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On the Cauchy Problem and Initial Traces
for a Class of Evolution Equations
with Strongly Nonlinear Sources

D. ANDREUCCI (*) - E. DI BENEDETTO

PART I

The Cauchy Problem and initial traces

1. - Introduction

We study the structure of non-negative solutions in some strip

0  T  oo, of degenerate parabolic equations of the type

Here a is any real number, so that the coefficient of uP might either grow or
decay as x ~ --&#x3E; oo.

We investigate existence of initial traces of non-negative solutions and
the solvability of the Cauchy problem when the initial datum uo is merely a
function in or even a Radon measure ti.

Pervenuto alla Redazione il 16 Giugno 1990.
Partially supported by NSF grant DMS 8802883.

(*) Supported by Italian National Project (MURJT) "Equazioni di evoluzione e

applicazioni fisico-matematiche".
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The existence results hold for uo of variable sign (see Remark 3 .1 ), in
which case the equation reads

Degenerate diffusion equations with coefficients strongly depending on
the space variables have been studied in [21]-[22]. They arise in modelling
the transport of particles in plasma confined in tokamaks. We refer to the

bibliography in [22] for more detailed information on the physical situation.
The main feature of this class of equations is the interplay between the

degeneracy in the principal part, the growth of the forcing term and the behaviour
of the solutions as x ( ~ oo.

As an example of the unusual behaviour of solutions of (1.1), we mention
that solutions global in time never exist for sufficiently small p, whereas they
may exist for sufficiently large p. Moreover Galaktionov et al. [16] produce
a subsolution of ( 1.1 ) with a = 0, that blows up in finite time, remaining
compactly supported in the space variables.

When p &#x3E; m we show that all the non-negative solutions of (1.1) in ST
have the same behaviour as x ~ ---&#x3E; oo. For example, if a = 0, for all 0  t  T

their L 1-average over a ball of fixed radius and centered at x must remain
bounded as lxl - oo (see Section 2 for a precise definition). In the case a = 0
the same characterization holds V p &#x3E; 1. Therefore the Cauchy problem is
solvable only if the initial datum uo satisfies such a behaviour; for example
uo = const would satisfy such a condition. The solution will be local in time
with T determined by uo and will be shown to be unique.

Solutions global in time are not expected to exist in general as (1.1), with
a = 0 and initial datum uo(x) = const, yields the o.d.e. u’ = uP whose solutions
cease to exist after a finite time.

Most of our results hold for rather general equation with quasilinear
structure and with um replaced by degenerate non-linearities We have
chosen to present the main results in the setting of (1.1) and collect later

generalizations and extensions (see Section 6). They also hold for the linear
case m = 1, thereby recovering results on optimal solvability for such equations
existing in the literature [5], [7], [33], [34].

1-(I). Comments on the case cx = 0

As a cross section of our results, we discuss briefly the case a = 0. For
the precise meaning of solution we refer to Section 3.

Optimal conditions on the initial datum uo, for the solvability of the

Cauchy problem associated with (1.1), are of global and local nature. The

global conditions regard the best possible "growth" of uo as Ixl - oo to insure
existence of a solution. The local ones characterize the minimal "local regularity"
of uo needed for existence.

The results below hold for all m &#x3E; 1, therefore including the linear case.
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The subcritical case 1  p  m + 2 Let ti be a Radon measure in R~.

Then ( 1.1 ) with initial datum ~(-,0) = ~ in D’(Rt) is solvable if and only if

Solutions are local in time and cease to exist after a finite time T  oo connected
with the quantity in (1.2). We refer to Sections 3, 4 for estimates on such a T.
Global solutions cannot exist (see subsection 3-(II)).

Every Radon measure it satisfying (1.2) yields a unique solution satisfying

Vice versa every non-negative solution u has an initial trace &#x3E; satisfying (1.2).
As a consequence, all non-negative solutions of (1.1) in ST (with a = 0), behave
as (1.2)’ as x - oo.

No local requirements are imposed on p other than (1.2).

The supercritical case p &#x3E; m + 2 On the initial datum uo we assume- 

N

Then ( 1.1 ) has a solution u local in time, such u(x, t) satisfies (1.3)
for all t E (0, T).

Every non-negative solution of ( 1.1 ) has a unique trace p, a Radon measure
satisfying globally (1.2) and locally the extra condition

for all p sufficiently small and for all x E RN (see subsection 4-(IV)).
Necessary local conditions such as (1.4) have been derived by Baras-Pierre

[7] for the linear case m = 1 by making use of the capacitary potentials of
Meyers [29]. We derive them for all m &#x3E; 1 from simple integral estimates on
(1.1). In this connection, we also mention the papers [6], [10], where equa-
tions of the type of ut - Au = -uP are considered. Global integrability conditions
of the type (1.3) have been given by Weissler [33], still in the linear case m = 1.

N
In [33] it is claimed that existence holds also in the limiting case - N - 1).[ ] g q 

2 
(p )
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The proofs are heavily dependent on the linear nature of the principal part and
on the fact that the integrability conditions are global.

N
It is relatively simple to extend our results to the limiting 

2
under the extra condition that is sufficiently small. We will pursue the
matter of the limiting cases in a forthcoming work. The solutions are, in general,

local in time. However if p &#x3E; m + 2 , global in time solutions do exist if the
N 

g

datum uo is sufficiently small in a suitable norm (see subsection 3-(II)).
Results related to global solvability are due to Sacks [32], Galaktionov,

Kurdyumov, Mikhailov, Samarskji [16] and Galaktionov [14].

1-(II). Structure of the paper

In Section 2 we introduce some Banach spaces to describe the behaviour
of the initial data as ~x~ I - oo. This is done for all a E R. These spaces and
their properties are further discussed in Part II. There we prove some covering
lemmas and embedding theorems needed in the proof of uniqueness. We also
compare them with the spaces introduced by Bènilan-Crandall-Pierre [9].

The main existence theorems are collected in Section 3. We state the
main Lloc-estimates and integral gradient estimates on the solution and trace
their connection with the blow up time. We also give global existence and non
existence results, discriminating the sub and super-critical cases.

The optimality of the growth conditions on the initial datum is shown via
a theory of initial traces developed in Section 4. This will include the behaviour
of solutions near t = 0 and as x ~ --~ oo, as well as a Harnack type estimate.

Uniqueness holds for solutions that blow up "not too fast" as t ~ 0. We
refer to Section 5 for the precise statement. Here we only remark that some
condition near t = 0 is in general needed to guarantee uniqueness as shown by
the results of Baras [4] and Haraux-Weissler [19], for the linear case m = 1.

Generalizations to equations with full divergence quasi-linear structure is
discussed in Section 6 as well as extensions to equations of the type

where the non-linearities ~p( - ) and g(x, - ) need not be powers. In Section 7 we
present the main technical tools. These are Lloc-estimates in the spirit of [1],
[2], holding for rather general degenerate evolution equations. Also we derive
sharp integral gradient estimates "up to t = 0".

Some emphasis has been placed on the case m = 1 in view of its

independent interest. The main results relevant to the linear case, have been
stated independently and separate proofs have been produced when necessary.
Proofs and supporting lemmas are collected in Sections 8-15.

We denote with /y = ¡(q1, q2, ... , qn), n G N, a positive constant that can
be determined a priori only in terms of the specified quantities Q1, q2, ..., qn.
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2. - Behaviour of solutions as Ixl -&#x3E; oo: the 

We describe the class of initial data that insure existence of solutions to
the Cauchy problem associated with (1.1).

Let r E (-oo,1) and for x E let

Let q &#x3E; 1 and () E JR.. For define

provided the right hand side is finite. Here for a bounded measurable set L,

and )E] denotes the Lebesgue measure of E.
Spaces of functions f with finite will be investigated in

more detail in Part II. Here we will use this norm with the following specification
of the Assume first that

We set

(2.5)

and

REMARK 2.1. If a = 0, (2.6) implies is finite if the Lq norm of

f over a ball of centre x and fixed radius is uniformly bounded with respect
to x E R!".

If cx  0, the integral averages in (2.6) are taken over balls whose radius
tends to 0 as Ix ---&#x3E; oo, so that roughly speaking f has to decay nearly pointwise

a

as fast as when |x| ---&#x3E; oo.

then Illflllq is finite if for example ~ and

grows no faster than
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When since u is a non-negative supersolution of
,,v fJ ..L

the porous medium equation, we must have

by the Hamack estimate (see [2] Section 4).
Consider next the case

We observe that the source term in ( 1.1 ) can be majorized by

Therefore, if p = m, the methods of [2] imply that x --&#x3E; u(x, t) grows no faster
2

than ( 1 + Ixl)m-1 as --&#x3E; oo, no matter how large is a. This suggests that
for p &#x3E; 1 the behaviour at o0 of solutions of ( 1.1 ) is described by a norm
independent of a. This is indeed the case, as stated in Theorem 3.1.

Let p &#x3E; 0, q &#x3E; 1 and for f E define

where

If p is a locally finite Borel measure in JRN we let

where dlitl I denotes the variation of it.

REMARK 2.2. Fix :

the ball

To x associate
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If we set formally , then (2.6) can be rewritten as

,n - 

There is a formal similarity between (2.8) and (2.6)’. Namely in (2.6)’ the
centers of the balls Bp(x) and the radii vary with x, whereas in (2.8) the centre
is fixed and only the radius acts as a parameter.

It is natural to ask whether  oo implies Illflllq  oo. It turns out

that this is not the case in general; however the converse is true. The spaces
of functions f E for which  00  (0) for some q 2 1,
endowed with these norms are Banach spaces.

One of the main features of these norms is given by the following

LEMMA 2.1. Let d &#x3E; 0, r e (-00,1), () E R and q &#x3E; 1 be fixed. Then there
exists a constant I = ~y(B, r, q, N, d) such that

where, as before,

PROOF. We have only to observe that there exists a constant ¡ = led, r)
such that b’ x E V y E 

3. - The Cauchy problem: existence of solutions

Consider the Cauchy problem

A non-negative measurable function u : ST - R+ is a weak solution
of (3.1) if for every bounded open set Q with smooth boundary 8Q, setting
i2T=QX (0, T), for all 0  t  T

vanishing near t = 0 and near
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Moreover

If the second of (3.1 ) is replaced by

p finite Borel measure in e,

then we say that u is a weak solution of the Cauchy problem ( 1.1 ), (3.5) if

(3.2)-(3.3) hold and (3.4) is replaced by

THEOREM 3.1. Assume that uo &#x3E; 0 and

Then there exist a constant i = ¡(N, m, q, a, p) and a positive time To defined
by

such that there exists a weak solution u to (3.1 ) in the strip STo’ satisfying for
all 0  t  To,
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where I depends also on Q .

. Assume that

Then there exist a constant I = ¡(N, m, q, p) and a positive time To defined by

such that there exists a weak solution u to (3.1 ) in the strip STo’ satisfying for
every 0  t  To,

where -1 depends also on a.

3-(1). The case m = 1

In the non-degenerate case m = 1, the statement of the problem and the
definition of solutions is obtained by taking, formally, m = 1 in (3.1)-(3.3).
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From the definitions of Section 2 it follows that r = 0 and ’ 
1

q &#x3E; 1,

We have

THEOREM 3.2. (The case m = 1). Let
Assume that uo &#x3E; 0, and

be arbitrary.

Then there exist a constant, = ,(N, q, a, p) and a positive time To defined by

such that there exists a weak solution u to (3.1 ) (with m = 1) in the strip STo’
satisfying V 0  t  To,

here
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REMARK 3.1. The proof (see Section 11) shows that Theorems 3.1 and
3.2 continue to hold in the following cases:

1 ) uo of variable sign;
2

2) If 1  p  m + N , V m &#x3E; 1, uo can be replaced by a 03C3-finite Borel
N 

measure p in RN satisfying

REMARK 3.2. The existence theorems are based essentially on an L°°-esti-
mate for a family of approximating solutions. The proofs of these estimates
cover the case of 0  p  1 and a &#x3E; 0. Therefore Theorems 3.1-3.2 hold true
for any p, a &#x3E; 0. We have not been able to derive a similar estimate when
0  p  1 and a  0, the main difficulty being a control of the largeness of lul
as Ixl ~ oo.

REMARK 3.3. The existence theorems hold even in the case ( 1.1 ) is set in
a bounded domain Q with smooth boundary and u = 0 on 8Q x (0, T) in
the sense of traces. The initial datum is taken to satisfy

We refer to Remarks 8.1 and 11.1 for comments on such a case.

REMARK 3.4. The integral gradient estimates in (3.10), (3.15), (3.21), are
optimal, as it can be verified by using the Barenblatt-Pattle solutions [8], [31],
when m &#x3E; 1, and the fundamental solution of the heat equation when m = 1.

REMARK 3.5. For the case m = 1 Baras and Kersner [5] prove an existencea

theorem for uo E LOO (R:N) satisfying uo(x)  C(1 + and some additional
rather restrictive assumptions. Still remaining in the linear case m = 1 and a = 0,
existence theorems have been given by Weissler [33] with uo in where

q is as in (3.16). We stress however that (3.16) is merely a local integrability
condition.

3-(II). Existence and non-existence of global solutions

The following two propositions discriminate between the subcritical and
the supercritical case.
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PROPOSITION 3.1. Assume that

or that

Then there cannot exist a global non-trivial non-negative solution to the Cauchy
problem (3.1 ).

ror the proof we refer to subsection 12-(IV). We stress the fact that the
non-existence statement holds for all a E R and regardless of any smallness or
regularity assumptions on uo.

Theorems of this kind were proved first by Fujita [13], for m = 1, a = 0.
We refer to [3], [5], [18], [20], [24], [25], [28], [34] and the references therein
for results related to the linear case.

In the case m &#x3E; 1 and cx = 0, Proposition 3.1 was proved in [16]. We
mention also the contribution of [14], [15], [17] and of [26].

In the super-critical case we have
2/N

PROPOSITION 3.2. Let a = 0. Then, for any p &#x3E; m + 2 N and for any
&#x3E; N - m), there exists a constant - -lo(N, m, p, q), such that the Cauchyg &#x3E; 2 there exists a 70 =Yo(N,m, &#x3E; p, q) that the 

problem (3.1 ) has a solution defined for all positive times, provided the initial
datum satisfies

For the proof we refer to subsection 11-(V).
In the case of radial initial datum and m = 1, analogous results are due

to Baras and Kersner [5] for all a E 
If m &#x3E; 1 and a = 0, Proposition 3.2 has been proved by Sacks by different

methods and more stringent assumptions on uo and p [32]. For compactly
supported initial data, and still a = 0, analogous results appear in [16].

We remark that Proposition 3.2 actually holds for general quasi-linear
equations, as those introduced in Section 6 (see also Remark 11.3).

4. - Initial traces

We will prove that in the case p &#x3E; m all non-negative solutions in some
strip ST have the same behaviour as Ixl - oo as that prescribed by the norms
I I I . I Thus conditions (3.6) and (3.11 ) when m &#x3E; 1, and (3.16)
when m = 1, are optimal in such a case.
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Consider non-negative sub(super)solutions of ( 1.1 ) without further

reference to initial data. These are measurable functions u : ST --~ R+ for

some 0  T  oo satisfying

and for every bounded open set Q with smooth boundary aSZ, setting

4-(1). Behaviour at infinity

THEOREM 4.1. Let u be a non-negative supersolution of ( 1.1 ) in ST.

The case a  2 p 1 . Let p &#x3E; m. There exists a constant -i = I(N, m, p, a)
m-l 

such that for all 0  t  T

T
Moreover for every 0  t  2013

Let a = 0 and 1  p  m. Then there exists a constant -1 = ,(N, m, p) such that

The case , There exists a constant, = -I(N, m, p) such that
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REMARK 4.1. The proof shows that u has to be merely a continuous local
distributional supersolution of ( 1.1 ) (see Section 12). The proof of theorem 4.1

for the case a  2 p 
1 

and p &#x3E; m is based on the method of eigenfunctions
m- 1 

~ g

introduced by Kaplan [23]. To prove (4.5) one has only to observe that u is a
non-negative supersolution of the porous medium equation to which the methods
of [2] apply.

REMARK 4.2. In the case a  
2(p - I , 1) &#x3E; m, Theorem 4.1 is still valid
m- 1 

p-

if the right-hand side of ( 1.1 ) is replaced by a more general F(x, t, u) satisfying
for any x E JRN, t &#x3E; 0, z&#x3E;0

for a given constant 1 &#x3E; 1.

REMARK 4.3. The method of eigenfunctions seems to be suitable only
in the case p &#x3E; m. The proof of (4.4) is based upon comparing u with the
subsolution introduced in [16]

where V xo E 11~N, a, b are positive constants depending on m, p, N; To &#x3E; 0 is
the blow-up time. We sketch the proof in subsection 12-(11).

4-(11). Estimates and behaviour near t = 0

THEOREM 4.2. Let u be a non-negative subsolution of ( 1.1 ) in ST and let

The case ( There exists a constant, = ,(N, m, p, a) such that

The case There exists a constant 1 = -~(N, m, p) such that
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and ~ I

We assume here that the right-hand sides of (4.7)-(4.8) are finite.

REMARK 4.4. The constant -1 depends also upon T if T &#x3E; 1.

REMARK 4.5. The proof of Theorem 4.2 shows (see Section 13) that the
integral in (4.7) can be replaced by

In the same way (4.8) still holds if the integral on the right-hand side is replaced
by

f

Theorem 4.2 supplies local LOO-estimates of the solutions as well as their

asymptotic behaviour for t ~ 0, as long as the right-hand sides of (4.7)-(4.8)
are finite.

Combining the previous estimates we have

COROLLARY 4.1. Let u be any non-negative weak solution of ( 1.1 ) in

ST, and assume that i There exists a constant

such that

PROOF. We have only to observe that

follows from Theorem 4.1.
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4-(111). Initial traces

The previous estimates permit to establish existence and uniqueness of
initial traces of non-negative weak solutions of ( 1.1 ) in ST.

THEOREM 4.3. Let u be a non-negative weak solution of ( 1.1 ) in ST. Let
(2.4) hold and let p &#x3E; m. There exists a unique Radon measure J-l such that

in the sense of measures as

Moreover

I has been defined in (2.9) of Remark 2.2.

PROOF. It follows from Theorem 4.1 that we can find a sequence - 0

and a Radon measure u such that u( . , tj) --&#x3E;u in the sense of measures. In view
of (4.3), the measure p will satisfy (4.12). Assume another Radon measure v
has the property that

for a suitable sequence fskl - 0.
We may assume that  t. Take any 7y E as testing function in

(4.2) to obtain

where BR = (  RI contains the support of q, and depends upon N, p,
m as well as R and 1].

Letting s,~ - 0 and then tj - 0 and interchanging the role and tj,
we obtain

Therefore Jj - v if we show that the limit on the right-hand side of (4.3) is

zero. This fact, in the subcritical case m  p  m + 2 , is a consequence of the
following proposition. 

N’
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PROPOSITION 4.1. Let u be a non-negative weak solution of ( 1.1 ) in ST
and assume that (2.4) holds. Fix xo E R’ and p = ( 1 + ~ r as in (2.5). There
exists a constant -1 = ¡(N, m, p, a) such that for all 0  t  T satis,fying

there holds

The proposition will be proved in Section 8 as part of a more general
result. To apply it to our specific case we observe that, by Corollary 4.1, we
can find T* = T*(R) satisfying (4.14) V xo c BR. Finally the last integral on
the right-hand side of (4.15) is finite by virtue of Theorem 4.1.

In the we havep&#x3E;m+ 
N

PROPOSITION 4.2. Let u be a non-negative solution ST, and let
p &#x3E; m. Then E L~(0,r;L~(R~)).

We postpone the proof to Section 14.

REMARK 4.6. It follows from (4.5) that the existence part of Theo-

rem 4.3 is in force for any p &#x3E; 1 if cx &#x3E; 2013201320132013. Moreover, even for such a,y p 
m- 1

Proposition 4.2 and the proof of Theorem 4.3 imply uniqueness of the initial
trace if p &#x3E; m.

REMARK 4.7. The results of this section generalize to the case m = 1. In
such a case a can be any real number and r = 0.

REMARK 4.8. The conclusion of Theorem 4.1 for the case a  2(~’ - 1 )
m-1

holds for non-negative local super-solutions defined in any cylindrical domain
QT = Q x (0, T ), provided the supremum in the definition (2.6) I

is taken over the balls contained in Q and p &#x3E; m. Analogous restriction
should be placed on (4. 3 )’ .

4-(IV). Behaviour of initial traces in the super-critical case

It follows from the results of Theorems 4.1 and 4.3 that for any value of

p &#x3E; 1 and a E R, any non-negative solution of ( 1.1 ) in ST, possesses an initial
trace It which is a Radon measure satisfying the global behaviour (as lxl -~ oo)

In the super-critical case p &#x3E; m + 2 such measures inherit from u somep p 
N
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additional local regularity, as stated precisely in the following proposition.

PROPOSITION 4.3. Let u be a non-negative solution to ( 1.1 ) in ST for
some T &#x3E; 0, and let p &#x3E; m +2/N. For any K compact subset of R, there existN 
constants po E (0, 1 ) and ’1 depending on K, N, T, p, m, a only, such that

r
V x(FK, -, and for all p c- (0, po).

2

The proof is given in subsection 12-(111).

REMARK 4.9. Proposition 4.3 in fact holds true for all p &#x3E; m. However
2

for p  m + 2 it does not imply any regularity condition on the initial trace- 

N
tz other than the local integrability. In the linear case m = 1 and a = 0, results
analogous to Proposition 4.4 are due to Baras-Pierre [7]. In the limiting case

p = 1 +2, 1 m = 1, a = 0, (4.16) can be improved to
N

this follows from the results of Meyers [29], as pointed out in [7].

5. - Uniqueness of solutions

In this section we state a result of uniqueness of solutions to the Cauchy
problem (3.1), in a class S suggested by the properties of the solution found
in Theorem 3.1. We say that a function u : ST - satisfying (3.2)-(3.4) is a
solution of class S if it also fulfills the requirements

in the case

in the case
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In (5.1)-(5.4), 6, C &#x3E; 0 are given constants (depending on u), and 6 is
such that

Estimates (3.8)-(3.9), and (3.13)-(3.14), show that the solution found above
actually belongs to the class S.

REMARK 5.1. Condition (5.2) is sharp. Indeed it is verified by all non-ne-

gative solutions of (1.1) in ST, when m  p  m + 2 (see Corollary 4.1 . ) In- 

N
general, for super-critical p, uniqueness is not expected in view of results of
[4], [19].

THEOREM 5.1. Assume ui, i = 1, 2, are two solutions of class S to (3.1),
corresponding to the same initial datum uo E Ll loc (RI). Then ul - U2 in ST.

The proof is given in Section 15.

6. - General structures

Let Q be an open set in for 0  T  oo let Qy = Q x (O, T) and
consider the degenerate parabolic equation in divergence form

If Q -= we let QT =- ST _ x (0, T). The function a : ~g2N+2 ~ R!" is
measurable and p : II~+ --~ R+ is locally absolutely continuous. In addition, they
are required to satisfy the structure conditions V p E RI

for a given A &#x3E; 2.

On the source term we assume
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Moreover

for a given constant A &#x3E; 0. Here f * is a non-negative Lipschitz continuous
function in R such that f *(0) = 0. In (6.5) we may take a = 0 if Q is bounded.

A measurable non-negative function u is a local sub(super)solution of
(6.1 ) in SZT if

and

vanishing near t = 0 and near

Let Q be bounded and have smooth boundary In what follows we
will need to refer to the boundary value problem

A measurable function u is a sub(super)solution of (6.8) if

6-(1). The function class 9A

To describe the nature of the non-linearity ~(’) we introduce a class of
functions ~C~ defined by 

’

g is locally absolutely continuous in I1~+, and I
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REMARK 6.1. Let is non-decreasing and

These inequalities follow by integrating

over (s, hs) (or (hs, s)).
It follows from (6.3) that ~0(’) G and we set, for a given g E 9A,

From the definition and (6.11) it follows that

6-(II). The Cauchy problem: existence of solutions

Most of our existence results of Section 3, generalize to the case of (6.1).
The generalizations are twofold. The first involves the quasilinear structure in
(6.1 ), but p(s) = sm, m &#x3E; 1, s &#x3E; 0. The second regards the nature of the
nonlinear function p( . ).

We let (6.2), (6.4), (6.5) hold and consider the Cauchy problem

If p(s) = sm, then Theorem 3.1 continues to hold for the Cauchy problem
(6.14) except that the various constants now depend also upon A.

If ~?(-) merely satisfies (6.3) then an existence theorem holds for (6.14)
in some strip where To can be determined a priori in terms of uo. However
the precise assumptions on uo and the corresponding determination of To are
implicitly defined in terms of ~p( ~ )..

A relatively simple result can be given if in (6.5) we take a = 0.
Let g E and define B accordingly. Let g E ~C~ be such that
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Then if uo &#x3E; 0 satisfies

there exists a solution to (6.14) in the strip S’To where To is the smallest root of

for a constant ¡ = ¡(N, A). Moreover V 0  t  To

REMARK 6.2. In the case = sm, f (x, t, s) = sP, a suitable choice of
-

requirement of t ---&#x3E;) Set, 03BE) to be finite, is needed in the derivation of L°°-
estimates of the solution in terms of a suitable norm of the initial datum; such
a norm involves g (see Section 11). Existence results generalize to solutions of
variable sign (see Section 11). The nonlinear term p(u) in (6.1) is replaced by

and f is redefined accordingly.

REMARK 6.3. When Sp(u) = u, existence of solutions to the Cauchy problem
(6.14) can be proved essentially the same way.

REMARK 6.4. Similarly to Remark 3.1, existence results hold for the

present situation and uo a u-finite Borel measure satisfying (3.22).

7. - The main estimate

We state here an estimate which is the main tool in the proof of our
existence theorems as well as in the characterization of non-negative solutions

of 1.1 in the subcritical case p  m + 2( ) p 
N

If xo we let Bp(xo) denote the ball of centre xo and radius p.

PROPOSITION 7.1. Fix a function g E 9A and define B(.) according to

(6.12). Let u be any non-negative locally bounded continuous weak subsolution
of (6.1 ) in ST for some 0  T  oo. Then there exists a constant ’/ depending
only upon N, A such that for every ball B2p(XO) and for all 0  t  T satisfying
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the following estimate holds

REMARK 7.1. When Sp(s) = sm, m &#x3E; 1, and g(s) = sq, q &#x3E; 1, s &#x3E; 0,
condition (7.1 ) and the conclusion (7.2) read

The constant -1 in (7.2)’ depends upon q and it is stable as m - 1; i.e.,
Proposition 7.1 holds also in the linear case where = 1.

The following Proposition gives an estimate of the local integrability of
"up to t = 0".

PROPOSITION 7.2. Let the assumptions of Proposition 7.1 hold and let

Then there exists a constant I depending only upon N, A such that for every
ball B2p(xo) and for all 0  t  T satisfying (7.1)

REMARK 7.2. If p(s) = sm, m &#x3E; 1, and g(s) = s, s &#x3E; 0, we set

Then (7.4) reads

+
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The order of integrability "up to 0" can be improved as shown by the
following

PROPOSITION 7.3. Let the assumptions of Proposition 7.1 hold. Then there
exist positive numbers 6’0, v, 0 depending only upon N and A, 6’0, v, 0 E (0, 1 )
and a constant -i = ¡(N, A) such that for every ball B2p(xo) and for all
0  t  T I satisfying (7.1 ) and E ( 1, 1 + co)

If = sm we have the more explicit estimate,

REMARK 7.3. Estimate (7.6)’ reduces to (7.4)’ when a -~ 1. The constant
’I 2013~ 00 as ?~ 2013~ 1 (see Remark 9.2). Estimates analogous to (7.4)’, (7.6)’ hold
for m = 1 and are stated precisely in subsection 7-(1).

REMARK 7.4. Consider non-negative weak solutions of the boundary value
problem (6.8). We view such solutions as defined in the whole ST by setting
them to be equal to zero outside Q. The estimates of the Propositions 7.1-7.3
continue to hold for such extensions. This is apparent if the balls B2P(xo) are
all contained in Q. For balls intersecting 8Q we refer to the proofs in Sections
8-9 (see Remarks 8.1 and 10.2).

7-(1). The linear case m = 1

In this subsection we state the integral estimates of IDul, in the non-de-
generate case, quoted above.

PROPOSITION 7.4. Let u be any non-negative locally bounded continuous
weak subsolution of (6.1) (with = u) in ST, for some 0  T  oo. Assume
also that xo E RN, t E (0, T), p &#x3E; 0 satisfy

and let q &#x3E; 1 be arbitrarily fixed. Then V 0 E (0, ~) there exists a constant -1
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depending only on A, N, q, 0, such that

Moreover, if there exists a constant 11 depending on A, N,
q, ~, such that

The constant

REMARK 7.5. We conclude this section by noticing that the integral
estimates of Propositions 7.2-7.4 are valid for solutions of variable sign. This
is apparent from the proofs in Sections 8-10.

8. - Proof of Proposition 7.1

~ be fixed, let k &#x3E; 0 to be chosen and for

In the definition (6.7) we take the testing function

where g is out of the class ~C~ defined in Section 6, and (x, t) F-+ çn(x, t) is a

smooth cutoff function in Qn such that

We will need the following auxiliary lemma.
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LEMMA 8.1. Let g C ~C~ and V z, zo &#x3E; 0 define

Then

PROOF. In the proof we will use the inequalities (6.11) of Remark 6.1
without further mention.

Equality (i) is trivial. As for (ii) we first observe that

Indeed if we have

and if zo 1/2z

Therefore



389

Turning to the proof of (iii), let

and if

In either case

From this (iii) follows immediately if &#x3E; I, whereas if the converse

inequality holds true 
2

In the last inequality we have used the fact that for a non-negative non-decrea-
sing function f defined in some interval (0, a),

We now return to (6.7) with the choice (8.1 ) of testing function and
estimate the various parts separately as follows.
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To estimate the space-part of the operator we take into account Lemma 8.1

and make repeated use of Cauchy-Schwartz inequality ab  sa2 + !b2. We obtainc
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The contribution of the forcing term on the right hand side of (6.7) is estimated
by

Taking into account the assumption of the proposition, the estimate below

03A6 (k) &#x3E; 2-A+1 03A6 (k) and combining the previous estimates as parts of (6.7), we(2) - ( ) g p p ( ),
obtain

where

For all t &#x3E; 0 satisfying (7.1 ) we have M  1, however we will trace the

dependence on M for future reference.
and observe that
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From (8.3), (8.4) and the embedding of [27] page 75, we get

where is chosen to satisfy

Lemma 5.6 of [27] page 95 implies that

It follows from this, taking also in account that .
that

To proceede we multiply the left-hand side of (8.5) by CP N 2 and the

right-hand side This gives (recall the definition (6.12) of the
function B),
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This inequality holds true for all t satisfying (7.1 ) and for all pair of boxes

For i = 0, 1, 2, ... , define

and

Applying (8.6) to the pair of boxes Qi, Qi+1, we obtain the recursive inequalities

Let v E (0, 1) to be chosen. Then by Schwartz inequality

and by iteration V n = 0, 1 , ...

Fix 6 E (0, 1), say for example 6 = 1/4, and then choose v so that the last sum
in (8.7) is majorized by a convergent series, i.e., for example v8-2(N+2) = 1/2.
Then letting n -; oo in (8.7) we obtain

This in turn implies (7.2).
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REMARK 8.1. The estimate continues to hold for non-negative solution of
the boundary value problem (6.8). These are viewed as defined in the whole ST
by extending them to be zero outside SZT. If the ball B2P(xo) intersects 9Q, the
same conclusion holds because the testing functions (8.1) vanish on aQ x (0, T).

9. - Proof of Proposition 7.2

The proof requires the following auxiliary facts concerning the structure
of the class ~C~ introduced in Section 6. They are a simple consequence of
Remark 6.1 and we state them as a lemma for future reference.

Let 0 C (0, 1) be any number satisfying
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Then, in the weak formulation (6.7), following [2], we choose the testing
function

where ~ is a non-negative piecewise smooth cutoff function in such

that g m 1 on and 2/p. We first observe that

This implies the inequality

Estimating the various parts of (6.7) with the indicated choice of testing function,
we apply repeatedly Schwartz inequality and techniques in all similar to those
of the previous section. The left-hand side is estimated below by

The forcing term on the right-hand side of (6.7) contributes
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Collecting these estimates as parts of (6.7), we obtain

By virtue of Proposition 7.1, for all t for which (7.1) holds

Moreover from Lemma 9.1 and the definition of the function B, ), it follows
that

N
where we have assumed without loss of generality that t- 2 G(t) &#x3E; l. Therefore
condition (9.1) will be satisfied if we choose

REMARK 9.1. In the case of 9 and g(s) = s, s &#x3E; 0, (9.3) reads

and condition (9.4) on the number fl becomes
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REMARK 9.2. When p(s) = sm because of the use of the testing function
71, the constant ~ on the right-hand side of (9.2) tends to 0o as m - 1.

For the remainder of the proof of Proposition 7.2 we will take j3 = 1/2.
By Holder inequality

We majorize this last integral by making repeated use of Lemma 9.1 as follows

This completes the proof of Proposition 7.2.
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10. - Proofs of Propositions 7.3 and 7.4

10-(I). Proof of Proposition 7.3

and

Then V J E [ 1, 2), by Holder inequality,

I I 
-. 

/

where {3 is admissible as specified in (9.4). The first integral on the right-hand
side of (10.2) is estimated by (9.2) and we have

where

We first prove (7.6)’ of Proposition 7.3 specializing to the case = sm, s &#x3E; 0.

From (10.3), with the indicated choice of ~p( ~ ), we obtain
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A simple calculation, making use of (9.5), gives

where The second integral converges if
w 

-, -,- - I ,

00 + 1 &#x3E; 0. Therefore, taking in account condition (9.6), we obtain

valid for all t satisfying (7.1 ) and for

REMARK 10.1. The constant tends
1

The general case is proved analogously by making use of (9.3)-(9.4) and
Lemma 9.1. The calculation of the constants in Proposition 7.3,
can be made quantitative.

REMARK 10.2. Propositions 7.2, 7.3 hold for non-negative weak solutions
of the boundary value problem (6.8). Indeed the testing functions q vanish on
8Q x (0, T) (see also Remark 8.1).

10-(II). Proof of Proposition 7.4

Let x ~ ~(x) be a smooth cutoff function in such that g m 1 in

and let fl, 6 E (0, 1) to be chosen. By taking

as a testing function in (6.7), we find
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This, Proposition 7.1 and assumption (7.7), yield

where

and

Next, by Holder’s inequality,

Estimating the last integral by Holder’s inequality,

Collecting (10.7)-(10.9), and choosing 6, 0 so that

proves (7.8).
The proof of (7.9) is analogous to that of Proposition 7.3. It is based on

estimate (10.7), where fl and 6 depend upon J .
Tracing the dependence of lIon (J and 6 shows that ~yl (S, ~ ) ~ o0

as a --+ 1.
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11. - Proof of the existence theorems

Let the initial datum uo c be given, and consider the family of
approximating problems n = 1, 2,...

These approximations of uo satisfy

By the results of [2] V n c N there exists a solution un to ( 11.1 ) in the
sense of (6.9). Moreover un is Holder continuous in Bn x (ê, (0), V ê &#x3E; 0, and
un E with bounds depending upon n. We will regard un( . , t) as defined
in the whole R" x (0, cxJ) by setting them to be zero outside Bn. Therefore
V 5eR

for a qualitative constant C(n) depending upon n. Theorem 3.1 will follow

by a standard limiting process via the compactness results of [ 11 ] whence we
show estimates (3.7)-(3.10) and (3.12)-(3.15) with u and uo replaced by un and
uo,n, with constant 1 independent of n. To prove these estimates we will work
with ( 11.1 ) and drop the subscript n. For the proof of (3.4) or (3.4)’ we refer
to [12].

The arguments to follow are based on the sup estimates of Section 7. In
view of Proposition 7.4 they hold for all m &#x3E; 1, therefore including the linear
case.

The case 

According to (2.5) of Section 2 we let r = a(m - 1)/2(p - 1). Fix x E R!",
set p = (1 + and let denote the ball with center x and radius p. Let t
be the largest time satisfying
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By the previous remarks and (11.3) we have that t &#x3E; 0. Then by Proposition 7.1
and Remark 7.4, V q &#x3E; 1 there exists a constant ¡ = -i(N, m, p, q) independent
of n, such that

Upon dividing both sides of this inequality by we obtain

Set

and observe that 0(t) is finite V t &#x3E; 0. Next we choose

It follows from (11.6) that V 0  t  t

Also for 6 &#x3E; 0 to be chosen define

We observe that because of our choice of q the exponent of t in the second
term of (11.10) is positive. Therefore V 0  t  

It follows that 6 = 6(p, q, m, a, N) can be chosen small enough as to insure
that t*  t. Let x H ~(x) be a non-negative smooth cutoff function in 
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such that ( We use
s a testing function in the weak formulation of ( 11.1 ) to get

This is obvious if the ball B2P(x) is all contained in Bn. If intersects
the boundary of the ball Bn, the previous inequality contains a non-negative
boundary integral on the left-hand side which is dropped. We divide both si-

des by to obtain

Therefore we can determine 6 = 6(p, q, m, a, N) a priori only in dependence of
the indicated quantities so that

The number t* is still only qualitatively known. A quantitative lower bound can
be found by substituting (11.13) into the definition (11.10) of t*. It gives that
( 11.13) holds true for all 0  t  To where To is the smallest root of
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Substituting (11.13) into (11.9) proves estimates (3.7)-(3.9). Inequality (3.10)
follows from Proposition 7.3.

Let t be the largest time for which (11.4) holds. We regard (11.4) written
for an arbitrary p &#x3E; 1, x = 0 and the ball B2p(x) replaced by B2p  2pl. By
Proposition 7.1 and Remark 7.4, V q &#x3E; 1 there exists a constant -1 = ~(p, q, m, N),
independent of n, such that

2

Dividing both sides by p m-1 this implies, V x such that

Next define

Then (11.14) implies

These are the analogues of (11.9). The proof can now be completed following
step by step the same arguments as in subsection 11-(I) with the obvious change
of symbolism. We omit the details.

11-(III). General structures

We indicate how to modify the previous proof to include the case of the
Cauchy problem (6.4) with general quasilinear structures. As a starting point we
introduce a family of problems analogous to ( 11.1 ) in the bounded cylinders Qn.
Existence for such problems results from standard regularization and limiting
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processes via the regularity results of [11]. The monotonicity assumption of
p - a(x, t, z, p) in (6.2) serves to identify weak limits in the nonlinear term,
via Minty’s lemma [30].

Consider first the case Sp(s) = sm. Here the proof is exactly the same
except for (11.12) that was obtained from the weak formulation of (11.1). The
second integral on the right-hand side resulted from a double integration by
parts in the term involving Dum. In our case the analogous term would read

This term is estimated by means of (7.4) of Proposition 7.2. The rest of the
proof is the same, modulo the obvious modifications. As remarked above, the
limiting process as n ~ oo can be carried in view of (6.2), (6.4), Minty’s lemma
and the compactness results of [11]. The proof for ~o(. ) merely satisfying (6.3)
is in all analogous in the case a = 0 and we omit the details. Since the

proofs are based on the sup-estimate of Proposition 7.1, which holds for non-
negative subsolutions, the proofs remain valid for uo of variable sign by working
separately with the positive and negative part of u.

REMARK 11.1. The existence theorems hold for the case of Q bounded

open set in (see (6.8)). The proof is a minor variant of the techniques
presented above, once we have an L°°-estimate for the approximating solutions
in SZ x (ê, T), - E (0, T), see Remark 8.1.

11-(IV). The case of initial datum a measure

We briefly indicate how our existence theorems can be extended to the
case when uo is a finite Borel measure &#x3E; satisfying

The norms in (11.16) are defined in (2.9) and (2.10) respectively. The case of
measures is significantly different from the previous one only if q = 1, i.e., p is
in the subcritical range.

First we assume that the support of ti is contained in a ball BR, R &#x3E; 1.

We call J-lR such a measure. Since the proofs are based on sup-estimates of
the approximating solution in terms of a suitable norm of the initial datum, we
have only to show that J-lR can be approximated by a sequence fuo,l of smooth
functions preserving, say, the norm ] ] ] . ] ] ] . Define
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where k, is a mollification kernel. Then

if 0  e  êo(R). Indeed all the integrals above vanish if x &#x3E; ~y(~). Thus
may be assumed to be uniformly bounded below by a positive constant

depending upon R.
The case of a general &#x3E; can be recovered by approximating &#x3E; with a

sequence ITZRI of measures supported in nested expanding balls BR, whence
we observe that

A similar proof holds for the case ~ I

REMARK 11.2. We stress that the technique of proof yields existence
theorems also for operators bearing general structure, even in the case of
measures.

11-(V). Existence of global solutions

We will prove here Proposition 3.2. The assumptions are

where ~o is sufficiently small. Existence of global solutions will follow from
the compactness results of [11] if we can prove an estimate of the type

for a suitable family of approximating solutions. For this we refer back to ( 11.1 )
and observe that un is a non-negative, bounded, global subsolution of
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vanishing for x ~ I &#x3E; n for all t &#x3E; 0. To simplify the notation we drop the
subscript n and observe that by Proposition 7.1, (11.4) and (11.5) hold true
for the solutions in ( 11.19) with -i independent of n and for all p &#x3E; 0. Letting
p -~ oo we deduce

LEMMA 11.1. Let T be the largest time for which

holds for all t E (0, T). Then V s &#x3E; 1, there exists a constant ^
such that

where

Upon multiplying the first of ( 11.19) by and integrating by
parts, we get for 0  t  T

Taking s = q, and arguing as in the proof of Theorem 3.1, we deduce that the
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number T in (11.20) is larger than the number To defined by

for a constant 1 depending only upon N, m, p, q. We will choose 10 in ( 11.17)
as to insure that T &#x3E; To &#x3E; 1. Next we take s = 1 in (11.22). By choosing the
constant 1-1 in (11.23) even smaller if necessary, we find

We proceed to estimate u for large t. For any have by virtue
of Lemma 11.1,

where k = N(m - 1) + 2. Next, we observe that if for all 1  t  T

a uniform bound in L’(R!~’) for u( . , t), T &#x3E; t &#x3E; 0, is provided by (11.24), and
by Lemma 11.1 with s = 1,

Therefore to prove existence of global solutions reduces to show that T = o0
and that (11.26) holds true for all 0  t  T. Proceeding by contradiction,
assume T  oo and that a time t1 &#x3E; 1 exists such that (11.26) holds true for
all 0  t  t 1 but not for t &#x3E; t 1; i.e. for t &#x3E; ti 1

With this choice of we have from (11.25) V t1 1  t  T,
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Then

where y is the solution to

that is,

We remark that y is increasing with t, but it remains uniformly bounded above

for all t &#x3E; t 1 if y(t 1 ) = V(ti ) is small enough. It is at this stage that I

i.e., 1 - N (p - 1)  0, is essential. More explicitly, let us assume
K

in view of our choice of and because of (11.24), this is certainly the case
if ~yo in (11.17) is chosen to be suitably small. If (11.30) holds, we have

Thus Lemma 11.1 implies V 1  t  T

of course the same estimate is valid if (11.26) holds for all T &#x3E; t &#x3E; 1. If T  oo,

by choosing 7o even smaller if necessary, we draw the following conclusion

This is possible since T &#x3E; 1 and and since &#x3E; m + 
2 

Thisand since p &#x3E; m 
N

contradicts the definition of T. 
’" 1 Y

Therefore (11.20), together with (11.31)-(11.32), holds for all t &#x3E; 0,
providing the required estimate.

REMARK 11.3. It is apparent from the proof that Proposition 3.2 continues
to hold for the more general quasi-linear equations introduced in Section 6.
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12. - Proofs of Theorem 4.1 and of Propositions 3.1 and 4.3

12-(1). The Harnack estimate (4.3)

follows from the techniques of [2], as observed

in Remark 4.1. In proving (4.3) we have i so that according to

(2.4)-(2.5) of Section 2, for xo we may set 
---

We let À1, w be respectively the first eigenvalue and a corresponding
eigenvector of the operator -A in Bp(xo) with zero boundary data, i.e.,

The first eigenfunctions have a fixed sign and we may select a positive one
normalized so that 

r

For this choice we have the estimates

for a constant, = ,(N). Taking now w as a testing function in (4.2) we find

We perform an integration by parts in the second integral on the left-hand side,
drop the resulting non-positive boundary integral and set
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We obtain

We will absorb part of the integral involving um on the right-hand side of (12.2)
into the integral involving uP on the left-hand side. To this end assume first
that p &#x3E; m. According to our choice of p, by virtue of the last of ( 12.1 ) and
Young’s inequality, we have

Moreover by Holder inequality

Combining these estimates as parts of (12.2), we deduce

where
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Consider separately the following two cases

In case (i) we have

If (ii) occurs then U(t) is minorized by the solution of

which implies

Let T* be the first time at which the right-hand side of (12.5) becomes
unbounded, i.e.,

Since we must have T* &#x3E; T, we have from (12.6)

Therefore in either case, taking also in account that to E (0, T) is arbitrary, we
deduce

This in turn implies

We consider now the case p = m. In such a case, the integral involving um
on the right-hand side of (12.2) cannot be absorbed into the integral involving
uP on the left-hand side by Young’s inequality. The same effect however can
be obtained by a scaling argument.
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Let 6 E (0, 1) to be chosen and perform the change of space variables
~ = 6x. Renaming x the new variable ~ and with the original letters the
transformed functions, (1.1) becomes

Since a  2, the process can now be repeated by choosing 6 sufficiently small.

REMARK 12.1. We can deal with the more general equation described in
Remark 4.2 by means of minor changes in the proof above. Indeed, in this case
(12.3) takes the form

where

Then the proof can be completed as above, considering separately the cases

12-(II). The Harnack estimate (4.4)

We prove here the Hamack inequality for the case cx = 0, and 1  p  m.

It can be seen that the function z defined in (4.6) satisfies

b Q &#x3E; 0, if the constants a and b are suitably chosen in dependence of N, p,
m, Q [16]. We take J = 1 in the following.

In deriving (4.4), we may assume, modulo a translation in time and space,
that u is defined and continuous up to t = 0. Accordingly it will suffice to

estimate the quantity
r

Let v be the unique solution of
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Since x H v(x, t) is compactly supported in R:N, by comparison

Next let

where ~yo = m). It is shown in [2] that for a suitable choice of 10, either
k  2 and

or k &#x3E; 2 and

for some xo and ci = ê1(N, m). From (12.9) and ( 12.11 ), it follows that
either (12.10) holds, or

Without loss of generality, we may assume T &#x3E; T , and observe that the

subsolution in (12.7) satisfies 
2’

Choose To &#x3E; T so thatChoose To 2 so that

and consider separately the cases
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If the latter holds, we get from the definition of k and (12.16)

This implies

Assume now (12.15) holds. Then

indeed follows from (12.12)-(12.15).
B

Since I
from (12.14)

we must have To &#x3E; T. Hence,

, - , / 
-

substituting in this inequality the definition we find again (12.17). Estimates
(12.10) and (12.17) yield (4.4).

12-(III). Proof of Proposition 4.3

We consider here the case p &#x3E; m+ 2 We start by noticing that (12.2) holds
N 

* 

p-
for any independently given xo E and p &#x3E; 0, in both cases a &#x3E; 2 p 1- 

m - 1

and a  2 p 1 . This is apparent from the arguments in subsection 12-(1).
m - 1 

pp g

Next we estimate the double integral on the right-hand side of (12.2) by Young’s
inequality:

-1
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for any c &#x3E; 0. Let now p E (0, 1) and choose

Using the estimates of (12.1), and reasoning as in subsection 12-(1), we infer

where

Let us fix t E (0, T). Then either

or

where ’1 is the constant in (12.18). If the latter holds, U(t, p) &#x3E; y(t) for t &#x3E; to,
where y is the solution to

By reasoning as in the proof of Theorem 4.1 (see (12.5)-(12.6)), we may
conclude 

I

Substituting this estimate in (12.20) we find after elementary calculations

Therefore for p  po, (12.19) must hold. We remark that po is independent of
to. Proposition 4.3 is proved.

If u( ~ , t) 2013~ as t ~ 0, ,u a Radon measure, we may let to - 0 in (12.19),
and employing ( 12.1 ) again we find
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12-(IV). Non existence of global solutions

We show that, if

or

then no non-trivial global solution to ( 1.1 ) exists.
Assume first that (12.23) holds. Let ~ denote a smooth cutoff function in

B2(o) C JRN, such that g m 1 in Bi(0) and

where -1 = ,(N). Let be a global solution; we use in (3.3) the
testing function

We have from i

Next we estimate by Young’s inequality

Then, setting
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(12.26) yields for t &#x3E; to

By Holder’s inequality

T C (to, t). Hence, we infer from (12.27)

, for some p &#x3E; 1,

the function t H Z(t, p), t &#x3E; to, would be bounded below by the solution y of
an o.d.e. similar to (12.21). Since y becomes unbounded in a finite time, this
cannot happen, in view of the fact that u is defined for all t &#x3E; 0. Therefore the
converse inequality to (12.29) must be in force for any p &#x3E; 1, i.e.,

Then (12.30) implies
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Upon letting p - oo we have u( ~ , to) - 0 if (12.23) is satisfied; since to &#x3E; 0 is

arbitrary, Proposition 3.1 is proved in this case.

(then (12.23) is certainly satisfied). Again from (12.30),

we have for p &#x3E; 2

We remark that in the case at hand a  0, and therefore

Thus the exponent of p in (12.31) is negative, and u - 0 follows as above.
Next we assume that (12.24) holds. Of course we need only consider the

case 1  p  m. If p = m, a careful analysis of the proof in subsection 12-(1)
shows that (4.3) in this case can be replaced by the stronger estimate

valid for any non-negative solution defined in ST. It follows immediately that
any global solution must vanish identically.

If 1  p  m, the same result can be obtained on letting T - oo in (4.4).

REMARK 12.2. Test functions as in (12.25) have been employed in [5]
to prove an analogous to Proposition 3.1 in the linear case m = 1. The proof
given there, however, relies on techniques connected with the linearity of the
operator.

13. - Proof of Theorem 4.2

Let I be fixed, let k &#x3E; 0 to be chosen and for

According to the definitions of the norms on Section 2, we let

an arbitrary point in JRN, i
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an arbitrary number

Consider (8.8) written for

so that (see the definition (6.12) of B(. )),

We observe that (8.8) remains valid if the integral on the right-hand side
is extended to the domain Qo and the quantity M is replaced by

where according to the definition above

If t is such that 1, we proceed as in Section 8 to get

and by a further interpolation process

taking in account our definition of p and r, this implies

and for all t for which .M  1,
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which yields

for all x and all t for which .M  1.
... 

-

, then recalling that xo = 0 and p is an arbitrary number

larger than 1, we deduce from (13.3)

for every

Taking now the supremum over all p &#x3E; 1 on the right-hand side, we have

and for all t for which M  1,

for and all t for which M  1.

Next we examine the case M &#x3E; 1. Assume first that ( Then

according to our choices of p, r, xo, we have 
"° ~

for two constants i = 1, 2 independent of Recalling the definitions of p,
r, a, we have

for a constant /y = 1(N, a, p, m). The constant 1 might depend upon T if T &#x3E; 1

(see Remark 4.4). We rewrite (8.8) as

From this, a further interpolation process, in all similar to that of Section 8, gives
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as long as j This in turn implies

and for all t for which Jv( &#x3E; 1,

Combining estimates (13.4) and (13.7), the theorem follows for the case
- 1

Turning to the case , we first observe that

From (8.8) we obtain

This implies, for all and for all

For each x E x &#x3E; 1 fixed there exists p _ &#x3E; 1 for whlch either (13.5) or
(13.8) holds. It is immediate to realize that if x  1 one of (13.5), (13.8)
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continues to hold. Therefore by taking the supremum over all p &#x3E; 1 on the

right-hand side of (13.8) and recalling that

we obtain

A further interpolation process now gives

14. - Proof of Proposition 4.2

Assume first that u is locally uniformly positive. Then for every
rn

Let ~ be a cutoff function in B2R, such that ~ - 1 in BR, and take

as testing function in ( 1.1 ); here 0 E (o,1 ) is to be chosen. After standard
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calculations we find

From this and Theorem 4.1, there exists ^/ = -I(N, M, p, o~1,3~ T, R) such that

Indeed we notice that, even in the case

follows from the methods of subsection 12-(1), which yield local Hamack-type
estimates, V a E R, p &#x3E; m. Since we are assuming p &#x3E; m, we may choose fl
so that m +,Q  p. Then, choosing a = m+(3 in ( 14.1 ), and invoking again (4.3)’
of Theorem 4.1 (or (14.4)), we have the sought after estimate.

If u &#x3E; 0, we approximate u locally with positive functions.

15. - Proof of Theorem 5.1

Let ui, i = 1, 2 be two solutions of (3.1), in the sense of (3.2)-(3.3) taking
the initial datum uo in the sense of (3.4). We first show that u 1 - u2 under the
more stringent assumptions

The time regularity "up to t = 0" in ( 15.1 ) permits to rewrite (3.3) as

for all q E where Q is an arbitrary open bounded subset of 
Let f3ê : R - [-1, 1] be a monotone increasing smooth approximation of the
function s ~--~ s ~ s ~ -1, s fl 0 and define

Let also ~ denote a non-negative smooth cutoff function in .
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p &#x3E; l, such that

In the integral identity satisfied by differentiating (15.2), we set

and take the testing function

to obtain

We drop the second integral on the left-hand side and let 6 -; 0. Standard

calculations give

where 1 We observe that

then

then
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Using these estimates in (15.4) and taking into account (5.2) and (5.4), we find

Here and below, C denotes a constant depending only upon N, m, p, T and on
the constants appearing in (5.1)-(5.4). Let

Then it follows from (15.5) that

If we set

then (15.6) implies that for t small enough

By iteration, V n = 1, 2,..., and V p &#x3E; 1

Therefore w(p) = 0 V p &#x3E; 0 if

This follows from (5.3) and the definition of the norm

and, by the embedding
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Next we remove the restriction (15.1). Since ui,z* = 1,2, are locally
bounded, they are locally Holder continuous in ST. Consider the unique solution
z of the boundary value problem

where ê E (0, T) and p &#x3E; 1 are fixed. Since u is bounded, the solution of

(15.7) is unique, so that z - u. Then 1, 2, can be approximated in

x (6-,T)) by sequences lu,,,,i I of smooth functions, defined as solutions
to regularized problems of the type of (15.7), for some ao C (0, 1) depending
on 6, p and T.

Repeating the arguments leading to (15.4) with ui replaced by Un,i, i = 1, 2,
we find an analogue to (15.4), where the right-hand side now contains the term

We let first n ~ oo and then c - 0, to recover the integral inequality (15.4).
The proof is now completed as before.

PART II

About Some Function Spaces

1. - The spaces X(O, r, q), Xo (0, q), Yo (0, q)

For define

where

Define also
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and define 
B

REMARK 1.1. The requirement 0  N is essential in the definition of
q

Indeed if 0 &#x3E; - , then  00only if f - 0., 

q 
, 

7kTN

We will introduce next a norm that is equivalent to (1.4) when

but is well defined for all 03B8 E R. For 0 E R, q &#x3E; 1 let

and define

THEOREM 1.1. are Banach spaces.

The proof is immediate from the definitions.

Next we will gather some basic facts about these spaces and establish
their mutual relation. We will make use of the following elementary fact:

2. - The functions

PROPOSITION 2.1. Let 6

) if and only if s
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if and only if

if and only if

I if and only if ~

PROOF. To prove (2.1 ) observe that from the definition and (1.8)

To prove (2.2)-(2.3) observe that, since p &#x3E; 1, we have

if s &#x3E; 0, and

if s  0. In either case

provided

The proof of (2.4) is immediate from the definitions.
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3. - A covering lemma

LEMMA 3.1. Let D be a compact set in JRN. Then for p &#x3E; 0 there exists
a finite number co of balls of radius p centered at points of D, that cover D.
Moreover

where WN is the measure of the unit There in IR.N. Moreover if D is a ball of
radius R &#x3E; p

PROOF. If p &#x3E; 0 is fixed, let E be a p-net in D, i.e.,

where s is a positive integer. We also let Eo denote a maximal p-net and
denote with #(Eo) the cardinality of Eo. We must have

Indeed if such a property fails to hold for some Y G D, the p-net Eo would
be contained in the p-net Eo U {x}, contradicting the fact that Eo is maximal.
It follows that D is covered by Ux"cEo BP(xi) and since D is compact #(Eo)  oo.

The balls and are disjoint since p. Therefore
2 2

Also

Thus
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4. - Comparing the norms

The proof of the following proposition is an immediate consequence of
the definitions.

PROPOSITION 4.1. (Comparing

N
REMARK 4.1. The embedding in ( 4.1 ) does not hold if 0 = N . Indeed theq

N
function (1 + I x 1) - q belongs to and not to 

PROPOSITION 4.2. (Comparing and [f 1(0,q))-

REMARK 4.2. The embedding in (4.4) does not hold if 0 = N . . Indeed
~v 

q

the function x 1---+ (1 + Ixl)- q belongs to Yo(O, q) and not to Xo(O, q). The constant
N

~(03B8, q, N) "blows up" to infinity as 0 N.
q

COROLLARY 4.1. For all and for all q &#x3E; 1

and
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PROOF OF PROPOSITION 4.2. To prove (4.3) it will suffice to consider the
TV TV

case 03B8  N . Indeed if 0 &#x3E; N , by Remark 1.1, Xo(0, q) m {0}. For n = 0 1 ...q q 
. 

let B2n (o) be the ball centered at the origin and of radius 2n. It will be enough
to show that

where WN is the measure of the unit sphere in PY and

Estimate (4.7) holds true for n = 0. Assuming it does hold for n, let us show
it continues to hold for n + 1. We have

because of our choice of C*.
The proof of (4.4) is analogous. It will suffice to show that V n = 0, l, ... ,

where



433

Inequality (4.8) holds for n = 0. Assuming it holds for n, we have

Making use of the definition of C* and the fact that Oq  N, the last term is

majorized by 

PROPOSITION 4.3. (Comparing
For all 0 r E (-oo, 1), q &#x3E; 1 , X(e, r, q) C Yo«(}, q) and there exists a

constant I = -1(0, q, r, N) such that for all f E X (e, r, q)

The inclusion in (4.9) is strict, i. e.,

there exists f E Yo (8, q) and

PROOF. To prove (4.9) it will suffice to show that for all n = 0, 1,..., 1

where

Inequality (4.11 ) holds for n = 0. Let us assume it does hold for n and let us
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show it continues to hold for n + 1. We have

where

To estimate Hn we observe that (owing to Lemma 3 .1 ) the annulus

B2n+l (0)BB2n(0) is covered by at most

balls Indeed if xi E B2n+1 (0)BB2n (0) we have

Then if V a E R, [a] denotes the largest integer not exceeding a,
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Combining this with (4.13) gives

in view of our choice of Cl.
The proof of (4.10) is achieved by the following

COUNTEREXAMPLE.

Consider the sequence Xn = (2n, 0, ... , 0) E and set

Since

the function f does not belong to X(e, r, q). Let us show that f E YO(O, q).
First we observe that there exists a positive integer ko = ko(r) such that

This is obvious if it will suffice to take

In view of (4.15), we have

The last condition in (4.17) holds if
we have

Therefore if , ¡
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where we have taken into account that in the ball

Thus if 0 &#x3E; 0 we have, in the ball

and if 00, for n &#x3E; ko,

Therefore in either case, for a

Indeed the sum of the first ko terms on the right-hand side of (4.18) is bounded
by a constant -1 = u(0, r, N), since l~o is fixed and determined only in dependence
of r. We majorize the sum in (4.19) by

It follows that there exists a constant ) such that V p &#x3E; 1

A consequence of Proposition 4.3 is

COROLLARY 4.2 (Comparing IT

REMARK 4.3. Statement (4.10) of Proposition 4.3 and (4.20) imply that
the inclusion r, q) C q) is strict.
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REMARK 4.4. If 0 = N , , the embedding in (4.20) does not hold. Indeed
q
N

the function z - (1 + belongs to X(O, r, q) and not to Xo(O, q). Also,

by Remark 4.2, the constant I in (4.20) "blows up" to infinity as 0 ~’ - . *
q

5. - Comparing X(O, r, q) and X(O’, r’, q’)

PROPOSITION S .1. if and only if

COROLLARY S .1.

REMARK 5.1. In Part I we have taken (see Part I, Section 2),

if a  2(p - 1) . Therefore Corollary 5.1 implies that, in this case, two equationsm-1
of the type of ( 1.1 ), Part I, are solvable for the same optimal class of initial
data if and only if 

,

If cx =/0, we also have m = m’.

PROOF OF PROPOSITION 5.1 (Sufficiency). Assume first that r’  r. Then

03BD x 03B5 RN

since 0’ &#x3E; 0, q’ &#x3E; q and the function

is increasing. By Lemma 3.1, Br(x) can be covered by at most l~o balls 
where l~o is a positive integer satisfying
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for a constant -1 = ¡(r, r’, N). Then

This implies that

if We assume now that and observe that in such

a case We have
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PROOF OF PROPOSITION 5.1 (Necessity). We will show first that if

then there exists a function f such that

Consider the function f in (4.14). From the proof of (4.10) of Proposition 4.3,
we have = +00. To prove that f satisfies the first of (5 .1 ), we observe
that there exists a number ~ = ~(N, r, r’) so large that, for all Iyl I &#x3E; ç, the ball
Br’(y) intersects at most one of the balls Br(xn) making up the support of f.
For all such y we  so that it will suffice to considery 4 | |y|
only the sequence 

4

Since ) we have

Next, if X(O’, r’, q’) C X(O, r, q), then we must have 0’ &#x3E; 0 and q’ &#x3E; q. Indeed, if
B &#x3E; 8’, the function x ---&#x3E; (1 + belongs to X (8’, r’, q’) and not to X(03B8, r, q)
(see Section 2). Moreover, if q &#x3E; q’, any f E with compact
support belongs to X(O’,r’,q’) and not to 
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