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which would improve on the H2, Hl,L2 result of Ozawa and Tsutsumi ([O—Tl).
subsequently. There also should be a nonperiodic analogue to Theorem 2 for H1(R),L2(R),H'1(R) data,
We believe that our method should be applicable in higher dimension too and plan to investigate this

, , V ,t d Z 0. V, : -11, —— |u|3. j (1: ) x
nt : —l/Q

and the L2-norm fT |u|2 da:. Here V is defined by

(0.2)*> 2 2 “·> HZ : — |u,|“ + —(n+ V )+ n|ul [ dz:1 1 2 T 2

due to the conservation of the Hamiltonian

Theorem 2. The system (1) is globally wellposed for data cp E H1, a E L2, b G H"

result

One shoud think here of 0* close to 0, s close to ln particular, for (H], L2, H‘1)-data, there is a global

sup |k|`” |ZZ(k)| < oo and sup |k|'°’1 < oo.

ee G H’(T) . Sup |k|" Is6(k)| <<><>

(u,a,b) satisfying
Theorem 1. There are Sobolev e:rp0n.en.ts 0 < 0 < s <é< sl < 1 such that (1) is locally wellposed for data

NLSE and KdV type equations. In particular we prove following local wellposedness theorem.
The technique used here is a Fourier analysis approach in the same spirit as earlier works in [B1, B2] on
periodic setting. Equations (1) are suspected to be nonintegrable, contrary to the NLSE i u,+uu+u|u|2 : 0.
in the space periodic case. Apparently no results were known so far on this problem, if one considers the

u(a:,0) : gp, n(x,0) : a, Gt n(x,O) : b
(0.1)nt, — rim : ([ul2),,,

21142 —UN -+- n u

1-dimensional Zakharov Model

The purpose of this preliminary paper is to prove local and global existence and regularity theorems for the
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linear equation (resp. perturbative term) and one applies the fixpoint method to the corresponding integral OCR Output
Here L is a certain linear operator depending on a, b. The left (resp. right) member in (0.9) yield now the new

(0.9)iu, + uz, -- L u := u ['J'1 (|u|2),, + [u W(t) (a,b) — L(u)].

appear in [Bo2].) We then write
linear equation i ut + uu = 0, adding to i u, + uu a part of the term u W(t) (a,b). (Such constructions
data a and b. For this purpose we rely on a variant of the preceding which consists in modifying slightly the
dealing with Theorem 1 there seems to be a difficulty with this approach due to the rough conditions on the
'[`heorem 2 for instance may then be proved by solving the fixpoint problem corresponding to (0.8). In

(0.8)u(t) : S(t) qi +i / $(1- r) [u([;]"1 A|u[2)(·r)+ u(r) W'(r) (a,b)] dr.

llence (0.4), (0.5) yield

n(:c,0) : O and 8, n(2:,0) : 0.
(0.7)

nt: " nm: : F

and Q`1 F solves

n(x,0) : a(ar) and 0, n(:c,0) : b(:c)
(06)

ntl _ nr: Z 0

where W(t) (a, b) is the solution of

H = [FA(l¤l) + WU) (wb) (0-5)l 2

and n may be expressed from t.he second equation as

(0.4)u(t) = S(t) d2 +i [ S(t — T) (n u) (T) dr with S(t) = cna;

in (0.1) yields
the NLS and KdV equations. The fixpoint problem is setup in terms of the function u. The first equation
expressed in terms of the Fourier transform of u. These norms are closely related to those used in [Bol';] for
'll he analysis used in proving Theorem 1 is mainly an application of the contraction principle with norms

flow.
uhich carries the normalized Gibbs measure (0.3). Moreover IC and the measure are invariant under the

% s<
Theorem 3. The Zaklzamv system (0.1) is globally wellposed on a K,,·subset IC in 0(H" X H"1 X H‘*’2)

measure which is invariant under the flow.
(especially when p > 4) to show that (0.1) is globally wellposed on a set of data (gp, a,b) carrying the Gibbs
may then repeat the technique used in [Bos] for the nonlinear Schrodinger equation i u, + uz, + u|u|"`2 = 0
speaking, ranging in the Wiener space. This explains the choice of assumptions made in Theorem 1. One
H ere B is a cutoff on the L2—norm of u. Hence, after normalization, one expects u, D;1 n, V to be, essentially
where (Re u,Imu) and (ri, V), with E : 2*1/2 n and : 2*1/2 D;1 V, are pairs of conjugate variables.

(0.3)e-/’”z X, [,,,,,,,;,5,,, H [.12 au) am) a17(z)l

of the Gibbs measure, formally written before normalization as (see [L·R-S])
Ihe stronger formulation of the local result in Theorem 1 is meant to cover the typical data in the support
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ho = 2,. M{hl = m
where

A___ k
2 Y` [ M e‘“"+*" W — wm wo. hr) 4 2 2

yields

(L4) OCR Outputnu — nu Z F {n(:c,()) :6, n(:z:,0) :0
(assume b(O) : 0)

ck—dk:-é? dk:%E(k)—$b(k):> {{Cr + dr =Q(k) ck : é E(k) + Et; '6(lc)

where

H Z ck eik(x+t) + ydk eik<¢—¢) E WU) ((1,;,)

yields

n.(2:,O) : a, O, n(x,O) : b
(L3)

11,, —— 11.,,, : O

Solving (II) in n

The time t is restricted here to an interval [0, T].

khggzk JA¤+,\,:,x
m (ni) Z H(k,/\)G(k3,A3).11

where

_L I 'I " ,,
€——ikt _ em

2

and rewriting the integral term using Fourier transform gives

(1.1)u(t) : S(t) cp —i [ S(t —·r) (nu)(r) dr

Applying Duhamel’s formula to (I) yields

nt, — nz, : A (II) n(:c,0) : a(2:) 6, n(:c,0) = b(x).
iu; + uu : n u (I) u(x,O) : g0(:r:)

Consider the two equations

1. Expressing in Fourier transform

of L(u) in the right member removes certain undesirable terms.
equation. The modification of the linea.r part leads only to minor technical changes while the substraction



A »—»~ .k,1\ —k_,—A k,»\ ((11 +12)¤- (kl +k2)¤i (1+ +12+13+12) "( I ‘A “( ° ZA “( 3 3)
(ki + (J2}?

(1.11) OCR Output
k1+k2+k;s=k

i(kx-k”z) 6 Z 111, 1112 1113

(1.10)$(1) (0 Z ST (za;) a<*x+*‘*>

Substitution in (I) yields thus following contributions to the right member of (0.8)

(1.9)sup {k{"’ cf < oo.

where

(1.8)A ~ -. · akbke·*<¢*·> new Tea? €·’=<=**>.1 Z <();1; E ()>

n1u•¤»uz1 A ¥’°
k €ik(.z·:i:t)E/‘— lulz

2 2HM—|kl|21 A —k
., · k- ezkr · 2 k,1\ €z»\l l“l( )

The Solution to (II) leads thus to following contributions for n

F(k'/\).Ze£k(x+!) ( HM-!/¤||Si

capture in particular terms ofthe form
[301]). Otherwise the interpretation ofthe denominator A2-k2 is k or —k and the estimates for ||1\|—> 1
llecall that t is bounded by T. From the preceding, o11e may restrict the range of A to —- > 1 (cf.

"l`he same observation holds for 1\ z ——k.

)(,).· ' 6 011) 1 uc: -m " +0(c —e l Fk1\sm [ /\+k <kI/\+k|)
/\2_k2z1»__ ek: 1 __A m_ qu] F(k»A) e e +1 (c e )—-——2 (k)

For »\ z k write for the integrand

E -1 F __: ik: dA iu _A & {kt __A _ A ·-ik: (k»’\)· . n ['| e cz 1e 1 e 15Fg/ {2(+k 2 k /\.l—k2 ()
Hence one gets for the solution to (1.4)

assume F(O, = O).





(1.27) OCR OutputL- ~ = Legs. e"e‘ Mk) (0 +C; mk) (1)`k+"’‘"*·”

(1.26)L., U I cje*<·*·*>I y<·2*·*>* mk) (1) + cg a(k) (z)Eml

and define L u : L+ u + L_ u with

(1.25)w(¢) ((1,1)) : fc; €**<=+*> + fc; €**<*—·>

Write

right member of (0.9).
Before starting the estimates, we specify the operator L u in (0.9) and the formulas corresponding to the

The {chi} satisfy sup |k1|"’ lckil < oo.

(1.24)d(k)’ $1 and > [ dA d(k,2\)’ g 1.

(1.18)—(1.23), {d(k)}, {d(k,}()} are positive satisfying

and the corresponding expressions (1.18)’-(1.23)’ where the sum over Ic is replaced by sup and s by sl. In

k:k+k;i
k ‘ A *

LJ k:k*+k3j I + “l
(1.22)d/\ lei,] |E(k3,}. ;1; k·1)| d(k)

A A A k,»\ —k,—2\_ k,»\-Ic —k dk,»\
IkI’ Ik; + kzl

(1.21)

k=kl+k2+k3

d2\1 d»\2 d»\

A k A A A , —k·,—2\·, k,2\—k —k dk |(/\1 lu( 1 1)l 2 ..)l lu( 3 I Z)i ( )
lkl`° lk’1+k2l

(1.20)

k=ki+k2+k:s

~ A A k,2\ —k,——2\ lc,»\ dk,»\ .01+/\2)2_(k1+k2)2l I/\+k2l,), |u( 1 1)| l¤( 2 2)| l¤¢( s z)I ( )
OCR Output|k|’ lki + k2l2

(1.19)

k=ki+k2+k3 ·’*=»\¤+»\¤+»\3



corresponding coordinate restriction. OCR Output
J' = J + [-1*, r] (an 1*-neighborhood of J). For a subset A of Z, let PA : E2(Z) —>£2(Z) stand for the
Let I be an interval in Z centered around kg of length 0(|k0|) and denote J : I U (-I). For r, define

The estimates made next will justify these formulas.

(1.33)s2(¢) : 6"U <1> -1 I e*<(·T>” w(T) dr.

a11d for (1.32) we get from Duhamel’s formula

(1.32)no : e"”<1>

is formally given by

iQf,+UQ0:0 ; Q0(0):<I> (<I>k:¢`(k))

Considering the symmetric operator LJ : (cg + c(§)I + Q,. + Q_, the solution of

(1.32)iQ’+(c3'+cg)Q+(Q++Q_)Q:w.

One rewrites then (1.30) as

that : 0(]k|°) for some small 0* > 0.

ESince {cz'}, {cg} are Fourier coefiicients of a real functions, one has indeed cfk = Q(cf. (1.3)). Recall also

Qi] : c;k_1 if j: —k+1 and Q'? = 0 otherwise.
(1.31)

`GP : c;k+1 if j: —k -1 and Q';] : 0 otherwise

Consider the selfadjoint operators {2+, Q- defined by

We next discuss the (infinite dimensional) system (1.30).

(1.30)iQ), + (cg' + cg) Qt + 0;,,+, Q_;,_1+ c§k_, {LH.) : wk.

hence

Cgkq ea-21-+1): 6-i(k-1)*1 9-};+1: frm wk

{Q2 fem +(cg +6,6) Qk C-UH: +C;-k+1 ei(2k+1)t C-i(k+1)’v Q_k_1 +

one determines the Q), from the equations

(1.29)u(x,z) : fn,,(¢) e*<’===·’=“*>

If u in the left member of (0.9) is written as

(1.28)-w,,(1) e‘<’w·’=”*>.

Write the right member of (0.9) as

kl : 0 term in the sums (1.22), (1.23).
The effect of substracting L u in the right member of (0.9) is to eliminate the kl = -—2k3 ;h 1 term and the

where ·T(k) denote the k-th Fourier coefficient of u with respect to the x-variable.



A. :;|PyoP;1| 5 |k0|° (1-45) OCR Output

eigenvectors. Let »\* : max|»\¤|. Hence
Let {A0} be the eigenvalues of PYLJ P; considered as operator on Hr and {{0} the corresponding normalized

(1-44)IIA-l1<(|k¤l+r)"

hence

_

A, = PJ(PJr LJ PJr)' — PJ(P;~LJ Pj)' (1.43)

where

r>r|

A, (1.42)PJ EW Z PJ ei°(P7 UP?) + Z Lf?

Write with previous notations

(1.41). PJ c'(l`TlU w(·r) dr‘ 0

We now analyze the second term in (].33)

(1-40)q_ i _ Q_ (Z |k|" |(¢’° (PMI`) S C |k|“` IMI?)
1/2 1/2

(1-39)Sup |k|" |(€"°‘1>)k| S Sup [lk|"+° |<1>k|l+l|¢||

It is now easy to deduce from (1.38) that for s,s1 2 O

(1-38)HP1 €"" *1’\| S HP; <1>|| + ¢Ik¤|"°1|‘1’

Since e? ?is unitary on C2(Z), (1.37) impliesau)UP)

(1.37)PJ CW - PJ J""r“"r)|| < Ito;-10.

Thus for rl ~ |IcO|°, one has denoting J" by J

r>r,r:0

1 T. P; cm" = Z %%- PJ or namely 2 fi? (|/cp] + r)‘" < |k0|`1° for rl : 0(T|k0|"). (1.36)

From (1.35), it is clear that for |t| < T, there is following tail estimate in the expansion

(1-35)IIPJ ¤"1|s||PJ-wv-Il' S (|k¤|+r)”

(1,34)P, LJ' : P] LJ P,] LJ PJ; , , , PJ,-] UP), : PJ(P,r LJ P_,r)'

It is clear from the definition of U that P] LJ : P; U Pp and hence
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(1.66) OCR Output< iw [ in |,\+ 1) |6(k,x)2PE 4) a(k,)\) (»’1*‘+‘+**>/’=~" (Z L?..,.)12<r> 1
1/2

L{’.,.(.)L1(') \ '°
(1.65)(1) a(k,A) €1<1*r+*1> S C (X / (1) (A + NP/‘* |a(k,/\)|2

1/2

Recall following two estimates related to the linear 1-dimensional periodic Schrodinger operator (cf. [B1])

s < g < sl.

so that the additional |k|2"—factor is harmless for a sma.ll enough. The value of 0* will depend on those of
As will follow below, there is a saving of an extra factor |k|) (for some 7 > 0) in the estimates of(1.18)-(1.23),

(with corresponding sign) terms.
expressions (1.18)-(1.23) with an extra factor lk]2" and deleting in (1.22), (1.23) the kl = 0, kl = —-2/c3 ;l; 1
transforms inside as to get (1.18)-(1.23)) and bounding (1.61), (1.62) by duality clearly yields again the
in (1.15), (1.16) mentionned above. The estimate on $k(»\) (by putting absolute values of the Fourier
Recall that (1.28) is the right member of (0.9), thus the expressions (1.11)-(1.16) with the modification

(164)q, A », , +, A kl' |s¤(k)|‘) + Sup (Ik! ‘ |s<>(k)l) <<><>·
1/2

Thus one needs (p : u(;v,0) to satisfy

which, by (1.33), is given by the sum of (1.39), (1.40), (1.61), (1.62).

(1-63)’¤|°" HD"? MII?+ sp 1+1*1 ||Dl’°' Qkllz(E 1 ) i(’
1/2

Observe by (1.29) tha.t iZ(k, /\) : f2k(/\ + kg) and hence t.he norm (1.17) may be rewritten as

,.

§:|l; A 2 A |2"+?'°) l“’k(’\lIw;,(»\)2 /l + |> 1+ IM 1+ IM
V2

(1.62)
k

+1 D" ~<1>dT, 211l|11/ 0 2 l 1 k Lf
1/2

OCR OutputOCR Outputand

),,

A A A C Sup |k|2,,+,, Iwt(»\)l2+lwk(»\)l + |wk()\)|)l/2/ E )2 1+|\| 1+|\| k 1+|\|
1/2

(1.61)

suk" /2 el(°"T)U w(r) drS] k Lft p |[UD:k 0
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(hk) The (|k;|+|k;|+|k3|)'-factor is absorbed by c(k.1 ,A,1) where |k,1|2]k;2|?_|k,3|
(*) Denominator expressions will be understood as (..)+1.

replacing the é-denominator power by é - 6 in the L6·inequality
In fact, considering instead of (2.3) (resp. (2.4)) (2.3) · (2.4)‘ (resp. (2.4) · (2.3)‘) and the possibility of

(cf. [Bo1])(**).
which may be further estimated by an (L2, L6, L6, L6)-bound using (1.66) as in the case of the 1-dim NLSE

(1kl+ kw+ ul — kw +1k.l + kgll/2 +1k + kzv/2)"'

(2.7)

k kl) k 5 I7 (l 1l+l -l+l Sl) IA1+kil1/2 I/\2_kgIl/g I/\3+kg|l/2 I/\+k2[1/2
(k1,A1) c(k2 A2) c(k3 A3) d(k A) C 1 1 7

Assume (2.5)-+-(2.6) does not hold. One estimates (2.1) by

lk) + k2| ~ |k3|. (2.6)

and

Ikll ~ Ikzl (25)

Thus (2.2) yields one |k1 + k2|·fact0r. Either (2.3) or (2.4) yield another lk) + kg]-factor, unless

mall (px., + k§|1/2, IA + kw/2 , |(A1+ A2);k(k1+ k2)|¤/2) 2 (|k1+ kg) |k1+ k2 + 2k3 m 11)*/2. (2.4)

/2 (2.3)max(|A1+ k§|*/2, |A2 - k3|*/2, |(i, + A2);i;(k1+ k2)|1/2) 2 (lk) + k2| |k, - ky m1|)1

maX(l(/\1 + A2) + (k1 + kzlll l(*\1+ 42)·(k1+ k2ll)2lk1+ k2l

Observe that

|»\l + kll"" IM - ké\"2 I/\¤ + k§|"2 |»\ + k2|1’2I(»\l+ Az) + (kl + kz)| I(/\l + Az) — (kl + kz)l
C(k1lA1)C(k2»’\2)C(k3l’\3) (k1+ k2)2 |kl’ d(kl»\)

(2.1)

k:k1;2+k3 JA=Al+A2+A3

We have to estimate(*)

lull = ||{F(k. »\)}||l;L; + l|{€(k.»\)}||k;~t;·

hence

€(k,A) = |k|"¤ c(k,A)

E(k,A) : |k|" c(k,A)

¢(kl»\) = |»\ + k’|"’ |6(k» A)!

Define

2. Estimation of (1.19)



13 OCR Output

section.

Since the estimated are not tied, one may allow an extra factor |k|°, 0 > 0, referred to at the end of previous

If (2.11)+(2.12), one meets the condition 1+ sl — 3sl < 0, i.e. sl >

bound, except if (2.11) and (2.12) hold.
ZfL§-norm, one multiplies with |k|’* instead of |k|’. Since sl < s + 6, previous estimates already yield the
Assume sl < s +6 (6 > O some number; see above). If sl > QL, the Ei Li-norm of (2.1) is controlled. For the

]u:ed Irl] faxed kll [ 1 Li 1,1 1.:1.} 1.:1.2

I I/\1+k¥l"2 I/\¤—k¥|"2 |»\a+k¥|"" |»\+k¥|"2
m (214) °

hz,. $@1.*1) ?(ki.»\2) F(—ki,»\a) d(ki./\)

which is estimated as (sl >

ijJ,\:il+i,+i,' IM + HP/2 |»\z — k§l1’2 lla + ktlm |»\ + k’|"2
kll (2.13)

iw €(k1~\1) €(k1»)*2) ¢(·k1»/)s), d(k1_l;\)

If (2.11), (2.12) hold, one has for (2.1)

provided s > Qi (< In fact, there is clearly again a gain of a |k|‘ $ |kl|‘ factor.

reqs.:) k

An A) ik.: 2* {At , 2
1/2

(L4, L4, L4, L4) using nw L4-bOulld (1.65)
are not both valid. Then one may exploit (2.3)‘ or (2.4)‘ to gain |kl + k2|‘ and estimate (2.10) in

kl + kg + 2k3 : 0(1) (2.12)

kl- kg : 0(1) (2.11)

Assume

lt/M + /\z)i(k1 + kz)| |»\1+ k¥|"" IM — kSl"2 |»\s + k§|‘/2 |»\ + Mlm
(210)

Iki +k;»|1" |k1|`“ F(k1»/M) ?(kz.»\z) F(ka./la) d(k»»\)

Rewrite (2.1) as

Assume next (2.5)+(2.6).

Hence if (2.5)+(2.6) does not hold, there is a gain of an extra |k|‘—factor for some constant 6 > 0.

In both cases (2.8), (2.9) a power |k|‘ may be gained also, using c(k;,, »\;,) where |k;,| 2 |k;,| 2 |kl3|.

(2.9)(2.5) fails and kl + kg + 2k3 : O(1).

or

(2.8)(2.6) fails and kl — kg = 0(1)

one may gain a power |k|‘, unless (since either (2.5) or (2.6) is assumed to fail)

loc(:,t)

z.4I)__k2l1/2¢+l|k|<K Z k. AU; A) . , f ska: v sA! 6 (1*) 2 —-—-————— d»\ K d»\ A k »\ ° /-€< l(’ )l
1/2
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k, h

F ,4 Z (x ) 4.4 ( ) OCR Output
")

- . . (ki,»\1)E(k2»*2) =<¤~»+#¤><»+¢> di dig e 1 l’\¤ + kill/2 l/\2 · kglm I(»\1+ )—2)i (ki + ka)!

Define

(1.1) |»\ — kl -— kg + k§|1(2 2 |kl+ kgl

Then (4.3) is a least c|k1 + kgl.

(1) lksl v‘ |k1+ kzl

Assume |k1| 2 |k2|.

(4.3)max (px - kl - k2 4 kgr/2, |A + ml/2) 2 (|k1+ k2| |k1+ kg + 2k3 + 1|) 1’2

max (|/\1 + kw/2, \/\2 — kgll/2, |(/\1+ A-;) ;l; (kl + k2)|l/2) 2 (|k1+ kgl lkl — kg ;!;1|)1/2 (4.2)

li/lx + A2) i(k1 + kzlll/)1+ kill/2 U2 · kglm l/l ·· kx · *2 + kill/2 IA + kzll
kl° lki + kzl <`(k1.)*1) €(k2,»\2) €(ks./\ · ki · k2) d(k.»\)

(4.1)
k:kl+kq+k;,

dk] d/\2 el/\

Consider (1.21). The modifications for (1.20) will be indicated at the end of this section.

4. Estimation of (1.20) and (1.21)

letting 6 be sufficiently small, as appears clearly from preceding analysis.
In (2.1), the |»\ + kzll/2—factor in the denominator is then replaced by |/\ — k2|%"°. This is again harmless,

and denote the first factor d(k, X). Thus Ek fd/\ d(k,A)2 S 1.

2L L`- |,\+k |+1 |,\+k2|4+6 |,\+k2g. 6
d k d k () : ( )

Write; letting 6 > 0 be arbitrarily small

Ed(k)2 : 1.

IM + kilw I/lz · '¤€|"’ IM + k§|"” l»\ + WI HM + /\2l+('°1+ kzll |(»\1+ Az) — (kr + kz)|
c(k1,»\1)c(k2,»\2) c(k3,/\3) (k1+ k2)2 |k|’ d(k)

(3.1)
k=k1"_;;2+k3 J,x:,x,+,x,+x3

3. Estimation of (1.18)
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and estimate (4.1) by fFGH S |]F||4 ||G||4 HHH? S ||u||3 as in (1.1).

(4.13) OCR OutputH(k,1) : YT / dk d(k,/\) 6***+**1

144 + kw
(4.12)`(ksl/\:s) ·(k an z) G(x,t) : fd/\ Q-- e’°°* gg 3

Redefine

(1.2) |,\ + kzlm 2 |kl + kg

kl - k2 : 0(1) in which case we use the |k2|·’—factor, |k2| ~ |kl + k2|, coming from c(k2, A2), for this purpose.
|»\l + kfll/2, |)12 — kgll/2 or |(»\l + A2) zh (kl + k;»)| may be lowered, a factor |k|‘, 6 > 0 may be saved, unless
Remark. Considering (4.2)‘, for some 6 > O, and the fact that in previous estimate, the exponents of

this gives the estimate.

(4.11)E 1,_ 1 + |k2 + a|¤; < k

from assumption on Since for all a E R, cr >é,

2 ‘11+142 — ki It (kl + k2)ll’ k, [1 + I/\z — kft(k1+ k2)I]

1/q'

Hence, integrating (4.8) in Al yields bound

. """
4.9 ( )d/\ 1 ————- ·--—- < --1- /(|»\-<1|°+1)(|4—b|”’+1)"(1+|¤-’>|)"

Use the fact that for O S o,U < 1, u-}-B >1

, _ . (1*1+ kilm +1) (IM - k3|“· +1) (|(»\1+ d2l11¤(k1+k2)l+ 1)
kn 1 4.8 ( )§/ (ki + k2) "’

From Shur’s lemma, it suflices to bound uniformly for fixed (kg, A2) (and vice versa)

- - d,xd,\ 14,,1 k,,x. 4.7 1 2 (,1, 4 kill/2 (12 - kgv/2 1(A1 + »\2):t(k1+ km °( ‘‘) °( 2 2) ( )
(ki -1- (472)

Estimate ||F||q by HausdorH`—Young. Take weights w(£) 2 0 s.t. Ew(£)" < oo and consider

\|F|\q < oo for q < oo.
Reexpressing in terms of functions, estimat.e (4.1) by fTX[0Y1] FGH dx dt S ||F||4 - HGH; ||H||4. In fact,

(4.6)_ d(k,»\) ·(k 4-zu) H(x,t) - gjfd/\ e’’ .

(4.5)G(x,t) I 413 z(k3, ,13) e*<’=¤*+*¤*>Z [ ka
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S1OI1

. - To estimate ||Fl||2 $ (Ek [Zk1+k3:k{ }]` ||'é||§,,L,) , consider {w(€)} with Ew(g)2 S 1 and the expres
1/2

I/\+k2I1/2
4.17 ( ld(k A) » G 2 dA -——-’··<’=¢+**> I 8

2 1/2 A3 + <¤k=#—=> I
d/\q €i»\_·,t 1 A3) ·

(4.16)

kr,k¤

F = I - . I ¤(k1+L2)(·;+l) C I 2 IM + I¤?I"2 IM — k3I‘/2 IM + M é: (M + kz)I
' k A )E(k2,Al) c( ll 1

fFl ·Gl S l|Fl||2 - ||Gl||;>, where
If |kl| ~ |k·2|, we may replace |kl + k·,|1"‘ c(k2,A2) by Z·'(k2,A2), assuming s + sl > 1, and estimate by

(3-1) lk1l "‘ lkz

_ 0 _ (Al + Al) 1 (kl + kl)| |Al + kip/2 |Al - kip/2 |A - kl - kg + (5¤g¤)”| |A + (¤;i¤)
1/2 1/2 ”'

{kl + kl|1-·· a(kl,Al) c(k2,A2) €(-hy, A - kl - kl) l1(£¤g.'2=, A)
(4.15)

kilkz

dAl dA2 dA

Hence

(ka : __k|-gk; ’ k : kl-gk:)

|(M+M)=k(k1+ km nAl +k¥I1/2 IAQ — kw IA — kl — kl + (5%*-*>’I IA+ <¤#l>
1/2 1/2 "

|kl+k;|’+1c(kl,Al)c(k2,A2)c(-Eligi, A - kl - kl) l1(hg£¤ , A)
(4.14)

l¤1.l¤2

dAl dA; dA

Rewrite (4.1)

(3) kl + kl + 2k3 : 0(1)

we use the |k2|"—fact0r from c(k2, A2). Use the same estimates as in
to gain Ikl + k2|%" (s < % close to é), which may be done from (4.2), unless kl - kg = 0(1), in which case
Then (4.3) is at least |kl +k2|1/2 and the |k3|’-factor from c(k3, A3) gives another |kl +k2|’. Hence it remains

(2) Ika|~Ik1 + kzl l kl + kz + 2k3 $6 0(1)
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uzuu E j G')
'7 (1(k1,»\¥k1ik3)‘(k3,kl

1/2

C] · kl »\ kl)? s q: ¤+k§l1‘·°1 _ m "" il.;/"* u
1/2

,c
1 Z uuvuuq.; zd¤ . u1¢ku+<k3+k’>’¤’

d(k3+k’.»\¥k1)l/ks
2-I1/2

21;·» U Z 0 ‘/k¤.k E(k3, A) d(k3 + kh') 5 kl)

Since (5.3) is at least |k1|, one of the denominators is at least |k1[? and we bound (5.4) writing

(5**)Z j dk(ké12’\kkfz1 k3,k'¢()’-fgk3t] i t + Si i 3 + ) i,1 — , ,1 k kl A L |aF(L33?k)d(3 + )

Estimate (5.1) by

(1) Iksl > Ikll

where from assumption 011 the suinmatiou in (5.1) non ofthe factors i11 (5.3) vanishes

(53)m¤><{|/\ :+= k1+ kg!. IA + (ks + k’)°|} 2 |k'| |2k3 + k' ¥ 1I

Observe that for tl1e denominators

(5.2)d/\ d(k,/\)2 S 1 , d(k,/\) 2 0 and |cki| < |k1|"

where

k'¢o,;2i.;,;t1
M I/\¢k‘+k§|*/2 I/\+(ks+k1)2|"2

(5.1)Z jdx
uc. + kip |c,..|c(k3,,\1 k1)d(k3 +k*,,\)

Consider Hrst (1.23). The contribution to the [|l:L§-norm is bounded by

Recall that in both sums the terms k' : 0, ——2k3 i 1 (with matching sign) are deleted.

5. Estimation of (1.22) and (1.23)

The same comments apply as for (1.18). Again the estimates in (1.21) are clearly not tied.

Estimation of (1.20)

be estimated by Shur’s Lemma.
the denominator |(A1 + A2) i £|%+% |A1+ k¥|1/2 |A2 — (E — /c1)2|1/2. The (Ahh;)-integration may thus again
(A1 + A2) ;1:£| |»\1 + k¥|‘/2 |A2 —— (E — k1)2|1/2 or |(A1 + A2) ;k £| |»\1+ k¥|1/2 |A2 — (Z — k¥)|’/2 and in (4.30)
OCR OutputOCR OutputOCR OutputThen (4.2) 2 |k1| and we consider (4.2)** to cancel out |£|l" in (4.27). In (4.29), one gets the denominators
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Here ga, a,b fulfil the hypothesis of Theorem 1, i.e.

(6.1) OCR Outputi ui + uu — L u : uq [_j"l (lU.g|2):, + ug W(t) (a,b) — L uq, u(x,0) = <,p(x).

Let T be the transformation uc •—» u defined by (5.10), i.e.

6. Application of the contraction principle

¤(w. 0) = s¤(¢)
(5.10)

iu, + uz, — L u : Up []" (|u0|2),, + [ug W(t) (a,b) — L ug]

the solution u ofthe modified equation (cf. (0.9))
This completes the estimates on (1.18)—(1.23), hence the (1.17)-norm of (1.11)-(1.16) and therefore (0.8) and

estimate on (1.22).
In the (1.23)-analysis, the factor may be replaced by KE-, so that the preceding also yields the
This is certainly conclusive if sl — s + cr <

k‘»lk‘l~lkI

(5-9)|kl"+°"1 Z ||5(k - kh ·)||L; (1+Ik - kl|)" S lk|`i"+"+° |l5l|¢g1.g

at least |k|, we get applying H6lder’s inequality
|kl"*, provided sl — s + U < { Assume thus case (2), i.e. |k1| > lk - kl]. Since the denorminator in (5.8) is
The argument in case (1) above permits to bound (5.8) also, since the |Icl"-factor may have been replaced by

where fd(/\)2 S 1, d(A) 2 0.

,....

(5*8){kw c(k-k,,xak)d(,x) Sip Ill ...§( M ¤»=kk1+<k—k1>`2`_’_‘u1/2n»+k¤n1/2
**

Consider next the ||lTL§-norm, bounded by

S + U <

conclusive provided s + 0
where now, by (5.3), the maximum of the denominators is at least |k1|. The preceding calculation is clearly

1 1/2z;z ksyk, |»\¢k +k3| |)\+(k3+k)|
(56)Z j d’\ kl $+0 k A 1 1 I I c( 231:tk )d(k3+(€ii\)

(5.1) becomes

(2) Ikll > lksl

provided 1 — 20 > We used here Holder’s inequality, (4.11) and variable changes.

(5-5)S ll5ll ll{d}|l = l|5ll

<“ dA ——; —-- ` ;,./ l#) :l: kl 3: ka + k§Il'2"
d(k1 A)2|5k?,

1/2
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formula (1.5) yields the estimate

(71) OCR OutputH]`1 (|¤|2)u (i)||z +||6»[1‘1 (IMF)! (i)l|:»

Considering the contribution of the first term Q"] (|u{2),, in (0.5), thus

(0.5), (1.5) and the estimates obtained for u (considering the local problem).
Considering the weaker assumptions on $0,a,b from Theorem 1, one may bound ||n(·,t)||2, ||V(·,t)||g from

7. Estimation of.n and V

||8, n(·,t)||H-i. Theorem 2 follows from this fact and Theorem 1.
[L-R-S]). For initial data (go, a,b) in (H1,L2, H`1), (6.7) gives thus a priori bounds on [|u(·,t)||H¤, ||n(·,i)||L¤,
with (Re u,Im u) and (EV) as pairs of conjugate variables, where 71 : 2*/2 n, V : 2'1(2 D;1 V (see

(6.7)'7 H Z U,)+ (n~ + vg) + nw] dx1 AH2 §

with Hamiltonian

W = —¤I — Iuli (6-6)
u, : -11.,, + n. u

iTL, : —V,
We then have a hamiltonian setup

__ W Z _nI _ V(;z:,i) dx - 0. (6.5)
V, = -11, /

We also consider the auxiliary field V : V(x, t) defined by

n(x,O) = a , 3) n(a:,0) = b.
(64)

ntt ' nxx : A luI2

lt remains to verify the properties of n, defined by equation (II)

(0.8). This proves Theorem 1.
and we don’t elaborate them here). Hence the fixpoint theorem applies and yields a solution to (0.9) hence
provided one restricts to a sufficiently small time interval (these considerations are similar to those in [Bm]
than ||u||, for some 6 > O. This feature permits to verify a contraction property of T for the previous norm,
a saving on the denominator factors |)\; ;%; k?|1(2, allowing to obtain estimates in terms of |u|1'° rather
in a bounded set in the same space. From the systematic gains appearing in the above calculations, there is

FUN) = (1+ Ik|’) (1+ |»\+ VII") |6(k»»\)| and $(k»»\) =(1+ |k|"‘) (1+|»\+k°|1(2) |6(k»»\)| (63)

denoting

lallzgq Sl ( ll?ll¢;¤Lg S 1

maps the ball
It follows from the preceding that for suitable values of 0 < s < Q- < sl < 1, 0* > 0, the transformation T

<P€ H’(T) » Sup lk|" |<?(k)| <<><> and SUP (|k|`° l6(k)l. Ikl`”`1 |6(k)|) <<><>· (6-2)
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(8.5) OCR Output71 : > cos km + g)f(w) sin kx)

(8.4)U Z G,c(w) e*’==E

elements (12,%, V) in its support random Fourier series of the form

(the first part is the invariant measure for the NLSE) so that after normalization one except as generic

»>¤ 2 tm(.—w[H l}
(8.3)

1 u 4 _ I *'f .7; :

and denoting E : 2`1/2(n + |u|2), (8.1) gives

T 2 2
(8.2)2 H: |n,| --|u[ -1--(n+|n|) -4-EV

2 1 4 1 2 1 2

Observe that H may be rewritten as

/2 '1/with 71 : 2'1n, V : 22 Dgl V is formally invariant under the flow (6.6).

(8.1)·"" _x, ,,,,,,.,,5B, H id? to) d mx) d Wn]

Letting H be the Hamiltonian (6.7), the formal Gibbs measure

8. Invariant measures

In particular n(·,t) and 0, n(·,t) satisfy the assumption on a (resp. b) of Theorem 1.

are bounded.
It follows thus from (0.5) that up to the W(t) (a,b) (resp. 6, D;1 lV(t) (a,b)) term, |ln(·,l)|l2, ||V(-,t)||2

also the second part of the norm (1.17) ||u||| is used again. We skip details.
kl —k2 = 0(1) in the spirit of the previous arguments shows that (7.2) is bounded. In the case kl —-kg = 0(1),
Assume |kl| Z |k2|. A straightforward analysis considering the different cases |kl| > lkgl, lkll ~ lkgl,

(7.3)max([2\ i kr/2, nl - k§|*/2 , px, + kgll/2)g|k|1/2 |k, - kl i lll

One of the factors 2\ + k or A - k takes care of |k| + Observe that

where Ek d(k)2 3 1.

(k=kl_·+-Ic;),:,lv 2
dA di k k A -—-L-—-T-;. 2;/ 1 ZI In H-I I) |,\ +k| |2\— k| |,\l +kf|1/2 |A2 - k§|1/2 (A-silo,)(kl,2\l) c(k·2,»\2) d(k)

(7.2)

2

dx di. k .-Li-;.-. @,/ I `I I |A:i:k| |»\l+kf|1/2 {A2-k§|1/2
(kim) ¢(k2,»\2) dlk)
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(easily) completed as in [Boa].
Once the finite models analyzed (with uniform estimates in N), Theorem 3 for the original system is then

for any choosen 0 < 0, 0 < s <§< sl < 1 such that Theorem 1 is applicable.

||V
8 ¢ 2

r

N ., ·,,,— -.. p7> ||¤ (¢)llH·+ ;L;r;(lkl IU (¢)(k)| + |k| (In (f)(k)| + IV (t)(k)|) (8-13)l¢I+1 10
1/2

and VN(t, of the form
and on which (8.12) is globally wellposed (with bound independent of N) with estimates on uN(t, ·), nN(i,
This reasoning yields for any 6 > O a subset of the phase space of complementary Gibbs measure at most 6
conservation law when braking up a given time interval in small subintervals for which Theorem 1 applies.
for NLS i ul + um + u|u|*"2 : 0 with p > 4 may be repeated here. Thus the invariant measure is used as a
are rigorous because finite dimensional. In particular, one has invariant measures and the reasoning in [Bol;]
variables (rather than the functions themself) and the introductory remarks in the beginning of this section
any small T). The phase space is obtained by considering the Fourier transforms of u,n,V as canonical
least T > 0 on a subset of the statistical ensemble which (normalized) Gibbs measure is > 1 — e"7°°' (fixing
of N. In particular, the size of the time T is controlled by the data (in a polynomial way) and will be at
Dirichlet projection. The proof of Theorem 1 yields local wellposedness of (8.12) with bounds independent
where uN, nN, VN have Fourier series wit.h respect to the x-variable restricted to |k| $ N and PN is the usual

WV = ·¤iV + PNUUNIZ) VN(¢·0) = D;1*>"<¤)

,, (8.12)nfv : —VN n.N(1:, 0) : aN(x)

v N Niuf= —ug, + PN(nuN) u(x,O) = gpN(:c)

svstem

considers the finite dimensional model, obtained by considering only frequences |k| $ N and the modified
Zakharov system is globally wellposed, we repeat the steps in [Bog] for NLS equations. Thus first, one
To prove Theorem 3, i.e. the fact that the Gibbs measure is supported by an invariant set on which the

Thus (8.9), (8.11) were the assumptions made on the data a,b in Theorem 1.

(8.11)sup |k|""* |E,(k)| < oo.

hence, from the equation n, : —V,

(8.10)V, : > cos kx + gz sin kx)

(8.6) yields

sup |k|"' |'ri(k)| < oo (8.9)

implying, since E = 2'1/2 (rz + |u|2), also

(8.8)sup |k|'° |E(k)| < oo

Choosing 0 > 0, one has for (8.5) almost surely

(8.7)cp E H’(T) and sup |k|"‘< oo.

Thus (8.4) clearly satisfies almost surely the hypothesis on the data cp in Theorem 1, i.e. (s <é< sl < 1)
where (i = 1,2,3,4) are independent Gaussians and {Gl,} independent complex valued Gaussians.

(8.6)V = ST I (gg(w) cos kx + g2(w) sin kx)
~ 1
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