
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 314, Number 1, July 1989

ON THE CAUCHY PROBLEM AND INITIAL TRACES
FOR A DEGENERATE PARABOLIC EQUATION

E. DI BENEDETTO AND M. A. HERRERO

Í u, - div(|Z>u|"-2Z>«)
\ u(x,0) = u0(x),

Abstract. We consider the Cauchy problem
i) = 0   in R* x (0, oo), p > 2,

x€RN,

and discuss existence of solutions in some strip St a HN x (0, T), 0 < T < oo ,
in terms of the behavior of x -* uo(x) as |x| —► oo . The results obtained
are optimal in the class of nonnegative locally bounded solutions, for which a
Harnack-type inequality holds. Uniqueness is shown under the assumption that
the initial values are taken in the sense of ¿^.(R-^).

1. INTRODUCTION

A classical result of Tychonov [ 14] states that the Cauchy problem for the heat
equation is uniquely solvable for continuous initial data x —► m0(x) satisfying
the growth condition

|"o(*)l - Cexp(a|x| ),    as |x| -»oo,

for some positive constants C, a. In such a case, the solution u exists in
the strip RN x (0, f ). The growth condition is optimal in the sense that every
nonnegative solution of the heat equation in R x (0, T), 0 < T < oo, has a
unique tr-finite Borel measure p as initial trace, satisfying (see [15, 2])

/.
2exp{-|x| /4T} dp <oo.

R"
In this note we consider the Cauchy problem for the nonlinear version of the

heat equation

(1.1) ut - div(\Du\p~2 Du) = 0   inST = RN x(0,T),    p>2,
and address the issue of growth conditions on the initial datum u0() as |x| —►
oo for a unique solution to exist, as well as the optimality of such a growth. A
rough description of our results is the following.
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188 E. DI BENEDETTO AND M. A. HERRERO

If u0 G l£(RN) and

(1.2) |«0(x)| < c0|x|W(/,_2)    as|jc|-oo

for some c0 > 0, then the Cauchy problem associated with (1.1) is uniquely
solvable (in a weak sense specified below) in the strip ST, T = C(N,p)/cpx~2,
where C(N,p) is a universal constant depending only on N and p.

In fact uQ does not have to be locally bounded (see §2). It could be in
L,oc(R ) or even a a-finite Borel measure in R , with (1.2) suitably rephrased
in terms of integral averages.

The growth condition ( 1.2) is optimal in the sense that a nonnegative solution
of ( 1.1 ) in ST determines uniquely an initial datum (the initial trace) which is
a fj-finite Borel measure p in RN satisfying

(1.3) i       dp<C{[^) +[^y/P[u(0,T)fp\,

(1.4) K = N(p-2)+p,
for some positive constant C = C(N ,p). Here and in what follows

(1.5) /      dp = p~N f      dp.
J\x\<p J\x\<p

In one space dimension N = 1, the problem has been studied by Kalashnikov
[11, 12], who proved existence of a unique solution of (1.1) in ST, for some
(small) T, if the initial datum satisfies

|m0(jc)| < C(l + |x|Y/2(p-2),    Vx g R

for some C > 0.
For the porous medium equation

(1.6) ul-A\u\m~Xu = 0,        m>l,

the problem of growth condition on the initial datum u0 has been considered
by Bènilan-Crandall-Pierre [5], the optimality of such a growth by Aronson-
Caffarelli [3], and uniqueness of solutions for data p satisfying the analog of
(1.3) by Dahlberg-Kenig [6]. Our approach is different from that in the quoted
papers and in fact our methods yield generalizations also in the case of (1.6).

We will discuss later how our results relate to the cited ones and what are the
possible extensions.

2. The results

Consider the Cauchy problem

(2.1) JU - di\(\Du\p~2Du) = 0   inST,       p>2;
(2.2) u(,0) = u0()eLxXoc(RN).
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CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 189

A measurable function (x, t) —> u(x, t) defined in ST is a weak solution of
(2.1), (2.2) if for every bounded open set ft c R   ,

u G C(0 ,T ;LX (ft)) n LP~X (0 ,T ;WX 'P~X (il)),    and

(2.3) f u(x,t)tp(x,t)dx+ [  f {-utp + \Du\"~2DuDy>}dxdx
Jn Jo Jo.

= f u0(x)tp(x,0)dx,
Ja

for all 0 < t < T and all testing functions

(2.4) tpeWX'oo(0,T;Loo(ÇD)nLoo(0,T;WX'oo(Çl)).

Weak subsolutions (resp. supersolutions) are defined as above except that in
(2.3) equality is replaced by < (resp. >) and <p is taken to be nonnegative.

If (2.2) is replaced by

(2.5) u(,0) = p

where p is a a-finite Borel measure R   , then we say that « is a weak solution
of (2.1), (2.5) if for every bounded open set ft
satisfies (2.3) with the right-hand side replaced by

(x ,0)dp,

of (2.1), (2.5) if for every bounded open set ft c R    and W G (0,T),  u

f,n

Vtp S C (ftr) such that x —> tp(x, t) is compactly supported in ft Vi G [0, T].
As a way of measuring the growth of a function / G Lloc(R ) as |x| -* oo

we set

(2.6) \\\f\\\r = supp-K,ip-2) f  \f\dx,        r>0,K = N(p-2)+p,p>2,
P>r JBP

where B  = {x G RN \ \x\ < p}. If p is a a-finite Borel measure in RN , set

(2.7) IIMH^sup/r^-2»/"  \dp\,
P>r JB„

where \dp\ is the variation of p .

Remarks, (i) |||/|||r <-r-oo, Vr > 0 if feLx(RN).
(ii) \\\p\\\r < +00, Vr > 0 if and only if |||yu|||r < oo or some r0 > 0.
With C¡ = C¡(AX,A2, ...) we denote positive constants that can be quanti-

tatively determined a priori only in dependence on the specified arguments.

2-(i). Existence.

every a-finite

< oo,    for some r > 0,

Theorem 1. For every a-finite Borel measure p in R    satisfying
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190 E. DI BENEDETTO AND M. A. HERRERO

there exists a weak solution u of (2.1), (2.5) in ST, ., where

T(p)=fCÁrV^rY(j'~2)      if     1™\\\P\\1>0,
\  +oo if   lim|||/i|||r = 0,

and C0 = C0(N,p).
Let

(2.8) Tr(p) = C0[\\\p\\\r]-{p-2).

Then V0 < t < Tr(p), V/> > r > 0,

(2.9) IIK.OIII^c.HMii,,
(2.10) ||m(-,í)IIooA < c2rNlK pPl(p-2)\\\p\\\prlK,

(2.11) \\du(. Moo ^<c3r{N+l)/Kp2^-\p\\\2r/K,

where C¡ = Ct(N,p), i = 1,2,3.
For every bounded open set QcR" and Ve > 0

3C4 = C4(Ar,/>,e,diamft),    C5 = C5(N,p,e)

such that

(2.12) f f \Du\qdxdx<CA\\\p\\\cr\
Jo Ja

where q=p-(N + e)/(N + 1), VO < t < Tr(p).

In particular if e = 1

(2.13) f f \Durxdxdx<C6tx/K\\\p\\\xr+(p-2),K,
Jo Ja

where C6 = C6(N,p, ft). Further if£l = Bp, p>r,

(2.14) f f  \Du\p-xdxdx<C1tX,KpX+K/{p-2)\\\p\\\Xr+{p-2)/K,
Jo Jbp

where C1 = C1(N,p).
Finally, (x,t) —► 7J>w(x, t) is Holder continuous in ft x [n, T(p) - n], 0 <

n < T(p), with Holder constants and exponents depending upon N, p, C(,
z' = 0,l, ... , 4, diam ft, n,

The functional dependence of our estimates is optimal as shown by the fol-
lowing two explicit solutions of (2.1).

(NU>-2) „ 1     ^   p-1
'(rhr-^^m

where A, T are two positive parameters.
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CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 191

A quick calculation shows that
1   / n - 2 \ O-1)/^-2) / K- x l/(p-2)»^(••°>lll,4(jr!) (?)       ■

Therefore ^(x, r) exists up to the blowup time

r = ̂ (^f,tellW.o,|||,r-J).
The second explicit solution is (see [16])

v/ r     /ixi\p/(/'-i)i(p"1)/(i,"2)*(*,0=r"'*|i-y,(M)       | ,     t>o,
i/Cp-i

'»= (*) ¿>-2 p>2.P
The functions 77§ solves (2.1) with initial datum p = MS0, where S0 is the

Dirac measure at zero and M = \3§(-,Olli rn > t>0.
For r>0, ^(,1)^^ < t~N/K , and'

\\Dm-j)\\x^<r(N+x)lK^-l),p.

Moreover \D3S\ G Lq(RN x [0,i]), j>0, ? = /? - (TV + e)/(7V + 1), Ve>0,
but \D^\<¿Lq°(RN x[0,s]), q0=p-N/(N+l).

For initial data u0 G LX(RN) estimates (2.10), (2.11) agree with those of [10]
and [1], respectively.

2-(ii). Harnack inequality and initial traces. Consider solutions of (2.1) with
no further reference to initial data. These are measurable functions u defined
in ST, 0 < T < oo, such that for every bounded open set ft c R^ and
veG(0,r)
(2.15) ueC(e,T;L"(Çl))r\Lp(e,T;Wx'p(£l)),

(2.16) f u(x,t)<p(x,t)dx+ f   f {-utpt + \Du\p'2DuDq>}dxdx = 0,
Ja Jo Ja

vre(e.r), v? g ^l'oo(0,r;Loo(ß))nLoo(e,r;^01'oo(ft)),

t->tp(-,t) = 0, 0< t <e.
Remark 2.1. From (2.15) and [7, 9] it follows that (x, t) -»• Du(x, t) is Holder
continuous in every compact subset of R   x (0, T). These solutions belong to
the same regularity class of those found in Theorem 1.

Theorem 2. Let u be a nonnegative solution of (2.1) in ST for some 0 < T <
+CO. There exists a unique a-finite Borel measure p on RN such that

Urn      u(x ,t)tp(x)dx = /   y dp,
'N.0 7r" 7rw

for all tp continuous and compactly supported in RN.
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192 E. DI BENEDETTO AND M. A. HERRERO

Moreover Vi? > 0, VO < t < T

W ä,sAhY™+(4.r™.a
Jbr

where k = N(p - 2) + p, and y = y(N ,p).

The existence part of Theorem 2 is an immediate consequence of the Harnack
inequality, which we state as a theorem in view of its independent interest.

Theorem 3. Let u be a nonnegative solution of (2.1) z'zz ST.   There exists a
constant y = y(N,p) such that Vi? > 0, VO < x < T/2

Jb.

Rp.\/(p-2) . j-,Njp

t)        +{wu(x,r)dx<y{[ — \ + [-=)      [u(0,T)] ■¡k/P

<BR

The uniqueness of p will make essential use of estimate (2.14).

2-(iii). Uniqueness.

Theorem 4. Let u, v be two solutions of (2.1) in ST, for some 0< T<+oo,
in the sense of (2.15), (2.16), such that

sup|||«(-,OII|r,        sup |||v(-,0lllr < oo
(0,T) (0,T)

for some r > 0, and

lim(u(,t)-v(,t)) = 0   inL\oc(RN).

Then u = v in ST.
Remarks, (i) In Theorem 4, u, v are not required to be nonnegative.

(ii) The solutions constructed in Theorem 1 with initial data p G Lloc(R )
satisfy the assumption. Therefore Theorem 4 could be rephrased as a unique-
ness theorem for initial data u0 G Lloc(R ) and |||w0|||f < oo, r>0.

(iii) Uniqueness of nonnegative solutions for initial datum a positive cr-finite
Borel measure p would follow by the approximation argument of [6] if one
knew that uniqueness holds for initial datum p satisfying /RV dp < oo .

We have been unable to prove this last statement.

2-(iv). Nonnegative solutions. Let u > 0 be a weak solution of (2.1) in ST in
the sense of (2.15), (2.16). The Harnack inequality of Theorem 3 implies that
Vz->0

Such an a priori bound permits us to prove the following theorem.

Theorem 5. Every nonnegative solution of (2.1) in ST grows at most as |x|
when \x\ —► oo. Precisely

II"(--?)IIoo,b, <yt~NlKpPl{p~2)APlK,    V0</< T, V/?>r>0, Vz->0.

The theorem is proved in §7.
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CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 193

2-(v). Methods and extensions. Given a tr-finite Borel measure p in R sat-
isfying |||ju|||r < oo for some r > 0, 3x —► u0 n(x) G C~(R ) such that
Vç> G C0(RN)

/   u0   tpdx^       tpdp
7r"     ' 7r"

and |||M0iJ||r^|||/i|||r, Vz->0.
The Cauchy problem (2.1) with initial datum u0 n has a unique solution

un global in time (see [4, 10]). If we can prove estimates (2.9)-(2.14) for un
with \\\p\\\r replaced by |||w0 ||| , Theorem 1 will follow by a standard limiting
process, modulo the compactness results of [7, 9]. Henceforth we will refer to
the proof of Theorem 1 as to the proof of (2.9)—(2.14) for the unique solution
u of (2.1) with initial datum w0 G C£°(R ). Our proofs in §§3, 4 show that
it is not restrictive to assume u0 > 0 (and hence u > 0); in fact (2.9), (2.10),
(2.12)—(2.14) hold for nonnegative subsolutions of (2.1).

Estimate (2.10) is in the spirit of a similar one of [5] for solutions of the
porous medium equation (1.6). In that work the key estimates were of elliptic
nature in view of the "semiconvexity inequality"

(2.17) ut > -ku/t;       k a constant,

valid for weak solutions u > 0 of (1.6) in R   x (0, T) (see [4]) and strongly
linked to the homogeneity of the principal part of theoperator in (1.6).

There is a basic difference between the nonlinearity exhibited by (2.1) and
the nonlinearity of ( 1.6). Such a difference becomes apparent in estimate (2.10).
Working with (1.6) one can relate quite easily the quantity fB u(x ,t)dx, t > 0
with the analogous quantities /ft u(x,x)dx for x G (0,0; this is because
the Laplacian permits a double integration by parts. It is this fact that makes
estimates like (2.10) relatively straightforward once a bound for \\um~ H^ B
has been derived.

In the case of (2.1 ) one is forced to find in addition to (2.10) a rather delicate
estimate of

Jo Jb„
\Du\p  xdxdx,

>0  JB„

in terms of /0' |||w(-,T)|||riiT. This is what makes possible the proof of (2.14),
which in turn is the key estimate for Theorems 2 and 4.

Even though regularizing effects like (2.17) hold for (2.1) (see [4]) we have
avoided them. Our estimates are of parabolic nature and flexible enough to
generalize (2.9), (2.10), (2.12)—(2.14) to nonnegative weak subsolutions of

— u - divA(x,/,u,Du) < B(x,t,u,Du),(2.18) dt y /_    v   .  .   .      z>

u(x ,0) = u0(x) e lIc(R  ),        \\\u0\\\r < oo for some r> 0,

provided they can be approximated by bounded solutions.
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194 E. DI BENEDETTO AND M. A. HERRERO

The structure conditions in (2.18) are

X0\Du\p - g0(x,t)<A(x,t,u,Du)-Du< A0\Du\p + gx(x,t),

\B(x,t,u,Du)\ < B0\Du\p~X + g2(x,t),

where 0 < X0 < A0, B0 > 0 are given constants and g¡, i = 0,1,2, are given
bounded functions in RN+X .

Moreover, (2.11) also holds true if some differentiability is imposed on the
vector field A: R2N+2 - R* and the function B: R2N+2 ̂  R, and if (2.18)
holds with equality replacing the inequality. We refer to [7, 9] for the precise
differentiability assumptions on A and B.

The ingredients in the proof of Theorem 3 are the gradient estimate (2.14)
and the following "intrinsic" Harnack estimate.

Theorem 1 of [8]. Let w > 0 be a local weak solution o/(l.l) in some cylindrical
domain ftr = ft x (0, T). Let (xQ, t0) G flr, let B(x0) be the ball of radius p
about x0, and assume u(xQ ,tQ) > 0. There exist two constants C; = C¡(N ,p),
/ = 0,1 such that

(2.19) „<*„,,„) < CkMmu (,;(o + c,-;r^_) ,

provided the box

up~¿(x0,t0)

is all contained in ft

Va ^7TTV?o + ci„p-2Pi   t\
\Xq , Iq) )

"7"

It was observed in [8] that (2.19) implies V0 > 0

(2.20)    ^c.'^r\(Ç)'m~\(Ay''\f    u^^O)
K/p'

for a constant y = y(N ,p), provided the box

Q(p, 6) = Bp(x0) x {t0 - C,6, t0 + C,6}

is all contained in the domain of definition of u.
Recall that local solutions of (1.1) are Holder continuous [7] and therefore

u(x, t) is well defined V(x ,t) eSlT.
In view of the continuity of u, within the ball B (x0) there exists at least

one x such that
f       u(x, t0) dx = u(x, t0).
Jbp(x0)

Therefore (2.20) implies

(2.21)     jB^u(x,tQ)dx<yU^-j +{y)      [u(x0,t0 + 6)]K,p\
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CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 195

V/> > 0, V0 > 0 provided the box Q(p,6) is all contained in the domain of
definition of u. This last requirement, when applied to nonnegative solutions
of (2.1) in ST = R   x (0, T), says that t0 and 8 must satisfy

0<t0-Cx6<t0 + Cxd < T.
Thus the main difference between Theorem 3 and (2.21) is that in Theorem 3
i0 can be arbitrarily close to zero, whereas in (2.21) t0 must be of the order of
T.

It will be precisely (2.14) that will permit us to overcome this difficulty and
extend (2.21) for all i0 G (0, T).

The existence part of Theorem 2 will follow from the Harnack estimate.
Uniqueness of the initial trace p is based on the following.

Lemma 2.2. Let u > 0 be any weak solution of (2.1) in ST. Then Vi? > 0,
VeG(0,l]

■+       u(x, t) dx
^•8(i+t)Ä

>-f  u(x,x)dxl(l+e)~N -U l  u(x,x)dx"    R~p(t-x)\

for all 0<x<t< y.Rp/[fBR u(x, x) dxf~2, where y,yt = y, yt(N,p).
Lemmas of this kind for the porous medium equation, though less general,

were referred to as lemmas on "how fast the material can escape a given ball"
(see [3]). The proof of the analogous fact for solutions of (1.6) in [3] is rather
complicated, and it is based on Alexandrov reflection technique. In our case it
is a simple consequence of estimate (2.14).

Finally, the strength of (2.14) appears in the proof of Theorem 4. It implies
that if « and v are solutions of (2.1 ) in ST suchthat u( ,t)-v(-,t) = w(-,t) -►
0 in LxXoc(RN) as / \ 0, then Ve G (0,1/JV) as / \ 0,  w(,t) — 0 in
Llo^(R ). Once this is shown, Theorem 4 follows in a rather straightforward
way.

3. Proof of Theorem 1. The L°°-estimate

Let m g L°°(0, T;Lx(RN))nLp(0, T; Wx'"(Çl)), p > 2, be the unique solu-
tion of

(3.1) ^-{u-dW(\Du\p'2Du) = 0,       RN,t>0,

(3.2) M(x,0) = Mo(x)gC0°°(R").

By the results of [9], Du G CQ'a/2(ft x (e, T)) for any bounded open set
ftcR* and any e>0, T>0 and some a G (0,1), a = a(e57\||K0||oo,|í2|).
Since ut G L2(0,T;L2Xoc(RN)), V0 < T < oo, (3.1) holds a.e. R* x (0,oo) .
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196 E. DI BENEDETTO AND M. A. HERRERO

Such regularity will suffice to justify the calculations to follow. We shall
denote with y a generic positive constant depending only on N, p. The proof
of (2.10) requires several steps.

3-(i). Preliminaries. Let T > 0, p > 0 be fixed and consider the sequences

rj.      T       T p I . . ip
T„=2-2¡ÍÍ> Pn = P+^ï>      Pn=2(Pn+Pn+l) = P+^nT2>

zz = 0,l,2,....

Set

*n = *»>        Bn=Bßn,        Qn = Bnx(Tn,T),        Qn = Bnx(Tn+x,T),

and let (x, 0 —► C„(x ,t) be a piecewise smooth cutoff function in Qn satisfying

Cn(x,t) = l,       (x,t)eQn   and
\DCn\<2n+2/p,        0<dCJdt<2n+2/T.

Finally, for a positive number k we will consider the increasing sequence

kn = k-k/2n+x,       n = 0,l,2,....

Let w G L°°(0 ,T ;Ls(Bp))nLm(0 ,T ;WX 'm(Bp)), s,m>l. By Gagliardo-
Nirenberg's inequality (see [13, p. 62]), for a.e. t G (0, T)

\M\q,Bp<y\\Dwt,BP\M\\:i

where
n = (l/s- l/q)(l/N-l/m+l/s)~X

and y = y(N,p).   Choose n = m/q, take the q-power, and integrate over
(0,7). Then if Q = Bpx(0,T)

ff \w\qdxdx<y( if \Dw\mdxdt) I ess sup f        \w\s dx
JJq \JJq )   \0<t<T JB„x{t}

m/N

for a new constant y = y(N,m,s).
In particular, for the choices

(3.4) m=p;s=p2/2(p-l),

we have q = p(l + s/N), and
(3.5)

(\ P/N

ess sup f \w(t)\sdx)
0<t<T Jbp J

Also for the choices

(3.6) m = s = 2,
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CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 197

we have q = 2(TV + 2)/N, and

esssup f \w(t)\2dx)
0<t<T Jb„ )

The choices of (3.4) and inequality (3.5) will be employed in the proof of
(2.10), whereas (3.6) and (3.7) will be used in proving (2.11).

3-(ii). Integral estimates for u. Multiply (3.1) by

(u-kn)p+~lCPn=max{0;(u-kn)}p-xCP,

and integrate over Qn to obtain

(a) f f Ul(u-kn)p-xi:Pdxdx>U_    (u-kn)p+dx
Jt„ Jb„ P Jb„(i)

"// (u-kn)p+Cnidxdx,       Tn+X<t<t;

(b) H  \Du\p-2Du{(p-l)(u-kn)p+-2D(u-kn)+C

+ p(u-kn)p+-XClDt;n}dxdx
P    rr    ,.p

-yff (u-kn)2lp-X)\DC/dxdx

2{p-\)lp

Qn
dxdx

'Qn

Combining (a), (b) using (3.3) and setting

(3.8) Wn = (u-k^p-x)lP.,

we have

and
(3.9)

(u-kn)p+=wpn2/2{p-X) = wsn   (see (3.4))

}

sup     /_    ws dx + / /_ \Dwn \" dx dx
T„+l<t<T JB„{t) JJQ„

<y-y- ffQ(u-kf-2(u-kJ+dxdx+Ç lfQ(u-kn)p+dxdx.
Define

i-,  im xi.\       j. t.\ NIk llW(''T)'loo,B„(3.10) <t>(t) = <pr(t)=  sup t      sup- ' ,
r€(0,i) p>r pPIP    ¿

for r > 0 fixed and k = N(p - 2) +p . Since «0 G C™(RN), u G L00^") and
(p() is well defined.
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For (x,t)eQn, we have T/4 < Tn < t < T, and

(u(x,t)-kn)p-2p-p < (N^l'^y~2 < yrN(p-1)lKr\t).

Therefore (3.9) can be written more concisely as

(3.11)      sup     /     wsdx+ ff  \Dw\pdxdx<y2npK(T) ff w'dxdx,
t„+i<'<tJbm JJq„ JJq„

s=p2/2(p- 1), « = 0,1,2, ... ,    where
K(T) = 'T-N{p'2)/K(t)p~2(T) + T~X).

3-(iii).  The iteration process. From inequalities (3.11), n = 0,1,2, ... , we
will deduce

Lemma 3.1. There exists a constant y = y(N ,p) such that Vi > 0

»"(■.OIL- <y[K(t)f+p)ß(f f u"dxdx)
'  ' \Jt/4JB2p J

where

(3.13) X = N(p-2)+p2.
Proof. Let x —► i„(x) be a piecewise smooth cutoff function in Bn that equals
one on Bn+X and such that \DÇn\ < 2"+2/p. Then

wn+xCn G L°°(Tn+x, T;Ls(Bn)) n Lp(Tn+x ,T;WX '"(Bn))

and recalling (3.4), (3.5)
(3.14)
ff    wqn+xdxdx<if_\wn+xln\qdxdx

JjQn+1 JJQn

<y\ ff  \Dw\pdxdx + —p- f    wpdxdx\l    sup    /     w'ndx\    ,
[JJQn P   JJQ„ J   \Tn+l<t<T J B„(t) J

where we have used the fact that wn+x <wn, VzieN.
From the definition (3.8) of wn and the definition (3.10) of t -* <p(t) it

follows that
P~" ÍL wpdxdx < yK(T) if wndxdx.

Substitute this in (3.14) and estimate the right-hand side by making use of (3.11)
to obtain

r r irr \ (N+P)/N
(3.15)      II     wqn+xdxdr<y[2npK(T)]{N+p)/N(llQWSndxdx)
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By Holder inequality and the definition of wn

SÍ^}U-kn^tdxdX^{S¡^dxd^\AnJ-Slq,
where

(3.16) An = {(x,t)GQn\u(x,t)>kn},       « = 0,1,2,...,
and \An\ = measAn . Since

ff   (" - K)"+ dx dx *   ÍÍ (" - kn)+ dx dx
¡Jo,, 77o„nru>zc„J.,i

k"

'+77;

- \K+\      K\   \An+l\ - 2(n+l)pl^n+ll'
we deduce from (3.15)

//    (u-kn+x)p+dxdx<ybn[K(T)]^'k-pix-^.^ll (u-kn)p+dxdx^j

b = (2p)X+K.
It follows from Lemma 5.6 of [13, p. 95] that

ff (u-kn)"+dxdx^ ff   (u-k)p+dxdx = 0
JJq* JJqoo

provided
ff  t7>dxdx<ylK(T)]-(N+p)'NkN{i*-x),
JJqo

where Q00 = Bpx (T/2 ,T), Q0 = B2p x (T/4 ,T),andy = y(N,p).
Using (3.4) a quick calculation shows that if k is chosen to satisfy

k = y[K(T)f+p)ß (II  tfdxdxX    ,       X = N(p-2)+p2,
then supn   u < k . Since T > 0 is arbitrary, the lemma follows.

V/oo

3-(iv). The main estimates. Define

(3.17) ¥(t)=  sup |||«(-,T)|||r,       r>0.
T€(0,i)

Proposition 3.1. There exist positive constants yi = y¡(N,p), i = 0,1,2, such
that Vr > 0
(3.18) <Kt)<yx\\\uQ\\\p/K>       k = N(p - 2)+p,4> defined in (i.10),
(3.19) y(t)<y2\\\u0\\\r,
for all t satisfying

(3.20) 0<t<y0|||Mo|||;("-2).
In the process of proving the proposition we will also demonstrate estimates

(2.12)-(2.14) with \\\p\\\r replaced by \\\uQ\\\r.
The proof proceeds in several steps.
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Lemma 3.2. There holds, V? > 0

(3.21) 4>(t)<y f r-N{p-2)lKmp-x dx + yV(t)pß,
Jo

where y = y(N ,p).
Proof. Divide both sides of the inequality of Lemma 3.1 by ppl{p~1) and mul-
tiply by xN/K , x G (f/2,f) ■ Recalling the definition (3.12) of K(t), we have
for all xe(t/2,t), V? > 0

.    2

1y/JI"('>T)Hoo„B/,     . ^±£(,,-2)1 p/p-2      ^ ?M0] 1/    /    P       u dxdx'f if I
p' \Jt/4JB2

(3.22) ,mp-D   n» ( ['   f     „       i
+ yt{   «     I);     /    /    if p~>-'-dxdx

\Jt/4 Jb2„

= 77(1) + 77(2).

Estimating 77    , i = 1,2, separately we have

tf(1) < ̂ (O]'"^ N V"('-2)/* AyJI"(->T)lloo,*,,
T

<y<t>(t)l-pßU x-N(p-1)lK<t>p-\x)dx

<\<p(t) + yfr-N{p-2)/Kcpp-l(x)dx;
Jo

(2p)plP~2

pß

p     \Pß

dx)

pß

Pß

^*>{lC^l"{^^) ' ^r'^ ¡Biu(x,x)dxdx

<y[4>(t)f-V)pß^-tj\\\u(,x)\\\rdx)

< y[4>(t)fp-')lkmt)]pß < \<t>(t) + y[w(t)]PlK.
We carry these estimates in (3.22) and take the supremum first over all p >

r > 0 and then over all x G (0,0, Vi > 0. Recalling the definition (3.10) of
; —> 4>(t), the lemma follows.
Lemma 3.3. Let p > r > 0 and let x —► £(x)  be a piecewise smooth cutoff
function in B2   such that 17 = I on B   and \DQ < p~  . Then Vf > 0
(3.23)
f f   \Du\p~xrf-xdxdx
Jo Jb2p

< ypl+K/{p-2) (l'x{p+X)/K-Xcp(x){p-2){p+X)/Pw(r)dx

+ f\x,K-xm^-m¥{x)dx)^'m'^xx/K-Xcf>(xf-2)/PW(r)dxXl/P

where y = y(N ,p).
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Proof. The calculations to follow are formal in that they require u to be strictly
positive. They can be made rigorous by replacing u with u + e and letting
e —► 0. By Holder's inequality
(3.24)

f f   \Du\p~ 'C""' dx dx
Jo Jb2p

= f f (r(p-i)/"2i7)MriM-2(i,-i)/,'2r1)(T-(,'-1)/,'2"2(p-|)/''2)^^
7o Jb2p

<(f'f   xx/p\Du\pu-2/PC"dxdx
I/o Jb1p ,

■iff\Jo Jb2i,

= [Jx(t)](p-')lP[J2(t)][

(p-v/p

r.-(p-X)lpu2(p-X)lPdxdr\'

To estimate Jx(t) we multiply (3.1) by x 'pu     'PÇP  and integrate by parts.
Standard calculations yield

f f   xXlp\Du\pu'2lp(fdxdx
Jo Jb2p

(3.25) -p f' f     i/p p-2/p ,    , [' f     \/p-\  2(p-\)ip ,    ,<yp     \   j    x    u        dxdx + y       /    x        u dxdx
Jo  JBi„ Jo  7fi,„

= LX+L2.

Estimating L¡, i = 1,2, separately, we have

. / ||,./     _\|| \ (p-2)(p+\)lp
L   <ynX+Kl(p~2) f tlp+l)/K~X | tN/k '"oc-B^ )

X~yP Jo { (2p)p'p-2    j

(3-26a) .(p-K'(p-2)l   u(x,x)dx\dx

<ypx+K/{p-2) f'x^X),K-x(p(xf-2){p+X)/p¥(x)dx;
Jo

L2 < 7px+Kl^ f'xX,K-X(xN/Kp-p/{p-2)\\u(.,x)\\0o Ä, )("-2,/"
Jo ' ■''

(3.26b) ■lp~K/{p~2] f   u(x,x)dx\dr

<ypX+K/{p-2) f xX/K'Xcp(x){p-2)/p¥(x)dx.
Jo

On the other hand,   7,(f) = L2 ; therefore combining (3.26) and (3.25) the
conclusion follows.
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Lemma 3.4. There holds

(3.27)    w(t)<y\\\u0\\\r + y^l\^X)/K'xm^2^+l),PW(r)dx

+ l\Xß-XHr)ip-2)/2W(r)dx),

where y = y(N ,p).
Proof. Let x —► £(x) be the cutoff function introduced in the previous lemma.
Multiply (3.1) by (f and integrate by parts to obtain after standard calculations

f u(x,t)dx< f   u0(x)dx + ^ f  f   \Du\"~xCP~1dxdx
Jbp Jb2p P Jo Jb2„

valid for all í > 0 and all p > r > 0. Multiply both sides by p~Kl{p~2), estimate
the last term by Lemma 3.3, and take the supremum over all p > r > 0.

We are now in the position of proving Proposition 3.1.

Lemma 3.5. Let t -* <t>(t),   y/(t) be two continuous nondecreasing functions
defined for t > 0 and satisfying

(3.28a) <p(t) < y f x-N(p~2)lK<j>(x)p-' dx + y[tp(t)fß ,
Jo

v(t) < y\\K\\\r + y f x(p+X)'K-x<t>(r)(p-2){p+x)lpv(*)d*
(3.28b)

+ y f'xx/K-x(p(x){p-2)/p¥(x)dx
Jo

for a given constant y, and k = N(p — 2) + p . Then there exist constants y0,
y,, y2 depending only upon y, N, p such that

(3.29) 4>(t) < y^UoWlf,     v(0<y2IIKIHr>
/0ra//0<f<y0|||Mo|||7(p-2).
Proof. First observe that t —► ip(t) being nondecreasing, Vf* > 0 we have from
(3.28a)

(3.30) </>(f) < y f x'N{p~2)/K<t>(x)p~x dx + y[y/(t*)fK   VO < f < t*.
Jo

The number f* will be chosen later; at this stage is an arbitrary positive value
of f. It follows from (3.30) that cp(t) is majorized by the solution of

H'(t) = yrN{p-2)/KHp-x(t),       77(0) = y[¥(C)]p'K.

Solving explicitly
4>(t) < 77(0 = >W)(i - y(P - 2)[t¥(ty-2fK)-xl(J>-2),

provided the bracket is positive Vf G [0, f*].
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If this is the case the estimate above holds for t = t* and since f* is an
arbitrary positive number we deduce that

4>(t) < YV(tfK(\ - y(p - 2)[t¥(t)p-2]p/K)x/{p-2)

for all t > 0 for which the bracket is positive. If on t we impose

y(t¥(t)p-2)PlK<p,(2p-2-l),
p-2

we obtain the statement:
There are two constants ?x, y0 depending only on N, p such that

(3.31) <Kt)<?xy(t)p/K,
for all f satisfying
(3.32) (t¥p-2(t))p/K<y0.

We remark that y,, yQ are quantitatively a priori determined only in depen-
dence on N, p.

We now carry (3.31) into (3.28b) and obtain

(3.33) V(t) <y\\\u0\\\r + y f xx/K-xys(x)x+{p-2)/Kdx
Jo

for all f for which (3.32) holds and for a new constant y = y(N,p).
It follows that ¥() is majorized by the solution of

M'(t) = ytx/K-xM(t)x+ip-2)/K,       M(0) = y\\\u0\\\r,

whence
¥(t) < M(t) = Intimi - y('iii«oiiir2)wV,c/(p~2).

provided the last bracket is positive.
The constant y being quantitatively determined a priori, we can find a con-

stant y0 such that
(3-34) ¥(t) < y2|||K0|||r
as long as f is so small as to satisfy (3.32) and

(3.35) 0<f<7J||u0||L-(*-2).
Putting together (3.32), (3.35), and (3.34), we deduce that there exists a

constant y0 = y0(N,p) such that if 0 < f < y0|||«0|||-(p_2), (3.35) and (3.32)
hold.

Now combining (3.34) and (3.31) the lemma follows.
Corollary 3.1. There exist constants y0, yx, y2 depending only on N, p such
that \fp > r > 0

jPp-2)
N-.OIL^^y.^r-IIKIIIr7 ".

lll«(-»0lllr<y2IIKHIr
/0ra//0<f<y0|||Uo|||70'-2).
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As a by-product we obtain estimate (2.14), i.e.,

Corollary 3.2. There exist constants y ,y0 = y ,y0(N,p) such that V/z > r > 0,

nln    |P-1    i      j       ,     J/k     l+K/ip-2),.,       ml+(p-2)/K\Du\     dxdx<yt' p    ,yy   '\\\u^\\\r

VO<f<y0|||Mo|||r-(i,-2).

Estimate (2.12) follows from a technique similar to that of Lemma 3.3.
For simplicity let us assume ft = B   and let Q = Bp x (0, T) where p >

r > 0 and

(3.36) T^CollKHI^-2'
and C0 is the constant claimed by (2.8) of Theorem 1 and previously found in
a quantitative way.

Setting
q=p-(N + e)/(N+l),        £>0,

we have Va, ß G R+ , formally

ff \Du\qdxdr= ff tßu~a\Du\qCßu dxdt

< (JJ tßp'^dxdryp (If rßp'{p-qVp/{p-q)dxdr^
IQ        u "'- J      \JJQ

_ ij(0\<iIpiw^)A-<iIp

Multiply (3.1) by tßp/qux~ap/qi:(x), with the choice ap = p - q so that

l-ap/q = 2-p/q = (p-2(N + E)/(N+l))/q.
Here x —► Ç(x) is the usual cutoff function in B2  . By standard calculations

we find

(3.37) "   Qlp
¡v<y[f tß'up-2+{X-<)udxdt

r JJqh,

+ yff    tß«~XuX-a«udxdt.
J Jq2„'Qi„

To estimate the first integral on the right-hand side of (3.37) we use Corollary
3.1 to conclude

£//   ^^V,^,«rf*rff<y(pJIKII|r)(jfV*-w"(,--*)-,A) -
The second integral in (3.37) behaves analogously and we obtain

7(1)<y(/>,IIKIIIr)^^(1-^,
provided

(3,8, ^.i(,-aS)>0.
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As for 7<2) we have

i{2)<y(P,\\K\\\r)Tx-ßPl{p-q),

provided

(3.39) l-ßp/(p-q)>0.

Condition (3.38) yields

.       N(      2(N + e)\
ßp>K{p-NTl)

and (3.39) gives ß < (N + i)/(N + 1).
A quick calculation shows that these conditions are compatible only if e > 0.

4. Proof of Theorem 1. The gradient estimate

Take the x.-derivative in (3.1) to obtain formally

(4.1) £-uXi = div í\Duf~2Dux¡ + (p- 2)\Du\p~3-^\Du\Du\ = 0.

Multiply this by the testing functions

{42) 1n=2uXl(V-k)a+Ç2n> «>°>

v = \Du\2

and integrate over Qn . Here Ç„ and Qn are as in §3-(i). Proceeding formally,
we have (repeated indices denote summation over those indices)

(a) 2U,,ku*."*,{v-ktädxdx

>- =iî S-,,,7 - *c *> - ¿iff* - «r'tc ***.
vr„, </<t-.
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(b) - Il   div l\Du\p~2Dux +(p-2)\Du\p~3-^-\Du\-Du\nndxdx

= ff \Du\p-2\a\Dv\2(v-k)a+-xen
JjQnr\[v>k) [

A2JZ\DuXi\2(v-kf+en

+2Dv(v-k)a+CnDCn\dxdx

/=i

N     a 2
(v-k)+Cndxdx+ (p-2)ff \du\"-2y:

+ 2a(p-2) ff \Du\p~2\D(\Du\)-Du\2(v-k)a~X!T,2ndxdx
JjQnC\[v>k\

+ 4(p-2) ¡f  \Du\p-\d(\Du\) ■ Du)(v - k)a+DuÇnD(,n dx dx
JjQn

>   _^I_   ff      ̂(a+l)2JjQ„
ip-2\D(v-k){a+X)/2\2dxdx

2n

ap2
ff  \Du\p-2(v-k)a++Xdxdx.
JjQn

Combining (a) and (b) yields
(4.3)

sup     f_    (v- k)a++X dx + ff_ \Du\p'2\D(v - k){a+X)/2\2dxdx
T„+t<t<T JB„«) JJQ„

")n In

<y\ ff  \Du\p~2(v - k)a++x dxdx + ̂ - ff (v - k)l+x dx dx,
P        JJQn l        JJQn

where y = y(N ,p ,a).
These calculations are somewhat formal. They can be rigorously justified by

first writing (4.1) in terms of difference quotients in the space variables and
Steklov averagings in f. Then in the weak formulation one takes test functions
nn where the derivatives appear as difference quotients and further they are
averaged in time. A standard limiting process makes the result rigorous. Also,
it is easily seen that the integrals involving (v - k)a~ (a > 0) are well defined
even if a - 1 < 0.

Let {kn} be the increasing sequence

kn = k-k/2n+x,       « = 0,1,2,...,

where k > 0 will be chosen later. Define

(4.4) An = {(x,t)eQn\v(x,t)>kn};       v = \Du\ ,
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and observe that on the set An

i7?Mr2>(^)(/'~2)/2.
Also define

*,rt (N+l)/K II^Mlloo^W -,tdV <P(f)=suPTl sup -     '_'      ,       p>2,
(4.5) T€(0,0 p>r>0       p¿/(p   L)

K = N(p - 2) + p.
In view of (2.10) and the results of [9], it is easily seen that <¡>(t) is well defined,
by possibly working in R^ x (e,oo) with e G (0,1) arbitrary and then letting
e -» 0. Then for all t G (T/2, T)

\Du\"-2/p2 < yT-(N+X){p-2)lK<S>(t)p-2.

We write (4.3) with k replaced by kn and set

(4.6) wn = (v-kJa+X)/2,        a>0.
Then carrying the remarks above into (4.3) we have in a more concise way

(4.7) sup     /     t/j2i/x + /c(p_2)/2 ff  \Dw\2dxdx
T„+t<t<TjB„(t) JjQn

<y22nH(T) ff  w2ndxdx,
JJq»

where
(4.8) H(T) = [r«"+1>/*>(;>-2V-2(r) + r-i] _

Let x —► C„(x) be a cutoff function in Bn which equals one on Bn+X and
such that |7>C„| < 2"/p. Then

^n^^(Tn+x,T^L\^H))ryL\Tn+x,T-,W^ÇBn)),
and applying (3.7)

//     w2^'Ndxdx< ff (wntn)2^»dxdr
JjQn+i JJQ„

(4.9) <ry¡^\Dwfdxdx + ̂ fJ_wldxd^

( f        *A  \2,Nsup     /      w dx \
\T„+l<t<T JBn(t) J

Next we impose on k the restriction
(4.10) 0<k<p4/{p-2)T-2{N+x)/W(T).

Then
22"  ff     2 22n k^'2^2  ff     2¡j   Wndxdx<V¥FZWF2jj   Wndxdx
P   JJQn P   k^ *"*JJq„

.    .2«   H(T)     ff       22n   H(T)      if       2   ,      .
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We substitute this in (4.9) and estimate the right-hand side by making use of
(4.7) to obtain

(4"'   II 2(N+2)/N   ,      ,w7 dxdx
Qn+\

/   r r \ {N+2)/N< y[22nH(T)f+2)/Nk~(»-2)/2 (II  w]dxdx

By Holder inequality
s N/(N+2)

,2/(/V+2)
ll(4.12)       HQ  ( wldxdx < (//e  ^ w2r2)INdxdx) \An+

and since  \An+x\ < 2(a+x)(n+X)k~(tt+X) JjQ (v - kn)a++ldxdx, we obtain from
(4.11) and (4.12)

ff    (v-kn+x)tt++xdxdx<yb"H(T)k-
77e„+l

■(ZV(p-2)+4(a+l))/2(ZV+2)

, l+2/(N+2)
dxdx

b = 22+{o+X)^,    y = y(N,p,a).

It then follows from Lemma 5.6 of [13, p. 95] that

iQn

provided

//>-«' dx dr —> 0   as n —> oo,

ll     L _ *V+I  dxdr < y[//(r)r(N+2)/2/t(V(,-2)+4(„+,))/4

This condition is satisfied if we choose

(4.13) k = yH(T)2(N+2)l°(fT I   \Du\2{a+X)dxdx\      ,

(4.14) a = N(p-2)+ 4(a+I).

If the choice of (4.13) is compatible with (4.10), then Mte(T/2,T)

(4.15) \\Du\\ooB(t)<yH(Tf+2^(fT f   \Du\2{a+X) dx dx)      .
\Jt/aJb2p )

If on the other hand (4.13) is not compatible with (4.10), we have

p^p-2)T-(N+X)lKQ>(T)<yH(T)(N+2)la (jT I    \Du\2{"+X)dxdt\   \

and recalling the definition (4.5) of <P(T), this again implies (4.15).   Hence
(4.15) holds in either case by suitably modifying the constant y .
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To proceed we choose a = (p - 2)/2 so that

(4.16) a = N(p-2) + 2p.

Divide both sides of (4.15) by p2/{p-2) and multiply by t[N+x)lK . Then Vf >0,
recalling the definition (4.8) of 77(f), we have
(4.17)

^n/J^W') < m)^-2)t^ . (Ç p-^ f   lDufdxdT)V
P '" \Jt/4 Jb2p J

+ y(tN,K f p-* f   \Du\pdxdx\'\GW + G(2).
\ Jt/A JB2p )

Estimating C7(1) we have

(1) i.v+2W-;i   [   ft     _i*±i>(      j)   UHUp     ( H/J)Mlloo,B,,(T)V    ,   1
C7< ><yO(f)     -      |//4T     *('    »*  ''•(**      ^-2      j   *}

t ,v.n,.        .. \  2/CT
-2(P-2)iT,/^/2-l<7<D(f)^^TM/   t~  "  """«(t)"  '¿T

<+<D(f) + y f r~^ip~2)<ï>(x)p~x dx.
Jo

In order to estimate C7(2) we refer back to equation (3.1). Let (x,f)—>Ç(x,t)
be a piecewise smooth cutoff function in 774 x (f/8, t) which equals one on
B2p x (f/4,0 and such that |7X| <d/p, 0 < C, < 8/3f. Multiplying (3.1) by
w£p and integrating by parts we obtain after standard calculations

f   f   \Du\pdxdx<^p f  tfdxdx+^f   f   udxdx.
Jt/A Jb2i, P    Jtß l Jt/S Jba„

Therefore
2/rj

G{2) <y\tNI Ksupf p-al(p-2) f   \Du\pdxdx
P>r Jt/A Jb2„

p-l    . . \V"

-'XL' Kpfr-p^r) ["Pf/ JBU(X,X)dxjdx^
'    ...    . /       Hw(t)11        w ï2/

+ y <      x sup
(Jtß \p>r      pP'(p-2)

-y{//8T~C^^~2)0(T)P~1|l|M(''T)lll^T}2/CT

■ 2/<7

sup/? /   w(x,t)<7x 1 dx
^P>r Jbp )        j

y j/"' rV(T)|||M(-,T)|||r^
\Jtli
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where we have employed the definitions (3.10) and (2.6).
Next, applying Corollary 3.1 and the definition (3.17) of f —► ¥(t),

G(2) < y[tPlK<t>(t)p-2]2la[¥(t)X+plK]2l° + y[¥x+p/K]2/a,

for all t within the range claimed by Corollary 3.1. Within such a range

tp/Kcj>(t)p-2<y = y(N,p)   and   ¥(t) <y2\\\u0\\\r.

It follows that
G{2)<y\\\u0\\\2/K,      y = y(N,p)

V0 < f < y0|||«0||l7       > where y0 = y0(N,p) is the number claimed by Corol-
lary 3.1.

We substitute these estimates in (4.17) and take the supremum first over all
p > r and then over all 0 < t < y^H^oHT^-2' • Recalling the definition (4.5)
of t —> <P(f) we obtain

(4.18) 0(f) < f ^N+X)'^-2)^x)p-X dx + y\\\u0\\\2JK,
Jo

vo<t<y0\\\u0\\\;{p-2).

It follows that <!>(•) is majorized by the solution of

V'(t) = yt-((N+X)lK){p-2)Vp-x(t),

^(0) = y|||M()lli/K>     o<f<y0||Kl||r-(;'-2).
Solving explicitly

ow^iiiuoiiifii-^iiKiir2)2^}"1^,
and therefore if t is so small that

(4.19) {l-Ki|||"olir2)2/'Cr1/(;'~2)<2

we will have
^'^II^IU^W/^^^yllNolllf,

for all such t and V/z > r.
The gradient estimate (2.11) follows readily and Theorem 1 is proved.

5. HaRNACK. INEQUALITY AND INITIAL TRACES

We will prove in this section the Harnack inequality of Theorem 3 and
Lemma 2.2. The existence of initial traces and their uniqueness (Theorem
2) will follow readily.

5-(i). Harnack inequality: a special case. Let u > 0 be the unique solution of

(5.1) u, - div(|DM|p-2i)M) = 0   inR*x(0,oo),
(5.2) M(x,0) = «0(x)>0,
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where we assume
f je-» u0(x) G L°°(BR)   for some R > 0 fixed
1 and«0(x) = 0,       |x| >R.

We will show that Vr > 0
r Í /rp\XI(p~2)    / t\n'p /I

(5.4) ^u0(x)dx<yU^j +^j     [u(0, T)fp\

for a constant y depending only on N, p and independent of R, 6, u, w0
As a starting point we record the following consequence of Corollary 3.2.

Lemma 5.1. There exist constants y,yQ = y, y0(N ,p) such that Vp> R

f I \Du\p-x dxdx <ytx/Kpx+K/{p-2) (^R-p¡{p-2) £ uQ(x)dxy+U"2)/K

for all t satisfying
-ip-2)

0 < f < y0 ÍR-p/{p-2) I  u0(x)dx\
>BR

Proof. Observe that since x —* u0(x) is supported in BR

|||Mo|||Ä = sup/rK/(p"2) / u0(x)dx = R~p/{p~2)-f  u0(x)dx.
p>R Jb„ Jbr

To proceed, let e G (0,1] and let x —>• £(x) be a piecewise smooth cutoff
function in B,X+.R which equals one on BR and such that |7>C| < (eR)~x.
Multiply (5.1) by Ç and integrate by parts to obtain

(5.5) /       u(x,t)dx> f  u0(x)dx--^ f  f   \Du\p~x dxdx
Jb(í+c)R Jbr eR Jo Jb2R

valid Vf > 0. Set

(5.6) ^o = T   u0(x)dx.
Jb„

Then for all f G (0, y0Rp/Ep~2), we obtain from Lemma 5.1 with p = (1 +e)R

(5.7) I       u(x,t)dx > (l+E)~NE0 - y-E0(EPT2R-pt)XlK,

Ve G(0,1].
With the aid of inequality (5.7), taking e = 1 we deduce

Lemma 5.2. There exists a number S G (0,1), ô = ô(N,p) such that at the
time level

(5-8) t^ôRf/ElT2,
within the ball B2R, there exists at least one point x0 such that

(7V+1).(5.9) M(x0,f0)>2-^"7i( 0'
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Remark 5.1. Inequality (5.7) with the parameter £ G (0,1) is needed later. For
the remainder of this section we will take e = 1.

For notational simplicity set

ü = u(x0, tQ),

and consider the box

f     cy      cy)
ßo = {I* - *bl < p} x |'o- -¿J=r .'0 + ̂ hrj >

where C, = CX(N,p) is the constant of Theorem 1 of [8] (see §2-(iv) here),
and

(5.10) pp = (ô/2N+2)(l/Cx)Rp.

In view of such a choice of p we have

cy   or"   cNx+\p     ôp

and therefore the box Q0 is all contained in the domain of definition of u. By
Theorem 1 of [8]

(5.11) "<Cn    inf   u(x,t),
°x€Bp(x0)

(5.12) t = t0 + Cxpp/up~2.

Combining (5.11) and (5.9) we have

(5.13) u(x,t)>(C02N+x)-xE0,    VxG7yx0).

We are now in the position of proving (5.4).
Let us fix T > 0 and let us assume that the level t found in (5.11), (5.12)

is below 772, i.e.,
í = í0 + c1//sí'"2<r/2.

Using (5.9) and (5.10) we see that this will happen if

2ÔRP/T + (Ô/2N+2)RP/T < Ep~2,

i.e., if

r fRp\x/{p~2)
(5.14) E0 = j   u0(x)dx>C2(N,p)[^—j

If (5.14) is violated, then (5.4) holds trivially. Therefore we assume (5.14) holds
so that t = t0 + Cxp"/up~2 < r/2 and

(5.15) T-t>T/2.
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To proceed, consider the following explicit solution of (5.1) in R^ x [f, oo).

&kJx,t;x0ï) = kpNS(t)-N>*l 1-(J^

(5-16) < S(t) = (y0kp-2pN{p-2)(t-t) + pK),

?0(/V,p) = K(p/(p - 2))p-x,       K = N(p-2)+p,
{k = (Cx2N+xyxE0.

It is readily seen that 3§k   (x,f;x0,0 satisfies (5.1) for t > t, x € RN.
Moreover, for t = t it vanishes outside the ball B (x0) and Vf > t it vanishes
(in a C1 '"-fashion) outside the ball |x - x0| < 5(f)     . One also verifies that

¿®fc Ax, t ; Xq , t) s zc,

and therefore by the maximum principle

(5.17) u(x,t)>^kp(x,t;x0,t)   Vt>t.

In (5.17) choose

(5.18) t = T,       x = 0.
Since x0 G i?2Ä we will have

„(„_,) ^-l)/(p-2)        /ix(p_1)/(p_2)
1-  '

/       |X   |       Y^-^y   >/(P      ' /,N(

[sm^j      j - (2 J
if S(T)>2[2-X/P)KRK.

Using (5.16) and (5.10) we see that this will happen if

C3(N,p)Ep~2RNip~2)T+ CA(N,p)RK > R*

and this in turn will be verified if EQ satisfies

r /Rp\x/{p~2)
(5.19) E0 = jB u0(x)dx>C5(N,p)(jr)

Let us assume (5.19) for the moment. Then from (5.17) with the choices (5.18)
we obtain

u(0,T) > C6(N,p)E0RN/S(T)N/K.
Now if (5.19) holds

S(T) < C1(N,p)Ep~2RN{p~2)T + Cg(N,p)RK

<Cg(N,p)Ep-2RN{p-2)T

= CX0(N,p)Ep-2(T/Rp)RK,
and therefore

u(0, T) > CXX(N,p)Ex0~N(p~2)lK(Rp/T)N/K .
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This in turn implies
N/p Ip£ u0(x) dx = E0 < CX2(N,p) (jp)      [u(0, T)f

On the other hand, if (5.19) is violated, then (5.4) holds trivially.
The comparison function £7§k^ introduced in (5.16) will also be useful in

the next section.

5-(ii). Harnack inequality: the general case. Let u > 0 be a solution of (2.1)
in ST, 0< T<oo. Fix 7? > 0, t g (0,7/2] and let (x,f) -» w(x,t) be the
unique solution of

wt - di\(\Dw\"~2Dw) = 0   inRN x(x,T),
(5-20) (u(x,x),       \x\<R,

w(x,x) = <   ,
V 10, \x\>R.

By the results of the previous paragraph

r ( írp\XI(p~2)    / t\NIp / 1
(5.21) £/(*,r)<,{(T) +(F)     MO.Df'j
where y = y(N ,p).

Theorem 3 will follow from (5.21) and the next comparison lemma.

Lemma 5.3.  w(x,t) <u(x,t), (x,t) &RN x (x,T).
Proof. Set

^ = ll"(-.-r)llooA = ll^(-.T)Hoo.R-
and consider the comparison function

&kM(x,t;0,x) = k(2R)NS(t)-N/K j 1 - ^-^LJ

S(t) = {y0kp-2(2R)N{p-2\t -x) + (2R)K},
y0(iV,p) = K(p/(p - 2))p-x,       K = N(p-2)+p,

k = MT(l-2~pl{p-x))-{p-X)l(p-2),

I Ikwhich satisfies (2.1) for f > x and Vf > x is supported in the ball |x| < S(t)
For t = x and |x| < R

&k2R(x,x;0,x)>Mx,       \x\<R.

Therefore since w(x, x) < Mz, \x\ < R, by the comparison principle

w(x,t) <âSk 2„(x,t;0,x)   V(x,t)eRN x(x,T).'k,2R\

Such a principle can be applied since  (x,t)  —► w(x,t)  and  (x,f)
v\,2r(3gk 2R(x,t;0,x) are both solutions of (2.1) with initial data in LX(RN). We
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conclude that the support of x —► w(x,t)  is contained in  |x| < 2S(T) '
VfG[T,T].

But then in the bounded domain

Ql = Brox(x,T),       r0 = 2S(T)x/K,

both u and w satisfy (2.1) and w < u on the parabolic boundary of Q^o.
Moreover u, w are both Cx'a in Br x [x + e, T], Ve > 0 and Du, Dw G
LP(QÏ) ■ The comparison principle can now be applied to conclude w(x,t) <
u(x, t), V(x ,t)eRN x(x,T].

We conclude this section by observing that Lemma 5.3 and (5.7) give the
proof of Lemma 2.2.
5-(iii). The initial trace. Let u > 0 be a solution of (2.1) in ST. By Theorem
3, VR>0, V0<T<r/2

r i ÍRp\xl{p~2)     / T \N/K , 1
(5.22) jB u(x,x)dx<y\[jr) + (FJ      [u(0,T)fp\

where y = y(N,p). It follows that Vç> G C0(BR)

^MIocR»/   tp(x)u(x ,x) dx
\Jw

where y = y(N,p ,R,T, u(0, T)). Therefore {«(•, t)} is a net of equibounded
linear operators in (CJR^))* and for a subnet indexed with x

where p is a rr-finite Borel measure in R   .   We prove uniqueness of p

lim /   u(x,x')tp(x)dx = I   tpdp
T'\0jRN 'YK JR»

ite Borel measure in RJ
Suppose that for two subnets {t'} , {t"} \ 0

u(,x')-+p,       u(,x")^v,       2>'(RN)
and p ^ v .

From (5.22) VrG(0,r/2)

(l  u(x,x)dx\      R'p <C*

where C* = C*(R,T,u(0,T)) and from Lemma 2.2, Ve > 0, VR > 0, Vt g
(0,772)

/      u(x,t)dx>-f u(x,x)dx((l+e)~N-?-(C*t)x/K)
Jb{I+c)K Jbr v z )

V0<f-r<y0/C*, t < T.
Letting t \ 0 along {V} we get

/       u(x,t)dx>l   dp((l+e)-N-7-(C*t)x/K).
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We now let í \ 0 along {t"} . This gives

I       du>(l+e)~N I   dp,   Vee(O.l).

Letting 6->0 and interchanging the roles of p and v , we find

f  dp=f  dv,   Mp>0.
Jbp Jbp

By translation this must hold for every ball centered at any point of R^ , and
therefore p = v.

6. Uniqueness

Let ¡i, u be two solutions of (2.1) in ST, 0 < T < oo, satisfying

(6.1) sup |||w(-,f)|||r + sup |||v(-,i)|||r = A<oo,
o<«T o<«r

for some r > 0, and

(6.2) |M _„!(., ,)_>()   inL^R^asiXO.
Setting w = u- v , w satisfies

(6.3) wt - (aiJ(x, t)wx¡)Xj =0   inST

where
(6.4)

aiJ(x,t) = N   \D(su + (l -s)v)\p-2ds\ Sij

+ (p-2) f \D(su + (1 - s)v)\p'4(su + (1 - s)v)x (su + (1 - s)v)   ds.
Jo ' '

The matrix (a''j) is positive semidefinite and V<^ G R^ , V(x,f) G ST
( a0(x,f)|c|2 < aiJ(x,t)C¿j <(p- l)a0(x,f)|i|2,

1 a0(x,t) = Jx\D(su + (l-s)v)\p-2ds,       (x,t)eST.
We claim that u and v satisfy all the estimates of Theorem 1 with |||w|||r

replaced by A, within the strip ST , where

(6.6) r0 = min{r;CoA-(/,_2)}
where C0 is introduced in Theorem 1.

In particular, (2.10) takes the form

(6-7)      ||«(-,0llooA<C2f-;V/'c//(,'-2)A,,/K,    Vp>r, 0<f<C0A-(i'-2).

Also the analog of (2.11) is
(6-8)   ||7)u(.,0lloo^<C3f-(AÍ+1)/V/í'-2A2/xJ    Vp>r,0<t<C0A-ip-2).
Estimates (6.7) and (6.8) will be proved in the next section (see Remark 7.1).
Here we will proceed assuming them and observing that it will suffice to prove
uniqueness within ST .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CAUCHY PROBLEM FOR A DEGENERATE PARABOLIC EQUATION 217

6-(i). Preliminaries. For a > 0 set

(6.9) 4,(*)=(i+i*rr°
and define for f G (0, T0)

(6.10) h(t)= sup /   u(x,x)A(x)dx.
0<T<tjR»

If f e(0, r0) and
(6.11) a>K/p(p-2),
by Lemma 1.2 of [5] and (6.10), ha(t) is finite and
(6.12) ha(t)<C(a)A,        ÍG(0,ro),
where C(a) = C(a,N,p).

From now on we shall take a satisfying (6.11).

Lemma 6.1. There exists a constant y = y(A,N,p) such that

tf   \Du\p-XA        dxdx<ytX/K,       te(0,To).
Jo Jrn

Proof. In the weak formulation (2.17) take the test function

(t-e)X/puX-2/p(AXa%pC)p,

where x —► C(x) is the usual cutoff function in B . After a Steklov averaging
process and standard calculations, we obtain

(6.13) <yf ¡B(x-e)xlpu^2)lpt/-x\D{Axl^)\ dxdx

+ yf Í (x- e)x'p-xu^pAx/nuAn dxdx = J?> + jf .
Je   Jb0 \/p       a

r(2)As for Jp   , we have

r(2) •      /"'/ \1/k-1   /"     ^(p-2)/p|«(^,t)|(P   2)/p    .        .   .   .   .   ,     ,J„   <y I (x-e) I   x "—n—u(x,x)A (x)dxdx,
" h Jbd (l + \x\p)x/p a(l + \x\p)x/p

so that by (6.6) and (6.12)

J{2)<y(t-e)Xf,    V/z>r.
We estimate J(x)

j(p1) ^y fJB^-^p^~2)lP^Aa+yPmpdxdx

+ yf f (x-efpuip-2)/pup-x\DAxa%/dxdx
J E     J Dp

_   .(1,1)       .(1,2)-Jp        +Jp
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Since
|J>4£/,l < yK/P+l/p>+i/p\P * ?AaAi/pAi >

by (6.6) and (6.12),

Jp'2} - yle¡B ^-^/Pu{P~2)/PAl/P^uP~2A^UAadxd^

< yK(t) f(x - e)i/'-^-2>/*>-^-2>/* dx
<y(t-e)x/K,   Vp>r.

As for J(X 'x), since \D17\ < 2/p, again by (6.6) and (6.12)

J{pl'l)<yl\x-e)x/K-xdxha(t)<y(t-e)x/K.

Combining these estimates in (6.13),

(6.14) /' / (x-e)x/p\^Aa+x/pdxdx<y(t-e)Xß,
J E    J Bp 14

V/> > r, Vf G (e, T0), where we have changed p into 2p.
Next, VeG(0,0, r€(0,r0)

[lB\DurAa+xlpdxdx

■ [' f   i(x    r^-X}/pl |Z)"|P"1  A^lp\
~1Jbp\{    }      \j^mA^iP ]

.{(r-e)-^-l)^u{2/p2^-l)AlJfUB}dxdx

i'-«)'''^^./,'**

a+l/pl
(P-\)IP

\Je   JBP

■^lB(x-e)-^'pu^pAx/puAadxdxyP

<y(t-sf^-X^p[l\x-er-xha(x)dxyP
<y(t-e)x/K,   Vp>r, VfG(0,T0).

Lemma 6.2. There exists a constant y = y (A, N ,p) such that if w(-, t) —► 0 in
LxXoc(RN) as t\0,

f   \w(x,t)\Aa(x)dx<ytx'X/K 0<t<To.
fR"

Proof. In the weak formulation of (6.3) take the test function x —► Aa(x)Ç(x),
where £ is the usual cutoff function in 77 . By working separately with w+
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and w+ (both weak subsolutions of (6.3)) and using the assumptions of the
lemma we deduce

f  \w(x,t)\A (x)(,(x)dx< f  f (\Du\ + \Dv\)"~x\DAaQdxdx
Jbp Jo Jbp

<yff (\Du\ + \Dv\)p-XAa\DQdxdx
Jo Jbp

+ y f f (\Du\ + \Dv\)"-X\DAa\dxdx.
Jo Jbp

In the last integral \DAJ < yAa+x/   and in the first integral, since |7X| = 0 on
|x| < p/2, we have AJDQ < yAa+x/p .

Therefore letting /z->oo

/   \w(x,t)\Aa(x)dx<yff  (\Du\ + \Dv\)p-XA        dxdx
7rw 7o Jrn

and the conclusion follows from Lemma 6.1.

Lemma 6.3. If w(, t) — 0 in LxXoc(RN) as t->0, then

w(-,t)^0inLxx^(RN)    ast^O, Ve g (0, l/W).
Proof. Let e G (0,1/W) be fixed. Then Vf G (0, T0)

In \w(x,t)\l+eAa+e/{p_2)(x)dx< I^ \w(x, t)\eAe/{p_2)(x)\w(x, t)\Aa(x)dx.

By (6.6) |itz(x,f)|£^/(p_2)(x) < yCNelK , so that

I   \w(x,t)\l+eAa+e/(p_2)(x)dx < yrNe,K I   \w(x, t)\Aa(x) dx

< y/(i/«)(i-ï.)    byLemma6.2.

For p > 1

f  \w(x,t)\x+edx<ypia+e/{p-2))p f   \w(x,t)\x+eAa+£/{p_2)(x)dx
J Dp J R^

<y(A,N,p,p)t{
Zra,
U/K)(l-Ne)

6-(ii). Proof of Theorem 4. We are now in the position to prove our uniqueness
theorem. In (6.3) we may assume without loss of generality that w > 0. In its
weak formulation we take test functions

(w + n)e(AxJ2C)2,       ee(0,l/N),       ne (0,1).

Since w(,t)—>0 in L^R ) a standard Steklov averaging process gives that
this is an admissible test function. Integrating over B x(n,t), 0 < n < t <T0,
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we obtain
(6.15)
-i- /    (w + r,)x+eAJ2dx + e f f a0(x,x)    lDw[x_£(AxJ2C)2dxdx
l+eJBp(t) Jr, Jb„ (w + n)1 e

<-r—f    (w + n)x+eAC2dx

+ yf f a0(x,x)i     lD™L)/2(w + vf+e)ß(ArO\B(ATO\dxdx,
Jr, Jbp (w + ny   "

where a0(x, t) has been defined in (6.5).
By the Schwarz inequality the last integral is majorized by

U' f a0(x,x)-V^(AXJ2O2dxdx
¿Jr, Jbp (w + tjy e

+ y(e) f f a0(x,x)(w + t,)x+E(Aa\DC\2 + \DAxJ2\2)dxdx.
Jr,  Jb„

We absorb the integral involving |Dtt;| on the left-hand side of (6.15) and
drop the resulting nonnegative term. Finally, we observe that by the definition
of Aa and the structure of x —► Ç(x) we have

AJDQ2 + \DAXJ2\2 <yAa(x)A2/p(x).
Carrying these remarks in (6.15) we obtain

f    (w + n)x+eAJ2dx< f    (w + n)x+eAa(x)dx
Jbp(i) JBp(n)

+ yjJ     U0^X'^A2/p(X)(W + ^l+eAa(X)dxdx.

- »,(t) JBp(n)
(6.10)

Next by (6.5) and (6.8)

A(2/K)(p-2)r-((N+l)/K)(p-2)aJx,x)A~,(x) < y-—■—tt
0 2/p (l + \x\p)2/p

Substitute this last estimate in (6.16) and let n —► 0 for p > 1 fixed so that
by Lemma 6.3

f     (w + r¡)x+eAa(x)dx^0   asn^O.
Jbm

Then we let p —> oo. The net result is

/   \w(x,t)\x+*Aa(x)dx<y f x-[(N+X)lK)(p-2) f   \w(x,x)\x+eAa(x)dx.
Jr» Jo Jrn

Since x~{{N+X),K){p~2) is integrable, this implies

t^ f   \w(x,t)\X+EAa(x)dx = 0,
Jr»
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by Gronwall's lemma, provided

r->/   \w(x,t)\x+cAa(x)dxeL°°(0,T0).
Jr»

Now the parameter a in the calculations above is arbitrary and restricted
only by (6.11 ). If a is replaced by a + e/(p - 2), then Lemma 6.3 and its proof
ensure the L°°(0,ro) requirement and the theorem follows.

7. Proof of Theorem 5
We let « be a nonnegative solution of (2.1) in ST for some T > 0, satisfying

(7.1) sup |||m(-,0||L = A< oo   forsomer>0.
o<z<r

The solution here is meant in the sense of (2.15), (2.16) of §2-(ii). The following
proposition holds for any solution of (2.1) in ST with no sign restriction.

Proposition 7.1. Let u be a weak solution of (2.1) in ST in the sense of (2.15),
(2.16), and let (1.1 ) hold. There exist constants C(. = Ct(N,p), i = 0,2,3,7,
such that setting

(7.2) T^mi^T-X^-^}

the following estimates hold Vp>0, V0 < t < T :

(7-3) \\u(',t)\\00^<c2rN/V,{p-2)Ap,K,

(7.4) \\Du(.,t)\\ooßp<C^N+X)ßpp/{p-2)A2/K,

(7.5) ff  \DurXdxdx<c//KpX+{p-2)/KAX+{p-2)/K.
Jo Jbp

Here the constants C¡, i = 0,2, i, 7, are the same as those in Theorem 1.
Proof. Fix e G (0, T0/4) and view (x,t) —> u(x, t) as solution of

(7.6) ut - div\Du\p~2Du = 0   inRN x (e ,TQ],
(7.7) x—*u(x,e)   as initial datum.

The estimates of §3, regarding (2.10), have been derived under the assump-
tion that

w0GC0 (R ).

This was needed to ensure existence of a solution u satisfying

(7.8) x^w(x,f)GL°°(R"),    Vf>0.

This in turn was used to ensure that f —» tp(t) in (3.10) is well defined. Therefore
(7.3) will follow from exactly the same proof of (2.10), whence we show that

M-.0IL«
(7.9) sup-0/(BZ" < oo   VfG(0,ro), for some r>0.

p>r       pp'^     '
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Analogously, the gradient estimates (7.4), (7.5) can be derived exactly as in
the proofs of §§3, 4, whence we show that

PM-.OIL«
(7.10) sup-2ttD-2\       <0°'    VfG(0,ro), forsomer>0.

p>r p '^P     '

The qualitative information in (7.9), (7.10) can be derived from the quanti-
tative datum (7.1) as follows.. Let

Qd = Bdx{-dp,0},       de(0,4),
and let U be a local weak solution of (2.1 ) in Q4 . By the local estimates of
Porzio-Vincenzotti (see [17]), Vv > 0, there exists a constant y = y(N,p,v)
such that

(™) WWoo^ < y [fI \u\p-2+vdxdx^'v.

Take v = (2N + p)/N in (7.11) and observe that by the embedding of §2
and the equation, we have

ff \U[°lN+l),Ndxdx<^(ff       \U\pdxdx)(   sup    f     \U\dx)
JjQr O      \JJQ{i+c)r J    \-*><t<0JBA(t) J

Vr > 0, Va G (0,1), where y ,6 = y ,6(N,p). From this, Holder and Young's
inequalities, Vr5 G (0,1 )

ff \U\p(N+X)INdxdx < Ô ff       \U\p(N+x)'Ndxdx
JjQr JJQiUOr

sup     /      \U\dx\
tur       x\ Í - \PlN+Wfy(N,p,ô)
a»l»-»>      \-AP<t<0JBi(t) )

By a standard interpolation process
/ sp(N+\)/N

f    \U\p{N+X)/Ndxdx<y(N,p)[    sup    /     \U\dx)
JJq2 \-4p</<o7b4(í) J

which combined with (7.10) with v = (2N + p)/N yields
f \ p(N+l)/(2N+p)

(7.12)    WW^     <yl   sup    /     \U\dx) ,       y = y(N,p).

Now let m be a weak solution of (7.6) in B4e x (e, TQ). Then the rescaled
function

is a solution of (7.6) in Q4 . Therefore (7.12) and (7.1) imply

nnl m!a<: t<T ^(''f^°°A.   <     TN/(2N+p) .p(N+l)/(2N+p)
K'-IJ) V4 ^'^J0' gP/iP-2) -      Y 0
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Since the argument can be repeated with T0 replaced by any 0 < f < T0 , (7.9)
follows.

Turning to the proof of (7.10), if U is as before, by Proposition 3.1 of [18]
and the equation

II^Hocfl,^ [(//  \DUfdxdx^
1/2

+ 1
'02

Returning to (x ,t) —> u(x ,t) via the indicated rescaling proves (7.10). We
remark that (7.9), (7.10) are qualitative information needed in the proof of §§3,
4. The arguments in these sections turn these qualitative information into the
precise quantitative estimates of Proposition 7.1.

The proposition and the Harnack inequality prove Theorem 5.
Remark 7.1. Since Proposition 7.1 holds for solutions of (2.1) with no sign
restriction, estimates (6.7), (6.8) are valid and the proof of the uniqueness the-
orem is complete.
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