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1. Introduction

In the recent paper [8] S. Kaplan has obtained an analogue of Garding’s
inequality for parabolic differential operators and applied it to a Hilbert space
treatment of the Cauchy problem. D. Ellis [3] has extended those results to
higher order parabolic differential operators (see also [4]). On the other hand
in [13] the author has studied a Hilbert space treatment of the Cauchy problem
for parabolic pseudo-differential equations and generalized the results of S.
Kaplan [8].

In the present paper we shall study the Cauchy problem for higher order
parabolic pseudo-differential equations of the form

Lu = Dlu(t, )+ ﬁ 25(t, X, DD ult, x) = f(2, )

where p;(¢, x, £) are symbols of the class S§} introduced in [11] and [12]. We
need not assume that the basic weight function A(¥) tends to infinity as | £| —oo.
Therefore the theory can be applied to more general classes of operators (includ-
ing difference operators) than the class of usual parabolic differential operators.

In section 2 we give definitions and lemmas for pseudo-differential operators.
In section 3 the algebras and L*-theory are stated. The L*-continuity of pseudo-
differential operators has been studied in many papers (see for example, Calderon
and Vaillancourt [1], [2], Hérmander [7] and Kumano-go [10]. In the present
paper the L’-continuity theorem by Calderon and Vaillancourt in [1] plays an
essential role. In section 4 we define the space H, (Q) which is needed to study
the Cauchy problem. In section 5 we derive energy inequalities for the parabolic
system which is associated with a higher order parabolic pseudo-differential
operator. These energy inequalities are very similar to those of D. Ellis [3] and
[4]. To obtain the energy inequalities the idea of double symbols of pseudo-
differential operators is very important. In section 6, using the results in section
4 and 5, we discuss a Hilbert space treatment of Cauchy problem for parabolic
systems. In section 7 finally we state the main results for the Cauchy problem
for higher order parabolic pseudo-differential equations.
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2. Definitions and lemmas
Let a=(a,, :**, a,;) be a multi-integer of ¢; =0, j=1, :--,n. We put |a|=a,
+ -t al=a,!-a,! and 0F=(0/0&,)"---(00F,)"".

DEerFINITION 2.1.  Let M(¥) be a real valued C= function defined on the n-
dimensional real space Rf. We say that A\(¥) is a basic weight function when
() satisfies that

(2.1) ME)=1,
(2.2) [9ENME) | =Can(§)' ™' for any o,

(see [9] and [13]).

We can see that the function (g>=(1+ | &|?)"/2=(1+E}+ -+ EZ)/* is a basic
weight function.

The following lemma was proved in [13].

Lemma 2.2. Let \(¥) be a basic weight function and 8 and m be real numbers
satisfying 0<8 <1. Then we have

(2.3) ME)=CKE,

(2.4) MEFD)SME)FCel 7] S CME) T,

(2.5) - GO EMETMEY)=CaME)
for any o € R” satisfying |o| <1,

(2.6) ME+m)" = CoME)™ <™,

where C,, C,, Cy and C,, are positive constants which are independent of £, 7 and o

Throughout this paper the letter C with or without indices will denote
positive constants not necessarily the same at each occurence.

Lemma 2.3. Let N\ () be areal valued C* function such that \(§)=c, for
some positive constant ¢, and 9y M (E) (j=1, -+, n) are bounded. Then there exists a
basic weight function \(E) which satisfies that

(2.7) enE) = ME) = eho(E)

for some positive constants ¢, and c,.

Proof. By assumptions for A (E) we have |A(E)—Ny(7)| ZC|E—n], so

taking &= it holds that (1/2)A(E)SA(n)S2ny(E) for |E—n| ZEN (7).

1
2C
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Let p(n)e C3(R") satisfy thatSR,,fp(U)dﬂzly 0=<p(n)<C,supp pC{7; 7| =&}
and @(n)=C1>0 for || <&,/2. Then the function )»(E):S LP(E—n)/N(n))
R

No(7)~"*'d7 is a basic weight function and satisfies the inequality (2.7). In fact,

OEA(E) = S R,ﬂ’("”((f — 7)Ao A7)~y
where @“(7)=0;¢(7), so
EANGIELeA A(E) e

FIETRWES

< ~Ati- @] Je < 1-|a)
= CwSlE—é’lgzso)\o(E)XO(g) dé‘_ Cm)%(g) ’

7‘0(‘5) = cnS 7\o(g)—nﬂdé‘

1§~ S1Seono(ED/4

=(-& e
1

(&) "dE

SIS—glgsoxocg)/z

P

SPLEDMEN(E) 7L = CNE)
A(§) "L

1E-S1SegrolD

IA
Q
Cmmry ey

A

/SI£—§|§zao>\o(5)7\°(g)—n+ld§ = C'\(&).

By these inequalities we obtain Lemma 2.3. Q.E.D.

Let B(R"={f(x)=C~(R"); |05 f(x)| =C, for any a}, S=SR")={f(x)c
C=(R™); lim |x|™| 05 f(x)]| =0 for any « and real number m} and let .S’ denote
R T

the dual space of S.

DeriniTION 2.4.  Let A(£) be a basic weight function.

(i) We say that p(x, £) belongs to S¢, when p(x, E)N(E)" € B(R™).

(ii) We say that p(x, £, &) belongs to S§'\ when p(x, £, x')A(E)~" & B(R*™).

(iii) We say that p(x, &, &/, £') belongs to Sg™ when p(x, £, &', E')\E)™™
A(E) ™ < BR™).

(iv) Weset Sga= U Strand Sg3= N St

e oo ~emme
(v) Let M) and A(E) be basic weight functions. Then we say that
Pp(x, £, &', E') belongs to Sy when p(x, £, &/, E)YME) ™ N(E) "™ e B(R*™).

We use the notation: Dy =(—1)'*(8/8x,)"-+(8/0x,)*" for any a. Then we
set P, £)=DEOZp(x, E), p e, £, )= DEDEOZp(x, £, x') and pai(, £, a', E)
= DEDEREY p(x, E, &/, E') for any «, o/, B and 5.

We can see that
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(1) p(x, £)=Se, if and only if | pE(x, £)| =C, p\E)™ for any @ and B,

(i) p(x, & x")&Se if and only if | pEe(x, £, &)| £ C, 6, ME)™ for any «,
B and &,

(iit) p(x, &, &/, ge Sé’:i'?/’ if and only if IPEZ,’E"/?(W, ExLE) = Cw,m'B,B/X(g)mx,
(&)™ for any a, o', B and @,

(iv) when m,=m,, it holds that Sg1 > Soz.

In this paper we write S f(x)dx for SR” f(x)dx and &% for (2z)~" dE.

DeFintTiON 2.5. (i) For p(x, £)e.Sq,, we define the pseudo-differential
operator p(X, D,) by

(2.8) p(X, D)yu(x) = Se"”'f P, EYa(E)dE for uc .S, where 4(£) denote the
Fourier transform ge"""i’u(x)dx of u(x) and x+-E=x.E,+ -+ +x,E,.

(i1) For p(x, &, 'y= S5, we define the operator p(X, D,, X’) by

(2.9) p(X, D,, X')u(x) = He«x—x’»s p(x, & & )u(a')dx’ - dE for ueS,
where dx’- 2% means the integration in £ follows the integration in x’.

(iii) For p(x, &, %/, £')& S or Sgs, we define the operator p(X, D,, X', D)
by

(2.10) p(X, Doy X, DoAu(x) = {ferste= ¢y, €, v, ) () g -
4t forus S.

We can see that the above operators p(X, D,) and p(X, D,, X’) are conti-
nuous linear operators from S(R") to S(R"). We say that the functions p(x, &),
p(x, &, %) and p(x, £, »', £") are symbols of the pseudo-differential operators
p(X,D,), p(X,D,, X’) and p(X, D,, X’, D,’) respectively and in particular
p(x, &, &/, £’) is often called a double symbol. '

DEeFINITION 2.6.  Let A(£) be a basic weight function and s be a real num-
ber. We define a Sobolev space H by

H,=H,, = {ucS’; a(¢)eL,(R"), ME)*a(§)e L(R")}.
We can see that H_, is a Hilbert space with inner product
2.11) (4, 9), = (1, 9)n = [MEUOIE)dE
and the set S=S(R")is a dense subset of H ,

For s=0, H,,=L*R"). When 5,<s,=5s,, for any £€>0 there exists a con-
stant C=Cs_ , s, . such that

(2.12) ]2, < €l[ull? 4 C|lull?, for any uc S,
where [lull,=V/(u, u); » (see [13]).
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When P(x, £)=(p; i(x, £)) is a kX k matrix function, we say that P(x, £)
belongs to Sg*, if all the elements p; ;(x, §) belong to 5S¢, in the sense of Defini-
tion 2.4 (i). By the same way we define P(x, £, x")= .S, and P(x, &, ¥/, £')E
Sy or ¢, For P(x, £)=(p;,i(x, E))= S5, we define the pseudo-differential

operator P(X, D,) by P(X, D,)U(x) == Se""'SP(x, £) ﬁ(g)d&, where U(x)="(u,(x),
(2w B0
e u(x))s{SY and P(x, E)UE) =77 i .
J_Z_]lpk,j(x’ E)a; (&)
By the same way we can define the operators P(X,D,, X’) and
P(X,D,, X’,Dy).

ReMARk 2.7. With the aid of Lemma 2.3, we can see that

(i) for any basic weight functions A,(€) and A,(§), there exists a basic
weight function A() such that ¢, M(E) SN (E)+ A (E) S M),

(ii) for any basic weiht function A(£) in R" and real number m=1, there
exists a basic weight function A, (7, £) in R*** such that ¢\ (7, £) < (72 A (E)™")/*™"
< e\ (T, E) (see [12] and [13]).

The fact of Remark 2.7 (ii) is important to define the spaces which are ne-
cessary to study the Cauchy problem for parabolic pseudo-differential equations.

ReEMARK 2.8. From the definition of basic weight functions, if A(§) is a
basic weight function in R", A(£) is also a basic weight function in R?}%.

3. Properties of pseudo-differential operators

All the theorems and corollaries of this section are stated in [12] and [13],
so we omit the proofs.

Theorem 3.1. Let NE) and MN(E) be basic weight functions and let
plx, E, &, Ee Sy, Then there exists a function p (%, E) such that

(3.1) pulx, EYME) N (E)™ € B(R™)
and

(3.2) (X, Dyu=p(X,D,, X', D,y foranyucS.

Corollary 3.2. (i) Let p,(x, £)=.ST\ and p(x, E)= STy. Then there exists
a function p;(x, ) such that

(3.3) Pu(x, EME) N (E)"™ € B(R™)
and
(34) pu(X,D)u=p(X, D,) p(X, D,)u for anyucs S .

(it For p(x, E)=Se\, there exists a symbol p*(x, £)=Sg'\ such that
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(p(X, D,)u, v),=(u, p*(X, D)), for anyu, vES.
When AE)=N\/(£), the assertions in Corollary 3.2 mean that the class of

pseudo-differential operators defined by the symbols in S5, forms an algebra.

Theorem 3.3. Let 0<8=<1 and p(x, £, ', E)cSpr. We assume that
O, p(x, £, %/, EYESTL S’ Then for py(x,E) in Theorem 3.1 and pyx, )=
p(x, &, x, E), it holds that

(3.3) {p2(x, &)—polx, EINME) ™M) ™ EB(R™).

Corollary 3.4. (i) Let p,(x, £)eS& and px, E)=SPy. Assume that
0 pu(x, E)E STX*(j=1, -+, n) for some € (0,1]. Then

(36)  {pals B~ E)pix, EIME) ™ V(B BR™),
where pi(x, E) is the function defined in Corollary 3.2.

(ii) Assume that p(x, £) Sg'n and ng.p(x, E)YeSes.  Then for p*(x, &) in
Corollary 3.2 (i) we have

3.7) {p*(x, £)—p(x £)}E S350

Corollary 3.5. For p(x, £)= 8¢\, there exists a symbol p; ,./(x, &) such that

(38)  {pr,w(® E)—p(x, ENV(EIV(E) T NME) " EB(R™),

(9) P/ X,DYu=NDY)"-p(X,D.)u  foranyucs.

Corollary 3.6. Let p,(x, £)= S\ and p,(x, )= S, Assume that O, pi(x, £)

€ 8Sex® and 8 pyx, E)e Sy (j=1, ---,n). Then there exists a symbol p(x, £)
Sy 8 such that

(.10)  p(X, DJu = [p(X, D.), pAX, D) u
= {p(X, D)+ pX, D) —poX, D.)+ pu(X, D)}u
for any ucs S.
The following L*-estimate was proved in [1].
Lemma 3.7. Let p(x, £)=S8 . Then it holds that
(3.11) 1p(X, DYull, < Cllull, for any ucS,

(@)

where C=C =, N sup | pig(x, £)| for some positive integer N.
+IBIET 5,

Using Corollary 3.2 (i) and Lemma 3.7 we have

Theorem 3.8. Let s be an arbitrary real number and p(x, £ S3\. Then it
holds that

(3.12) 15X, DJllorn S Clltllyrmn for any ucS.
Corollary 3.9. When p(x, £)= S5, we have
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(3.13) [{(p(X, Dyu, u),| ECllullnen for any usS.
For any p(x, £)=.5¢, we denote | p| m:sug | p(x, E)N(E)™™].
8
Using the Friedrichs approximation (see [5], [10] and [13]) we have,

Theorem 3.10. Assume that 0<8<1 and p™(x, £)eSg%* for |a]| =1.
Then we have

(3.14) | Re (p(X, Dju, u),| < | Re p| llullmzat Cllullin-ssorr for any us S.

Corollary 3.11.  Assume that p(x, )= Sg'*! for |a| <1, then we have
(3.15)  Ip(X, D yull2 x= | plallullosc s Cllul7rs-s/0n for any us S.

We note that all the theorems and corollaries of this section except for
Corollary 3.6 remain valid when the symbols of operators are kX & matrix func-
tions. But in the case of matrix symbols we must replace |Re p|,, in (3.14) and
| p|% in (3.15) by k| Re p|,, and k|pl|? respectively, where we mean that for

p(x, E)=(p;,i(%, £) E ST, Re pZ%{p(x, £)+p(x, £)*} and Iplm={§=1 sup
| p:,5(% EYME) ™™ °F

In the case of matrix symbols, Corollary 3.6 holds if matrix p,(x, £) commutes

with p,(x, £).
By virtue of Corollary 3.2 (ii), we can define the pseudo-differential operators

on the space S’ by {p(X, D, v>=<u, p*(X, D,)0) for uc .S’ and v=S. Then
inequalities (3.11), (3.12), (3.13), (3.14) and (3.15) hold for functions in H,
spaces.

4. Spaces H, (Q)

In what follows we fix a basic weight function A(£) in R" and a real number
m=1. By Remark 2.7 (ii), there exists a basic weight function A (7, £) in R*"
such that ¢, A (7, E)S (T NE)™) P Zen (7, E).

DErINITION 4.1.  For any real numbers r and s, we define the space H,
by H, ,={us S (R*"); (7, E) = L, (R™"), M(T, EY NME) (T, E)= L*(R™**)} where
#(r, £) is the Fourier transform Se""””'e’u(t, x)dtdx of u(t, x).

The space H, ; is a Hilbert space with inner product

4.1) (, ), , = le(T, Y MEY (T, E)O(T, E)drdE .

We can see that S(R"*") is a dense subset of H, ..
For —coZa<b=<+oo, we set =0, ,={(¢, x) €R™""; a<t<b, xR"}.

DeriniTION 4.2. (i) H, (Q)={ucsD'(Q); v|lo=u for some veH, },
where v|,=u means that the restriction of v to Q coincides with # and D’(Q)
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denote the space of distributions on (.
(ii) For any closed set K in R***, we set H, , (K)={ucsH, ,; supp uCK}.
(iii) For any open set G in R***, we set C5,(G)={p|¢; p=Co(R™")}.
For ucsH, () we define the norm of u by |lull, , o=inf {||v||, ;; veH,
v|q=u} where ||9|], ,=+/(v,0),,. The space H, () is a Banach space with
norm ||7|l, ;0. We can see that H, , (K) is a closed subspace of H, ..
Using a similar method in [6], [8] and [11], we can see that for any r and s,
the set C%,(Q) is dense in H, (Q), C3°(Q) is dense in H,, () and C(Q)°) is
dense in H, , (Q°), where O)° means the complement of Q.

The following lemmas are stated in [13] and can be proved by the similar
methods to those in [8] and [11].

Lemma 4.3. Assume that ucH, ., (Q) and % ucH, (Q), Then ucs
Hr+m,s(Q) and

+2) il s 0= C {0l ot 2]}

Lemma 4.4. Assume that 2r >m and — oo <a<b= oo,

(i) Wecan define the trace operator 7v,: H, (Q)—=>H, 2 Suchthat (v u)(x)
=u(a, x) for u(t, x)= S(R"*") and

(43) {lryaul]r+3—m/2,xé C””Hr,s,n .

(ii) There exists a bounded linear operator v*: H, o s r—>H, () such that
Yo Vu=u forucH, ...

Lemma 4.5. Assume that |r| <m[2. We put

@(2, x) for t=za,
H,p(t, x) =
op(t: %) { 0 for t<a,

for @(t, x)& S(R™"), then it holds that ||H,p||, . ZCll@ll,s. That is, the operator
H, can be extended to a bounded linear operator on H, , and the range of H,is H, , ,
(Q4,)-

When a function p(2, x, &) satisfies that |8/8;05p(2; x, £)| < C; o eME)* for

any j, a and B, we write p(¢, x, £)&.S§ ,, by the same notation as in Definition
2.4, For u(t, x)= S(R™"), we define

28, X, Du(t, x) — Seiw“-@ (2, x, E)i(T, E)dTdE
= ge""Ep(t, x, E)d(t, £)dE where 4(t, &) = Se"’"'gu(t, x)dx .

Proposition 4.6. Let r and s be arbitrary real numbers. For p(t, x, £)y= S§ »,
it holds that

(4.4) 2@, X, Do)ull, o= Cllully ov, for ue S(R™).
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Proof. By the definitions,

“P(t’ X) Dx)u”r,s == ||7\'1(Dt) Dx)r'x(Dx)s°P(t’ Xa Dx)ullLZ(R”+1) )
where A(D;, D,)"v = Sefm”-éml(r, EYo(r, E)dTdE .

Using Theorem 3.1 and Corollary 3.2 (i) we can write

M(Dy, DY MDY - p(t, X, D, )u(t, x) = p, (¢, X, D,, D,)u(t, x)
where p, (¢, x, T, E)A(T, E)""NE) e B(R* V) .

From Lemma 3.7, we have

”P(ti X’ Dx)u”r,s = ”Pr,s(t) Xv Dtr Dz)' 7\'l(l)h Dx)—r'x(Dx)_s-l
XDy D) MDY ull 2w+ S ClIN(Dy, Dy« MDY+ oulL2erm+
= Cllull, s4; - Q.E.D.

By Proposition 4.6, the pseudo-differential operator p(¢, X, D,) with symbol
(¢, %,E)€ .55 » can be extended to a bounded linear operator from H, ,,; to H, ..
In the above proof we used the fact that when A(£) is a basic weight function in
R*, A () is also a basic weight function in R™*",

For any uc H, , (Q), we take a sequence {u;}7-, in C5(Q) such that u;—u
in H, ;. Then by Proposition 4.6, p(¢, X, D Ju;—p(t, X, D, yu in H, ._,. There-
fore we have p(t, X, D,Juc H, , ;. ,(Q) for uc H,, (). This fact permits us to
extend the operator p(¢, X, D,) from H, (Q) to H, ;_,(Q). Indeed,let uc H, (Q),
0| g=0,]g=u and v, v, H, ;. Since v,—v,&H,, (Q°), we have p(t, X, D,)
(v,—v)eH,, ; (). So we define p(t, X, D.)u by p(¢, X, D,)Ju=p(t, X, D, )|,

for v H, ; such that v|,=u. Furthermore, we have
”P(Z, X’ Dx)u”r,s—l,a = lnf {”v”r,s—l; K4 l o= P(t> X’ Dx)u ’
vEHr,s—I}é inf {”P(t’ X) Dx)v”r,s—l; ‘le = U, Az)EI{;',s}
< inf {C|loll, s; v|o = u, vE€H, } = Cllull, < 0.

Thus we can extend the operator p(¢, X, D,) to a bounded linear operator from
Hr,s(Q) to Hr,s—l(ﬂ)'

For o(t, x), ¥(t, ) C3(R™), we write [p, 1}r]=SR”H¢>(t, X)Wt %) dtdx.

- Then we can see that H¢||,,3=sup{#[ﬁl’—‘ﬂ|—; =0, x[fEC?f(R"“)}.

Thus, H,, and H_, _; are dual Hilbert spaces and the form [-, -] can be
extended to a sesqui-linear form defined on H, ;X H_, _..

Let {¢.(t, x)}7-, be a sequence of CF(R™") and {r;(£)}5-, a sequence of
C7(R") functions satisfying the following conditions:

B St =1, SEr—1,

(i) 231030552, x)| =C) 0 23105 s(E)| = C,, for any I and a,

(iii) there exists a positive integer N such that for any (¢, x) R™, the
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number of supp {; containing (2, x) is at most /N and for any £ = R", the number
of supp +; containing £ is at most N,
Let {c;;}7 ;-: be a bounded sequence of complex numbers.
Then,
; [e:58 8, X1 i(D2) (2, %), €58t ¥ (Da)e(, x)]
= 2 [¥i(Da) €55 17t )i (D) (8, %), (2, %)]
= [22¥i(D:) | ¢:5°Clt, 2 i(D)p(t, %), (2, %)] -
By assumptions of {c;;}, {¢:(t, %)} and {y-;(€)}, we can consider the operator
S D) ;51762 %) i(D,) as a pseudo-differential operator with a double
symbol 334r(E) ;5 |t #' )P AE) ESE3.
Hence we have
22 [e:st 42, X) (D) p(t, %), €58t X (D)2, %)]
< Cli@lly Wl -

From this inequality we obtain the following proposition.
Proposition 4.7. The form S1[e; Li(t, $)A(D)p(t, x), c:i8i(t, 53D

(2, ®)] for @, = CF(R™) can be extended uniquely to a continuous sesquilinear form
definedon H, ;x H_, _..
Using Lemma 4.5 and Proposition 4.7, we obtain the similar proposition to

Proposition 7 in [3].

Proposition 4.8. Let {c,;}, {¢(t, x)} and {yr;(§)} satisfy the above condi-
tions. Let s,,s,, v, and r, be real numbers satisfying that r,+r,=0, r,+7,-+5,+5,=0,
min (r,, 7,) > —m/[2 and let —co <a<b=< oo,

Then the form

S @t O, st O AD @), de

for @(t, x), (2, x)ae Co(Q) can be extended uniquely to a continuous sesquilinear
formon H,, ,(Q)XH,, ().

5. Parabolic operators and energy inequalities

Consider the operator L=D§+Zklp,-(t, X, D,)D}~? where D,=(—i)d/dt.
We assume that the operator L satisﬁe:the following conditions:

(1) we can write L=L+ L, where LO=D‘H—2P‘,’(L X,D,)D;"? and
L=310,(t, X, DD},

(11) Pg(t’ X, E)ES';"){ (]:1, "ty k)9
(iii) for some 0<§, <1, 8, pY(2, %, E)eSP™ (=1, -+, n, j=1, .-+, k) and
Qf(t: X, E)ESS’K“SI,
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(iv) roots P(t, x, E), ---, Pu(t, x, E) of the equation o-(Lo):Tk—l—jZkl}p‘,’(t, x, )

T#=7=0) satisfy the inequalities Im p,(t, x, £)=¢,ME)™ (j=1, -++, k) where ¢, is a
positive constant.

We can consider the operator L as an extended form for higher order para-
bolic differential operators.

For any ueS(R™"), we put u;=n(D,)** >D!'u for j=1, .-, k, and
U=*(u,, -, u;). Then we have Du;=x(D,)"u;,, for j=1,.--;k—1 and

Ds=Diu=Lu—33p(t, X, DYD! 'u—34,(t, X, DD} *u=Lu—31p} s
= =1 =1
(t’ Xa Dx)x(Dx)muj_;_lq}—j-rl(t) X, Dx)uJ where p%—j-’»l(t) X, §)=P2—1+1(t) Xy E)

ME) k-it0e 8 5 and gi_yua(?, %, E)=0p-js(2, %, E)ME) R P ST
Hence we can write

D, U= h(t, X, D) MD.)"U+L J(t, X, D)U--(Lu)e
1

0 1 0

0 : 0 1

where e, = : |, h(t,x,E)=| i i
1 6o 0  : 0 1
_P}:—Pi—l ............... _p%

and J(t,x,g)z(_ 0 )

iqhee—iq}

Thus, 8/0t U=H-N\D,)"U+JU-+i(Lu)e, and H=ih(t, X, D,). We put
R=0[0t— H-\(D,)"—J.

From the assumptions of operator L, we have

(i) o(H)=ih(t, x, E) S8, O, o(H)ESe 3 (j=1, -+, n) and o(J)=J(t, %, )
€S,

(i) the eigenvalues of o(H) are contained in a fixed compact subset of the
set {z=C; Re 2= —¢,}.

For a matrix A=(a;;) we denote |A|={>|a;;|*}".

The following lemma is shown in [3].

Lemma 5.1. For any (2, x, £), there exists a k X k matrix N(t, x, ) such that
(i) |IN(, % E)+IN(, %, ) =C,
(i) Re (N(t, % £ H(t,  E)N( %, £)F, )= — 2 181" for any t="(E,, -, E)
eC*,
where the constant C is independent of (1, x, £).

Lemma 5.2. We fix an arbitrary point (t,, x,, £,) and put Ny=N(t,, %y, &),
H,= H(t,, x,, £,) and R,=0[0t— HND,)*—J. Then we have

5.0 allT@R—el U@+ 1T d
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b b
— ,ng U3 dtheS (N3'R,U, N3*U), dt

for any U= {S(R"")}*, where c,, ¢,, u, and p, are constants which are independent
of (ty, %,, £,) and

1o = (n@*1 b 1.

Proof. Since H, and N, are constant matrices, we can write

Re(N3*R,U; Ni*U), = Re(N U, Ny U),—Re(NT HMD.)"U, N5 V),
—Re(N7WJU, N3*U), = % 3% IVG* ()18

—Re(Ng*HNMD,Y"*U, Ng"\MD,)"*U),—Re(Ns'JU, N5*U), .
Putting N\ (D,)"*U=V, we have

b
Ref (N3 'R0, N5 ) drz | NG UGB L NG U@

—Re{ (N HLN, ¥, V)odt—C | 101 sl Ullm-sorsdt -
By Theorem 3.8, it holds that
WU -cm-sp=CllU cm-spr2 -
Using Lemma 5.1,
Re(N3H,N,V, V), = Re SN;,'lHONO V(t, £)- V(t, £)dE

<—2f 1 Ve5)rees —u/ MO O &) *de=— /10O
Hence we have

b
ReS (NT'R,U, Na*U),dt=c,||U®)|3—cil|U(a)l3

b b
' — &) N0 d—C.f U@
for any £>>0. Taking é=y,’/2, we obtain (5.1). Q.E.D.

To obtain the similar energy inequalities to those of [3] or [4], we use the
partition of unity of the space R, and R%. Let & be a sufficiently small posi-
tive number which will be determined later.

Let ¢(¢, x)= Cy(R™"M)satisfy 0=¢(8, )< 1, suppt c{(z, x); ¢ <1, |x;] <1
j=1, -, n} and &(¢, x)=1 for [¢|<1/2 and |x;| <1/2 j=1, ---, n.

Let g=(g20, 8" )=(g0, &1, ***, &x) and k=(h,, ') denote (n-1)-tuples of integers.
¢ (l £—Zos 1 x—g’)

& &

el

We put £,(¢, x)=
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Enumerating the points {€g} and the corresponding functions {{,} in some
order, we denote them by (2, x,), (£, x,), +»- and &,, &,, -

Then we have,

i) z'_](;(t, x)’=1,

(i) 231089552, x)| =Cy 4 for any / and «,

(iii) the supp ¢; ovetlap in such a way that each fixed point in R™* is
contained in at most 2"** distinct ones of them,

(iv) | H(¢, x, E)y— H(t;, %;, E)| SC{|t—¢;| + |x—x;| } < C,€ for any (¢, x)E
supp ¢; and £ R”.

We take the set {g; ;}7-, of points in R" as follows:

() 2.,=0,

(i) &4, for ik,

(iii) when 14+1(3"—1)<j=(I4+-1)(3"—1), I=0, 1, -+, writing g, j=(a,, **,
a,), a;=2-3" or a,=0 or a;=—2-3’ i=1,..,n. We put @, ,=2 and @, ;=2-3'
for 14-1(3"—1)=<j<(I4+-1)(3"—1), I=0,1, ---. We put Al'jZ{EER”; |E;—a;l

g? dl,j’ 1=17 ey for g1,i:(ala ) an)-
Then it holds that R*=UX, ;, U0A, ; is a set of measure zero and for
=0 =

almost everywhere £ = R”, there is a number j uniquely such that £€A, ;.

Enumerating the cubes which satisfy @, ;<&N(g, )%, we denote them by
A1, A,y -+ and their centers and the lengths of sides by g, ,, £,, +- and a,,,
a, 5, -+ respectively.

Similarly we write A, ;, A’ 5, ***, 811,810 *++ and @', ,, @', ,, +++ for the cubes
satisfying &, ;> &g, ;)% '

We devide each A, ; into 2" congruent cubes and enumerate such cubes in
some order: A, ,, A, ,, +~-. We denote the center and length of side of each cube
A, ; by g, ; and &, ; respectively.

By the same way as above we write {&, ;};,={A, ;};, {&.;};=1{g.}; and
{@. ;}i={a. ;}; if @ ;<&M )™ and {&,;},={A", ;}; if & ;> EMZ, ;)

Repeating this process, we obtain cubes {A, ;}, ; with centers {g, ;},; and
lengths of sides {a; ;}, ;.

Lemma 53. (i) R'=UA,;
ni

(ii) for sufficiently small €>0, {&, ;}={A", ;},
(iii) for sufficiently small £€>0, we have c,EN(g, ;) Za, ;< ENg, ;)%
(0<c,<1).

Proof of (i). We note that R*= 651, ;. Assume that there exists a point
j=0

§€R" such that for any [, €A, ;, for some j,, Then by the definition of
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1

. 1
All.i:’ |Ei—a';] é? all,jz(lzl’ e, 1), a’l,!’,>e7\'(g/1,f,)6lze and a’l,f, = !

—a 1 f1
20—t
for some j,, here £=(&,, -+, £,) and ¢’; ; =(a’;, -+, @')-

Taking sufficiently large /, we have a contradiction. Hence for any £ € R",
there exists / and 7, such that £ A, ;.

Proof of (ii). Taking &>0 sufficiently small, we have EM0)1<2=d,,,
hence A, ,={A’, ;}. Foranyj, =1, by definitions, 254, ;< |8, i, =V 'n &, ;-
BY Lemma 2.2 (23), X(gl,jl)slé Cl<§1,j1>81§ Cl<§1,i1>§201|§1,,-1| §(2C1\/ n )
ay ;.-

Hence, taking 0<&<(2C\/ 7 )7*, we have Mg, ;)1 <&, ;- This means
e{a’;}

1]1

Proof of (iii). By definitions we have a, ;<&Mg, ;)’. By virtue of Lemma
2.2, we can take & >0 sufficiently small such that

(5.2) % ME) MM % ME)  for |E—m| <2y EME

By definitions and (ii), A;;CA’;; ;,. Then we have a,,,-zé a’,_l,h>%
ex’(gll 1 ]1)81

Since g’,- 1,7, S8 lg's- -1,9, g17|< vn al]—— \/” ‘97\'(.?1.7)61

=2/ n &g, ;)" Hence, we have u,,,->% & <%> x(g,,,-)sl. Q.E.D.

We put A*, ;={£; |E;—a;] é% a;,j,i=1, -+, n} where g, ;=(a, -+, a).

It is clear that A; ;CA¥*, ..

Lemma 54. Wetake £>0 sufficiently small so that Lemma 5.3 (ii) and the
inequality (5.2) hold. Thenif A*, ;N Ay y+, it holds that % a, ;Zay y<3a, ;.

Proof. Assume that A*;, ;N A, /#¢ and ay, jf<%a By definitions

l,5°

and Lemma 5.3 (ii), Ay #CA’y_, ;7 for some A’y_, . Taking E€ A%, ;NAy
we have

’ ’ T 1 o’
1808 vy | S\ g1 ;—El+H1E—gvy 7] é% Von al,j+—2_ vy,
R A TN NN NN

81
From (5.2) we have a’y_, j#=2 a/]r<?a, ; _?gx(g Jh< 2 2 (4)
87\,(g Ve, //)81<8x(g /e .//) 1,
This contradicts to the definition of A’y

1]
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Hence we have a,/]-/g% a; ;.

By the same way we can prove that ay #<3 a, ;. Q.E.D.

We denote the volume of cube A by |A].

Lemma 5.5. There is a positive integer M such that for any 1, j, the number
of cubes A*r » which satisfy A, ;N A*y == is at most M.

Proof. By Lemma 5.4, we have,

UAy »c{t; |E,—a;| =4 a,;} where g, ;=(a,, -+, a,) and the union is taken for
I,;j./ ’ i
the cubes satisfying A*y v N A, ;.

We write the number of such cubes by M,.

Consider the number M, of cubes which satisfy that |A| g(% a,,]-> and
AC{E: ]Ei_ail §4 Q.5 1:1, Ty 71}.
Then we have,

1 " "

Ml(? az,,-) =(8ay,;)",
hence, M,<24".

Using Lemma 5.4, we obtain M, <M, <24”, Q.E.D.

Rearranging {A, ;}, {g;;} and {a, ;}, we denote them by {A;}7.1, {g;}7-1
and {a,}7...

Let (£) € C5(R") satisfy that y(£)=1 for || g% (i=1, -, n) 0= () <1

and supp () {£; |£] g%, i=1, e, m}.

We put ¥, (€)= (552 ), (O ={Z) (07} and @, O)—ADHHE)-

a;

Theorem 5.6. For sufficiently small € >0, we have,

() 9iE)=CHRY), 0=p,E)S1,

(i) S piEr=1,

(i) 23105 (E)] S Co o ME)* for any a,

(iv) there exists a positive integer M such that each £ =R" is contained in the
supports of at most M of {p;}.

Proof. We put A¥= {E; |E;—b;]| g% a;(i=1, -, n)} here g;=(b,, ++*, b,,).

Then by definitions supp @, C AT and ;(§)=1 for E€A,.
Using Lemma 5.3 (i) and Lemma 5.5, (&) is well-defined and 1 <+:(&)< M.
Therefore from the definitions of @ (£), we obtain (i), (ii) and (iv).

Since 0¢r AE):«M”(%) a;~'™, using Lemma 5.3 (iii) and (5.2) we have,
J
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1989 8)] 5 19(E280) |, S Culedy *0g,)
§Ce1,a7\(f)_§1'°", for any a .

Hence |9gyr(8)| < CL ,MN(E) %™ for any a.
Using these inequalities we obtain (iii). Q.E.D.

We can see that for any (¢, x) = R" and £ supp ¢j,
(53) | H(t, % 6)— H(t, %,2)| SClE—g,] sup Mg, +s(E—g,)) "= Ct.
Taking €>>0 sufficiently small, we have the following Theorem.

Theorem 5.7. We put N,;;=N(t;, x;,8;). There exist positive constants c,,
Cyy py and u, such that

b
(5:4) UGBl U@/R+ s 1T Bt
b
— | Ut
=k Sy(¥t@,RU, N2, 0) 1

for any U< {S(R™")}* where & ;=@ ;(D,) .

Proof. We put H,,=H(%;, x;, £;) and R;;=0/0¢t— H;;}D,)”. By Lemma
5.2, there exist positive constants ¢,, ¢,, g, and u, such that

TGl D@+ 1Tt
— s S"| \U()|3dt<Re S:(N;}R,- U, N7}t .
Hence we have
¢ l|8:(0)®,UD)|[3—c. It (a)®,; U(a)ll3
10| )@, U Bsde— {0, U R
< ReS:(N,‘}R,. @, U, NoI®,U)dt
We can see that
282, U@)IF = 2 Re(¢,MD,)*E,@, U, @,;U),
— Re (D £4t, X)- MDY Et, X')0;T, @,0),
Since Z}Ig,.(;, )ME)PL(t, x)E SE,, from Theorem 3.3, we can write
S1E(t X)MDI it X)=MDITHD/E X, D) whete pl(t, v /S SE™

Hence we obtain
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252, U= TN CN U@ -1z

2) ;jllé‘,@,U(t)H 2| U —CNU@ -2 »

in particular,
(5.6) 2 Ig:2,; Ul = UG -
|Z(N¢ 18:®@;JU, N;jt:®,U0),]
gcz: 1E:@; UM - -8572l18 12 ; Ut e 0572
<CZ {18:@,; TU@ 2 -5+ 11E D U@ em-5012}

<C{||JU“ 2 m-sp1a | U@ 372}
SCJU 512

é—”N—l NU @)z tC v, [l T@IE

for any positive number N,.
By (5.5), 2 I5:@; U@)lase

(-

Hence we get the inequality

N7) 10— C o LU

67 alUOE—cl U@+ (1—-2- )] 1T

5 0
—Cuv,o| 1T 3

=k ST (ViIR, 2,0, NI, 0)

a s}

—Res SN T®IU, Nt @, U)dt .

a i j

The right hand side of this inequality can be written in the form:

Re|’ SU{(NTL.@,RU, Njt.@,0),+ 4,3

a i
where

4;; = (N;}( gt z)cp U, Nt U)
+(N (@, HIMD,Y"U, N7}t,®;U),

— (N7 H;[MD,)™, §,]9,U, N7}§,®,U),
+ (N6 H—H ;IMD,)"®; U, N}t ®;U),
= I A1+ 1141V

We can see that
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68) 15z =c{| (2 &), vl +ine, vl scave.
| 2L | S IS N*5) "N GL)[®;, HIMDLY"U, @;U))] -

By Theorem 5.3, we get [®;, H]=p%t, X, D,) where pj, x, £)eSs3.
Thus,
|Zj_l | = |(Z‘P £5°p3(t, X, DYND,)"U, U)]

where C‘”:Z(N IN, 182, x)*.  Since
Z¢](E)§‘1’(t )P, &', EYNE)" = SeR %, we have
(5.9 ]gll,.jl =1(p(t, X, D,)U, U)|
S”l’a(t X, Dx)U” —Cm- 81)/2||U”(m 5p/2
< C Ulfem- 81)/2—- < fu IIU(t)llm/z+CNo U@
where p(¢, x, )= ST
By the similar way, we can obtain
S, = (', X, DU, U),
where p (t x, £)eSey'. Hence we get
(5.10) 12MIL; | SCl U= J’\? HU@) 172 +C o, U@ -

To estimate the term 2 1V ;;, we write

1V ;=(N7i¢ { H— H;;}P,MD,)"*U, N7;¢:;P; 7&(D,,)"‘2U)0
H(NGCAH—H;}P; X(D Y**U, N7 {MD, )”‘/2 1P, U0),
HN G MDY H—H3OMDU, Nt @,U),
+(NGE[H, MDY ®; X(D,)”’/ZU Nii¢:@;U),
= B;;+Ciy;+D;;+E; .
By the similar way to above estimates (5.9) and (5.10), we can obtain
(5.11) IZ(C,]—{—D,,)I:](ps(t X, D,)U, U)| C.||Ulltm-1y2

SR NUOlat Coy I UENR,

where p*(t, x, £)e.S¢3", and
(5.12) IZE,JI—I(Pﬁ(t X, DU, U)| <C Ul m-sps
<*],*<%0 U@ 72+ C vy JUD,
where p'(¢, x,£)=Sgx% . Furthermore we have
I_ZiBijI éCo{Zde|§;{H—Hij}q’j7\(l)x)m/2UH§

+ - DS MDY U1
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where the constant C, is independent of N, and &.
Using Theorem 3.3 and Corollary 3.4 (i), (ii), we obtain
St H— i} D) Ul

= (p’(t, X, Dx)X(D x)m/zl]: 7\'(Dx)m/z U)o

+(2'(t, X, DINMDY™ U, MD,)"*U),,
where p'(t, %, £) = 23 Ct, x)*{ H(t, x, £)— H;;}*

i

x { H(t, x, £)— H;;}p;(E)
and p*(¢, x, £) =S}

By the assumptions of H, {;, ; and Hj;,
|p7(t; X, f)l éE,] gi(t: x) |2 ¢j(£) I 2{C1+Cz}252§038 »

where C, is the constant in (iv) of the definition of {{;} and C, is the one in
(5.3), and 8 p'(t, x, E)eSg i=1, -, n.
Hence by Theorem 3.10, we have

|(P"(t, X, D)MD.)™U, M(D)™*U),|
=CENUWDratCllUDGm-s,27-  Therefore,
;j”fi{ﬂ“ H;;}o,\MD,)"*U|3
S CENU®)[nsz+ Cell U@ m-syy22H Cel U 8,512 -
Thus we obtain
(5.13) IZB,,l<{CCN0}5||U(t)Hm/z+ & ||U(t)||,,.,2
+Cr,, e” U\ -smr
< (CNEL2 It Na+-Cov, | UG-

By virtue of the 1nequa11t1es (5.7)~(5.13), we obtain
(514) U@ el v@i+{(1—2
xN0IEd—C . N0 B

<R S 3 (VGL®,RU, N0, U)t

6 )pl—COC4N08; _]%}

0

Taking €<-—#1 _ and N, sufficiently large so that ,Uq—M: L2

~N3iC,C, 0 N, 2’

we complete the proof. Q.E.D.

Let r and s be real numbers satisfying r >m/2 and let — oo <a<b=<+-co.

Theorem 5.8. For sufficiently small & there exist positive constants ¢, ¢;, u,
and p, such that
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(5:15) UGBl U@+ 1T@E madt
i S" | U(2)|12d2
gReS NGO MDY R, N3E® D,  U)dt

for any U={H, (Q)}*, where p=r+s—m|2 and U(t)=v,U, and v, is the trace
operator defined in Lemma 4.4.

Proof. At first we assume r-s—m/2=p=0, then by Theorem 5.7, the
inequality (5.14) holds for U = {S(R"*")}*. Since R: {H, (Q)}—{H,_,, (Q)}*
is a continuous linear operator, the form

[ SRy, NGt v
is a continuous sesquilinear form defined on {H, (Q)}*x {H, ()}*, because of

Proposition 4.8. Using the continuity of the trace operator ¢,, we obtain the
theorem for p=0.

Let 7r4s—m/2=p. We have that RAD,)’=\(D,)R+{R\(D,)’
—MD,YR}=ND,)’R+[\D,)*, HMD,)"+[ND,)’, J]. By assumptions of
H and J, we have [XD,), HIMD,)”=p'(t, X,D,) and [\D,)", J]=

p'(¢, X, D,) where p'(t, x, £) and p*(¢, x, £) belong to Sg1°~%1.

Thus we have

]Rej Z(N 160, [MD,)", HIND,)"U, N7j5:@MD,) U)ydt|
=C[ St X, DU s+ 6@ MDY Ul st
< C NOO R -yt
S DO B+ oo 10 e

for any U= {H, ()}*. Similarly,

|Re{ SN TH@,IMD.Y, 10, N3t @MDY V)

gNioLuU(t)||p+m,2dt+cNo,e§a||U(t)||§dt
for any U< {H, (Q)}*.

Taking N, sufficiently large and using (5.4) for M(D,)*U in place of U we
obtain the theorem. Q.E.D.

6. The Cauchy problem for the operator R

In the proof of Lemma 4 in [3] (p. 193) replacing |&|** by AM§&)™, we have
the following lemma.
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Lemma 6.1. We fix an arbitrary point (t,, x,, £,), and put H,= H(t,, x,, &)
and R,=0[0t— H\D,)". Then there exists C >0 such that

61 | @) O, )
SCI(RA2IUIG o

Jor any 7>0 and U<{S(R"*")}*, where I is the kX k identity matrix and C is a
constant independent of (t,, %,, £,)-

Theorem 6.2. There exist constants C,, C,>0 such that

62) | My UG, ) arde

SC(R+2D) U5+ Gl UL 0
for any U = {S(R"+)}*.

Proof. For sufficiently small €>0, we take {{;},, {®;}; as in Section 5
and put H;;= H(t;, x;, ;). By Lemma 6.1, we have
[ r@mtm) B, ) 12amat
ZCI(R;:;+2)UIE o
for any U< {S(R""")}*, where R,;=0/0t— H(t;, x;, E;)MD.)"
Taking £,(¢, x)p(D,)U(t, x) in place of U(t, x), we have
[ r@rmtmy 1 c.0;00 ) 2
éC”(Rij—f—nI)ticDjU”g,o .
Now we shall estimate various error terms to obtain (6.2). At first,

S 1, )2t

i

=

I

dtdx

a% {£,:®,0(t, %)}

8 : ;
= 2 v x| v(t, ) drs

— {1 8, £)l*ardg—ClUIIE».
By the same way as in Section 5, we have

eIt U6 gl tarag
= 2 [IMD2)"{E:@; U3 o

= EG(Z ;5 MD,)"E @, U, U)
= Re(;)jl(t, X, D,)U, U),

where p'(¢, x, £) = MEY™ I+ p(¢, », £) and p*(t, x, E)= SiR~2.
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So we get,
Mgy £, 61 dra
= [ME™ G(r, )1%d7dE ~ClT sy
We can see easily that

z:jw L®,U(r, £)|*drd = afj | Ti(r, £)|2drdE .

i 5

Now we can write,
;jll(Ru—l-’iI)E.@jUHg,o
écg} ||§;<I>j(R+WI)U||§,o+C;‘. IE:@,(R—R;;)UII3 0
+CRIR, L]0,
Using the method as in the proof of Theorem 5.7, we have
E ”Ci‘I’j(R_Ru)UHE,oézg I8,0;,(H—~ H;;)M(D,)"Ull5 o
+231IE,, U |
<P H— )@ D) Ul
23 E0%; HIMD U o201,
S2°€C||U3,m+Cll UG m-sy2
+C MU 8,2+ CNUE sy 5

and we have,

SRy £:2101B0=2 201 (-2 £,) 2, Ul
+2 N HLMD,)" E19, U1
<CNUIEo+CNUIE ey -

Summerizing these inequalities, we have,

[t neymtry Br, ) Para
<CHNED(RAD) U1 o+ CHIU I syt CENUIR,,
<CI(R+2D) U o+ CENTIE m-t ClITB sy -

Hence, taking & sufficiently small, we get,

[ reym+m O, )it
<CI(R+2D) U 04 Coll U1 sy
<CIE+mD) U ot 1T m-ClIT o
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Thus we obtain (6.2) for some constants C,, C,>0. Q.E.D.

Theorem 6.3. For any real numbers v and s, there exist positive constants 7,
and c, such that for any n>7,, it holds that

(6‘3) COI|U||r+m,s§”(R—’_nI)U”r,séC’r}”U||r+m,s fOT ‘my Ue{Hr+m,s}kv
for some positive constant C,,.

Proof. The inequality |[(R4+7I)U||, ,SC, |0, m 1s clear. Because
o(R)y=iTI— H(t, x, E)MEY"— J(2, %, E) ESTrir00» 50

(R+2D)U I, .Z2lU|l, A+ IRUl,,,
§7]”U”r+m,s+”7\'(Dx)sy\‘1(Dh Dx)rRUHO,o >

and by Corollary 3.2 (i), we can write MD,)°r(D,, D,)"R = p'(¢, X, D,, D,)
where p'(t, x, T, EYME) " M(7, )" EB(R™).

Hence, {[MD.)’M(D;, DY RUIl,, = ||P'(2, X, Dy, DU
SCIMDYMDss DY " Ulloo = Cl Ul m,s -
Thus we get |[(R+2D)Ull, ;=(CH+DU 4,5 »
for any U={S(R"*")}*.
For any U= {S(R""")}*,
W(R+2I)UII7,s = [IMD)M(Ds, DY (R-2L) UG 0
= I(RB-+2DMD)MD, DY Ul
—2|[[R, MD) (D, DY U 5,0 -
Now from Theorem 6.2, we have
I(R+721)MD.) - M(Dy, DY UG 0
> {(PHME I N, 8| D, £) | *drdE—CI U,
Z| UG ("= O, -
Using Corollary 3.4 (i), we get
LR, MD.)M(Dsy DY TUIE o = 152, X, Dy DU
where p(2, x, T, E)ME) TN (7, ) € B(R**TV) .
So, |I[R, MD)M(Dy, DY TUNS o= CNUN s4m-s,
SENUN srmt CollUNNE S ENU N s+ Ce I U
for any £,>0. Thus, we obtain,
1 .

B+ 2 (5 C=28) D1 (57— C—C T, -
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Taking £, sufficiently small and %, such that %nﬁ——C— C.,=0, we have
(6.3) for any U= {S(R"**)}*. Hence we have the theorem. Q.E.D.
Let R* be the formal adjoint operator of R, then we have
R* = —0[0t—{H - \MD,)"}*—J*
= —0/0t— H*-\MD,)"—J,
where o(J,) = J|(¢, x, E)eSt% and o(H*) = H(t, x, £)* = *H(t, x, £).
In fact, by Corollary 3.2 (ii) and Corollary 3.4 (ii), we have that
o({H-MD,)"}*)— H(2, %, EYME)" = Sgi™
and o(J*) = J*(t, X, £)=Sex™.
Hence we can write,
R* = —3[ot— H*-\D,)"—J, .
Using the same way as the proof of Theorem 6.2 and Theorem 6.3, we

have that for any real r and s, there exist constant #, and ¢, such that for any
% >7, it holds that

(6.4) cllUllysm S WR*+0D)U|l, (S Cl|Uly 4 s for any Ue{H,,,, }*.
Using (6.3) and (6.4), we have,
Corollary 6.4. For any real numbers r and s, there exists positive constant 7,

such that for any 1>n,, R--nl is a topological isomorphism of {H, ;}* onto {H,_,, . }*
(See Theorem 2 in [8]).

Using Theorem 5.8 and Corollary 6.4, we have

Theorem 6.5. For any real numbers r, s and a, there exists u, such that for
any 1>y, R+nl is an isomorphism of {H, , (0, )} onto {H, ,_ (0, .)}*.

Theorem 6.6. Let real numbers r, s, a and b satisfy r > % and —oo<a<b

<L oo. Then the mapping UW> < RU, v,U> is a topological isomorphism of
{Hr,s(Qa,b)}k onto {Hr—m,s(ﬂa,b)}k${Hr+s—m/2}k'

This theorem can be shown by using Lemma, 4.3, 4.4, 4.5 and Theorem
6.5 (See [8] and [13]).

7. Cauchy problem for operator L

Let real numbers 7, 5, @ and b satisfy r>(k-—1/2)m and — oo <a<b< -+ oo,
and let Q=Q, ;.
Then we have the following main theorems.

Theorem 7.1. The mapping u Ww—> < Lu, v,u, ¥, %u, v, ,),a(_aa?>k—1u>
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is a one to one mapping from H, (Q) into H,_ . (Q)DH, o 1 DH, so—mp®+
@Hr+s—(lz—1/2)m-

Proof. We can see that
7.1 ;jSZ(N,—,lg,.@,.x(D,)PU, N73t® D) U)dt
zc|' sty = | loe .
By Theorem 5.8 and (7.1), it holds that for any >0,
TGl = U@l | 1T st
+on— )| 10242
g%}ReS:(N;}C,-cPJ-x(Dx)"-(R—{—nI)U, N7t @D,y U)dt

for any Us{H,_mu-»(Q)}%, where p=r-+s—(k—1/2)m.
Since —oo<a<b<+oo, e™Us{H, (Q)}* for any Ues{H, (Q)}*.

u

For each ueH, (Q), let U=( 31> where u;=X\(D,)"* ”D{"'u. Then Uec
U

{H, - mp-p ()} and RUE{H,_ . (Q)}*. In the above inequality, replacing

Uby e ™U and putting Lu=fcH,_,, (Q), we have

(7.2) ce ™ UG)| —ce ™| U(a)|],
b b
+ e Nt -elr— e Tl 2t
<3 ReSbe‘z’"(N,“}é‘,-q)jx(D,)"{i Lu}e,, N7}t @D, U)dt
for > p,. Assume that Lu=f=0. Then,
ce" || UO)lp*—ce™™ | U(a)llp®
b b
e NDONE it o e U170t
<0.
If yu=0, v, iuzo, Y (i)k_luz& we can see that U(a)=0.
¢ ot ot
Thus we have
b
e ORI T
b
+e(r—pe | D@, =0,
This inequality means U=0 and therefore #=0. Q.E.D.

Theorem 7.2. Under the same assumptions as Theorem 7.1, the mapping
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k-1
un—> < Lu, v ,u, 'ya—:; Uy =y Yy <%1—> u> s a topological isomorphism from

Hr,s(ﬂ) onto Hr—mk,s(ﬂ) DH, i s-mrDH s s PH - V2m-

Proof. We denote Lu=<{Lu, v,u, v, ait Uy Vs (%)’Hu) By Theo-

rem 7.1, the operator [ is a one to one mapping from H, () to H,_,; (Q)D
Hr+s—m/2®'“@Hr+s-(k—1/2)m'

So we have only to show that _ is an onto mapping, due to the open mapping
theorem. But the fact that [ is onto can be shown by the same way as the proof
of Theorem 8 in [3]. In this case we use the argument on Theorem 4.16 in
[13], in place of Theorem 9 of [8]. Q.E.D.
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