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Abstract. We study the category O of representations of the rational
Cherednik algebra AW attached to a complex reflection group W . We
construct an exact functor, called Knizhnik-Zamolodchikov functor:
O → HW -mod, where HW is the (finite) Iwahori-Hecke algebra associated
to W . We prove that the Knizhnik-Zamolodchikov functor induces an equiv-
alence between O/Otor, the quotient of O by the subcategory of AW -modules
supported on the discriminant, and the category of finite-dimensional HW -
modules. The standard AW -modules go, under this equivalence, to certain
modules arising in Kazhdan-Lusztig theory of “cells”, provided W is a Weyl
group and the Hecke algebra HW has equal parameters. We prove that the
category O is equivalent to the module category over a finite dimensional
algebra, a generalized “q-Schur algebra” associated to W .
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1. Introduction

Let W be a complex reflection group acting on a vector space V . Let AW
denote the rational Cherednik algebra introduced in [EtGi] as a certain
deformation of D(V ) � W , the cross-product of W with the algebra of
polynomial differential operators on V . The algebra AW can be also realized
as an algebra of operators (Dunkl operators) acting on polynomial functions
on V . When W is a Weyl group, AW is a rational degeneration of the double
affine Hecke algebra.

A nice category O of AW -modules has been discovered in [DuOp],
cf. also [BeEtGi]. It shares many similarities with the Bernstein-Gelfand-
Gelfand category O for a finite-dimensional semi-simple Lie algebra.

We develop a general approach to the category O for a rational Cherednik
algebra, similar in spirit to Soergel’s analysis, see [So1], of the category O
in the Lie algebra case. Specifically, in addition to the algebra AW , we
consider an appropriate (finite) Hecke algebra HW , and construct an exact
functor KZ : O → HW -mod, that may be thought of as a Cherednik algebra
analogue of the functor V of [So1]. One of our main results says that the
functor KZ is fully faithful on projectives. Thus, the (noncommutative!)
Hecke algebra plays, in our case, the role similar to that the coinvariant
algebra (= cohomology of the flag manifold) plays in the Lie algebra case.
It is also interesting to note that, in both cases, the algebra in question is
Frobenius.

To prove our results, in Sect. 2 we develop some basic representation
theory over a ground ring (which is not necessarily a field) of a general
associative algebra with a triangular decomposition. This generalizes earlier
work of the second author [Gu] and of the last two authors (unpublished).
Such generality will be essential for us in order to use deformation arguments
in Sect. 5. The results of Sect. 2 are applied to Cherednik algebras in
Sect. 3.2.

In Sect. 4, we explain how to generalize some classical constructions
for D(V ), the Weyl algebra, (such as characteristic varieties, duality) to the
rational Cherednik algebra. We study two kinds of dualities. One of them
is related to Fourier transform while the other, much more important one,
generalizes the usual (Verdier type) duality on D-modules. This enables
us to show that the Ringel dual of category O is a category O for the
dual reflection group. We also give a formula for the dimension of the
characteristic variety involving only the highest weight structure of O.

Our most important results are concentrated in Sect. 5.4. We use the
de Rham functor for Knizhnik-Zamolodchikov type D-modules over the
complement of the ramification locus in V . This way, we relate the category
O with a Hecke algebra. We prove that the category O can be recovered from
its quotient by the subcategory of objects with non-maximal characteristic
variety (Theorem 5.3 and Corollary 5.5).

Then, we obtain a “double centralizer” Theorem 5.16, asserting in par-
ticular that the category O is equivalent to the category of modules over the
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endomorphism ring of some Hecke algebra module. A crucial point is the
proof that the de Rham functor sends the D-modules coming from objects
of O to representations of the braid group that factor through the Hecke
algebra (Theorem 5.13).

In a different perspective, our results provide a solution to the problem of
associating a generalized “q-Schur algebra” to an arbitrary finite complex
reflection group W . This seems to be new even when W is a Weyl group (ex-
cept for types A, B). For instance, let W be the Weyl group of an irreducible
simply-laced root system. Then, the data defining the Cherednik algebra AW
reduces to a single complex parameter c ∈ C. In this case, HW is the stan-
dard Iwahori-Hecke algebra of W , specialised at the parameter q = e2πic.
If c is a rational number, then q is a root of unity, and the corresponding
category HW -mod becomes quite complicated. Our results show that the
category O for AW may be viewed as a natural “quasi-hereditary cover”
of the category HW -mod, which is not itself quasi-hereditary. As a conse-
quence, the decomposition matrices of Hecke algebras (in characteristic 0)
are triangular (Corollary 5.19). We remark that, in view of [CPS2], one
might have expected on general grounds that the category HW -mod only
has a “stratified cover”, which is weaker than having a “quasi-hereditary
cover”.

The reader should be reminded that, in type A, a well-known “quasi-
hereditary cover” of HW -mod is provided by the q-Schur algebra. We expect
that the category of q-Schur algebra modules is equivalent to the category O.
Furthermore, for an arbitrary finite Weyl group W , we prove in Sect. 6 that
the KZ-functor sends the standard modules in O to modules over the Hecke
algebra (with equal parameters) that can be described via Kazhdan-Lusztig’s
theory of cells. It follows in particular that, in type A, the standard modules
in category O go to Specht (or ‘dual Specht’, depending on the sign of
parameter ‘c’) HW -modules, introduced in [DJ].

Acknowledgements. The second named author gratefully acknowledges the financial sup-
port of the Fonds NATEQ. The third named author was partially supported by a Pioner grant
of the Netherlands Organization for Scientific Research (NWO).

2. Category O

2.1. Algebras with triangular decomposition. In this section, we assume
given an associative algebra A with a triangular decomposition. We study
a category O(A) of A-modules, similar to the Bernstein-Gelfand-Gelfand
category O for a complex semi-simple Lie algebra. The main result of this
section is Theorem 2.19 below, saying that the category O(A) is a highest
weight category (in the sense of [CPS1]).

Throughout this Sect. 2, let k0 be an algebraically closed field and k
a commutative noetherian k0-algebra.

Let A be a graded k-algebra with three graded subalgebras B, B̄ and H
such that
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• A = B̄ ⊗ H ⊗ B as k-modules
• B and B̄ are projective over k
• B ⊗ H = H ⊗ B and H ⊗ B̄ = B̄ ⊗ H
• B = ⊕

i≤0 Bi, B̄ = ⊕
i≥0 B̄i, and B0 = B̄0 = k and H ⊂ A0.

• H = k ⊗k0 H(k0) where H(k0) is a finite dimensional semi-simple split
k0-algebra

• the grading on A is inner, i.e., there exists ∂ ∈ A0 such that Ai =
{u ∈ A|∂u − u∂ = iu}.
We denote by BH and B̄H the subalgebras B ⊗ H and B̄ ⊗ H . We

put Bi = B−i. We denote by Irr(H(k0)) the set of isomorphism classes
of finite dimensional simple H(k0)-modules. We put ∂ = ∂ ′ − ∂0 with
∂ ′ ∈ B̄ ⊗ H ⊗ B>0 and ∂0 ∈ Z(H). For E ∈ Irr(H(k0)), we denote by cE
the scalar by which ∂0 acts on k ⊗k0 E.

The theory developped here is closely related to the one developped by
Soergel [So2, Sects. 3–6] in the case where g is a graded Lie algebra with
g0 reductive, A = U(g), B = U(g>0), B̄ = U(g<0) and H = U(g0).1

2.2. Locally nilpotent modules. We denote by Oln the full subcategory
of the category of A-modules consisting of those modules that are locally
nilpotent for B, i.e., an A-module M is in Oln if for every m ∈ M, there
exists n � 0 such that B>n · m = 0. This is a Serre subcategory of the
category of A-modules.

Remark 2.1. The canonical functor Db(Oln) → Db(A) is not faithful in
general. Nevertheless, for i = 0, 1, and any M, M′ ∈ Oln, one still has
Exti

Oln(M, M′) ∼→ Exti
A(M, M′).

2.3. Standard modules

2.3.1. Let h ∈ H . We denote by φh : B̄ → B̄ ⊗ H ⊆ A the map defined
by φh(b̄) = h ⊗ b̄. Similarly, we denote by ψh : B → H ⊗ B ⊆ A the map
defined by ψh(b) = b ⊗ h.

Let E be an H-module. The augmentation B → B/B>0 = k induces
a morphism of algebras BH → H and we view E as a BH-module by re-
striction via this morphism. All simple BH-modules that are locally nilpo-
tent over B are obtained by this construction, starting with E a simple
H-module.

We put
∆(E) = IndA

BH E = A ⊗BH E.

The canonical isomorphism ∆(E)
∼→ B̄⊗E is an isomorphism of graded

B̄H-modules (E is viewed in degree 0), where B̄ acts by multiplication on

1 In the Lie algebra case, the algebra H = U(g0) is not finite dimensional. One then
has to restrict oneself to the consideration of H-semisimple A-modules only. The theory
developed below easily extends to such a case.
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B̄ and the action of h ∈ H is given by φh ⊗H 1E : B̄⊗ E → B̄⊗ H ⊗H E =
B̄ ⊗ E.

We now put ∇(E) = Homgr•
B̄H

(A, E) = ⊕
i Homgri

B̄H
(A, E) (this

is also the submodule of elements of HomB̄H(A, E) that are locally finite
for B). Here, E is viewed as a B̄H-module via the canonical morphism
B̄H � (B̄/B̄>0) ⊗ H = H .

We have an isomorphism of graded BH-modules ∇(E)
∼→ Homk(B, k)

⊗ E where B acts by left multiplication on Homk(B, k) and the action of
h ∈ H is given by f ⊗ e �→ (b ⊗ e �→ (1 ⊗ f )(ψh(b))e).

The A-module ∆(E) is a graded module, generated by its degree 0
component. The A-module ∇(E) is also graded. Both ∆(E) and ∇(E) are
concentrated in non-negative degrees, hence are locally nilpotent for B.

2.3.2. We have

ExtiA(∆(E),∇(F)) 
 Exti
B̄H

(ResB̄H ∆(E), F) 
 Exti
B̄H

(
IndB̄H

H E, F
)


 ExtiH(E, F).

It follows that, when k is a field and E, F are simple, then

Exti
A(∆(E),∇(F)) = 0 if i �= 0 or E �
 F and

(1)
HomA(∆(E),∇(E)) 
 k.

Let N be any A-module. We have

HomA(∆(E), N)
∼→ HomBH(E, ResBH N).(2)

2.3.3. A ∆-filtration for a A-module M is a filtration 0 = M0 ⊂ M1 ⊂
· · · ⊂ Mn = M with Mi+1/Mi 
 ∆(k ⊗k0 Ei) for some Ei ∈ Irr(H(k0)).
We denote by O∆ the full subcategory of Oln of objects with a ∆-filtration.

Given an H-module E and n ≥ 0, we also consider more general
modules

∆n(E) = IndA
BH

(
(B/B>n) ⊗k E

)
.

The modules ∆n(k⊗k0 F) have a ∆-filtration, when F is a finite dimensional
H(k0)-module.

For N a A-module, we have

HomA(∆n(E), N)
∼→ HomBH

(
(B/B>n) ⊗k E, N

)
.

As a consequence, we have a characterization of B-locally nilpotent
A-modules:

Proposition 2.2. Let N be a A-module. Then, the following are equivalent

• N is in Oln

• N is a quotient of a (possibily infinite) sum of ∆n(E)’s
• N has an ascending filtration whose successive quotients are quotients

of ∆(E)’s.
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2.4. Graded modules

2.4.1. Given α ∈ k and M a A-module, define generalized weight spaces
in M by

Wα(M) = {m ∈ M | (∂ − α)nm = 0 for n � 0}.
Let O be the full subcategory of Oln consisting of those modules M

such that M = ∑
α∈k Wα(M) where Wα(M) is finitely generated over k, for

every α ∈ k. This is a Serre subcategory of the category of A-modules.
Let Õ be the category of graded A-modules that are in O. This is a Serre

subcategory of the category of graded A-modules.
Let Õ

α
be the full subcategory of Õ consisting of those objects M

such that Mi ⊆ Wi−α(M) for all i. Note that this amounts to requiring that
∂ ′−(i+cF −α) acts nilpotently on Homgri

H(k⊗k0 F, M) for F ∈ Irr(H(k0)),
since ∂ and ∂0 commute.

More generally, if I is a subset of k, we denote by Õ
I

the full subcategory
of Õ consisting of those objects M such that Mi ⊆ ∑

α∈I Wi−α(M).
We denote by ∆̃(E) the graded version of ∆(E) (it is generated in

degree 0 and has no terms in negative degrees). Further, write 〈r〉 for ‘grading
shift by r’ of a graded vector space.

Lemma 2.3. Let E ∈ Irr(H(k0)). We have ∆̃(k ⊗k0 E)〈r〉 ∈ Õ
cE−r

.

Proof. Note that ∂ ′ acts as zero on ∆̃(k⊗k0 E)0, since B>0 acts as zero on it.
So, ∂ acts as −cE on it. It follows that ∂ acts by i − cE on B̄i∆̃(k ⊗k0 E)0 =
∆̃(k ⊗k0 E)i and we are done. ��

2.4.2. Let P be the quotient of
⋃

E∈Irr(H(k0))(cE + Z) by the equivalence
relation given as the transitive closure of the relation: α ∼ β if α − β is not
invertible.

We make the following assumption until the end of Sect. 2.4.

Hypothesis 1. We assume that cE ∼ cE + n for some n ∈ Z implies n = 0
(this holds for example when k is a local ring of characteristic zero).

Proposition 2.4. We have Õ = ⊕
a∈P Õ

a
.

The image by the canonical functor Õ → O of Õ
a+n

is a full subcategory
Oa+Z independent of n ∈ Z.

We have O = ⊕
a∈P/Z Oa+Z and the forgetful functor Õ

a ∼→ Oa+Z is
an equivalence.

Proof. Let M be an object of O . Let a ∈ P and Ma = ∑
α∈−a+Z Wα(M). By

Lemma 2.3 and Proposition 2.2, we have a decomposition M = ⊕
a∈P/Z Ma

as A-modules.
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Similarly, given M̃ ∈ Õ, we have M̃ = ⊕
a∈P M̃a where

M̃a =
⊕

i

∑

α∈a

(Wi−α(M) ∩ Mi) ∈ Õ
a
.

Given M∈Oa+Z, we put a grading on M by setting Mi = ∑
α∈i−a Wα(M)

(here we use the assumption on k). This defines an element of Õ
a

and com-
pletes the proof of the proposition. ��

We denote by pa : Õ → Õ
a

the projection functor.

2.4.3. We now give a construction of projective objects (under Hypothe-
sis 1).

Lemma 2.5. Let a ∈ P and d ∈ Z. There is an integer r such that the
canonical map

Hom(∆̃m(H)〈−d〉, M) → Md

is an isomorphism for all m ≥ r and M ∈ Õ
a
.

Proof. Replacing M by M〈d〉 and a by a + d, we can assume that d = 0.
There is an integer r such that pa(∆̃(H)〈r ′〉) = 0 for r ′ ≥ r. The exact

sequence

0 → ∆̃(Bm ⊗ H)〈m〉 → ∆̃m(H) → ∆̃m−1(H) → 0

shows that the canonical map

Hom(∆̃r(H), M)
∼→ Hom(∆̃m(H), M)

is an isomorphism for any M ∈ Õ
a

and m ≥ r. Equivalently, the canonical
map

HomB(B/B≥r, M)
∼→ HomB(B/B≥m, M)

is an isomorphism. Since M is locally B-nilpotent, this gives an isomorphism

Hom(∆̃m(H), M)
∼→ M0. ��

Corollary 2.6. Let E ∈ Irr(H(k0)) and a ∈ cE + Z. Then, the object
pa(∆̃r(k ⊗k0 E)〈a − cE〉) of Õ

a
is independent of r, for r � 0. It is

projective, has a filtration by modules ∆̃(k ⊗k0 F)〈r〉 and has a quotient
isomorphic to ∆̃(k ⊗k0 E)〈a − cE〉.
Corollary 2.7. Let E∈Irr(H(k0)). Then, for r �0, the module ∆r(k ⊗k0 E)
has a projective direct summand which is ∆-filtered and has a quotient
isomorphic to ∆(k ⊗k0 E).

Corollary 2.8. There is an integer r such that ∆r(H) contains a progener-
ator of O as a direct summand.
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Lemma 2.9. Let E, F ∈Irr(H(k0)) such that Ext1O(∆(k⊗k0 E),∆(k⊗k0 F))
�= 0. Then, cF − cE is a positive integer.

Proof. By Lemma 2.3 and Proposition 2.4, we have Ext1O(∆(k ⊗k0 E),
∆(k ⊗k0 F)) = 0 if cF − cE is not an integer. Assume now cF − cE is an
integer. Then

Ext1O(∆(k ⊗k0 E),∆(k ⊗k0 F)) 
 Ext1
Õ
(∆̃(k ⊗k0 E), ∆̃(k ⊗k0 F)〈cF − cE〉)


 Ext1
A(∆̃(k ⊗k0 E), ∆̃(k ⊗k0 F)〈cF − cE〉),

by Lemma 2.3 and Proposition 2.4. Now,

Ext1A(∆̃(k ⊗k0 E),∆̃(k ⊗k0 F)〈cF − cE〉)

 Ext1

BH(k ⊗k0 E, ResBH ∆̃(k ⊗k0 F)〈cF − cE〉).
If the last Ext1 is non zero, then cF − cE is a positive integer. ��
Corollary 2.10. Assume k is a field. Let E ∈ Irr(H). Then, L(E) has
a projective cover P(E) with a filtration Q0 = 0 ⊂ Q1 ⊂ · · · ⊂ Qd = P(E)
such that Qi/Qi−1 
 ∆(Fi) for some Fi ∈ Irr(H), cFi − cE is a positive
integer for i �= d and Fd = E.

Proof. We know already that there is an indecomposable projective module
P(E) as in the statement satisfying all assumptions but the one on cFi − cE ,
by Corollary 2.7.

Take r �= d maximal such that Qr/Qr−1 
 ∆(F) with cF − cE not
a positive integer. By Lemma 2.9, the extension of P(E)/Qr−1 by ∆(F)
splits. So, we have a surjective morphism P(E) → ∆(E) ⊕ ∆(F). This is
impossible since P(E) is indecomposable and projective. ��

2.5. Highest weight theory

2.5.1. We assume here that k is a field.
For E a simple H-module, all proper submodules of ∆(E) are graded

submodules by Proposition 2.4, hence are contained in ∆(E)>0. Conse-
quently, ∆(E) has a unique maximal proper submodule, hence a unique
simple quotient which we denote by L(E).

It follows from formula (1) of Sect. 2.3.2 that L(E) is the unique simple
submodule of ∇(E) and that L(E) �
 L(F) for E �
 F.

Proposition 2.11. The simple objects of Oln are the L(E) for E ∈ Irr(H).

Proof. Let N ∈ Oln. Then there is a simple H-module E such that
HomBH(E, ResBH N) �= 0. It follows from formula (2) of Sect. 2.3.2
that every simple object of Oln is a quotient of ∆(E) for some simple
H-module E. ��
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2.5.2. Let M be a A-module. Let p(M) be the set of elements of M
annihilated by B>0. This is an H-submodule of M.

Lemma 2.12. Let M be a A-module and E an H-module. Then,

• M is a quotient of ∆(E) if and only if there is a morphism of H-modules
ϕ : E → p(M) such that M = Aϕ(E);

• If k is a field and E is simple, then M 
 L(E) if and only if M = Ap(M)
and p(M) 
 E.

In particular, Ap(M) is the largest submodule of M that is a quotient of
∆(F) for some H-module F.

Proof. The first assertion follows from formula (2) of Sect. 2.3.2 and the
isomorphism

HomBH(E, ResBH M) 
 HomH(E, p(M)).

Now, we assume k is a field and E is simple.
Assume p(M) 
 E and M = Ap(M). Then, M is in Oln. Let N be a non-

zero submodule of M. We have 0 �= p(N) ⊆ p(M), hence p(N) = p(M)
and N = M. So, M is simple and isomorphic to L(E) since M is a quotient
of ∆(E).

Assume M 
 L(E). Since dimk Hom(∆(F), L(E)) = 1 if E 
 F, and
this Hom-space vanishes otherwise, it follows from (2) that p(M) 
 E. ��

Let M{0} = 0 and define by induction N{i} = M/M{i}, L{i} =
Ap(N{i}) and M{i +1} as the inverse image of L{i} in M. We have obtained
a sequence of submodules of M, 0 = M{0} ⊂ M{1} ⊂ · · · ⊂ M.

Since ∆(E) is locally nilpotent for B, the following proposition is clear.
It describes how the objects of Oln are constructed from ∆(E)’s (cf Propo-
sition 2.2).

Proposition 2.13. A A-module M is locally nilpotent for B if and only if⋃
i M{i} = M, i.e., if M has a filtration whose successive quotients are

quotients of ∆(E)’s.

Lemma 2.14. Assume k is a field. Every A-module quotient M of ∆(E)
has a finite Jordan-Hölder series 0 = M0 ⊂ M1 ⊂ · · · ⊂ Md = M with
quotients Mi/Mi−1 
 L(Fi) such that Fi ∈ Irr(kW ), cE − cFi is a positive
integer for i �= d and Fd = E.

Proof. By Proposition 2.4, we can assume cF − cE ∈ Z. From Proposi-
tion 2.4, it follows that M inherits a grading from ∆(E) (with M0 �= 0
and M<0 = 0). Note that since ∂ ′ acts as zero on p(M), we have p(M) ⊆⊕

F∈Irr(H ) McE −cF .
We will first show that M has a simple submodule.
Take i maximal such that p(M)i �= 0 and F a simple H-submodule of

p(M)i . Let L = AF. Then, p(L) ⊆ p(M) ∩ M≥i and p(L) ⊆ F ⊕ L>i ,
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hence p(L) = F. It follows from Lemma 2.12 that L 
 L(F) and we are
done.

Let d(M) = ∑
F∈Irr(H ) dim McE−cF .

We put M′ = M/L . We have d(M′) < d(M). So, the lemma follows by
induction on d(M). ��

2.6. Properties of category O. We assume here in Sect. 2.6 that k is a field.
We now derive structural properties of our categories.

2.6.1.

Corollary 2.15. Every object of Oln has an ascending filtration whose
successive quotients are semi-simple.

Proof. Follows from Lemma 2.14 and Proposition 2.2. ��
Corollary 2.16. Every object of O has a finite Jordan-Hölder series.

Proof. The multiplicity of L(E) in a filtration of M ∈ O given by Corol-
lary 2.15 is bounded by dim W−cE (M), hence the filtration must be finite.

��
Corollary 2.17. The category Õ

a
is generated by the L(E)〈r〉, with r =

cE − a.

Proof. Follows from Lemma 2.3 and Proposition 2.11. ��
Corollary 2.18. Given a ∈ k, the full abelian Serre subcategory of the
category of A-modules generated by the L(E) with cE ∈ a + Z is Oa+Z.

2.6.2.

Theorem 2.19. The category O is a highest weight category (in the sense
of [CPS1]) with respect to the relation: E < F if cF − cE is a positive
integer.

Proof. Follows from Corollary 2.10 and Lemma 2.14. ��
The standard and costandard objects are the ∆(E) and ∇(E). There are

projective modules P(E), injective modules I(E), tilting modules T(E). We
have reciprocity formulas, cf. [CPS1, Theorem 3.11]:

[I(E) : ∇(F)] = [∆(F) : L(E)] and [P(E) : ∆(F)] = [∇(F) : L(E)].

Corollary 2.20. If cE − cF �∈ Z − {0} for all E, F ∈ Irr(H(k0)), then O is
semi-simple.
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Proposition 2.21. Let M ∈ O. The following assertions are equivalent

• M has a ∆-filtration
• Exti

O(M,∇(H)) = 0 for i > 0
• Ext1

O(M,∇(H)) = 0
• the restriction of M to B̄ is free.

Proof. The equivalence between the first three assertions is classical. The
remaining equivalences follow from the isomorphism Ext1

O(M,∇(H))
∼→

Ext1A(M,∇(H))
∼→ Ext1

B̄
(M, k). ��

2.6.3. From Proposition 2.2, we deduce

Lemma 2.22. Let M ∈ Oln. The following conditions are equivalent

• M ∈ O
• M is finitely generated as a A-module
• M is finitely generated as a B̄-module.

Lemma 2.23. There is r ≥ 0 such that for all M ∈ O, a ∈ k and m in the
generalized eigenspace for ∂ ′ for the eigenvalue a, then (∂ ′ − a)rm = 0.

Proof. The action of ∂ ′ on ∆(H) is semi-simple. It follows that, given
r ≥ 0, a ∈ k and m ∈ ∆r(H) in the generalized eigenspace for ∂ ′ for the
eigenvalue a, then (∂ ′ − a)rm = 0.

Now, by Corollary 2.7, there is some integer r such that every object
of O is a quotient of ∆r(H)l for some l. ��
Proposition 2.24. There is r ≥ 0 such that every module in Oln is generated
by the kernel of B≥r . Further, there is an integer r > 0 such that for M ∈ Oln,
we have M{i} = M{r} for i ≥ r.

Proof. Let r ≥ 0 such that every projective indecomposable object in O
is a quotient of ∆r−1(H). This means that every object in O is generated
by the kernel of B≥r. Now, consider M ∈ Oln and m ∈ M. Let N be the
A-submodule of M generated by m. This is in O , hence m is in the submodule
of N generated by the kernel of B≥r. ��
Proposition 2.25. Every object in Oln is generated by the 0-generalized
eigenspace of ∂ ′.

Proof. It is enough to prove the proposition for projective indecomposable
objects in O, hence for ∆r’s, where it is obvious. ��

2.6.4. Let Q be a progenerator for O (cf Corollary 2.8) and Γ=(End A Q)opp.
Then, Γ is a finitely generated projective O-module. We have mutually in-
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verse standard equivalences

Hom(Q,−) : O
∼→ Γ-mod, Q ⊗Γ (−) : Γ-mod

∼→ O.(3)

Let now X be a (non-necessarily finitely generated) Γ-module. Then,
Q ⊗Γ X is a quotient of Q(I ) for some set I , where X is a quotient of Γ(I ).
Now, Q(I ) is in Oln. So, the functor Q ⊗Γ (−) : Γ-Mod → A-Mod takes
values in Oln and we have equivalences

Hom(Q,−) : Oln ∼→ Γ-Mod, Q ⊗Γ − : Γ-Mod
∼→ Oln.

3. Rational Cherednik algebras

3.1. Basic definitions. Let V be a finite dimensional vector space and
W ⊂ GL(V ) a finite complex reflection group. Let A be the set of reflecting
hyperplanes of W . Given H ∈ A, let WH ⊂ W be the subgroup formed by
the elements of W that fix H pointwise. We choose vH ∈ V such that CvH
is a WH-stable complement to H . Also, let αH ∈ V ∗ be a linear form with
kernel H .

Let k be a noetherian commutative C-algebra. The group W acts naturally
on A and on the group algebra kW , by conjugation. Let γ : A → kW,
H �→ γH, be a W-equivariant map such that γH is an element of kWH ⊂ kW
with trace zero, for each H ∈ A.

Given γ as above, one introduces an associative k-algebra A(V, γ), the ra-
tional Cherednik algebra. It is defined as the quotient of k⊗C T(V ⊕V ∗)�W ,
the cross-product of W with k-tensor algebra, by the relations

[ξ, η] = 0 for ξ, η ∈ V, [x, y] = 0 for x, y ∈ V ∗

[ξ, x] = 〈ξ, x〉 +
∑

H∈A

〈ξ, αH〉〈vH , x〉
〈vH , αH〉 γH .

Remark 3.1. Let Refl ⊂ W denote the set of (pseudo)-reflections. Clearly
Refl is an AdW-stable subset. Giving γ as above is equivalent to giving
a W-invariant function c : Refl→k , g �→cg such that γH=∑

g∈WH�{1} cg ·g.
One may use the function c instead of γ , and write vg ∈ V , resp. αg ∈ V ∗,
instead of vH , resp. αH , for any g ∈ WH � {1}. Then the last commutation
relation in the algebra A(V, γ) reads:

[ξ, x] = 〈ξ, x〉 +
∑

g∈Refl

cg · 〈ξ, αg〉〈vg, x〉
〈vg, αg〉 · g,

which is essentially the commutation relation used in [EtGi]. In case of
a Weyl group W , in [EtGi,BeEtGi,Gu], the coefficients cα (α a root) were
used instead of the cg’s. Then, γH = −2cαg for H the kernel of α and g the
associated reflection.
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Remark 3.2. Put eH = |WH |. Denote by εH, j = 1
eH

∑
w∈WH

det(w) jw the

idempotent of CWH associated to the character det− j
|WH

. Given γ as above,
there is a unique family {kH,i = kH,i(γ)}H∈A/W , 0≤i≤eH of elements of k such
that kH,0 = kH,eH = 0 and

γH = eH

eH−1∑

j=0

(kH, j+1(γ) − kH, j(γ))εH, j .

We observe that γ can be recovered from the kH,i(γ)’s by the formula

γH =
∑

w∈WH−{1}

(eH−1∑

j=0

det(w) j · (kH, j+1(γ) − kH, j(γ))

)

w.

This way, we get back to the definition of [DuOp].

Introduce free commutative positively graded k-algebras P = k ⊗C

S(V ∗) = ⊕
i≥0 Pi and S = k ⊗C S(V ) = ⊕

i≥0 Si . We have a triangular
decomposition A = P ⊗k kW ⊗k S as k-modules [EtGi, Theorem 1.3].

For H ∈ A, we put

aH(γ) =
eH−1∑

i=1

eH · kH,i(γ) · εH,i ∈ k[WH ] and z(γ) =
∑

H∈A

aH(γ) ∈ Z(kW ).

We denote by Irr(kW ) a complete set of representatives of isomorphism
classes of simple kW-modules.

For E ∈ Irr(CW ), we denote by cE = cE(γ) the scalar by which z(γ)
acts on k ⊗C E. The elements aH(γ) , z(γ), and cE(γ), may be thought of
as functions of the coefficients kH,i = kH,i(γ) (through their dependence
on γ ). In particular, it was shown in [DuOp, Lemma 2.5] that cE , expressed
as a function of the kH,i’s, is a linear function with non-negative integer
coefficients.

Below, we will often use simplified notations and write A for A(γ), kH,i
for kH,i(γ), and z for z(γ), etc.

We introduce a grading on A by putting V ∗ in degree 1, V in degree −1
and W in degree 0 (thus, the induced grading on the subalgebra P ⊂ A
coincides with the standard one on P, while the induced grading on the
subalgebra S ⊂ A differs by a sign from the standard one on S).2

Let euk = ∑
b∈B b∨b be the “deformed Euler vector field”, where B

is a basis of V and {b∨}b∈B is the dual basis. We also put eu = euk − z.
The elements euk and eu commute with W . Note that

∑
b [b, b∨] =

dim V + ∑
H γH .

2 We use superscripts to indicate the standard (non-negative) grading on S, and sub-
scripts to denote the gradings on A and P. Thus, putting formally S−i := Si one recovers
compatibility: Si = S ∩ Ai .
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We have

[eu, ξ] = −ξ and [eu, x] = x for ξ ∈ V and x ∈ V ∗.(4)

This shows the grading on A is “inner”, i.e., Ai = {a ∈ A | [eu, a] = i ·a}.
3.2. Category O for the rational Cherednik algebra

3.2.1. We apply now the results of Sect. 2 in the special case: A = A =
A(V, γ), B = S, B̄ = P, H = kW , k0 = C, H(k0) = CW , ∂ = eu, ∂ ′ = euk
and ∂0 = z. In particular, we have the category O(γ) := O(A(V, γ)), which
was first considered, in the setup of Cherednik algebras, in [DuOp].

For any (commutative) algebra map ψ : k → k′, there is a base extension
functor O(γ) → O(ψ(γ)) given by A(ψ(γ)) ⊗A (−).

3.2.2. Assume k is a field. Since O and Õ have finite global dimension
(Theorem 2.19), the Grothendieck group of the category of modules coin-
cides with the Grothendieck group K0 of projective modules.

We have a morphism of Z-modules f : K0(Õ) → Z[[q]][q−1] ⊗
K0(CW ) given by taking the graded character of the restriction of the
module to W :

M �→
∑

E∈Irr(kW )

∑

i

qi dim HomkW (E, Mi)[E].

Set [P] := ∑
E∈Irr(kW )

∑
i qi dim HomkW (E, Pi) · [E]. This is an invertible

element of Z[[q]][q−1] ⊗ K0(CW ), and for any F ∈ Irr(kW ), we have
f([∆(F)]) = [P] · [F]. Since the classes of standard modules generate
the K0-group, we obtain an isomorphism 1

[P] f : K0(Õ)
∼→ Z[q, q−1] ⊗

K0(CW ).
Let k[(kH,i)1≤i≤eH−1] be the polynomial ring in the indeterminates kH,i

with kw(H ),i = kH,i for w ∈ W . We have a canonical evaluation morphism
k[(kH,i)] → k given by the choice of parameters. Letm be the kernel of that
morphism, R the completion of k[(kH,i)] at m, and K the field of fractions
of R.

We have a decomposition map K0 (OK )
∼→ K0(O). It sends [∆(K⊗C E)]

to [∆(k ⊗C E)].
Proposition 3.3. Assume k is a field. Then, [∆(E)] = [∇(E)] and [P(E)] =
[I(E)] for any kW-module E.

Proof. We first consider the equality [∆(E)] = [∇(E)]. The corresponding
statement for K is true, since the category is semi-simple in that case. Hence
the modules are determined, up to isomorphism, by their socle (resp. by their
head).

The statement for k follows by using the decomposition map.
Now, the equality [P(E)] = [I(E)] follows, using the reciprocity for-

mulas (Sect. 2.6.2). ��
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4. Duality, tiltings, and projectives

4.1. Ringel duality. We keep the setup of Sect. 2.1, with k being a field.
We make the following two additional assumptions

• We have B̄ ⊗ H ⊗ B = B ⊗ H ⊗ B̄ = A;
• The subalgebra B ⊂ A is Gorenstein (with parameter n), i.e., there exists

an integer n such that

Exti
B(k, B) =

{
k if i = n
0 if i �= n.

The Gorenstein condition implies that, for any E ∈ Irr(H), viewed as a
BH-module via the projection BH → H , we have ExtiBH(E, BH) = 0, for
all i �= n; moreover, Extn

BH(E, BH) = E�, where E� is a right BH-module
such that dim E� = dim E.

Assume further that the algebra A has finite homological dimension.
Thus (see [Bj]), there is a well-defined duality functor

R HomA(−, A) : Db(A-mod)
∼→ Db(Aopp-mod)opp.

Furthermore, this functor is an equivalence with inverse R HomAopp(−, A).
The triangular decomposition A = B⊗H⊗ B̄ gives a similar decompos-

ition Aopp = B̄opp ⊗ Hopp ⊗ Bopp, for the opposite algebras. Therefore, we
may consider the category O(Aopp) and, for any simple right H-module E ′,
introduce the standard Aopp-module

∆opp(E ′) := IndAopp

(BH )opp E ′ = E ′ ⊗BH A,

and also the projective object Popp(E ′) ∈ O(Aopp), the tilting object
T opp(E ′) ∈ O(Aopp), etc.

Lemma 4.1. The functor R HomA(−, A[n]) sends ∆(E) to ∆opp(E�), for
E a finite-dimensional H-module.

Proof. Using that A is free as a left BH-module, we compute

Exti
A(∆(E), A)

∼→ ExtiBH(E, A)
∼→ ExtiBH(E, BH) ⊗BH A.

We see that this space vanishes for i �= n, and for i = n we get
R HomA

(
∆(E) , A[n]) 
 E� ⊗BH A = ∆opp(E�). ��

We would like to use the duality functor R HomA(−, A[n]) to obtain
a functor Db(O(A)) → Db(O(Aopp))opp. To this end, we will exploit a gen-
eral result below valid for arbitrary highest weight categories (a contravari-
ant version of Ringel duality [Ri, Sect. 6]).

Given an additive category C, let Kb(C) be the corresponding homotopy
category of bounded complexes in C.
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Proposition 4.2. Let A and A′ be two quasi-hereditary algebras and C =
A-mod, C ′ = A′-mod the associated highest weight categories. Let F
be a contravariant equivalence between the exact categories of ∆-filtered
objects F : C∆ ∼→ (C ′∆)opp. Then,

• F restricts to equivalences

C-proj
∼→ (C ′-tilt)opp and C-tilt

∼→ (C ′-proj)opp

• The canonical equivalences Kb(C-proj)
∼→ Db(C) and Kb(C ′-tilt) ∼→

Db(C ′), yield an equivalence of derived categories

D : Db(C)
∼→ Db(C ′)opp.

• Let T = F(A), an (A⊗ A′)-module. Then, we have D = R HomA(−, T )

and D−1 = R HomA′(−, T ). Via duality (A-mod)
∼→ (Aopp)-modopp,

the functor D identifies Copp with the Ringel dual of C ′.

Proof. Let M∈C∆. Then, M is projective if and only if Ext1(M,∆(E)) = 0
for every standard object ∆(E) of C (indeed, if 0 → M′ → P →
M → 0 is an exact sequence with P projective, then M′ is ∆-filtered,
hence the sequence splits). The module F(M) is tilting if and only if
Ext1(∆(E ′), F(M)) = 0 for every standard object ∆(E ′) of C ′. We de-
duce that M is projective if and only if F(M) is tilting.

So, F restricts to equivalences C-proj
∼→ (C ′-tilt)opp and C-tilt

∼→
(C ′-proj)opp.

The last assertions of the proposition are clear. ��
We can now apply this construction to the category O(A). Specific-

ally, Lemma 4.1 implies that the functor R HomA(−, A[n]) restricts to an
equivalence O(A)∆ ∼→ (O(Aopp)∆)opp. Therefore, using Proposition 4.2 we
immediately obtain the following

Proposition 4.3. The functor R HomA(−, A[n])opp restricts to equivalences

O(A)-proj
∼→ (O(Aopp)-tilt)opp and O(A)-tilt

∼→ (O(Aopp)-proj)opp .

The canonical equivalences Kb(O(A)-proj)
∼→ Db(O(A)) and

Kb(O(Aopp)-tilt)
∼→ Db(O(Aopp)) induce an equivalence D : Db(O(A))

∼→
Db(O(Aopp))opp, such that ∆(E) �→ ∆opp(E�) , P(E) �→ T opp(E�), and
T(E) �→ Popp(E�). ��
Corollary 4.4. The category O(Aopp)opp is the Ringel dual of O(A). ��
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4.2. Naive duality for Cherednik algebras. Recall the setup of Sect. 3.2.
Denote by (−)† : CW

∼→ CW the anti-involution given by w �→ w† :=
w−1 for w ∈ W .

In this section, we compare the algebras A = A(V, γ) and A(V ∗, γ †).
This will provide us with means to switch between left and right modules,
between S-locally finite and P-locally finite modules.

The anti-involution (−)† : CW
∼→ CW extends to an isomorphism

(−)† : A(γ)
∼→A(γ †)opp , V �ξ �→−ξ, V ∗�x �→x, W �w �→w−1.(5)

Remark 4.5. If all pseudo-reflections of W have order 2, then γ † = γ .

Further, we define an isomorphism of k-algebras reversing the gradings
by

ϕ : A(V, γ)
∼→ A(V ∗, γ †)opp

V � ξ �→ ξ, V ∗ � x �→ x, W � w �→ w−1.

Remark 4.6. When V is self-dual, an isomorphism of CW-modules F :
V

∼→ V ∗ extends to an algebra isomorphism (Fourier transform)

F : A(V, γ)
∼→ A(V ∗, γ)

V � ξ �→ F(ξ), V ∗ � x �→ −F−1(x), W � w �→ w.

The functor F∗ restricts to an equivalence O(V, γ)
∼→ O(V ∗, γ †).

4.2.1. Given M ∈ Oln, denote by M∨ the k-submodule of P-locally nilpo-
tent elements of Homk(M, k). This is a right A-module. Via ϕ∗, this becomes
a left A(V ∗, γ †)-module. If M is graded, then M∨ = Homgr•k(M, k).

Thus we have defined a functor (analogous of the standard duality on
the category O in the Lie algebra case):

(−)∨ : Oln(V, γ) → Oln(V ∗, γ †)opp.(6)

When k is a field, this functor is an equivalence.
Given a kW-module E, we use the notation E∨ = Homk(E, k) for the

dual kW-module.

Proposition 4.7. We have ∆(E)∨ ∼→ ∇(E∨) for any kW-module E. If k is
a field, then

L(E)∨ ∼→L(E∨) , P(E)∨ ∼→ I(E∨) , I(E)∨ ∼→ P(E∨),

∇(E)∨ ∼→ ∆(E∨) , T(E)∨ ∼→ T(E∨).
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Proof. We have

Homgr•k(A ⊗SW E, k)
∼→ Homgr•(SW )opp(A, Homk(E, k))

and the first part of the proposition follows.
The second assertion follows from the characterization of L(E)

(resp. L(E∨)) as the unique simple quotient (resp. submodule) of ∆(E)
(resp. ∇(E∨)). The other assertions are immediate consequences of the ho-
mological characterizations of the objects and/or the existence of suitable
filtrations. ��

Note that the functor (−)∨ restricts to a functor O(V, γ) → O(V ∗, γ †)opp.
When k is a field, it is an equivalence. A compatible choice of progenerators
for O(V, γ) and O(V ∗, γ †) gives then an isomorphism between the alge-
bra Γ(V ) for O(V, γ) and the oppposite algebra Γ(V ∗)opp for O(V ∗, γ †)
(cf Sect. 2.6.4).

Corollary 4.8. Let E and F be two simple kW-modules. Then, the multipli-
city of ∆(E) in a ∆-filtration of P(F), for O(V, γ), is equal to the multiplicity
of L(F∨) in a composition series of ∆(E∨), for O(V ∗, γ †).

Proof. By Sect. 2.6.2, the multiplicity of ∇(E∨) in a ∇-filtration of I(F∨)
is equal to the multiplicity of L(F∨) in a composition series of ∆(E∨).

The functor (−)∨ sends P(F) to I(F∨) and ∆(E) to ∇(E∨) (Proposi-
tion 4.7) and the result follows. ��
Remark 4.9. When k is a field and W is real, we obtain, via Fourier trans-
form, a duality on Oln and on O. Since all complex representations of W
are self-dual, we have then ∆(E)∨ ∼→ ∇(E).

4.3. Homological properties of Cherednik algebras

4.3.1. The rational Cherednik algebra is a deformation of the cross-product
of W with the Weyl algebra of polynomial differential operators on V . In
particular, there is a standard increasing filtration on A with W placed in
degree 0 and V ⊕ V ∗ in degree 1. The associated graded ring, grA, is
isomorphic to S(V ⊕ V ∗) � W [EtGi, Sect. 1]. It follows (see [Bj], [Bo,
Sect. V.2.2]), that A is left and right noetherian, provided k is noetherian.
Since V ∗ ⊕ V is a smooth variety of dimension 2 dim V , the algebra A has
homological dimension at most 2 dim V . Furthermore, the usual results and
concepts on D-modules (characteristic variety, duality) also make sense for
A, even though the algebra grA is not commutative.

4.3.2. Recall the setup of Sect. 4.1, assume k is a field and put n = dim V .
The algebras S and P are clearly Gorenstein with parameter n. Moreover, we
have Extn

S(k, S) 
 Λn V ∗. Hence, E� = Λn V ∗⊗Homk(E, k) = Λn V ∗⊗E∨,
for any finite dimensional W-module E.
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It will be useful to compose the functor R HomA(γ)(−, A(γ)) with the
anti-involution (−)†, see (5), to get the following composite equivalence

R HomA(γ)(−, A(γ))† :
(7)

Db(A(γ)-mod)
∼→ Db(A(γ)opp-mod)opp ∼→ Db(A(γ †)-mod)opp.

From Proposition 4.2 we immediately obtain the following

Proposition 4.10. The functor R HomA(−, A[n])† gives rise to an equiva-
lence

D : Db(O(γ))
∼→ Db(O(γ †))opp. ��

We further introduce an equivalence

(−)∨ ◦ D : Db(O(V, γ))
∼→ Db(O(V ∗, γ))

such that
∆(E) �→ ∇(

Λn V ⊗C E
)

T(E) �→ I
(
Λn V ⊗C E

)

P(E) �→ T
(
Λn V ⊗C E

)
.

In particular, we obtain (cf. Corollary 4.4)

Corollary 4.11. The category O(V ∗, γ) is the Ringel dual of O(V, γ). ��
Remark 4.12. Note that if W is real, then O is its own Ringel dual.

4.3.3. Semiregular bimodule. Write P� = ⊕i Hom(Pi, k) for the graded
dual of P, and form the vector space R := P� ⊗k SW . Let us fix an iso-
morphism of C-vector spaces ΛnV

∼→ C. We have the following canonical
isomorphisms:

Homgr•SW

(
A,ΛnV⊗CSW

) ∼→ Homgr•k(P, SW )
∼← P�⊗k SW

∼→ P�⊗P A.

The first two isomorphisms define a left A-module structure on R, and the
last one defines a right A-module structure on R. It is possible to check by
explicit calculations that the left and right A-module structures commute,
so that R becomes an A-bimodule. It is a Cherednik algebra analogue of the
semiregular bimodule, considered in [A], [So2] in the Lie algebra case.

From the isomorphisms of A-modules

R ⊗A ∆(E) = R ⊗SW E
∼→ Homgr•SW

(
A,Λn V ⊗ E

)

we deduce
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Proposition 4.13. The functor M �→ Homgr•k(R⊗A M, k)† (= left A(V, γ †)-
module) sends ∆(E) to ∆(Λn V ∗ ⊗C E∨). ��
4.3.4. Given M a finitely generated A-module, a good filtration of M is
a structure of filtered A-module on M such that grM is a finitely gener-
ated grA-module. The characteristic variety Ch(M) is the support of grM,
viewed as a W-equivariant sheaf on V ∗ ⊕ V (a closed subvariety). It is
well defined, i.e., is independent of the choice of the good filtration (every
finitely generated A-module admits a good filtration). Note that Bernstein’s
inequality: dim Ch(M) ≥ dim V does not hold in general. Further, for M
in O, the complex D(M) has zero homology outside the degrees 0, . . . , n.

Let T = ⊕
E T(E) where E runs over the simple kW-modules.

Corollary 4.14. Let M∈O. Then, dim Ch(M)=dim V−min{i | ExtiO(T, M)
�= 0}.
Proof. Let R = End(T )opp. The functor R HomO(T,−) : Db(O)

∼→
Db(R-mod) is an equivalence. Composing with the inverse of (−)∨ ◦ D
we obtain an equivalence Db(O(V ∗, γ))

∼→ Db(R-mod) that restricts to an
equivalence O(V ∗, γ)

∼→ R-mod. We see that min{i| ExtiO(T, M) �= 0} =
min{i | Hi(DM) �= 0}, where the RHS is equal to min{i | Exti

A(M, A)
�= 0} − dim V by the definition of D. The result now follows from the well-
known formula, see e.g [Bj]: dim Ch(M) = 2 dim V − min{i | Exti

A(M, A)
�= 0}. ��

5. Hecke algebras via monodromy

5.1. Localisation

5.1.1. Let Vreg = V − ⋃
H∈A H and Preg = k[Vreg] = P[(α−1

H )]H∈A. The
algebra structure on A extends to an algebra structure on Areg = Preg ⊗k
S ⊗k kW .

We denote by

M �→ Mreg = Areg ⊗A M : A-Mod → Areg-Mod

the localisation functor. Note that ResPreg Mreg = Preg ⊗P M. Note also that
every element of Mreg can be written as αr ⊗ m for some r ≤ 0, m ∈ M,
where α = ∏

H∈A αH . This makes the localisation functor have specially
good properties.

The restriction functor Areg-Mod → A-Mod is a right adjoint to the
localisation functor. It is fully faithful. The adjunction morphism coincides
with the natural localisation morphism M → Mreg of A-modules. Its kernel
is Mtor, the submodule of M of elements whose support is contained in
V − Vreg. Denote by (A-Mod)tor the full subcategory of A-Mod of objects
M such that Mreg = 0. The following is clear.
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Lemma 5.1. The localisation functor induces an equivalence

A-Mod /(A-Mod)tor
∼→ Areg-Mod .

The category O is a Serre subcategory of A-Mod. Let Otor = O ∩
(A-Mod)tor. Then, the canonical functor O/Otor → A-Mod /(A-Mod)tor is
fully faithful. Consequently, the canonical functor

O/Otor → Areg-Mod

is fully faithful, with image a full abelian subcategory closed under taking
subobjects and quotients (but in general not closed under extensions).

5.1.2. When k is a field, we have a commutative diagram

Db(A(γ)-mod) ��R HomA(−,A)†

∼

��

Db(A(γ †)-mod)opp

��
Db(A(γ)reg-mod) ��

R HomAreg (−,Areg)
†

∼ Db(A(γ †)reg-mod)opp

where the vertical arrows are given by localisation.

5.1.3.

Lemma 5.2. Assume k is a field. Then, (−)∨ restricts to an equivalence
Otor(V, γ)

∼→ Otor(V ∗, γ †)opp.

Proof. Let M ∈ O. We put a grading on M (Proposition 2.4). Since M
is a finitely generated graded P-module (Lemma 2.22), the dimension of
Ch(M), the characteristic variety of M, can be obtained from the growth
of the function i �→ dim Mi . In particular, M ∈ Otor if and only if
limi→∞

(
i1−dim V · dim Mi

) = 0. Such a property is preserved by (−)∨.
��

Denote by V : O → Ō = O/Otor , M �→ M̄, the quotient functor
(the notation V has been used by Soergel [So1] for an analogous functor
in the Lie algebra setup). The functor V admits, by the standard ‘abstract
nonsense’, both a left adjoint and right adjoint functors �

V,V� : Ō → O.

Theorem 5.3. Assume k is a field, and Q is a projective in O. Then, the
canonical adjunction morphism a : Q → V

�(Q̄) is an isomorphism. In
particular, for any object M in O, the following canonical morphism is an
isomorphism

V∗ : HomO(M, Q)
∼→ HomŌ(M̄, Q̄).(8)
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Proof. By Sect. 5.1.1, for any two objects M, Q, of O, we have a canonical
isomorphism

HomŌ(M̄, Q̄)
∼→ HomAreg(Mreg, Qreg).

Assume Q has a ∆-filtration. Then it is free over P and thus has no
non-zero submodule lying in Otor, hence V∗ is injective.

Assume furthermore that M has a ∇-filtration. Then M∨ has a ∆-filtra-
tion (Proposition 4.7), hence has no non-zero submodule lying in Otor. Since
(−)∨ restricts to an equivalence Otor(V, γ)

∼→ Otor(V ∗, γ †)opp (Lemma 5.2),
it follows that M has no non-zero quotient lying in Otor. This shows that V∗
in (8) is an isomorphism.

From now on, we assume that Q is projective. It follows that Q′ = D(Q)
is tilting (Proposition 4.10), hence ∇-filtered.

Now let M be a ∆-filtered object. Then, M′ = D(M) is ∆-filtered. We
apply the result on V∗, that we have already proved, to O(γ †). This yields,
by duality (cf Sect. 5.1.2), that (8) is an isomorphism, for any ∆-filtered
object M.

Since any projective is ∆-filtered, for any two projective objects P, Q
in O, we have established the isomorphisms

HomO(P, Q)

V∗∼→ HomŌ(P̄, Q̄)
adjunction===== HomO(P,V�(Q̄)).(9)

The above isomorphisms imply, in particular, that, for any indecompos-
able projective P, we have dim HomO(P, Q) = dim HomO(P,V�(Q̄)). It
follows readily that the objects Q and V�(Q̄) have the same composition
factors with the same multiplicities.

We can finally prove that the canonical adjunction map a : Q → V
�(Q̄)

is an isomorphism. By the previous paragraph, it suffices to show that a is
injective. To this end, put K := ker(a), and assume K �= 0. Let L(E)
be a simple submodule in K , and P(E) � L(E), its projective cover. By
construction, the composite map g : P(E)� L(E) ↪→ K ↪→ Q is nonzero.
This map g ∈ HomO(P(E), Q) goes, under the isomorphism between the
left-hand and right-hand sides of (9), to the map a ◦ g : P(E) → K ↪→
Q

a→ V
�(Q̄). But the latter map is the zero map since K = ker(a), which

contradicts the fact that (9) is an isomorphism. Thus, ker(a) = 0, and the
theorem is proved. ��
Remark 5.4. In general, the assumption that Q is projective cannot be re-
placed by the weaker assumption that it is ∆-filtered (already for W =
Z/2Z). Nevertheless, see Proposition 5.9.

Corollary 5.5. Let X be a progenerator of O and E := (EndŌ X̄)opp. Then

there is an equivalence O
∼→ (E-mod)opp.
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Proof. The preceding theorem implies that (EndO X)opp ∼→ E since projec-
tive modules are ∆-filtered. Hence we can use category equivalences (3) of
Sect. 2.6.4. ��
5.2. Dunkl operators

5.2.1. One has an A-action on the vector space P, hence an S-action, arising
via the identification P = ∆(k). One finds, in particular, that the action of
ξ ∈ V on P is given by the Dunkl operator

Tξ = ∂ξ +
∑

H∈A

〈ξ, αH〉
αH

· aH ∈ D(Vreg)�W,

where D(Vreg) stands for the algebra of regular differential operators on Vreg ,
acted upon by W in a natural way, and aH ∈ kW is viewed as an elem-
ent of D(Vreg) � W . It follows that Tξ(P) ⊂ P (as part of A-action on
P = ∆(k)); furthermore, this A-action on P is known (Cherednik, [EtGi,
Proposition 4.5]) to be faithful:

Theorem 5.6. The A-representation ∆(k) is faithful. Thus, the natural ac-
tion of PW on P extends to an injective algebra morphism i : A ↪→
k ⊗C D(Vreg)�W which maps ξ ∈ V to Tξ .

The map i induces an algebra isomorphism Areg
∼→ k ⊗C D(Vreg)�W.

5.2.2. We consider M = IndA
SW X = P ⊗ X, where X is locally nilpotent

and finitely generated as an S-module, free over k. The action of ξ ∈ V on
p ⊗ v, p ∈ P and v ∈ X is given by

ξ(p ⊗ v) = p ⊗ ξv + ∂ξ(p) ⊗ v

+
∑

H

∑

0≤i, j≤eH−1

eH(kH,i+ j − kH, j)
αH(ξ)

αH
εH,i(p) ⊗ εH, j(v).

Using Dunkl operators, i.e., via the isomorphism of Theorem 5.6, we have
a structure of W-equivariant (k ⊗C D(Vreg))-module on Mreg. The corres-
ponding connection is given by

∂ξ = ξ −
∑

H

αH(ξ)

αH
· ( ∑

0≤i, j≤eH−1

eHkH,i+ jεH,i ⊗ εH, j
)
.

Hence

∂ξ(p ⊗ v) = p ⊗ ξv + ∂ξ(p) ⊗ v −
∑

H

∑

i

eHkH,i
αH(ξ)

αH
p ⊗ εH,i(v).

For the rest of Sect. 5, we assume that k = C.
The following result is well-known to experts, but we could not find an

appropriate reference in the literature.
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Proposition 5.7. The above formula for ∂ξ defines a W-equivariant inte-
grable algebraic connection on M with regular singularities.

Proof. All the claims follow from the construction, with the exception of the
assertion that the singularities of the connection are regular. The connection
has visibly only simple poles at the reflection hyperplanes, hence it suffices
to prove the regularity at infinity with respect to some (hence any, see [De])
compactification of V .

Consider the W-equivariant compactification Y = P(C + V ) of V , and
extend M to the free OY -module MY := OY ⊗ X. Using a filtration of X we
can reduce to the case where X = E is simple.

A straightforward computation shows that with respect to the extension
MY of M and with respect to any standard coordinate patch on Y , the poles
at infinity are also simple in this case. ��

5.2.3. We define a morphism of abelian groups r : K0(O) → Z by
r([∆(E)]) = dim E, for E ∈ Irr(CW ).

Lemma 5.8. Let M ∈ O. Then, Mreg is a vector bundle of rank r([M])
on Vreg.

Proof. Since Mreg is a finitely generated C[Vreg]-module with a connection,
it is a vector bundle.

Now, taking the rank of that vector bundle induces a morphism
K0(O) → Z, which takes the correct value on ∆(E). ��

5.2.4.

Proposition 5.9. Assume kH,i − kH, j + i− j
eH

�∈ Z, for all H ∈ A and all
0 ≤ i �= j ≤ eH − 1. Let N be a ∆-filtered object in O. Then, for any
M ∈ O, we have HomO(M, N)

∼→ HomŌ(M̄, N̄).

Proof. Assume first that M is also a ∆-filtered object. Then, we can
write M = IndA

SW X and N = IndA
SW Y with X, Y finite dimensional

SW-modules, nilpotent over S. The space HomA(M, N) is the intersection of
HomP(M, N) = P⊗Homk(X, Y ) with HomAreg(Mreg, Nreg). As in the proof
of Theorem 5.3, we have to show that any element Ψ of HomPreg(Mreg, Nreg)
that commutes with the action of Areg extends to a P-morphism M → N.
Observe that Ψ is nothing but a flat, W-invariant section of the connection
on HomAreg(Mreg, Nreg).

The residue of this connection on a hyperplane H ∈ A is constant, and
has eigenvalue eH(kH,i − kH, j) on Homk(Xi, Y j), where Xi is the summand
of X of WH-type det−i

|WH
(and likewise for Y j).

Locally near a generic point p of H we expand Ψ = ∑
l≥l0

αl
HΨl with Ψl

holomorphic on H near p, of WH -type detl|WH
, and with Ψl0 not identically

zero on H . From the lowest order term of the equation ∂vH (Ψ) = 0 we
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see that there exist i, j such that i − j = l0 mod(eHZ), and such that
l0 +eH(kH,i −kH, j) = 0. Thus l0 = 0 and Ψ is regular on H . This completes
the proof of the Proposition in the special case where both M and N are
∆-filtered.

The general case follows from the special case above by repeating the
part of the argument from the proof of Theorem 5.3, starting with for-
mula (9). ��
Remark 5.10. The condition of the proposition is equivalent to the semi-
simplicity of the Hecke algebra H(WH ) of WH . One could conjecture that
this assumption can be replaced by the assumption thatKZ(N) is a projective
H(WH )-module (this would still not cover completely Theorem 5.3).

Remark 5.11. If eH = 2 for all H , then the condition of the proposition
reads: kH �∈ 1

2 + Z.

5.2.5. Let C[(kH,i)1≤i≤eH−1] be the polynomial ring in the indeterminates
kH,i with kw(H ),i = kH,i for w ∈ W . We have a canonical morphism of
C-algebras C[(kH,i)] → C, kH,i �→ kH,i . Let m be the kernel of that
morphism and R the completion of C[(kH,i)] at the maximal ideal m.

Fix x0 ∈ Vreg, and let BW = π1(Vreg/W, x0) be the Artin braid group
associated to W .

Let HR = HR(W, V, γ) be the Hecke algebra of W over R, that is the
quotient of R[BW ] by the relations

(T − 1)

eH−1∏

j=1

(T − det(s)− j · e2iπkH, j ) = 0

for H ∈ A, s ∈ W the reflection around H with non-trivial eigenvalue
e2iπ/eH and T an s-generator of the monodromy around H , cf [BrMaRou,
Sect. 4.C]. Note that the parameters differ from [BrMaRou] because we will
be using the horizontal sections functor instead of the solution functor.

We put HK = HR ⊗R K , where K is the field of fractions of R and
H = HR ⊗R (R/m).

Remark 5.12. It is known that HR is free of rank |W | over R for all W that do
not have an irreducible component of type G17...19, G24...27, G29, G31...34 in
Shephard-Todd notation (in these cases, the statement is conjectural) [Mu].

5.3. The Knizhnik-Zamolodchikov functor. Let M be a (C[Vreg]� W )-
module, free of finite rank over Preg = C[Vreg]. Let ∇ : M → M ⊗C R be an
R-linear integrable connection. Then, the horizontal sections of ∇ define,
via the monodromy representation, an RBW -module L , free over R.

Let ∇0 : M → M be the special fiber of ∇. Then, the horizontal sections
of ∇0 is the CBW-module L ⊗R (R/m).

Let ∇K : M → K ⊗C M be the generic fiber of ∇. Then, the horizontal
sections of ∇K is the KBW -module L ⊗R K .
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Taking horizontal sections defines an exact functor from the category of
W-equivariant vector bundles on R ⊗C Vreg with an integrable connection
to the category of RBW -modules that are free of finite rank over R.

Since the connection on ∆(R⊗C E)reg has regular singularities it follows
that the connection on Mreg has regular singularities for any M ∈ O∆

R .
Composing with the localisation functor, we obtain an exact functor KZR

from O∆
R to the category of RBW -modules that are free of finite rank over R.

Similarly, we obtain exact functors KZ : O → CBW-mod and KZK :
OK → KBW -mod (called Knizhnik-Zamolodchikov functor).

It is well-known (cf. e.g. [BrMaRou, Theorem 4.12]) that the represen-
tation of KBW on KZK (∆(K ⊗C E)) factors through HK to give a represen-
tation corresponding (via Tits’ deformation Theorem) to the representation
E of CW . Recall that H = HR ⊗R (R/m).

Theorem 5.13 (Hecke algebra action). The functor KZ : O → CBW-mod
factors through a functor KZ : O/Otor → H-mod. Similarly, the functor
KZK : OK → KBW -mod factors through a functor KZK : OK/(OK )tor →
HK -mod.

For M ∈ O∆
R , the action of RBW on KZR(M) factors through HR.

We have a commutative diagram

OK
��KZK
HK -mod

O∆
R

��KZR

��
C⊗R−

OO

K⊗R−

HR-mod

��
C⊗R−

OO

K⊗R−

O ��KZ
H-mod .

Proof. First, Otor (and (OK )tor) are the kernels of localisation.
When M = ∆(K ⊗C E), then, we have the Knizhnik-Zamolodchikov

connection and the representation KZK (M) factors through HK . Since OK is
semi-simple (Corollary 2.20), it follows that the action on KZK (M) factors
through HK for any M in OK .

We now consider the case of a ∆-filtered module M of OR. We know that
the action of KBW on K ⊗RKZR(M) 
 KZK (K ⊗R M) factors through HK .
Since KZR(M) is free over R, it follows that the action of RBW on KZR(M)
factors through HR.

From this result, we deduce that the action of CBW on KZ(∆r(CW ))
∼→

C ⊗R KZR(∆r(RW )) factors through H . Since every indecomposable pro-
jective object of O is a direct summand of ∆r(CW ) for appropriate r
(Corollary 2.7), it follows that the action of CBW on KZ(M) factors through
H for every projective M, hence for every M in O. ��
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5.4. Main results. In this subsection we assume that dim H = |W |, cf.
Remark 5.12.

The functor KZ : O → H-mod is exact. Hence, it is represented
by a projective PKZ ∈ O. In other words, there exists an algebra mor-
phism φ : H → (EndO PKZ)opp such that the functor KZ is isomorphic to
HomO(PKZ,−).

We know also, see Sect. 5.1.1, that the functor KZ factors through
O/Otor → H-mod.

Theorem 5.14. The functorKZ induces an equivalence: O/Otor
∼→ H-mod.

This theorem is equivalent to

Theorem 5.15. The morphism φ : H → (EndO PKZ)opp is an algebra
isomorphism.

Proof of Theorems 5.14–5.15. Recall that the horizontal sections func-
tor gives an equivalence from the category of vector bundles over Vreg/W
with a regular integrable connection to the category of finite-dimensional
CBW-modules (Riemann-Hilbert correspondence, [De, Theorems I.2.17
and II.5.9]).

We deduce from Sect. 5.1.1 that KZ : O/Otor → H is a fully faithful ex-
act functor with image a full subcategory closed under taking subobjects and
quotients. Furthermore, PKZ, the image of PKZ in O/Otor, is a progenerator
of O/Otor. Thus, Theorem 5.14 follows from Theorem 5.15.

To prove Theorem 5.15, observe that the morphism φ is surjective.
Indeed, let C ′ be a full subcategory of an abelian category C, closed under
taking quotients, and �F a left adjoint to the inclusion F : C ′ ↪→ C. Then
the adjunction morphism η : IdC → F ◦ (�F) is surjective, since η(X) is the
canonical map from X to its largest quotient in C ′. This proves surjectivity
of the morphism φ above.

Further, we have

PKZ =
⊕

E∈Irr(CW )

(dimKZ(L(E)))P(E).

Hence, we compute

dim(EndO PKZ)

=
⊕

E,F

dimKZ(L(E)) dimKZ(L(F)) dim Hom(P(E), P(F))

=
⊕

E,F,G

dimKZ(L(E)) dimKZ(L(F))[P(E) : ∆(G)][∆(G) : L(F)]

=
⊕

E,F,G

dimKZ(L(E)) dimKZ(L(F))[∇(G) : L(E)][∆(G) : L(F)]

=
⊕

G

dimKZ(∇(G)) dimKZ(∆(G)).
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Now, the restrictions of ∇(G) and ∆(G) to Vreg are vector bundles of
rank dim G (Proposition 3.3 and Lemma 5.8), hence dim(EndO PKZ) =
|W | = dim H . This shows that φ is an isomorphism. Note that this rank
computation can also be achieved by deformation to R. ��
The following result shows that the category O can be completely recovered
from H and a certain H-module:

Theorem 5.16 (Double-centralizer property). Let Q be a projective in O.
Then, the canonical map HomO(M, Q) → HomH

(
KZ(M) , KZ(Q)

)
is an

isomorphism, for any M ∈ O.
Furthermore, if X is a progenerator for O, then, we have an equivalence

(
EndH KZ(X)

)opp
-mod

∼→ O.

Proof. The first part follows from Theorems 5.3 and 5.15 and the second
from Corollary 5.5. ��
Remark 5.17. We conjecture that, if W = Sn, then O is equivalent to the
category of finitely-generated modules over the associated q-Schur algebra.
That would imply, in particular, that if kH,1 = k1 < 0 is a negative real
constant, then the Cherednik algebras A(Sn) with parameters k1 and k1 − 1,
respectively, are Morita equivalent.

Let Z(H ) denote the center of the algebra H and Z(O) the center of
category O (i.e. the algebra of endomorphisms of the identity functor IdO).

Corollary 5.18. The canonical morphism Z(O) → EndO PKZ induces an
isomorphism Z(O)

∼→ Z(H ). In particular, the functor KZ induces a bijec-
tion between blocks of O and blocks of H .

Proof. This follows immediately from Theorem 5.16: given two rings
B and C and a (B, C)-bimodule M such that the canonical morphisms
B

∼→ EndCopp(M) and C
∼→ (EndB M)opp are isomorphisms, then we have

a canonical isomorphism Z(B)
∼→ Z(C). ��

The decomposition matrix K0(OK ) → K0(O) is clearly triangular. This
implies the triangularity of decomposition matrices of Hecke algebras, in
characteristic 0:

Corollary 5.19. The decomposition matrix K0(HK ) → K0(H ) is triangu-
lar.

5.4.1. KZ-functor and twist. Let ζ be a one-dimensional character of W
and τ

ζ
: CW

∼→ CW the automorphism given by w �→ ζ(w) ·w for w ∈ W .
This extends to an isomorphism

τ
ζ
: A(γ)

∼→ A(τ
ζ
(γ)), V � ξ �→ ξ, V ∗ � x �→ x, W � w �→ ζ(w) · w.
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We obtain an equivalence O(γ)
∼→ O(τ

ζ
(γ)), sending V(E) to V(E ⊗ ζ−1),

where V stands for any of the symbols: L,∆,∇, P, I, T .
For H ∈ A, let dH ∈ {1, . . . , eH} such that ζ|WH = detdH

|WH
. Define an

automorphism η
ζ

of D(Vreg)�W by

P � f �→ f, W � w �→ ζ(w) · w

and ∂ξ �→ ∂ξ −
∑

H

αH(ξ)

αH
εH,eH · eH · kH,eH−dH for ξ ∈ V.

(for notation, see Remark 3.2). We have a commutative diagram

A(γ) ��i

��
τ
ζ ∼

D(Vreg)�W

��
η
ζ∼

A(τ
ζ
(γ)) ��

i
D(Vreg)�W.

Given M a (D(Vreg)�W )-module, then (η
ζ
)∗M

∼→ M ⊗OVreg
∆(ζ−1)reg .

This self-equivalence of the category of W-equivariant bundles with
a regular singular connection on Vreg corresponds, via the horizontal sections
functor, to the automorphism of CBW given by

T �→ e−2iπkH,eH −dH ζ(s)−1T

for H ∈ A, s ∈ W the reflection around H with non-trivial eigenvalue
e2iπ/eH and T an s-generator of the monodromy around H . This induces an
isomorphism H(ζ) : H(W, γ)

∼→ H(W, τ
ζ
(γ)) and the following diagram

is commutative:

O(γ) ��
(τ

ζ
)∗

∼

��
KZ

O(τ
ζ
(γ))

��
KZ

H(W, γ)-mod ��
H(ζ)

∼ H(W, τ
ζ
(γ))-mod .

5.4.2. KZ-functor and duality. We have a commutative diagram

Db(A(γ)-mod) ��
(τdet)∗◦R HomA(γ)(−,A(γ))†

∼

��

Db(A(τdet(γ
†))-mod)opp

��
Db((D(Vreg)�W )-coh) ��∼ Db((D(Vreg)�W )-coh)opp

where the vertical arrows are given by localisation followed by the Dunkl
operator isomorphism i of Theorem 5.6 and the bottom horizontal arrow is
the classical D-module duality.
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Consider the isomorphism CBW
∼→ (CBW )opp given by T �→

det(s)−1e2iπkH,1 T −1 for H ∈ A, s ∈ W the reflection around H with non-
trivial eigenvalue e2iπ/eH and T an s-generator of the monodromy around H .
It induces an isomorphism

H(†) : H(W, γ)
∼→ H(W, γ †)opp.

We conclude that we have a commutative diagram

Db(O(γ)) ��∼
D

��
KZ

Db(O(γ †))opp

��
KZ

Db(H(W, γ)) ��∼
H(†)

Db(H(W, γ †))opp.

On the other hand, by Lemma 5.2, we know that (−)∨ preserves Otor,
hence descends to the quotient category O/Otor, i.e., there is an equivalence
Φ making the following diagram commute:

O(V, γ) ��∼
−∨

��
KZ

O(V ∗, γ †)opp

��
KZ

H(W, V, γ)-mod ��∼
Φ

H(W, V ∗, γ †)-modopp .

Further, choose a W-invariant hermitian form on V , i.e., a semi-linear
W-equivariant isomorphism κ : V

∼→ V ∗. Then, we get an isomorphism
π1(Vreg/W, x0)

∼→ π1(V ∗
reg/W, κ(x0)). It induces an isomorphism H(κ) :

H(W, V, γ)
∼→ H(W, V ∗, γ). Composing with H(†), we obtain an iso-

morphism H(κ ◦ (−)†) : H(W, V, γ)
∼→ H(W, V ∗, γ †)opp, which we de-

note below by ψ.

Remark 5.20. One could conjecture that the two functors Φ and ψ∗ are
isomorphic (they induce the same maps at the level of Grothendieck groups).

5.4.3. The A-module PKZ and duality. Let Irr(W, V, γ) ⊂ Irr(W ) denote
the subset formed by all E ∈ Irr(W ) such that L(E)reg �= 0. We have

a bijection Irr(W, V, γ)
∼→ Irr(W, V ∗, γ †) , E �→ E∨ (Proposition 4.7 and

Lemma 5.2). Thus, PKZ = ⊕
E∈Irr(W,V,γ)(dimKZ(L(E))) · P(E).

To make the dependence on V and γ explicit, we will write PKZ =
PKZ(V, γ).

Proposition 5.21. (i) We have D(PKZ(V, γ)) 
 PKZ(V, γ †) and PKZ(V, γ)∨

 PKZ(V ∗, γ). In particular, PKZ is both projective and injective.
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(ii) For E ∈ Irr(W ), the following are equivalent

• E ∈ Irr(W, V, γ)
• L(E) is a submodule of a standard module
• P(E) is a submodule of PKZ
• P(E) is injective
• P(E) is tilting
• I(E) is projective
• I(E) is tilting.

Proof. The first claim follows from Sect. 5.4.2. Proposition 4.7 then implies
that PKZ is injective.

The considerations above imply that if E ∈ Irr(W, V, γ), then P(E) is
injective and tilting. The assertions about I(E) follow by applying (−)∨.

We know that if L(E) is a submodule of a ∆-filtered module or a quotient
of a ∇-filtered module, then E ∈ Irr(W, V, γ).

This shows that any of the assertions about P(E) or I(E) implies that
E ∈ Irr(W, V, γ). ��

6. Relation to Kazhdan-Lusztig theory of cells

We review some parts of Kazhdan-Lusztig and Lusztig’s theory of Weyl
group representations.

6.1. Lusztig’s algebra J

6.1.1. Let (W, S) be a finite Weyl group, H be its Hecke algebra,
a Z[v, v−1]-algebra with basis {Tw}w∈W and relations

TwTw′ = Tww′ if l(ww′) = l(w) + l(w′) and (Ts + 1)
(
Ts − v2) = 0 for s ∈ S.

Lusztig associated to W a Z-ring J, usually referred to as asymptotic
Hecke algebra, [Lu3, Sect. 2.3]. Let � : H → Z[v, v−1]⊗Z J be Lusztig’s
morphism of Z[v, v−1]-algebras [Lu3, Sect. 2.4].

The ring Q ⊗Z J is semi-simple and the morphism IdQ(v) ⊗� is an
isomorphism.

For any commutative Q[v, v−1]-algebra R we put HR := R ⊗Z[v,v−1] H .

Definition 6.1. The HR-modules S(M) = �∗(R ⊗Q M), for M a simple
Q ⊗Z J-module, will be referred to as standard HR-modules.3

When R = Q(v), then the standard HR-modules are simple and this
gives a bijection from the set of simple (Q ⊗Z J)-modules to the set of
simple (Q(v) ⊗Z[v,v−1] H )-modules.

3 There seems to be no name for such modules in the literature.
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Similarly, taking K = Q[v, v−1]/(v− 1), we obtain a bijection from the
set of simple (Q ⊗Z J)-modules to the set of simple QW-modules.

We will identify these sets of simple modules via these bijections.
We have an order ≤L R on W constructed in [KaLu, p. 167]. We denote

by C the set of two-sided cells of W and by ≤ the order on C coming
from ≤L R.

Let {Cw}w∈W be the Kazhdan-Lusztig basis for H . Let I be an ideal
of C, i.e., a subset such that given c ≤ c′, then c′ ∈ I ⇒ c ∈ I . We put
H I = ⊕

c∈I,w∈c Z[v, v−1]Cw. This is a two-sided ideal of H [Lu1, p. 137].
The ring J comes with a Z-basis {tw}w∈W and we put Jc = ⊕

w∈c Ztw.
This is a block of J and J = ⊕

c∈C Jc. The corresponding partition of the
set of simple (Q ⊗Z J)-modules is called the partition into families.

Given I an ideal of C, we denote by I ◦ the set of c ∈ I such that there
is c′ ∈ I with c < c′.

The following is a slight reformulation of [Lu3, Sect. 1.4]:

Proposition 6.2. Let I be an ideal of C. Then, the assignment tw �→ Cw

induces an isomorphism of H-modules
⊕

c∈I−I◦
�∗(Z[v, v−1] ⊗Z Jc

) ∼→ H I/H I◦
.

In particular, the (Q[v, v−1] ⊗Z[v,v−1] H )-module Q[v, v−1] ⊗Z[v,v−1]
(H I/H I◦

) is a direct sum of standard HQ[v,v−1]-modules.

This proposition gives a characterization of standard HQ[v,v−1]-modules
via the Hecke algebra filtration coming from two-sided cells.

6.1.2. Next, we consider filtrations coming from certain functions on the
set of two-sided cells.

Definition 6.3. A sorting function f : W → Z is a function constant on
two-sided cells and such that c′ < c ⇒ f(c′) > f(c).

Given a sorting function f , we put H≥i
R := ⊕

w∈W, f(w)≥i R · Cw and

H>i
R := ⊕

w∈W, f(w)>i R · Cw. Then, H≥i
R is a two-sided ideal of HR, since

I = {c ∈ C | f(c) ≥ i} is an ideal. Similarly, H>i
R is a two-sided ideal

of HR. Furthermore, I ◦ ⊆ {c ∈ C | f(c) > i}. Consequently, we deduce
from Proposition 6.2:

Corollary 6.4. We have an isomorphism of H-modules
⊕

c∈C, f(c)=i

�∗(Z[v, v−1] ⊗Z Jc

) ∼→ H≥i/H>i.

In particular, the (Q[v, v−1] ⊗Z[v,v−1] H )-module Q[v, v−1] ⊗Z[v,v−1]
(H≥i/H>i) is a direct sum of standard HQ[v,v−1]-modules.
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Thus, we have another characterization of standard HQ[v,v−1]-modules
via the Hecke algebra filtration coming from f .

Let F be the set of families of irreducible characters of W . We transfer
the concepts associated with C to F via the canonical bijection between C
and F .

In particular, we have a function f : Irr(W ) → Z constant on families.
We have H≥i = H ∩ (

⊕
f(E)≥i eEQ(v) ⊗Z[v,v−1] H ), where eE is the

primitive central idempotent of Q(v)⊗Z[v,v−1] H that acts as 1 on the simple
(Q(v) ⊗Z[v,v−1] H )-module corresponding to E.

This shows that, if R is a localisation of Q[v, v−1], then the filtration
on HR = R ⊗Z[v,v−1] H given by f can be recovered without using the
Kazhdan-Lusztig basis. We obtain

Proposition 6.5. Let R be a localisation of Q[v, v−1] and P be a projective
HR-module. Let Q≥i (resp. Q>i ) be the sum of the simple submodules E of
Q(v) ⊗R P such that f(E) ≥ i (resp. f(E) > i).

Then, (P ∩ Q≥i)/(P ∩ Q>i) is a direct sum of standard HR-modules.
��

Thus, any sorting function yields a characterization of the standard
HR-modules without using the Kazhdan-Lusztig basis.

6.1.3. Given E ∈ Irr(W ), we denote by aE (resp. AE ) the lowest (resp.
highest) power of q in the generic degree of E [Lu1, Sect. 4.1.1].

By [Lu2, Theorem 5.4 and Corollary 6.3 (b)], Lusztig’s a-function is
a sorting function. The corresponding filtrations on projective modules have
been considered in [GeRou].

Write E < E ′ for the order on F arising from <KL via the canonical
bijection between C and F . The following lemma is a classical result:

Lemma 6.6. Let E, E ′ ∈ F . If E < E ′, then aE > aE′ and AE > AE′ .

Proof. By [KaLu, Remark 3.3(a)], we have v ≤L R w if and only if
w0w ≤L R w0v, where w0 is the element of maximal length. Left multiplica-
tion by w0 induces a automorphism of C. The corresponding automorphism
of F is tensor product by det [Lu1, Lemma 5.14]. It follows that E < E ′ if
and only if E ′ ⊗ det < E ⊗ det (cf also [BaVo, Proposition 2.25]).

We have AE = N − aE⊗det, where N is the number of positive roots
of W [Lu1, 5.11.5].

The lemma is now a consequence of the fact that E < E ′ ⇒ aE > aE .
��

We deduce there is another sorting function:

Proposition 6.7. The function aE + AE is a sorting function.



650 V. Ginzburg et al.

6.2. Standard modules for the Hecke algebra via KZ-functor

6.2.1. We consider the setting of Sect. 3.1 with kH,1 = k1 independent
of H . According to [BrMi, Sect. 4.21 and Proposition 4.1] we have

cE = k1(aE + AE ).

We can finally identify the images of the standard modules ∆(E) of O
via KZ:

Theorem 6.8. Assume kH,1 is a positive real number independent of H. Let
E ∈ Irr(CW ). Then, KZ(∆(E))

∼→ S(E).

Proof. We prove the result for R local complete as in Sect. 5.2.5 instead
of C. The ∆-filtration of projective objects of OR becomes, via KZR, the
filtration of Proposition 6.5 for the sorting function f(E) = aE + AE and
the associated quotients are direct sums of standard HR-modules. It follows
that the modules KZR(∆(R⊗E)) for E ∈ Irr(W ) coincide with the standard
HR-modules. Since KZK (∆(K ⊗ E))

∼→ K ⊗ S(E) (cf the remark before
Theorem 5.13)), we deduce the theorem. ��
Remark 6.9. If the number kH,1 (which is independent of H) is non-real,
then the category O and the algebra H are both semi-simple, hence it is
still true that KZ(∆(E)) 
 S(E). If the number is non-positive real, then
a similar approach shows that KZ(∆(E)) 
 S(E)∗.

Corollary 6.10. Assume kH,1 is a positive real number and W has type An.
Then, KZ(∆(E)) is isomorphic to the Specht module corresponding to E.

Proof. The result is a consequence of [Na,GaMc], where it is proven that the
module S(E) is a Specht module. Alternatively, any projective H-module
is known to have a filtration by Specht modules such that the order of terms
in the filtration is compatible with the dominance order on partitions. The
claim of the corollary can be easily deduced from this by comparing with
the order relation on two-sided cells. ��
Corollary 6.11. If KZ(L(E)) �= 0, then KZ(P(E)) is a projective H-
module and, for any F ∈ Irr(W ), we have [S(F) : KZ(L(E))] =
[P(E) : ∆(F)].
Proof. This is an immediate consequence of Theorem 6.8, the reciprocity
formula in Sect. 2.6.2, and Proposition 3.3. ��
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[BrMaRou] Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups,

Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)
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