1), be any point of
the set BT, t e (0,1). Let & be the system of all closed subsetsy BNO_ N
where te(0,1) and i(f)==—1 or =1 according to whether £, =0 or =1,

Our next task will be to prove that the product of any finite number
Of,:?(?tjs which are elements of & is non-void. As g matter of fact, let
BN ¥ —Ne®, k=1,2,..,n. If k=1, then, evidently, M) =Mg). Con-
sequently, we can arrange the numbers % In ascending order rejecting
repetitions ;< u,<...< u,, where mn. According to Lemma 1 the seb

P 1 W R I R g e
al XN is infinite so that 0= Fn NiP—N =kQIﬁNf;§’k)_A’=Ql(/m-*f,yk’—:v),
B(N) being a bicompact space and N being an isolated set in it.

Thl}s we have proved that 0= SCHN)—N. Let {£,} e N ©. If there
were an index #e(0,1) such that Su==Ly, then the neighbourhood ¥({&,})
=%PV:, v€(0,2), of the point {£0} € BT, where V,=T, for v €(0,2) u:l:‘v
and V,=40,1/3) in the case in which Lu=1 or V,= (1,2 1 in’ t}’le clase,
when {=0, would not contain any point of the set A’,f(‘”).’ Therefore the

8 Bee A, Tychonoff, L. e., . 548,
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point {&} wounld not belong to the set B.\',’;(“)——N € S; but this is impos-
sible. Thus the theorem is established. :
From theorem 1 it follows immediately that

®

Corollary 1. The cardinality of the space p(N) is 2% .

Proof. According to Theorem 1 there correspond to two different
points {;} and {I;} of the space WRT,, te(0,1), where ;=0 or =1 and
5=0 or =1, two different points {&,} and {&) of the space B(X") such
that &=2:, and &=, for ve(0,1). Consequently, the corollary given
follows from the fact that the cardinal number of the set of all points

: oo
£} e BT, t€(0,1), such that ;=0 or =11is 2° .
Theorem 27). The cardinal nummber of every infinite closed subset
No
of the space B(N) is 2% .

Proof. Let 4,CA(N) be an infinite closed subset. Since A(N) is
a Hausdorff space there is a point @, ¢ 4, and a neighbourhood ¥{a,)C#(N)
of @, such that A,—V(a;) ig an infinite set. Therefore because of the
regularity of the space A(N) and by using the method of simple induc-
tion it is easy to choose points a, ¢ 4, and to construct their neighbour-
hoods V{a,)CA(N) such that V(a.) " V{a,)=0 for m=Fun. 5

Now, we shall try to prove that the set BACH(Y) is the Cech bi-
compactification of the isolated set A= U @, As a matter of fact, fd ix

n=1
a bicompact point-set and the isolated set 4 is demse in if. Now, let
f(x), € A, be any continuous and hounded real-valued function defined
on the set A. Then the function
’ flag) for xeN NV (a),
1) = oo n==1,2,...)
ger) |0 for ze¥—0 V(e (=12,
n—1
is a continuous and bounded real-valued function defined on the do-
main N. Therefore there exists a continnous extension h(z), xef(N),
of the function g(x) such that h{xr)=g(x) for z e N.
Since a, € f(N NV (a,)) we have
hiay) € (N O (@) = g(X O V{an)=Flan)=f(an)
and thus f(a,)=h{a,) for n=1,2,... That is, the partial funetion h_dA(_.r)
is continuous in the domain f4 and the equality (haa(e))a=F(z) is vz‘mhd.
Therefore the function hj{r) is a continuous extension of the g:n_'en
function f(x) to the domain fA. But this is the characteristic condition
for the Cech bicompactification of an isolated countable set 4. Since
BACA,, the assertion of the theorem follows from Corollary 1.

%) This theorem was known to Professor E. Cech who communicated it at the
topological seminar in Brno in the year 1939.
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Theorem 3. There are two compact subsets A;CH(N) and A,CH(N)
such that 4,0 4,=N and 4,0 4,=p(N).

Proof. Let S denote the system of all countable infinite subsets
SCA(XN). The cardinal number of the system & is — according to Corol-
lary 1 —

P X,

(22‘0)%: ,_,x ___:-,2 u
The space p{N)—X has the same cardinal number.” Therefore the
elements of the system S and the eléments of the set f(N)—N can be

arranged in transfinite sequences

§.< ws

\J J

Soy 81y -eey Seyens

Ly Lpyeeny Liyenn £ << wg
S

of the same order type ms, where wg; is the least ordinal of power 27",
Now, using the following transfinite method, let us construct the
subsets P: and @ of the set f(N)—N: Suppose there are attached to
every S:e®, where £<a (a<w,), two subsets P: and @Q: of B(N)—N
such that
P,CP, C...CP:C...,
2,C0,C...CQ:C...,
P:nQ:=0,

and such that the cardinal numbers of P; and of Q: are the same as the
cardinal number of the set of all ordinals <& (which is <22“°). Then
we ‘shall attach to the element S.e¢& two subsets P,CB(N)—N and
Q.CH(N)—X as follows: Since — according to Theorem 2 — the cardina
number of the set U (P:UQ:) is < 2°° the set

File

B8~ (N U Su)— U (P:UQ:)CRN)—N
is an infinite point-set. Consequently, we can choose in this set two dif-
ferent points x, and x, with the least possible indices ; and » Put

Pn:x‘nU‘U Pg and

£l

Qu=12,U ‘U Qg.

Then P:CP,CHN)--N and Q:CQ.CAN)—N for all &<a and
P.NQ.=0. Evidently, the cardinal number of the set P, iz the same
as the cardinal number of the set @, and both are equal to the cardinal
number of the set of all ordinals <a.

Thus we have constructed two point-sets P= U P.C B(N)—N

§-de

and Q= U Q:CH(¥)—¥. Since PyCP,C... and QyCQ,C... and PsQs=0
$5ug Hal'H
for £ <ws we have P Q=0. On the other hand PUQ=pB(N)—N. As

icm

“need not be compact.
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a matter of fact, let a be any point of the set p(N)—X. Then a=ux, for
a suitable index p<Cms. Consider infinite countable sets N U (x) where
z+a denotes any point of the set B(N)—X-—(a). Every set like this
belongs to the system & and may be denoted by S;. Now, let (r,,,x.;)
be a pair of points which are attached to the element S;,. Tf the point x,
did not belong either to P or to @ we should have — with respect to
the minimality of indices x mentioned above _ uz<<o and r;<p for all
ordinals A< ws. This contradicts the faet that the subsystem of all sets
S;,=N U (x) has the cardinality 27,

Tt remains to prove that both sets 4;=PUN and 4,=¢Q UN are
compact. Suppose M is an infinite subset of the set 4, and let M, be
an infinite countable subset of M. Then M,=S8; ¢S for a suitable or-
dinal £. There is a point x, € A4, z, e f8;—A8; which is attached to the
set Sg; this point is an accumulation point of the set 1. The statement
about the set 4, can be proved analogously. Thus the proof of the theo-
rem is complete.

Theorem £, The Cartesian producet of two compact regular spaces

Proof, Consider the Cartesian product 4;x4, of the two spaces
A, and A, which were constructed above. Both spaces 4, and 4, are
compact and regular, both being subsets of the regular space (V). Since
4,0 4,=N the diagonal set D of all points (x,z) consists of those points
(x,y) € A; x A, for which r=y and xeXN. Hence the set D is infinite
and isolated in 4, x 4,. But there is no accumulation point of the set D
in the space A4,xA, Suppose the contrary: that there is a point

{a@,b) e D—D. Then a < p(N), bep(N) and a==b. Since S(N) is a Haus-

dorff space there are two neighbourhoods: V(a)CA(¥) of the point a
and V{(b)CH(N) of the point b such that V(a) N V(b)=10. Therefore no
point (i,xr) of the set D can belong to the neighbourhood (4;NF{(a))X
% (4. V(b)) of the point (&,b) in 4,x A, This contradiets our hypo-
theses. Thus we have established that the space 4, X 4, fails to.-be compact.

Remark. A. Tychonoff proved that the Cartesian product of
two bicompact spaces is bicompact. In the present paper it is estab-
lished that the Carfesian product of two compact spaces need not be
compact. As to the Cartesian product of two compact spaces onc of
which is bicompact the following statement holds:

Theorem 5. If P is a hicompact space, @ is a ompact one, then
the Cartesian product P x @ is compact.
Proof8). We have to show: if @,ePx( are open,
(n=1,2,...), U G,=P X Q then G,=Px@ for some n.
n=1

er C Gﬂ‘rl

#) Given by M. Katétor.
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Let H, denote the get of all ¥ e sunch that, for an appropriate
neighbourhood V=@ of y, we have PXVCG,. -
Clearly, the H, are open, H,CH,.;. Let b <@ be arbitrary. ‘We shall

show that be S H,. Putting B'=P x (b), we evidently have, for some
n=1

p, BCG,. For 2;ny z e P, there exist open (in P and, respectively, in @)
sets Uy,V, such that (z,b) e UxXVxClp. Therefore, BC UP(UXX V) CGy.
XE. .

Since B iz bicompact, there exist e P (i=1,...,m) sueh that

BCU (UxxVy). Putting V= A Vs, we have BCPxVCG,. -Therefore,
=1 ' i=1

¥ being a neighbourhood of b,b e H, Hence Q= U H, which implies,

n=1

Q being compact, that Q=H,, for some #. Then clearly Px QC@,

icm

On Compact Measures *
By

E. Marczewski (Wroctaw)

Let. ;; be & measure in abstract space X; with w(X;)=1for j=1,2,...
Roughly speaking, a measure u in the Cartesian product X;xX;X ...
is called a product of {u;} (for the precise definition see below, Section 6),
if always

I Y XX e XX g X BEX Xpey 7 ot) = 1t B),

and the direct product of {z} if
By X By oo X By ¥ Xpia K Kz o) = 1 By) - 11a{ B oo - pia( En)-

Products of measures are especially important for Probability
Theory, in which they correspond to joint distributions of random va-
riables. Obviously, the direct produet corresponds to the case of sto-
chastic independence.

It is well known that for each family of o-measures there is a uni-
quely determined direct o-product?). The relations in the domain of
non direct products are rather complicated. The important theorem
formulated by Kolmogoroff®) concerns the case, in which each X;
is the veal line3) and its abstract analogue is false, as was proved by
Sparre-Andersen and Jessen?).

In Kolmogoroff's proof, the approximation of measurable sets
by compact ones is important. By eliminating non-essential topological
concepts from this proof, I arrived at the notion of compact measure.
Tn this paper I shall establish the fundamental properties of this con-
cept, especially some relations between compactness and independence
in the sense of the General Theory of Sets®) (theorems 5 (iii)-(v)). Then
T shall show that each product of compact measures is compact (6 (vii)),
*) Presented to the Polish Mathematical Society (Wroclaw Section), on the
10" of November, 1950. Cf. preliminary reports [9] and [I1].

1) See e. g. Halmos [5], p. 157, Theorem B.

) See Kolmogoroff [6], p. 27, Halmos [5], p. 212, Theorem A.

3) — or bicompact topological space, cf. Halmos, L ., p. 212.

4 S§parre- Andersen and Jessen [1]; cf. also Halmos [5]. p. 211-213, and
p. 214 (3).

5) Cf. e. g. Marczewski [7], [8] and [10].
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