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ON THE CAUCHY AND INVARIANT MEASURE PROBLEM
FOR THE PERIODIC ZAKHAROV SYSTEM

Jean BOURGAIN(*)

0. Introduction

The purpose of this preliminary paper is to prove local and global existence and regularity theorems for the
1-dimensional Zakharov Model

Py = —Upr + N1 U -

{ Ny — Nggp = (}“12)1: (01)
uw(z,0)=¢ , n(z,0) =@,  n(z,0)=b

in the space periodic case. Apparently no results were known so far on this problem, if one considers the

periodic setting. Equations (1) are suspected to be nonintegrable, contrary to the NLSE i us+uzz +uju|? = 0.

The technique used here is a Fourier analysis approach in the same spirit as earlier works in [B;, By] on

NLSE and KdV type equations. In particular we prove following local wellposedness theorem.

Theorem 1. There are Sobolev exponents 0 < 0 < s < % < 51 < 1 such that (1) is locally wellposed for data
(u,a,b) salisfying

€ H(T) , sup [k|*r |8(k)| < o0

sup k|77 |a(k)| < oo and sup |k|77"! |’5(L)[ < oo.
k k

One shoud think here of ¢ close to 0, s close to 3. In particular, for (H', L?, H~')-data, there is a global
result

Theorem 2. The system (1) 1s globally wellposed for data p € H', a € L%, be H™1.

due to the conservation of the Hamiltonian
1 2, 1o o 2
Hy = _/ lus 2+ =(n% + V) + nluf?| dz (0.2)
2 )y 2
and the L2-norm fT [u]* dz. Here V is defined by

ng=-—-V, _
{ Vi = —ny, - |"“|3 , /V(:c,t) de = 0.

We believe that our method should be applicable in higher dimension too and plan to investigate this
subsequently. There also should be a nonperiodic analogue to Theorem 2 for H!(R), L(R), H~1(R) data,
which would improve on the H* H', L? result of Ozawa and Tsutsumi ([O-T}).

{*) LHES., 35 route de Chartres, 91440 Buressur-yvette, FRANCE
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The stronger formulation of the local result in Theorem 1 is meant to cover the typical data in the support
of the Gibbs measure, formally written before normalization as (see [L-R-S))

e—PHz X{ [ luiras<5) 1;[ [d2 u(z) dn(z) dﬁ(:)] (0.3)

where (Reu,Imu) and (7, V), with = 2-1/2 n and V = 2-/2 D' V, are pairs of conjugate variables.
Here B is a cutoff on the L2-norm of u. Hence, after normalization, one expects u, D7 ! n, V to be, essentially
speaking, ranging in the Wiener space. This explains the choice of assumptions made in Theorem 1. One
may then repeat the technique used in [Boj) for the nonlinear Schrodinger equation i us + uzz + ujulff~2 =0 -
{=specially when p > 4) to show that (0.1) is globally wellposed on a set of data (¢, a,b) carrying the Gibbs
measure which is invariant under the flow.

Theorem 3. The Zakharov system (0.1) is globally wellposed on a K,-subset K in I‘}% (H*x H*-'x H*"?)
s<
vhich carries the normalized Gibbs measure (0.3). Moreover K and the measure are invariant under the

flow.

The analysis used in proving Theorem 1 is mainly an application of the contraction principle with norms
expressed in terms of the Fourier transform of u. These norms are closely related to those used in [Bo, 5] for
the NLS and KdV equations. The fixpoint problem is setup in terms of the function u. The first equation
in (0.1) yields

u(t) = S(1) ¢ + i/l S(t—1)(nu)(r)dr with S(t)= "% (0.4)
0

and n may be expressed from the second equation as

n=[1" AlJul?) + W(t) (a,) (0.5)
where W(t) (a,b) is the solution of
My — Npr = 0 (0 6)
n(z,0) = a{z) and & n(z,0) = b(x) ’

and 7! F solves

Ny — Mg = F
{ nZ::,O) =0 and & n(z,0)=0. 0.7)
Hence (0.4), (0.5) yield
ut)= S o+ [ St =) [u(@ ARP)r) + u(r) W) (a,b)] dr. (08)
0

Theorem 2 for instance may then be proved by solving the fixpoint problem corresponding to (0.8). In
dealing with Theorem 1 there seems to be a difficulty with this approach due to the rough conditions on the
data @ and b. For this purpose we rely on a variant of the preceding which consists in modifying slightly the
linear equation i u; + uzz = 0, adding to 7 u; + uzz a part of the term u W(t) (a,b). (Such constructions
appear in [Bos).) We then write '

fug+ trzr — Lu=u T (Jul*)ee + [u W(2) (a,b) — L{u)). (0.9)

Here L is a certain linear operator depending on a,b. The left (resp. right) member in (0.9) yield now the new
linear equation (resp. perturbative term) and one applies the fixpoint method to the corresponding integral
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equation. The modification of the linear part leads only to minor technical changes while the substraction
of L(u) in the right member removes certain undesirable terms.

1. Expressing in Fourier transform

Consider the two equations

i+ g =nu (D) u(z,0) = ()
N —nze = A ul? (II) n(z,0) = a(z) 8 n(z,0) = b(z).

Applying Duhamel’s formula to (I) yields
t
u(t) = S(t) ¢ - £j S(t— 1) (nu)(r) dr (1.1)
0

and rewriting the integral term using Fourier transform gives

—:k i AL
Ze;u—/d,\ {nu(k 2 < Hk: } (1.2)

where

au (k)= Y ] Ak AY) G(ks, Ag).
kipkazk VA F A=A

The time t is restricted here to an interval [0, 7).

Solving (II) in n

My — Ny =0
{ ?1(2,0) =a, at n(a:g 0) =b (1‘3)
yields
n = ch otk(z+1) + de eiklz—t) = w(t) (a,b)
k k
where

ek + di = a(k) = k) + i b(k
{k y amﬁ’{q Ea() ?F'“()
cr —dp = B2 di = § @(k) — 5h b(k)

(assume B(0) = 0)

Ny — g = F
{ n{zr,0) = G n(x,[l) =0 (14)
yields
"= ZfdA e F(k 23 — W(t) (ho, h1)
where

{ho_zkw eive Bey
hy =i, [dA et ARG
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_assume F‘(O, J=0.

Hence one gets for the solution to (1.4)

_ . e A L, 1 AN o) F(e )
n=[J' F= e'“/d)\ {e’“—— (l-i-—-) e = (l—-—) e ‘“} .
; 2 k 2 k A2 — k2

For A = k write for the integrand

. . 1 )} ) . F
[eu\r - enk! + § (I - E) (E;k! _ e-lk!)] ;(ir:g

i€t o) 1 ; —iknn] &
—[ g +0(klr\+kl) (e* —e *)] F(k, ).

The same observation holds for A ~ —k.

(1.5)

Flecall that ¢ is bounded by 7. From the preceding, one may restrict the range of A to |JA] ~ [k|| > 1 (cf.
|301]). Otherwise the interpretation of the denominator A? — &2 is & or — 4 and the estimates for ||A|— k|| > 1

capture in particular terms of the form

Y ekt I f Pk, A).
r k Jiai-epi<

The Solution to (IT) leads thus to following contributions for n

zkz eitxf d\ eiM ul? (k,A)

YRS, AZ— k2

Sk e‘ktxi’)f ax 2 (k)
HAI= (k121 AFk

=y L3 ik(r k1) + ik(z1)
Z(a(&)iﬁ‘-b(k}) ettt hence ch et EEY,

where

sup |k cf < 0.
k

|—o
Substitution in (I} yields thus following contributions to the right member of (0.8)

Sty @ =y Blk) =40

zei(l‘:w—k?!] { z jd,\l dAs dAs

[ ky ka4 ks=k

(ky + k2)?
(A1 + A2)? = (ky + k2)*] (A + A2 + A + £7)

ﬁ(kls '\1) a(-kgs -"Az) a(kaﬁ Aa)}
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‘/;I+A2+AJ=A

Z]d'\ ci(kx-l-)u]
k

kr+ka+ks=k
(1.12)
(ky + ko)? 1 R - )
ki, M) (=Ko, —A2) #i(ka, A
(7 +22)% = (ky + k2)7] (N +£2) w(k1, M) U(—k2, —A2) fi(ks, As)
Ze-‘{kx+k’1} Z /d‘)ﬁl d),y dX
k kytkatka=k
(1.13)
(ky + k) 1 i} A
k1, M| G(—kz, —A2) (ks A — ks — k
[0 + da) £ (k1 + k2)] (A + k2) t(ky, )| w(—kz2, —Az) (ks L — k)
Zf‘“ eitbrtr %7 ]dAl ds
k ki+katks=k
(1.14)

(k1 + ka) 1
(A1 + A2) £ (k1 + k2)] (A +K2)

Y (f%zfidx)} (1.15)

A(ky, Ay) u(—kq,—A2) U(ks, A — k1 — k2)

Z ea‘(u-k":) [

k k' 4ky=k
. 1
(kr+At) =l 1 —
chu pi(kTHAL { 3o o ks, A k) [Hk?]] . (1.16)
k klpka=k

Here all denominator factors are kept away from zero and (A + A2)? — (k1 + k2)? is considered as the product
(A1 4 A2) + (k1 + k2)] [(A1 + A2) = (b + k2)]. :

For a fixed time interval [0, 7], the norm of u is defined as

1/2

1/2
flull = [; 1k|2’fdA (A4 £+ 1) |ﬁ(k,).)]2] + Sl;p k| (fd)\ (14 A+ k%) |a(k,,\)|2) (1.17)

(where s, 5, are the exponents from Theorem 1). In fact (cf. [Boy]), we consider (1.17) as a restriction norm,
taking the infimum of (1.17) over all representations u = Y, [ dX @(k, ) ekz+2t) valid on T x [0, T].

The contributions of (1.11)-(1.16) to (1.17) are estimated by

dA; dAz dAs
k=ki+ka+ka
(1.18)
k|* k1 + kol
[(Ar 4 A2)2 = (ki + k2)2 1A + Ao + Az +

7] [@(ky, Ao VE(—k2, = X2)| [0(k3, A3)| d(k)
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/)\=v\|+hz+/\a

k=ky+katka
(1.19)
[k|° 1ky + ko - ~ -
,(A‘l +A2)2 — (kl l+ k2)22|] |A+ k2|”2 fu(klsll)i [t‘(_kh“')2}' IH(&‘;;, A3)' d(ks’\)
/d.\l d\g dA
k= k1+k:+ks
(1.20)
k|* ky +k . ~ ~
l(’\l +}\2|) dI: (lk: +k22)|’ l’\ + kzl [u(khAl}i Iu(—kg,'—A:‘)” h“(k:.'n'A - l"‘1 - kz)' d(k)
Z dh dhs dX
k=ky+ka+ks
(1.21)
k| 1k + k . R R
T o g7 [k A (ke =)l ke, A= &1 = bl (k)
|k|‘ ¥ -~ 1
> /dA e leF) Ja(ks, A £ kY)] d(k) (1.22)
k=kV+ks
> fd)t |A+lk|2|”’ (.| [k, A £ k1)| d(k,A) (1.23)
k=k'$k;

and the corresponding expressions (1.18)’-(1.23)” where the sum over & is replaced by sup and s by s;. In
k

(1.18)-(1.23), {d(k)}, {d(k,A)} are positive satisfying

D d(k)*<1 and Z]d)\ d(k,A)? < 1. (1.24)
k

The {cg:1 } satisfy sup [k1[~7 [cxa] < 0.

Before starting the estimates, we specify the operator L u in (0.9) and the formulas corresponding to the
right member of (0.9).

Write

i) ab Zc+ lk(t+t)+zc eal..(z-vl} (125)
&

and define L u= Ly u+ L_ u with

Lyu=Y cty | 7h=-Dr SER-DUGk) (1) + oF @(k) (2) (1.26)
k

Lou=Y ey, e -1 GGk (1) + 5 A(k) (1) (1.27)
k



where (k) denote the k-th Fourier coefficient of u with respect to the z-variable.

The effect of substracting L u in the right member of (0.9) is to eliminate the k! = —2k3 £ 1 term and the
k! = 0 term in the sums (1.22), (1.23).

Write the right member of (0.9) as

Y w(t) eke-RY, (1.28)

k

If u in the left member of (0.9) is written as

u(z,t) = 3 Qu(t) =419 (1.29)
k

one determines the Q) from the equations

. _ik? _ _ik? ; i, 2
i th e ik t+(£g+co)9k e ik t+c;-k+1 es(2k+1)t e i(k4+1)"t Qe 1 +

—ik7e

: . s 2
. e:[—2£+l)t e—:(L—l) t Q—l:+l —e Wi

Cop
hence
P+ (g +eg) W+ ed ) Qoo+ eg, Qi =wi (1.30)

We next discuss the (infinite dimensional) system (1.30).

Consider the selfadjoint operators G4, G_ defined by
G¥ =ch,, if j=—k-1 and G =0 otherwise
. ] (1.31)
GY=c5_, if j=—k+1 and GY =0 otherwise.

Since {c{ }, {c; } are Fourier coefficients of a real functions, one has indeed ¢*, = :f (cf. (1.3)). Recall also
that |cf| = 0(]k|?) for some small ¢ > 0.

One rewrites then (1.30) as
i+ (e +eg) 2+ (G4+6) 2=w. (1.32)
Considering the symmetric operator U = (¢§ + ¢35 )] + G4 + G_, the solution of
iQ+UQ=0 ; QO)=0C (P =¢(k))
is formally given by

Qo =€V @ (1.32)

and for (1.32) we get from Duhamel’s formula

t
Q) = ¢V b — / =N (Y dr. (1.33)
0
The estimates made next will justify these formulas.

Let I be an interval in Z centered around ko of length 0(|ko|) and denote J = I'U(~I). For r, define
JT = J + [-r,7] (an r-neighborhood of J). For a subset A of Z, let P4 : £2(Z) — ¢*(Z) stand for the
corresponding coordinate restriction.



It is clear from the definition of U that P; U= P; U Pj: and hence

P; U = PyUPHUPsp2.. Pyees UPyr = Py(Pye U Pye)

1Ps U || < || Psr U Pye|]” < (lko| + 7).

From (1.35), it is clear that for |t| < T, there is following tail estimate in the expansion

; — (it)" . 1"
p..e‘"zz_; (!) Pru™ mamely D7 — (lkol + )7 < [ko| ™Y for 1 = 0(T|ko|").

r
r>ry

Thus for r; ~ |ko|°, one has denoting J7* by J
g Y

. it P U P~
”PJ e::U _ PJ' eu(Pr u J)” < |k0|_10,

t(P~ UP~)

Since ¢ 7 P s unitary on €*(Z), (1.37) implics

1Py et @ < [|Py || + ¢ [kol~*° |-

It is now easy to deduce from (1.38) that for 5,57 > 0

sup [k[™ (e @)i| < sup (k[ [@el] + Il

(Zlklﬂ" (et q,)l_l:’)lﬁ <c (): [k)** |¢k13)”2'

We now analyze the second term in (1.33)

Py (/D‘e"(‘*”‘f w(r) dr).

; is(P~ UP~ is)"
.PJ ensU = PJ e:s( 7 J‘}+ Z % Ar

r>ry

Write with previous notations

where
A= Py(Pjr U Py — P,(P_;u P}-)‘"
hence

A < (lkol + 7).

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

Let {Aq} be the eigenvalues of P;U Pj considered as operator on é’i., and {€,} the corresponding normalized

eigenvectors. Let A, = max|A,|. Hence

Au = ||PyU P3| < [kol”.

8
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i

Write P;w(t) = 3, va(t) €4 Thus {va(1)} (resp. {Va(A)}) is obtained from {wi(t) | k € T} (resp. {&(N)})
by applying an orthogonal transformation on F-

From (1.42)

t . .
aay=p; ([ & wn )+ T 5

re>ry

Ay (/:(t - 7)" w(r) dr) = (1.46) + (1.47).

From the preceding, we may write for the first term

eiM _ gidat

t
(1.46) = ; Py &, j) eit=T)Aa Ve(T) dT = za:(PJ &a) ‘/po,(h) --:\_—X;— dA. (1.48)
Splitting the integral

giA _ gidat
/p{,(,\) )\ =/ +/ (149)
A=Aa aj<za.  Jparzaa.

one gets (1.46)=(1.50)+(1.51).
By (1.45) and the preceding

1/2

1/2
DM(150)|[ 22 < c [kol” / oV :ck"j BV
i Mz < ¢ kol Z 1A|<2»\.| ()| ko ma»\-kez;,- sV

12
. 130 @ (M)
< ¢ |kol ( /d)\ Y ‘ (1.52)
For (1.51), we have
1201 51) = ) (A I,\Ilfz ]
D'*(1.51) E(P;s) o, [ VS

— Z(PJ Eor) [/|M>2A fi(‘f\) dAjI (1+|)‘a!)])'2 ei)uni

= (1.53) + (1.54).
(One multiplies (1.54) with a bump function localizing in time.)

Thus clearly

R o\ 172 1/2
(1.53)]|22¢2 gc(zn:fd,\ 'T“i’}l'l) = (/1+mz] k(.\)i’*) (1.55)

and



[I(L.54)] 2202

IA

N [z

1 A X \?
dX Da(X) — 1+—"+(~i) 4o
~[Pi|>2A¢ CI( ) 4\ ( A A
_ 9 1/2
. d)
VolA) —
~/|»\I>L\. a(A) Astl }

r 2 1/2
~ dA
c |k0|0f22}‘: Z _/|A|>2)\ wk(A) FI'T ]

520 |kes

IA

¢ lkol”2 Y20 |3

320 | @

I

e lk0|0f2 E 9-1 lz

- dX
>0 EEI |A|>2),

R . 1/2
¢ [kol*/? [Z( ';"i(?jll d,\) ] . (1.56)
kel

Collecting (1.52), (1.55), (1.56)

1/2 1/2
1/2 LT !Wk()‘” L )2 [ [@k(M)] ]
1DY2(1.46)||z2¢3 < ¢ [kol (‘ . /d). TEOT + ¢ |kol 2fl+lhl d\ . (157)
€

keJ

For the second term (1.47), one gets by partial integration

- i
Z ‘—1 A, [-—t" D~'w(0) - 1'/ D lw(r) (t-7)"! dr] (1.58)
T>ry 1‘ o

from where clearly (after again localizing in time)

- 2\ 1/2
104Dl SC(Z M) 1Dl < ol (E [] = ) (1.59)
: k

r>ry

by (1.44) and the choice of r. The same estimate (1.59) holds for ||D'/?(1.47)||;2¢3. Consequently, by
(1.57), (1.59)

) (2]

kgl -Z( mml)?r?‘
i 1+ Al

Similarly to (1.39), (1.40) one deduces from (1.60) that for s,s; >0

1D 4Dz < tholt | Y ([ ar !
Lked

(1.60)
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¢
sup k| “D}’? U e (1) a'-r] <
% 0 kllza
(1.61)
¢ su |k|2a+a| ( |C’k('\)lz)1{2 + &k (M) + Z (/ Dk(*”)z 1z
t 1+ A 1+ A - 1+ A
and
' 2 1/2
POILIRN FHE [ ] = w(r) dr] <
3 0 kLY
(1.62)
- " 1/2
Z 'k".’[.‘+‘20] |wk(A)|2 + ( |wk(’\)l)2
- 1+ A 14+ |4 ’
Observe by (1.29) that @i(k, A) = Qx(A + k2) and hence the norm (1.17) may be rewritten as
/2
(Z k[ (DM mif%) + sup ([kl* [ID/2 o) (1.63)
ke
which, by (1.33), is given by the sum of (1.39), (1.40), (1.61), (1.62).
Thus one needs ¢ = u(xr,0) to satisfy
@ -~ i 1!2 + -~
(S kP 1B0I7) "+ sup (k1 * 1B(R) < oo. (1.64)

Recall that (1.28) is the right member of (0.9), thus the expressions (1.11)-(1.16) with the modification
in (1.15), (1.16) mentionned above. The estimate on &x(A) (by putting absolute values of the Fourier
transforms inside as to get (1.18)-(1.23)) and bounding (1.61), (1.62) by duality clearly yields again the
expressions (1.18)-(1.23) with an extra factor |k|?? and deleting in (1.22), (1.23) the k! =0, k! = ~2k3 £ 1
(with corresponding sign) terms.

As will follow below, there is a saving of an extra factor |k|” (for some v > 0) in the estimates of (1.18)-(1.23),
so that the additional |k|*?-factor is harmless for ¢ small enough. The value of o will depend on those of
§< 3 <8y

Recall following two estimates related to the linear 1-dimensional periodic Schrodinger operator (cf. [By])

1/2
<c (Z/dA A+ &2 >/ |a(k, A)F) (1.65)
k

ZfdA ﬂ(.’;,;\] ei(l‘a‘+)£)
k

L:nc(ﬂL:(T}

1/2
Zfd)\ a(k, A) elka+At) < K (Z[d) A+ k2| |a(k,)\)|2) ‘ (1.66)
k

kK LS LS(T)

lac{l)
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2. Estimation of (1.19)
Define
ok, A) = |A + k2|2 [a(k, M)
ek, A) = |k|™* c(k,A)
Tk, A) = k|7 c(k,A)

hence

Bub = [1{2(k, MHlez ez + 142 A Hlego 2
We have to estimate(*)

j;"-/\l +Aa+As

k=ky+kadks
2.1)
e(ky, A1) e(ka, Aa) c(ks, Az) (ky + k2)? |k|* d(k,X)
A1+ K22 A — RYVZ Ay + RS2 N RZTZ (A 4 X))+ (ky + k)] (A + A2) = (k) + k)|
Observe that
—  max(|(Ay + A2) + (ky + k)|, [(Ar+ A2) — (k1 + k2)]) 2 [ky + ko (2.2)
—max (A +EF1Y2, e~ k31ME (O 4 A2) £ (ka4 k2)[Y2) > (k4 kol [k — kg £ 1])1/2 (2.3)

— max (|Az 4+ k3[M2, INF B2 (O + A2) £ (ky + k2)|V2) > (kg + ka| [k + k2 4 2k3 £ 1))1/2. (24)

Thus (2.2) yields one |k; + k,|-factor. Either (2.3) or (2.4) yield another |k; + k;|-factor, unless

[ki| ~ |kaf (2:5)

and
lky + k2| ~ |k3]. (2.6)

Assume (2.5)4(2.6) does not hold. One estimates (2.1) by

c(kls Al) C(kz, ’\?) c(k3) '\3) d(k!k)
o+ K072 oo — K177 Do+ K372 v K272

(Ikr] + |k2] + |ka)?

(2.7)
(A + K212 4 g = B31Y2 4 g + K212 4 A + £2)1/2)

which may be further estimated by an (L2, L%, L® L®)-bound using (1.66) as in the case of the 1-dim NLSE
(ef. [Bou])(*¥).

In fact, considering instead of (2.3) (resp. (2.4)) (2.3) - (2.4)* (resp. (2.4) - (2.3)*) and the possibility of
replacing the }-denominator power by 3 — ¢ in the L®-inequality

(*) Denominator expressions |...| will be understood as |...}+1.
(**) The (|k1|+]kal+ka]) -Tactor is absorbed by s(k,, Ai; ) where [k, 121k |21k,
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1/2
ik A(k, A) i : 2
S :/]A_—ﬁm‘f"m dX K K@ 5" [ dx Ak, N)|
k

one may gain a power |k|*, unless (since either (2.5) or (2.6) is assumed to fail)

Le

loc(=,)

(2.6) fails and ky — k2 = 0(1) (2.8)

or
(2.5) fails and ky + kg + 2k3 = 0(1). (2.9)

In both cases (2.8), (2.9) a power |k|° may be gained also, using c(k;,, A;,) where [fc,-,| > kiy| 2 Jkisl-
Hence if (2.5)+(2.6) does not hold, there is a gain of an extra |k|*-factor for some constant £ > 0.
Assume next (2.5)+(2.6).
Rewrite (2.1) as

by + ko'~ by | @k, Ag)  @(kahs)  G(ks,ha)  d(k,A)

. 2.10
O + %) £ (ks + &) Tt + 2072 e = K2PTE Dhg + 077 At #2072 (2.10)
Assume
by — ks = 0(1) (2.11)
ki + ko + 2k3 = 0(1) (2.12)

are not both valid. Then one may exploit (2.3)° or (2.4)° to gain |k; + ko|° and estimate (2.10) in

L4 L% LY L*) using the Li-bound (1.65
g
1/2
< (Z [ xiag, A)F)
k

provided s > 15£ (< 1). In fact, there is clearly again a gain of a |k|* < |k, |* factor.
If (2.11), (2.12) hold, one has for (2.1)

pe [ AN
e [ i < o

L

4
loc(x.1)

f k 14s C(klaAl) C(kl)Ag) c(_kl)’\3) d(k]_‘A) (2 13)
PREZ YRV : Ar 4+ kZ[V2 (g — k312 A3+ kF[V2 A 4 k212 )
which is estimated as (s; > 3)

ey 1251 c(ki, A1) c(ky,A2)  T(=k1,A3) d(k1,}A) (2.14)

A+ k{12 Dy —kF2 g +RF12 N R

;.xed‘k]l ji:ed‘kll ‘l 2 41 a
L L} LiLg LiLz

Assume s5; < 5 +¢ (¢ > 0 some number; see above). If s; > %, the £} L}-norm of (2.1) is controlled. For the
£° L-norm, one multiplies with |k|** instead of |k|*. Since s; < s + ¢, previous estimates already yield the
bound, except if (2.11) and (2.12) hold.

If (2.11)+(2.12), one meets the condition 1+ sy —3s; <0, i.e. 5, > 3.

Since the estimated are not tied, one may allow an extra factor |k|?, ¢ > 0, referred to at the end of previous
section.
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3. Estimation of (1.18)

~/‘\=1\1+12+»\3

c(ky, A1) c(ka, A2) e(ks, Ag) (k1 + k2)? |k|® d(k)

k=k +kotks

M+ EF12 [hg — k3172 g + K312 D4+ B2 1O + Xo) + (ky + k2)| (A1 + A2) = (k1 + ko)

T d(k)? = 1.

Write, letting &6 > 0 be arbitrarily small

dk)  _ dk) 1
o N P W T A P T

and denote the first factor d(k, ). Thus 5, [dA d(k,2)? < 1.

(3.1)

(3.2)

In (2.1), the | + &2|"/2-factor in the denominator is then replaced by |A — k2[3=%. This is again harmless,

letting & be sufficiently small, as appears clearly from preceding analysis.

4. Estimation of (1.20) and (1.21)

Consider (1.21). The modifications for (1.20) will be indicated at the end of this section.
3 dAy dAg dA
k=ky+ka+ks

[E]* |k + ko) c(ky, Ay) e(ka, Aa) c(ka, X — ky — k2) d(k, )
[(Ar + A2) £ (ky + k)| JAy + £21/2 {Aa = B3[1/2 X — ky — ko + R3[1/2 |A + £2]1/2

max (1A + B2 Do = K32 L IO+ Ae) & (b + ka)/2) > (ks + kol [y = ko 1))

max (|,\ — k= ko K3V IR > (ko ol R+ ks o 2k 1)

Assume |k;| > k2.

(1) lks] # |k1 + ko
Then (4.3) is a least ¢|ky + k2.

(1.1) |A — ky — ko + k3M2 > by + kol
Define

1 J T k |/\ ) E(kg Az)
— i(ky+ka)(z+1) di: d L‘( 1y A1 3 }
F(I,i) L_IZL_IC {f 1 ,\2 tv\l‘!'ki?llﬂ t)\B_k%IUg |(Al+)i2):|:(k1+kg)|
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G(z,t) = ): f d)a T(ks, A3) e'(ksz+Aat) (4.5)
L

H(z, 1) —Z f D 1 )«T&-:}zf% (HEEHA) (4.6)

Reexpressing in terms of functions, estimate (4.1) by f‘rx[o,l] FGH dz dt < ||Flls - ||Gllz ||[H|l4a- In fact,
IF)lg < oo for g < oco.

Estimate ||F||, by Hausdorff-Young. Take weights w(f) > 0 s.t. 3 w(f)? < oo and consider

w(kl-l-kz) -
dX; dX ki, Ay) €(ka, Ag). 4.7
kzk:/ v TR, SR O A ()] M) FlE de) (4D

From Shur’s lemma, it suffices to bound uniformly for fixed (k2, A;) (and vice versa)

Zfd,\, wiky + ko) _ (4.8)
' (1A +RE2 4+ 1) (A2 = B2+ 1) ([(A + A2) £ (ks + k2)| + 1)
Use the fact that for 0 < o, <1, 0+ 8> 1
dA 1
< . 49
P T D (X3P 7D = TFfa= p)eo- @)
Hence, integrating (4.8) in A; yields bound
1/q'
5 wlky + k) —<|o 1 : (4.10)
e [+ e — k£ (b + k2)|]57 o [+ Do — kP (b + ko)) ¥
from assumption on {w(€)}. Since for all « € R, o > %,
-—-—-——1 411
Zb:1+|k2+a|a'<c ( )

this gives the estimate.

Remark. Considering (4.2)¢, for some ¢ > 0, and the fact that in previous estimate, the exponents of
(AL + B2 A — k3|Y2 or |(A) + Ag) £ (k; + k2)] may be lowered, a factor |k|f, ¢ > 0 may be saved, unless
k1 — k2 = 0(1) in which case we use the |ka|*-factor, |ka| ~ |ki + k2|, coming from c(k3, A2), for this purpose.

(1.2) |X + E2|M2 > |ky + ko

Redefine
E(kfia’\:i t kaz4Aa
H(z,t) = Z/d)\ d(k, \) ke +A0 (4.13)
k

and estimate (4.1) by [ FGH < ||F|l4 [IGlla 1H]l2 < Jull® as in (1.1).
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(2) lks| ~ lky + kal , kv + ko + 2k3 # 0(1)

Then (4.3) is at least |ky +kz|'/? and the |ks|*-factor from c(ks, A3) gives another |k + k2[*. Hence it remains
to gain |k; + k2|3~ (s < } close to 1), which may be done from (4.2), unless k1 — k2 = 0(1), in which case
we use the [kz|*-factor from c(k2, A2). Use the same estimates as in (1).

(3) ky + ks + 2k = 0(1)
Rewrite (4.1)

S ] dA; d)o dA

ky kq
(4.14)
[ky + ko *1 c(ky, \y) c(ka, Ao) c(—51EE2 | X —ky ~ k) d (BrEE2 | ))
P 1/2 1/2
IO+ 22) £ (R + k)| X+ RF1/2 Do = B3IV [\ = by = ko (B3E0) [ a4 (B’
(ka:_h;_kz , k=h:§£z)‘
Hence
> /aul dXy dX
(4.15)

ik] + k2f1—3| E(k],f\]) C(kg,Ag) ?(-—h_gb , ‘_\ _ kl _ k?) d(k|¥k2 , A)
2 2 . 1/2 1/2
[(AL+ A2) £ (ky + ka)| [Ag + K2|1/2 |y — k2[1/2 |A_,;1 _k2+(k|i213)2| ’H (gt )2|

(3.1) {kq] ~ |k2|

If |k1| ~ |k2|, we may replace |ky + ka|'=*' c(kq, Ay} by @(ko,Az), assuming s + s; > 1, and estimate by
J F1 -Gy <||Fi1)l2 - ||Gi]]a, where

: r c(k ‘A )Z(kg,/\z)
F, = i(ki+k2)(5+t) V/d’\ d\ C( 1; A1 ‘
l klzkge { VU INH R g = B3IT g Ag & (R + k)]
(4.16)
172
Pha+ (agta)’|
Ak A) itk

Zfd,\ T © ) (4.17)

1/2
To estimate || F||2 < (Ek (Cerprsd }] Ilc[ltmLz) , consider {w(#)} with 3_w(£)? < 1 and the expres-

sion

16



[da, d wiky + k2)
ol [Xr 4+ kZ12 | Aa — k2112 [Ay + X & (ky + k2)|

¢(k1, A1) c(kz,Az)

which is bounded from the estimate of (4.7).

(3.2) [k1] > [k
Then (4.2) > |k;|, hence we consider (4.2)'~*' to cancel out [k; + k2|'~** in the numerator of (4.15).

(3.2.1) | Ay + £3[V2 > k|
Estimate (4.15) by

> fd,\l dXy dX

ki ka
(4.18)
F(k1, A1) e(ke, Ap) T(—Batha | A —ky —ky) d (B2, 2)
] 21172 21172
[0+ Aa) k(4 k)l D+ B3 Do = 21172 [\ = by — by o+ (B580)° 7 A (Bgta)’]
and hence, by [ F» Gi < ||F2|l2 ||G1]2, where
E(kltxl) E(k2)A2)
ilkitka)(F+1) /d«\ d»
kfv‘—k’a { (A1 + A2) £ (ks + ko)l M + k317 | Ao — £3]1/2
(4.19)
c(-fdka
]dka etrst 31);2
|,\3_|_ (_x:l'_z.) l
d(" )‘) —l(l:a'-l-,\t)
G, = Zfd)\ Py ) (4.20)
To bound |[F3||2, consider {w(£)} with 3 w(¢)? < 1 and the expression
w(ky + ka) -
d, d) : #(k1, A1) (k2 o). (4.21)
§f C TR R B ) £ R k)]

When applying Shur’s criterion on the ((ki, A1), (ka, A2))-matrix in (4.21), the (A1, k;)- summation yields by
(4.9) and assumption on w

1/2
wlki + k2) 1
— < <c
E 1+ k2 & (k) + ka) — Ao F— 7 (%: 1+ |k2 £ (ky + k2) — Xa|r—

ky

by (4.11) since s, > §
(3-2.2) |Az — k32 2 |k

17



idem as (3.2.1).

(3.2.3) |(\1 + A2) & (kr + k)2 > k]

We then estimate (4.15) by

S f dA, dX, dA

k:.’-’:

(4.22)
k1, A1) Bk, do) T(=Ktke | X — kg — ko) d (8352, ))
. 1/2
[+ Az) (ks + ko) [555 [hy 4 RV g = RBIV2 |3+ (Baga)’|
and let
Fy= Z pilka+ha)(5+) {fdll Ay E(klv):‘l'-) t(ka, A2) }
P [+ Aa) & (ky + k2)[ 775 Ay + K32 (A — K312

(4.23)

(v (23 2)}

Thus we bound (4.22) by [ F3 -G, < ||Fs|l2 - [|G1]|2 and the estimate on ||F3||2 amount to apply Shur’s
criterion on the matrix

w(kl =+ k'a)
= (4.24)
WAL+ X)) £ (ky + ko =T Ay + kE2 A — k3|12 (k1)

ky.hg)

where 37, w(¢)? < 1. Performing the A;-integration in (4.24), one gets from (4.9) (3 < 51 < 1) again

1/2
w(ky + k2) 1
T < <e.
; k7 £ (ky + k2) — Ao F (; Ik¥i(h+kg)+hzl“)

Next we have to bound for fixed &

> dAy dXs dX
k=ky+katks
(4.25)
“CI" |k1 + kgl (‘(kj,/\l) C(kg‘hg) C(ka.)\ -k — kg} d(k,r\)
[(A1 + A2) & (k1 + ka2)] [A + EF[H/2 {Aa — k212N = ky — ko + k312 |\ 4 k2|12

when verifying |[{Z(k, MHlegozz - In the cases (1), (2), there is a gain of a |k|*-factor for some (numerical)
£ > 0, as pointed out. Thuq if 5y < s+¢, the |[Ellm g2 (S lIEll¢2 2 ) bound is already obtained, except in the
case ky + ka + 2ks = 0(1). Assume ky + ko + 2kz = 0 say. We have to estimate (cf. (4.15))
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S /d)q Az dX

ki+ka=t
(4.26)
[€['=* 2k, M) e(ka, A2) T(=5, A —€) d(})

/2 1/2
10w+ A2) € [\ + 20172 g = 3172 =2+ (57 A+ (9]

for fixed £. Here [ d(A\)? dA < 1. Applying Holder’s inequality when performing the A-integration yields for
(4.26)

[€]1=2 E(k1, A1) (€ = k2, A2)
dAy dA . 4.2
ij L TR £ A P+ K27 g — (€= BT )

(3.1) |ka| ~ |6 = ky| , £ —2k1 #0(1)
(4.27) yields

|€]*=2* E(kq, A1) €€ — k1, A2)
dAy dA . 4.2
J:E;/ PR IO0 ) 2 P+ RITE g — (€= k)22 (428)

Using (4.2)2(1-2%) gives then a bound by one of the expressions

) / Dy g ks, M) T = by, Ao) |
o [(A1 + A2) £ €] Ay + B2[2=% Ao — (€ — ky)2[1/2
(4.29)
T(ky, A1) B(£— k1, Aa)
dAy dAs
kzlf 1 84z (A1 + A2) £ €] [Ay + k2|3 A2 — (£ — ky)2[2-%
E(klw\l) E(f — ki, a\g)
s : 4.30
Lzlf 1 [(AL + A2) £ €2 (A + k2|5 |As — (£ - k1)?]3 (4.30)

First integrate in A1, A, considering the denominators in (4.29), (4.30) as (A1, Az)-matrix element. By Shur,

one bounds by ([ &(k1,A1)? d)tl)l”2 (f2(t = ky, Az)? d)g)”z. Here we assume s > ;. The resulting k;-
summation is bounded by |g||%, ., from H&lder’s inequality.
kA

(3.3) £—2k; =0(1)
Let &y = %, say. Then (4.27) becomes

lfll-»h; (L LA bl £ , ).2 -
/dh @ 5 31)2 ugz ) 2|72 < IRl o2 (4:31)
G+ d£e P+ (] - (8]

estimating the (A1, A2)-integration as above.
(3.2) k1| > |€ — k|
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Then (4.2) > |k;| and we consider (4.2)'~* to cancel out |€|'~* in (4.27). In (4.29), one gets the denominators
[(A 4 A2) £ €] [Ar 4+ k212 A2 — (€= k1)2|Y2 or (A + A2) £ €] | A + k312 A2 — (£ = k?)[*/? and in (4.30)
the denominator |(A; 4 Ag) £ £|3+5 |A; + k2|2 [A, — (£ — k1)%|"/2. The (A, Az)-integration may thus again
be estimated by Shur’s Lemma.

Estimation of (1.20)
The same comments apply as for (1.18). Again the estimates in (1.21) are clearly not tied.

5. Estimation of (1.22) and (1.23)
Recall that in both sums the terms &' = 0, —2k3s £ 1 (with matching sign) are deleted.
Consider first (1.23). The contribution to the || [|¢z ;2-norm is bounded by

) fd). ks + k** lexs| e(ka, X + k1) d(ks + k', A) 5
[N kY R2[L/2 \X + (k3 + k1)2[1/2 .

k' kg
k!0, =2kat1

where
Z/d.\ d(k,A\)?* <1, d(k,A)>0 and |ep| < |k']°. (5.2)
k
Observe that for the denominators
max{|A £ &' + k3], A+ (ks + K[} > || [2ks + & F 1 (5.3)
where from assumption on the summation in (5.1) non of the factors in (5.3) vanishes

(1) Ikl > [&Y]

Estimate (5.1) by

f‘”‘ (k|7 Z(ks, A % k') d(ks + k', \)

. 5.4
A kY + k2|12 | + (k3 + k1)2|3 (54)

ka k'#0,=2katl

Since (5.3) is at least |k!|, one of the denominatots is at least [k!|# and we bound (5.4) writing

5 f‘“ 2(ka, A) d(ks + k' A F k)
N+ K777 [T R (ks + R

kg, k?

1 1/2
) | d(ks + k', A F k')
< AX ———=
< llellez L2 [kza/ A+ k2[i-2° (; AN F k! 4+ (ks + k1)2[3-7

9

i Y
- 1
< |fel ZfdA PR Zd(k3+k1,A:Fk1)2]
L ks k1l
,f')

- 1/2
d(k', X F k' £ k3)?
<l | ¥ [ar 5T *"’]

k3, ki A+ k3|12
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12
d(k, \)?
< |lel j > :
kzk NZ FLF ks + K212

< el [1{d}t = Ilell (5.5)
provided 1 — 2¢ > % We used here Hélder’s inequality, (4.11) and variable changes.

(2) |k > [ks]

(5.1) becomes

1js4o 1 1
5 f‘” k1[4 c(ka, A £ k') d(ks + k', 2) 5.6)

2] P R RITI (ks + E
where now, by (5.3), the maximum of the denominators is at least |k'|. The preceding calculation is clearly
conclusive provided s + o ’

s+o< = (5.7)

Consider next the || || 12 -norm, bounded by

K117 c(k — k', A £ k1) d())
sup |k|*! fd/\ o5
kp k| k‘#gﬂﬂ INE k' + (k= RD)2[72 X + k2172 (5.8)

where [d())? <1, d(\) > 0.

The argument in case (1) above permits to bound (5.8) also, since the |k|*-factor may have been replaced by
|k]**, provided s; — s+ ¢ < ;. Assume thus case (2), i.e. k'] > |k — k'|. Since the denorminator in (5.8) is
at least |k|, we get applying Holder’s inequality

nto— = - —t-s4s
o=t ST ek = kY )llgg (14 k= )0 < kT gl g (5.9)
kUi [~k
This is certainly conclusive if s, — s+ 0 < l—.
In the (1.23)-analysis, the factor m may be replaced by I‘;-l-_kl’r‘r:’ so that the preceding also yields the
estimate on (1.22).

This completes the estimates on (1.18)-(1.23), hence the (1.17)-norm of (1.11)-(1.16) and therefore (0.8) and
the solution u of the modified equation (cf. (0.9))

i+ gy — Lu=ug [T (Juo|*)zz + [uo W(t) (a,b) ~ L up)
(5.10)
u(z,0) = p(z)
6. Application of the contraction principle
Let T be the transformation uo — u defined by (5.10), i.e.
iugtupe — Lu=uo [T (Juo)*)er +uo W(t) (a,b) — L uo , u(z,0) = ¢(z). (6.1)

Here i, a,b fulfil the hypothesis of Theorem 1, i.e.
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p € H(T), sup [K[™ [§(k)| < oo and sup ([k[7 [a(K)], ]~ [B(k)]) < oo (62)

It follows from the preceding that for suitable values of 0 < s < % < sy < 1, & > 0, the transformation T’
maps the ball

”E”:tzf.g <1 , “E“g:n[“i <1

denoting

Tk, ) = (14 [E)*) (L+ A+ K22 [a(k,N)] and 3k, A) = (14 [k[*) (1+ A+ k2|M2) [a(k, M) (6.3)

in a bounded set in the same space. From the systematic gains appearing in the above calculations, there is
a saving on the denominator factors |A; £ k?|1/2, allowing to obtain estimates in terms of Jul*~* ||u||} rather
than Ju]], for some & > 0. This feature permits to verify a contraction property of T for the previous norm,
provided one restricts to a sufficiently small time interval (these considerations are similar to those in [By,3]
and we don’t elaborate them here). Hence the fixpoint theorem applies and yields a solution to (0.9) hence
(0.8). This proves Theorem 1.

It remains to verify the properties of n, defined by equation (IT)

Ny — Ngr = A |ul?
{n(:t;,(]) —a, 8 n(z,0)=b (6.4)
We also consider the auxiliary field V = V/(z,1) defined by
V.‘.',' = —nr _
{ Vi = —na — Jul2 / V(z,t) de = 0. (6.5)
We then have a hamiltonian setup
TU = —Uzzr +N U
Ve = —ng — ful? (66)
n; = _Vt
with Hamiltonian
H= f [luel? + %(n2 +V2) 4 nluf?) dx (6.7)
T

with (Re u,Im u) and (%, V) as pairs of conjugate variables, where # = 2=1/2 n, V = 2-1/2 D1 V (see
{1-R-S]). For initial data (g, a,b) in (H!, L2, H~1), (6.7) gives thus a priori bounds on [Ju(-, t){{g, {In(-, )}lr2,
[|18¢ n(-,t)||r-2. Theorem 2 follows from this fact and Theorem 1.

7. Estimation of n and V'

Considering the weaker assumptions on ¢,a,b from Theorem 1, one may bound |[n(-,t)||2, [[V(-,%)||2 from
(0.5), (1.5) and the estimates obtained for u (considering the local problem).

Considering the contribution of the first term [ ]! (|u)?)z- in (0.5), thus

I (uP)e Ol + 18 " (s @]l (7.1)

formula {1.5) yields the estimate
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c(k1, A1) c(ka, A2) d(k) ,
2, ) M T R g R

kyka
(7-2)
c(ky, M) c(ka, A2) d(k)
dAy dXs || (Jk] + |AD
kzk/ LU+ D) T =R I+ B2 1~ B ey
where 3, d(k)? < 1.
One of the factors A + k or A — k takes care of |k| + [A|. Observe that
P D T R P e -l LU R O PE S i (7.3)

Assume |k;| > |ko|. A straightforward analysis considering the different cases |ki| > |ka|, [k1] ~ |k2,
ky— k3 = 0(1) in the spirit of the previous arguments shows that (7.2) is bounded. In the case k; —k; = 0(1),
also the second part of the norm (1.17) {Ju]| is used again. We skip details.

It follows thus from (0.5) that up to the W(t) (a,b) (resp. 8, D;' W(t) (a,b)) term, ||n(-,t)|l2, V(.. 0|l
are bounded. .

In particular n(-,t) and 8; n(-,1) satisfy the assumption on a (resp. b} of Theorem 1.
8. Invariant measures
Letting H be the Hamiltonian (6.7), the formal Gibbs measure
e X, [WuprargB) I @ u(z) d 7i(z) d V(2)] (8.1)
r

with i = 212 n, ¥ = 2-1/2 Dz1 V is formally invariant under the flow (6.6).

Observe that H may be rewritten as

= [ a3 b4 g oy V7] (82)

and denoting 71 = 2-1/2(n + [u[?), (8.1) gives

{8”'"" Xqpzesy e/ [l:_[ o u(-‘*:)]} {e_f(z)g [l;[ dﬁ(x)]}

{7 [ e

(the first part is the invariant measure for the NLSE) so that after normalization one except as generic
elements (u,7n, V) in its support random Fourier series of the form

(8.3)

u= Z% Gir(w) e** (8.4)

7= Z(gi (w) coskz + gi(w) sinkz) (8.5)
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V= 2 % (93 (w) coskz + gi(w) sinkz) (8.6)

where {gi} (i = 1,2,3,4) are independent Gaussians and {Gx} independent complex valued Gaussians.
Thus (8.4) clearly satisfies almost surely the hypothesis on the data p in Theorem 1, ie. (s < <351 < 1)

p € H(T) and sup [k}** |§(k)] < oco. (8.7)
Choosing ¢ > 0, one has for (8.5) almost surely
sup [k~ %(k)‘ < 00 (8.8)
implying, since & = 2-/2 (n + [u]?), also
sup [k]™7 [a(k)] < oo (8.9)
(8.6) yields
Ve =Y k(g}(w) coskz + g sinkz) (8.10)
hence, from the equation n, = =V,
sup. K[! (k)] < o0, (8.11)

Thus (8.9), (8.11) were the assumptions made on the data a,b in Theorem 1.

To prove Theorem 3, i.e. the fact that the Gibbs measure is supported by an invariant set on which the
Zakharov system is globally wellposed, we repeat the steps in [Bos) for NLS equations. Thus first, one
considers the finite dimensional model, obtained by considering only frequences |k| < N and the modified
system

iul = —ul + Pv(n™ u) uN(z,0) = oV (2)
nN = Vv~ aN(z,0) = a¥(z) (8.12)

ViV = —nf + Pn(julV]2) V¥ (2,0) = D! bV (z)
where "V, nV, V¥ have Fourier series with respect to the z-variable restricted to |k| < N and Py is the usual
Dirichlet projection. The proof of Theorem 1 yields local wellposedness of (8.12) with bounds independent
of N. In particular, the size of the time T is controlled by the data (in a polynomial way) and will be at
least 7 > 0 on a subset of the statistical ensemble which (normalized) Gibbs measure is > 1 — e~ (fixing
any small 7). The phase space is obtained by considering the Fourier transforms of u,n,V as canonical
variables (rather than the functions themself) and the introductory remarks in the beginning of this section
are rigorous because finite dimensional. In particular, one has invariant measures and the reasoning in [Bos]
for NLS ¢ u; + tzy + u|ufP~2 = 0 with p > 4 may be repeated here. Thus the invariant measure is used as a
conservation law when braking up a given time interval in small subintervals for which Theorem 1 applies.
This reasoning yields for any é > 0 a subset of the phase space of complementary Gibbs measure at most 6
and on which (8.12) is globally wellposed (with bound independent of N) with estimates on u™ (¢, -), n™¥(t, )
and VN (t,-) of the form

1/2
(los 12) 7 >

for any choosen 0 < 0,0 <5 < % < s1 < 1 such that Theorem 1 is applicable.

w+ sup (k" [N @) (k)] + k=7 (nN@)E)+ IVI@KR))  (8.13)

Once the finite models analyzed (with uniform estimates in N), Theorem 3 for the original system is then
(easily) completed as in [Bos).
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