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Abstract
The aim of this article is to study the Cauchy problem for general

nonlinear dispersive equations involving derivatives in the nonlinearity.
The use of some decay properties of the linear part allows us to address
the case of arbitrarily large initial data.

1 Hypotheses and statement of the result

1.1 The evolution equation

The goal of this work is to study the Cauchy problem for equations of the form
:

iut + Lu = F (u), (1)

where u : IR × IRn → IC and L is a linear (pseudo -) differential operator of
order m with real valued symbol denoted by l(ξ), and F is a nonlinear, possibly
nonlocal operator. We will only consider the case where the linear part of (1)
is dispersive, i.e. l(ξ) 6= Cξ. Actually, we will address cases where the linear
group eitL satisfies some “decay” properties, see Section 1.2 below.
The nonlinear term in (1) will be of the following form :

F (u) =
p∑

j=1

Lj(fj(u)),

where Lj is a pseudo-differential operator with constant coefficients of order
lj and fj : IC → IC is smooth in the following sense: fj(u1 + iu2) = gj(u1, u2),
with gj ∈ Cr(IR2, IR2).
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1.2 Hypotheses

In what follows, we denote by Hs and W s,p the Sobolev spaces Hs(IRn) and
W s,p(IRn). We write now precisely our hypotheses on Lj, fj and L :

• (H1) we suppose that there exists m ≥ 2, such that eiLt ≡ W0(t), which is a
group on every Sobolev space Hs(IRn), satisfies : for every 0 ≤ θ < 2

n
(in

the case where n = 1, we impose 0 ≤ θ ≤ 1), denoting by (q, p) the pair
( 4

nθ
, 2

1−θ
) and by (q′, p′) the conjugate exponents, we have the following

estimates, for every T ∈ IR,

(H1)− 1 |W0(t)u0|
Lq(0;T ;W

θ
4 n(m−2),p)

≤M(|T |)|u0|L2 ,

(H1)− 2 |
∫ t

0
W0(t−τ)g(·; τ)dτ |

Lq(0;T ;W
θ
2 n(m−2),p)

≤M(|T |)|g|Lq′ (0;T ;Lp′ ),

(H1)− 3 |
∫ t

0
W0(t− τ)g(·; τ)dτ |L∞(0;T ;L2) ≤M(|T |)|g|Lq′ (0;T ;Lp′ ),

where M is a non decreasing function from IR+ into IR+.

• (H2) The second hypothesis is on the operators Lj (we denote by L̂j their
symbols) :

|DαL̂j(ξ)| ≤ C(1 + |ξ|)lj−|α| with lj <
m− 2

2
and |α| < [

n

2
] + 1.

Remark 1 : Thanks to Hörmander’s multiplier’s Theorem (see Torchinsky
[11]), it is clear that Lj(I − ∆)−lj/2 maps Lp into Lp continuously for all
1 < p < ∞. We will use this fact without notice in the course of the proof of
Theorem 1.
We now denote by l = maxj=1,...,p lj.

• (H3) The third hypothesis is on the nonlinearity :
∃s ≥ 0, σj > 0 and 0 ≤ θ < 2

n
(in the case where n = 1, we impose

0 ≤ θ ≤ 1) such that

|fj(u)|W s+l,β′ ≤ C|u|σj

Hs |u|W s+k,β ,

|fj(u)− fj(v)|Lβ′ ≤ C(|u|σj

Hs + |v|σj

Hs)|u− v|Lβ ,

with k = θn(m−2)
4

, θ = 1− 2
β

and 1
β

+ 1
β′

= 1.

With the previous hypotheses and notations, our main result reads as fol-
lows.
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Theorem 1

• Under (H1), (H2), (H3), if u0 ∈ Hs then (1) has an unique maximal solu-
tion on [0;T (u0)[ in C([0;T (u0)[;H

s). Moreover u ∈ Lq(0; t;W k+s,β) for

2

q
= n(

1

2
− 1

β
), ∀t < T (u0).

• u(t) depends continuously on u0 in the following sense : if un
0 → u0 in

Hs, then ∀T < T (u0), if n is sufficiently large un(t) exist on a common
interval [0;T ] and un(t) → u(t) in C([0;T ];Hs) ∩ Lq(0;T ;W k+s,β).

Remark 2 : It is well known that for some equations T (u0) < +∞, (even
for semilinear equations with F (u) = −|u|2u and L = ∆) see for example
Glassey [3].

1.3 Comments on (H1), (H2), and (H3)

In [4] Kenig, Ponce and Vega prove that if the symbol of L is an elliptic
polynomial, or if it is tensorial, then L satisfies (H1).
In section 2 below, we show that if the functions fj are Cr with r ≥ [k]+1 and
if there exists σj ≥ 8l

n(m−2)
such that

∀α with |α| ≤ r, |(Dαfj)(u)| ≤ cα,j|u|σj+1−|α|, (2)

then fj satisfies (H3).
The estimate (2) means that fj and its derivatives behave like a power of u,
so that Theorem 1 applies.
For example, we have :

Theorem 2 The problem{
iut + (−∆)au =

∑p
j=1 ajD

lj(|u|σju),
u(x; 0) = u0(x),

with l = max lj < a − 1, σj ≥ 4l
n(a−1)

is locally well-posed in Hs for s ≥
n
[

1
2
− 2l

n(a−1)σ

]
with σ = maxσj.

Some results on the Cauchy problem for dispersive equations are available
in the litterature; in [5], Kenig, Ponce, Vega prove that ∂u

∂t
+ ∂x(u

k)+∂x3u = 0
is locally well posed in Hs for s depending on k. In dimension n ≥ 2, they show
in [6] that ∂tu = i∆u + P (u;Pxu; ū;∇xū) where P is a complex polynomial
is well posed in some weighted Sobolev spaces for small initial data. There
exists another result (Klainerman-Ponce [7]) for iut − ∆u = F (u;∇u) in IRn

for small initial data in Hs, s > n
2
+2 under restrictive hypotheses on the form

of F .

3



The difference with our work is that we do not impose to the initial data
to be small, and we work in the spaces Hs(IRn) which are the natural spaces
corresponding to the linear part. Actually, our results are more restrictive on
the nonlinearity since we consider general situations, and therefore, we do not
have a large variety of estimates on the linear group, as it is the case for the
Airy equation which is the linear part of the KdV equation [5].

We can compare our results with the work of J.C. Saut [9]. He proves that
∂u
∂t

+
∑n

i=1 ∂xi
[f(t, u) + L(x;u)] = g(x; t) is well posed, where L is an elliptic

operator and f(t, u) a polynomial in u which maximal degree depends on L.
The method used in our paper gives a slightly different result. Indeed, the
degree of f is not limited, but we replace ∂

∂xi
by a pseudo-differential operator

whose order is limited by that of L. Moreover our result holds for non elliptic
operators as long as they satisfy (H1).

2 Examples of nonlinearities satisfying (H3)

Suppose that for r ≥ [k] + 1, fj is Cr and that there exists
σj ≥Max( 8l

n(m−2)
, r − 1) such that

∀α with |α| ≤ r then |Dαfj(u)| ≤ Cα,j|u|σj+1−|α|.

We have :

Proposition 1 : If u ∈ W s+l,β ∩  Lzj , then fj(u) ∈ W s+l,β′, with 1
β′

= σj

zj
+ 1

β

for +∞ > β > 1, zj > 1 and

|fj(u)|W s+l,β′ ≤ c|u|σLzj |u|W s+l,β .

This kind of inequality is essentially due to Y. Meyer [8] for the case zj =
+∞. Christ and Weinstein in [2] prove a related result :

|DαF (u)|Lp ≤ C|F ′(u)|Lq |Dαu|Lr

1

p
=

1

q
+

1

r
, 0 < α < 1 and u : IR → IR.

We give the proof of Proposition 1 in the Appendix.

Now we prove that fj satisfies (H3).

Let σ = Maxσj, take θ given by l = θn(m−2)
4

(recall that l = Maxlj) and z
given by θ = σ

z
.

Choose zj such that σj

zj
= σ

z
ie zj = zσj

σ
≤ z. And since we impose the condition

σj ≥ 8l
n(m−2)

, we have zj ≥ 2.
We now choose s such that Hs ↪→ Lz and since 2 ≤ zj ≤ z, Hs ↪→ Lzj so that
the proposition implies that (H3) is satisfied. The application of this fact and
of Theorem 1 prove Theorem 2.
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3 Proof of Theorem 1

First we transform (1) :{
iut + Lu =

∑p
j=1 Lj(fj(u)),

u(x; 0) = u0(x),

into the equivalent integral equation (we shall prove later on that they are
equivalent, see Section 3.4 below).

(INT ) T (u) ≡ W0(t)u0 − i
∫ t

0
W0(t− s)(

p∑
j=1

Lj(fj(u))(s))ds = u(t).

3.1 Some estimates on T (u) :

Lemma 1 T (u) satisfies

a) |T (u)|L∞(0;T ;Hs)∩Lq(0;T ;W k+s,β)

≤ C1(1 +M(|T |))|u0|Hs + C2M(|T |)T δ(
p∑

j=1

|u|σj

L∞(0;T ;Hs))|u|Lq(0;T ;W k+s,β),

and

b) |T (u)− T (v)|Lq(o;T ;Lβ) ≤ C3M(|T |)T δ(
p∑

j=1

|u|σj

L∞(0;T ;Hs)

+|v|σj

L∞(0;T ;Hs))|u− v|Lq(0;T ;Lβ),

where δ =
1

q′
− 1

q
> 0.

Proof : a) In order to estimate T (u) in L∞(0;T ;Hs) ∩ Lq(0;T ;W k+s,β), we
need to estimate two terms :

i) The linear term W0(t)u0 :

|W0(t)u0|Hs = |u0|Hs (3)

since W0(t) is unitary in Hs.

|W0(t)u0|W k+s,β ≤ C|W0(t)(I −∆)s/2u0|W k,β ,

but since k = θn(m−2)
4

by (H1) -1, we have

|W0(t)u0|Lq(0;T ;W k,+s,β) ≤ CM(|T |)|(I −∆)s/2u0|L2 = C|u0|Hs . (4)
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Then (3) and (4) lead to

|W0(t)u0|L∞(0,T,Hs)∩Lq(0,T,W k+s,β) ≤ C1(1 +M(|T |))|u0|Hs . (5)

ii) The nonlinear term
∫ t
0 W0(t− s)

∑p
j=1 Lj(fj(u))(s)ds :

We estimate each term separately :
• |

∫ t
0 W0(t− s)Ljfj(u)(s)ds|L∞(0;T ;Hs)

≤ C|
∫ t

0
W0(t− s)(I −∆)s/2Lj(fj(u))ds|L∞(0;T ;L2),

≤ CM(|T |)|(I −∆)s/2Lj(fj(u))|Lq′ (0;T :Lβ′ )

by (H1)-3,
≤ CM(|T |)|fj(u)|Lq′ (0;T ;W s+lj ,βj )

by (H2). So that

|
∫ t

0
W0(t− s)Ljfj(u)(s)ds|L∞(0;T ;Hs) ≤ CM(|T |)T δ|u|σj

L∞(0;T ;Hs)|u|Lq(0;T ;W s+k,β)

(6)
by (H3) and Hölder’s inequality with respect to time.

• On the other hand :

|
∫ t

0
W0(t− s)Lj(fj(u))(s)ds|Lq(0;T ;W k+s,β)

≤ C|
∫ t

0
W0(t− s)(I −∆)s/2fj(u)ds|Lq(0;T ;W k+lj ,βj )

by (H2),

≤ CM(|T |)|fj(u)|
Lq′ (0;T ;W

s,β
′
j )

by (H1)-2 since k + l ≤ θn(m−2)
2

,

|
∫ t

0
W0(t−s)Lj(fj(u))(s)ds|Lq(0;T ;W k+s,β) ≤ CM(|T |)T δ|u|σj

L∞(0;T ;Hs)|u|Lq(0;T ;W s+k,β)

(7)
by (H3) and Hölder’s inequality with respect to time; (5), (6) and (7) together
give the estimate of the a) of Lemma 1.

b) |T (u)− T (v)|Lq(0;T ;Lβ) = |
∫ t

0
W0(t− s)

p∑
j=1

Lj(fj(u)− fj(v))ds|Lq(0;T ;Lβ)

≤ CM(|T |)
p∑

j=1

|fj(u)− fj(v)|Lq′ (0;T ;Lβ′ )
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by(H1)-2,

≤ CM(|T |)T δ
p∑

j=1

(|u|σj

L∞(0;T ;Hs) + |v|σj

L∞(0;T ;Hs))|u− v|Lq(0;T ;Lβ)

by (H3) and Hölder’s inequality with respect to time.
The proof of Lemma 1 is complete.

3.2 Existence and uniqueness

Now we fix T1 > 0 and we consider R′ ≡ C1|u0|Hs(1 + M(|T1|)), (C1 is the
constant appearing in a) of Lemma 1).

Proposition 2 Let R > R′, if T is sufficiently small, then T maps the ball of
radius R in L∞(0;T ;Hs)∩Lq(0;T ;W k+s,β) in itself and it is a contraction in
the norm of Lq(0;T ;Lβ).

Proof:
• Indeed by a) of Lemma 1, if T ≤ T1 then

|T (u)|L∞(0;T ;Hs)∩Lq(0;T ;W k+s;β) ≤ R′ + C2M(|T |)T δ(
p∑

j=1

Rσj)R.

It follows that if T is sufficiently small,

|T (u)|L∞(0;T ;Hs)∩Lq(0;T ;W k+s,β) ≤ R.

• b) of Lemma 2 gives :

|T (u)− T (v)|Lq(0;T ;Lβ) ≤ C3M(|T |)T δ2
p∑

j=1

Rσj |u− v|Lq(0;T ;Lβ).

We take T such that C3M(|T |)T δ2
∑p

j=1R
σj ≤ 1/2, thereby proving the propo-

sition.

Now we remark that a ball in L∞(0;T ;Hs)∩Lq(0;T ;W s+k,β) is complete for
the norm of Lq(0;T ;Lβ). Hence the contraction principle gives a local solution
to (INT). Since T depends only on R which in its turn depends only on |u0|Hs ,
the existence time of the maximal solution depends only on |u|Hs i.e. :
if T (u0) (= the existence time of the maximal solution) is finite then

lim
t→T (u0)

|u(t)|Hs = +∞.

Now if u, v are two solutions to (INT) in C([0;T0];H
s) then

∀T < T0, |u− v|Lq(0;T ;Lβ) = |T (u)− T (v)|Lq(0;T ;Lβ),
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≤ C3M(|T |)T δ(
p∑

j=1

|u|σj

L∞(0;T ;Hs) + |v|σj

L∞(0;T ;Hs))|u− v|Lq(0;T ;Lβ)

by Lemma 1 b).
Therefore taking T sufficiently small :

|u− v|Lq(0;T ;Lβ) ≤ 1/2|u− v|Lq(0;T ;Lβ)

and u ≡ v on [0;T ], thereby proving local uniqueness.

We have proved :

Proposition 3 For all u0 ∈ Hs, there exists a unique maximal solution u to
(INT) in C([0;T (u0)[;H

s). Moreover ∀t < T (u0), u ∈ Lq(0; t;W k+s,β).

3.3 Continuous dependence with respect to the initial
data

Let u0 ∈ Hs and un
0 ∈ Hs with un

0 → u0 in Hs. We note

Tn(v(t)) ≡ W0(t)u
n
0 − i

∫ t

0
W0(t− s)

p∑
j=1

Lj(fj(v))ds).

We call un(t) the solution to :

(INT )n Tn(v) = v.

Proposition 4 Let T < T (u0), if n is sufficiently large, then the solutions to
(INT )n exist on [0;T ] and un → u in C(0;T ;Hs) ∩ Lq(0;T ;W k+s,β).

Proof : By standard arguments, it is sufficient to prove a local version.
Now the calculations of section 3.2 show that there exists T̃ > 0 depending
only on |u0|Hs such that the (Tn) are contraction in the ball of radius R in
L∞(0; T̃ ;Hs) ∩ Lq(0; T̃ ;W s+k,β) for the norm of Lq(0; T̃ ;Lβ); the rate of con-
traction being 1/2. The continuous dependence of the fixed point follows by
standard arguments.

3.4 Equivalence between the integral equation and the
partial differential equation

In order to finish the proof of Theorem 1, we need to show :

Proposition 5 Let u ∈ C([0;T ];Hs),
u satisfies (1) if and only if u satisfies (INT).
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Proof : Let u ∈ C([0;T ];Hs), then fj(u) ∈ Lβ′ ↪→ H−s by (H3), so that by
(H2) Lj(fj(u)) ∈ H−s−l.
Next we need :

Lemma 2 i) if u0 ∈ Hα then W0(t)u0 ∈ C([0;T ];Hα) ∩ C1([0;T ];Hα−m) and

i
∂

∂t
(W0(t)u0) + L(W0(t)u0) = 0,

W0(0)u0 = u0.

ii) If f ∈ L1(0;T ;Hα) then

Λf ≡ −i
∫ t

0
W0(t− s)f(s)ds ∈ C([0;T ], Hα) ∩ AC([0;T ];Hα−m)

and
i∂

∂t
(Λf) + L(Λf) = f,

Λf(0) = 0.

iii) if v, f ∈ L1(0;T ;Hα) satisfy

ivt + Lv = f,

then v(0) ∈ Hα−m exists and

v = W0(t)v(0)− i
∫ t

0
W0(t− s)f(s)ds.

These are classic tools for unitary operators and we shall omit the proof of
these results. Now since Lj(fj(u)) ∈ H−s−l and u ∈ C([0;T ];Hs), Proposition
5 follows from Lemma 2.
The proof of Theorem 1 is now complete.

Appendix

The aim of this Appendix is to prove the following theorem :

Theorem 3 Let s > 0, F ∈ Cr(IR2) with r ≥ [s] + 1. Suppose that ∃σ ≥ r − 1
such that ∀j with |j| ≤ r,

|DjF (ξ)| ≤ C|ξ|σ+1−|j|, ∀ξ ∈ IR2.

Then :

|F (u)|W s,β ≤ C|u|σLz |u|W s,p ,

with

1

β
=
σ

z
+

1

p
, 1 < β, p <∞,

1 < z ≤ +∞.
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In [8], Y. Meyer shows that if F ∈ C∞(IR2) with F (0) = 0 and u ∈ W s,p ∩
L∞ then F (u) ∈ W s,p. We shall extend his proof to the case W s,p ∩ Lz, and
we derive the inequality of Theorem 3.
Proof : We take a radial nonincreasing function ϕ ∈ D(IRn) such that ϕ(ξ) =
1 for |ξ| ≤ 1/2 and ϕ(ξ) = 0 if |ξ| ≥ 1. We denote by Sk(f) = fk the partial
sum defined by : ̂Sk(f) = ϕ(

ξ

2k
)f̂ ,

and by ∆k(f) the dyadic block : ∆k(f) = Sk+1(f)− Sk(f), i.e.

̂∆k(f) = ψ(
ξ

2k
)f̂ with ψ(ξ) = ϕ(

ξ

2
)− ϕ(ξ).

The spectrum of ∆k(f) is inclued in Γk = {ξ ∈ IRn/2k

2
≤ |ξ| ≤ 2.2k} and

f = S0(f) + ∆0(f) + · · ·+ ∆k(f) + · · ·
We recall the characterization of W s,p = {f ∈ S ′/(1−∆)s/2f ∈ Lp} for 1 <

p <∞. Then f ∈ W s,p if and only if S0(f) ∈ Lp and (
∑+∞

k=0 4ks|∆kf |2)1/2 ∈ Lp.
Moreover ||S0(f)||Lp + ||(∑∞

k=0 4ks|∆k(f)|2)1/2||Lp and ||(I −∆)1/2f ||Lp are two
equivalent norms on W s,p.
We first we have :

Lemma 3 ∃C independent of k and f such that :

∀α ∈ Nn |∂αfk|Lp ≤ C2k|α||f |Lp ,

1

C
2kq|∆k(f)|Lp ≤

∑
|α|=q

|∂α∆k(f)|Lp ≤ C2kq|∆k(f)|Lp ,

1 < p < +∞.

Proof : For 1 < p < ∞, it is the application of Hörmander’s Multiplier’s
Theorem. For the case p = ∞, see Alinhac - Gérard [1].

Proof of the Theorem :
We write

f = S0(f) +
+∞∑
k=0

∆k(f)

and

F (f) = F (f0) +
+∞∑
k=0

[F (fk+1)− F (fk)].

We estimate each term :
i) The term F (f0) :
* |F (f0)| ≤ C|f0|σ+1, Lemma 3 implies |f0|Lp ≤ C|f |Lp and |f0|Lz ≤ C|f |Lz ,

so that
|F (f0)|Lβ ≤ C|f0|σLz |f0|Lp . (8)
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* We estimate now :

∂αF (f0) =
∑

γ+···+γq=α

(∂|α|F )(f0)∂
γ1f0 · · · ∂γqf0 with |α| < [s+ 1].

Then by Lemma 3, |∂γ1f0|Lp ≤ C|f0|Lp and for i > 1, |∂γif0|Lz ≤ C|f0|Lz ,
so that

|∂αF (f0)|Lβ ≤ C|f |σLz |f |Lp , ∀|α| < [s+ 1]. (9)

With (8) and (9) we obtain

|F (f0)|W s,β ≤ C|f |σLz |f |Lp . (10)

ii) The terms F (fk+1)− F (fk) :

F (fk+1)− F (fk) = ∆k(f)
∫ 1
0 F

′(fk + t∆k(f))dt = ∆k(f)mk.
• We first suppose that the spectrum of mk(x)∆k(f)(x) is include in {|ξ| ≤
100.2k} and we consider hk(x) = mk(x)∆k(f)(x).

Let σ(x) = (
∑

j 4js|∆j(
∑

k hk)|2)1/2.

Lemma 4
|σ(x)|Lβ ≤ C||(

∑
k

mk(x)∆k(f)|24ks)1/2||Lβ

Proof : See Meyer [8].
To continue, we need

Lemma 5 For any f ,

∀|N | < σ + 1, |∂Nmk(x)| ≤ C|M(f)(x)|σ2|N |k,

where M(f) is the maximal function of f .

The proof of Lemma 5 depends on

Lemma 6 Let ϕ ∈ S and ϕε(x) = 1
εnϕ(x

ε
), then

sup
ε>0

|(f ∗ ϕε)(x)| ≤ CM(f)(x),

for f ∈ Lp, 1 ≤ p ≤ +∞.

For the proof of Lemma 6, see Stein [10] p. 62-64.
We can now prove Lemma 5 :

|∂Nmk(x)| ≤ C
∑

αi+···+αq=N

(DN+1F )(fk)|∂α1fk| · · · |∂αqfk|

and by Lemma 6, |fk(x)| ≤ CM(f)(x);
moreover

∂αifk(x) = =−1(ξαiϕ(
ξ

2k
)f̂),

= 2|αi|k=−1((
ξ

2k
)αiϕ(

ξ

2k
)f̂).

We apply Lemma 6 again with the function =−1(( ξ
2k )αiϕ( ξ

2k )); we obtain
|∂αifk(x)| ≤ C2|αi|kCM(f)(x) and Lemma 5 follows.
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Now
|σ(x)|Lβ ≤ C| |M(f)(x)|σ(

∑
k

|∆k(f)|24ks)1/2|Lβ ,

|σ(x)|Lβ ≤ C|M(f)(x)|σLz |f |W s,p . (11)

• General case : we decompose mk(x) with the following partition of 1 :

1 = ϕ

(
ξ

100.2k

)
+

+∞∑
m=0

ψ(
ξ

100.2k+m
),

i.e. mk(x) = qk(x) +
∑∞

m=0 Pk,m(x).
The spectrum of qk is inclued in {|ξ| ≤ 100 2k}, so that the proof of the

preceding case applies to qk and thanks to (11)

|
∑
k

qk(x)∆k(f)|W s,β ≤ C|f |σLz |f |W s,p . (12)

Now the spectrum of Pk,m is inclued in the ring

{100

2
2k+m ≤ |ξ| ≤ 2.100.2k+m}.

We define lm =
∑+∞

k=0 Pk,m(x)∆k(f)(x). The spectrum of Pk,m∆k(f) is in-
clued in the ring {100

3
2k+m ≤ |ξ| ≤ 3.100.2k+m}, these rings taken 5 by 5 are

disjoint and we can apply the Littlewood - Paley theory on

Sr(x) =
∑

k∈5IN+r

Pk,m∆k(f) :

We estimate

|Sr|W s,β = ||
(∑

k

|Pk,m|2|∆k(f)|24(k+m)s

)1/2

||Lβ ,

but

Pk,m(x) =
∫
eix.ξψ(

ξ

100.2k+m
)m̂k(ξ)dξ.

We introduce a partition of unity on the sphere Sn−1, (χp)p=1..n, such that on
suppχp, ξp 6= 0. We extend χp into Rn/{0} by χp(ξ) = χp(

ξ
|ξ|).

Let N = [s] + 1, we obtain

Pk,m(x) =
n∑

p=1

∫
eix.ξψ(

ξ

100.2k+m
)m̂k(ξ)χp(ξ)dξ,

=
n∑

p=1

∫
eix.ξ 1

ξN
p

ψ(
ξ

100.2k+m
)ξN

p m̂k(ξ)χp(ξ)dξ,

=
n∑

p=1

2−(k+m)N

100

∫
eix.ξ100

2(k+m)N

ξN
p

ψ(
ξ

100.2k+m
)
̂∂Nmk

∂xN
p

(ξ)χp(
ξ

100.2k+m
)dξ,

12



since χp is homogeneous of degre 0,

n∑
p=1

2−(k+m)N

100
F−1((

ψ

ξN
p

χp)(
ξ

100.2k+m
)) ∗ ∂

Nmk

∂xN
p

.

So that

|Pk,m(x)| ≤
n∑

p=1

C
2−(k+m)N

100
M(

∂Nmk

∂xn
p

)(x),

by lemma 6.
It follows that

|Pk,m(x)| ≤ C
2−(k+m)N

100
M(|M(f)(x)|σ)2kN

by lemma 5,
≤ C2−mNM(|M(f)(x)|σ).

So that

|Sr|W s,β ≤ ||M(|M(f)(x)|σ)(
∑
k

|∆k(f)|24ks)1/22−m(N−s)||Lβ ,

≤ C|f |σLz |f |W s,p2−m(N−s);

We obtain |lm|W s,β ≤ C2−m[N−s]|f |σLz |f |W s,p and the serie
∑

m lm converges
normaly in W s,β, with

|
∑
m

lm|W s,β ≤ C|f |σLz |f |W s,p . (13)

(10), (12) and (13) together lead to the estimate of Theorem 3.
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