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ON THE CAUCHY PROBLEM FOR
REACTION-DIFFUSION EQUATIONS

XUEFENG WANG

Abstract. The simplest model of the Cauchy problem considered in this paper
is the following
. . u, =Au + uP, x£Rn,t>0,  u>0, p>\,
w u\l=0 = (t> € CB(R"),       4>>0, <t>?0.

It is well known that when 1 < p < (n + 2)/n, the local solution of (*)
blows up in finite time as long as the initial value 4> is nontrivial; and when
p > (n + 2)/n , if <j> is "small", (*) has a global classical solution decaying to
zero as t —» +oo, while if <fi is "large", the local solution blows up in finite
time. The main aim of this paper is to obtain optimal conditions on ij> for
global existence and to study the asymptotic behavior of those global solutions.
In particular, we prove that if n > 3 , p > n/(n - 2),

o<^)<am,) = a(^(p-^))1/(p"1)|x|-^-»

(us is a singular equilibrium of (*)) where 0 < À < 1 , then (*) has a (unique)
global classical solution u with 0 < u < Xus and

u{x, t)<((Xx-p - l)(p- l)0"1/(p_l).

(This result implies that uq = 0 is stable w.r.t. to a weighted L°° topology
when n > 3 and p > n/(n - 2).) We also obtain some sufficient conditions on
<t> for global nonexistence and those conditions, when combined with our global
existence result, indicate that for (¡> around us, we are in a delicate situation,
and when p is fixed, uq = 0 is "increasingly stable" as the dimension n Î +oo .
A slightly more general version of (*) is also considered and similar results are
obtained.

0. Introduction

The simplest model of the Cauchy problem considered in this paper is the
following:

u, = Au + up,        x £ R",  t > 0, p > 1,
u\t=0 = <p£CB(Rn) = C(Rn)nL°°(R"),        4>>0,  tf>£0.

(0.1 ) is related to many equations arising from mathematical biology and chem-
ical reactor theory, and the results for (0.1) may be used to the study of those
equations as shown by Aronson and Weinberger [1]. Besides the practical in-
terest in it, (0.1) and its various generalizations have been model problems for
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the mathematical study of pathological phenomena and have been studied by
many authors in the last two decades (see Levine's survey articles [25] and [26]).
Yet our understanding of (0.1) is still incomplete. This is partially due to the
apparent lack of compactness and the lack of a good Liapunov functional. In
this paper, we shall use the equilibria of (0.1), which are comparatively well
understood, to study the Cauchy problem (0.1).

Before we turn to the history of (0.1) in the direction concerned in this
paper, we first mention the following standard fact. For any <¡> g Cb(R") with
4> > 0, there exists 7¿ > 0 such that (0.1) has a unique classical solution u on
R" x[0, Tf) such that u is bounded on Rn x [0, V] for any 0<V <T4>,
and if 7¿ < +oo, then ||w(-, 0IIz,°°(a") -* +°° as t -* T¿ . This can be proved
by the standard contraction mapping method. When 7¿ < +oo , we say that u
blows up in finite time; when 7¿ = +oo, we say that « is a global solution.

The study of (0.1) goes back to the fundamental work of Fujita [11]. He
proved that when 1 < p < (n + 2)/n, the local classical solution blows up in
finite time (the same is true when p = (n + 2)/n , as was proved by Hayakawa
[19] and later by Kobayashi, Siaro, and Tanaka [22]), and when p > (n + 2)/n ,
for any k > 0, there exists a small ô = ô(p, n, k) > 0 such that when 0 <
4>(x) < ô exp(-k\x\2) on JR", (0.1) has a global classical solution decaying
like t~"l2 as Í-» +00. Also, as a consequence of Lemma 2.1 in [11], if the
local solution can be extended globally, then necessarily e'A(j) < rßßß where
ß= l/(p-l) and

e'A<p = (4nt)-"/2 j ^ exp (-^=f^) 4>(y) dy

(Weissler [34] also obtained such a result in the LP setting). From this, one
sees that if cp is "large", then the local solution of (0.1) blows up in finite time
even when p > (n + 2)/n .

In the direction of relaxing Fujita's sufficient condition on the initial value
<p for global existence, Weissler [35] proved that if 4> satisfies

(0.2) (p-l)        \\etAcp\\pffxdt<l,
Jo

then (0.1 ) has a global classical solution which, when the strict inequality holds,
goes to zero uniformly on R" as t —► +00 . One checks easily that when (f> is
dominated by a small multiple of (1 + |x|)~m for a large m , (0.2) is satisfied.

In a recent paper, Lee and Ni [24] gave another sufficient condition for global
existence which says that when p > (n + 2)/n, for any k > 0, there exists a
small b = b(p,n,k) such that if 0 < cp(x) < b(k + \x\2)-x^p-x), then (0.1) has
a global classical solution decaying like t~x^p~x^ as t —y +00 (other decay rates
were also obtained if <f> decays faster). They also obtained a nice necessary
condition on </> for global existence of classical solutions of (0.1):

(0.3) liminf Ixl2^-1)«/.^) < (X(Bx))x«p-X)
|jc|-»+oo

where Bx is the unit ball in Rn , and X(BX) is the first eigenvalue of -A with
zero Dirichlet boundary condition on dBx . These results of Lee and Ni indicate
that the slowest decay of <p at |x| = +00 permitting global existence for (0.1)
is Ixl-2/«"-» .
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The main aim of this paper is to obtain optimal conditions on c¡> for existence
of global classical solutions of (0.1 ) (and for a more general version of (0.1 ), see
(0.6) below), and to study the large time behavior of those solutions. For (0.1),
in view of the above discussion, we shall pay particular attention to those 4>
with "critical decay" (that is, those for which 4>\x\2/(p~xï = 0(1) as \x\ —> oo ),
and we are especially interested in the following question:

(Q) How large can the b in Lee and Ni's sufficient condition be if we want
global classical solutions of (0.1)?

Note that by (0.3), b < (X(BX))X^"-X). Our partial answer to (Q) is a conse-
quence of the general results in this paper.

As mentioned before, our main results and analyses rely on a good under-
standing of the equilibria (regular or singular at x = 0) for which the study
dates back to the beginning of this century. Before we state our results, we first
mention some elements of the theory of the elliptic counterpart of (0.1):
(0.4) Au + up = 0,        x£Rn, u>0, n>3.

This equation is called the Lane-Emden equation. It arises in astrophysics and
Riemannian geometry. The fundamental work on (0.4) is due to Fowler [6,
7]. Other references include [5, 20, 27, 30], to cite just a few. In Propositions
3.4, 3.5, and 3.7 we recall or prove some results about (0.4) (and the generalized
version of (0.4)). At this point, rather than presenting the whole list, we mention
that

(Ei) When p > n/(n - 2), us(r) = Lr-2/^-1' (r = \x\) is a singular solution
of (0.4)), where

L = (2^ê(p-    "   ^_1)(p-l)2\f     n-2,
(E2)   When p > (n+2)/(n-2), all radial positive regular solutions of (0.4) are

included in a family {ua}a>o with ua(r) decreasing in r, ua(0) = a,
/-2/^_1)«a(r) -»Lasr-» +00,

(E3)   When p = (n+2)/(n-2), all radial positive regular solutions of (0.4) are
included in the family {«f }x>0, uf(r) = (X^n(n - 2) / (X2 + r2))^2^2 .

We point out that when 1 < p < (n + 2)/(n - 2), (0.4) has no regular radial
solution (even nonradial solutions cannot exist; see [5]).

Now, we can begin to describe our main results. Let

i'"-2'2:""^";-'"-2'2    when „> 10,
Pc = < (n- 2)(n - 10)

[ +00 when 3 < n < 10.
It is straightforward to verify that pc > (n + 2)/(n - 2).

Theorem 0.1. Suppose n > 3.
(i) When p > n/(n - 2), if 0 < cf> < Xus for us in (Ex) and some 0 < X <

1, then (0.1 ) has a global classical solution u satisfying 0 < u < Xus
and \\u(-, i)||i~(*.) < ((V-p - \){p - l))-1/CP-Df-i(P-i).

(ii) When n/(n - 2) < p < pc, if 0 < cf> < us, then (0.1) has a global
classical solution u such that 0 < u < us and \\u(-, 0llz.°°(R") —> 0 as
r-> +00.
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Remark 1. When p >pc, (ii) is not true because all radial regular steady states
of (0.1 ) remain below us (see Proposition 3.7) and therefore even if the classical
solution exists globally, it may not decay. However, when p >pc, with the same
condition in (ii), we can prove that either « is a global classical solution or u
is classical before time 7¿ > 0 and after 7^ , u is a distributional solution. In
any case, 0 < u < us on R" x [0, +00) and hence by the regularity theory for
parabolic equations, u is at least classical on Rn x [0, +oo)\{0} x [0, +00).
The large time behavior of u in this case remains open.

Remark 2. As Lee and Ni [24] observed, when liminf|X|_+00 \x\2/ÍJ'~xx<f)(x) > 0
and if the classical solution exists globally, then ||m(-, r)||oo > cî~1/(p_1) for
some c > 0. Thus in (i) the L°° decay rate of u is sharp if, in addition to the
condition in (i), <j>(x) > Cil*!-2^-1' at x = 00 .

Remark 3. For a > 0, let wa(x) = \x\2^p~x"l~a. In both (i) and (ii), since
u < us, we can see that actually if a > 0,

N-» Oilcan«) = N-» 0wa(-)llz.~(*")->0 así ^+00.
(Note us and hence u decay faster than wa in x if a > 0.) From (i), if
<t> £ BL = {cf> £ CWo(Rn)\ct) > 0 and IMIc^rjt«) < ¿}> then the global flow u
initiated at cj> stays in Bl and hence BL is an invariant set. Also by (i), if <p > 0
and 11011c«, /R") < X < L, then ||m(-, t)\\cWo{R") < ¿- Therefore the equilibrium
«o = 0 is stable with respect to the CWo(R") topology (for the definition, see
[17]). We point out that if we interpret up in (0.1) by \u\p~xu, in virtue of the
comparison principle, the above assertions still hold with obvious modification
even for solutions that are not nonnegative.

Remark 4. From (i) and (ii), our answer to (Q) is that when n > 3 and
n/(n - 2) < p < pc, b can be as large as L (as given in (Ei)) for any k > 0 ;
when n > 3 and p > pc, b can be arbitrarily close to I".

In this paper, we also obtain some results in the converge direction of Theo-
rem 0.1.
Theorem 0.2. Suppose n > 3.

(i) When p > pc, if lim inf|x|_+0o \x\2/t-p~x^(j>(x) > L, then the local classi-
cal solution u blows up in finite time.

(ii) When n/(n - 2) < p < pc, there exists a family {<f>ß}ß>o, where <fiß is
radial and decreasing in r = \x\, 4>ß(0) = ß, 4>ß = us near x = 00,
4>ß > us on some ring depending on ß, such that if 4> > </>ß for some
ß > 0, then the local classical solution o/(0.1) blows up infinite time.

Remark. Combining Remark 4 of Theorem 0.1 and (i) of Theorem 0.2, we see
that the least upper bound of b in (Q) is L when n > 11 and p > pc. The
least upper bound of b for other cases remains unknown. However, (ii) of both
Theorem 0.1 and Theorem 0.2 indicate that when n > 3 and n/(n - 2) < p <
pc, near us we are in a delicate situation.

At this point, combining Theorem 0.1 and Theorem 0.2 with the previous
results in the literature, we can look at (0.1 ) from the following point of view.
Let p be fixed, say p = 2 . Then the results of Fujita, Hayakawa, Kobayashi et
al. say that when n = 1, 2 (p < (n + 2)/n), the local solution of (0.1 ) blows up
in finite time no matter how close <fr is to the equilibrium uq = 0, hence Uq
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is not stable. When n>3(2 = p>(n + 2)/n), by results of Lee and Ni, w0
attracts, with rate ct~x, the "heat" flow in Cb(R") initiated at 0 if 0 is close
to «o in some weighted L°°(Rn) topology (more precisely, if

<p £ Bbtk = {cp £ C(R")\cp > 0,   \\<i>(.)(k + | • I2)!!/.-,*,, < b}
with k > 0, b > 0 and small). Thus when n > 3, «o = 0 is "stable" in some
sense. Now by Remark 3 of Theorem 0.1, when n > 5 (2 = p > n/(n - 2)) Uq
is stable with respect to the CWo(Rn) topology (recall that CWa(Rn) = {4> £
C(Rn)\ ||0(-)u>a(-)llL«(Ji») < +(X)} » where wa(x) = \x\2~a when p = 2), BL =
{(j> £ CWo(Rn)\<p > 0, ||0||cu,o(ä") < L} is an invariant set of the "heat" flow and
«o = 0 attracts, in the weaker CWa(R")(a > 0) topology, all flows initiated in
B¿ . From (i) of Theorem 0.2, when n > 17 (2 = p > pc), the flow may even
fail to be global if </> is outside Bl (this is also true if 4> is outside BXL for
X large when 5 < n < 16 ; see (0.3)). Thus when n > 17 we can say, in some
sense, that the "radius of the invariant set" is L. Note that when n î +oo,

= 2« - 8 î +00.

p=i

Observe also that the decay rate (X~x - l)t~x of L°°(R") norm of the global
solution initiated at 0 G B\L (0 < X < 1) (see (i) of Theorem 0.1) is independent
of n . All these points seem to indicate that when n is large and increasing, the
"stability" of uq = 0 is also "increasing". This can be interpreted intuitively
that when n is large, there are more dimensions in which "heat" can dissipate
away and hence for large initial value, "heat" can diffuse to oo in R" so much
that the "temperature" eventually drops down to zero, while when n is smaller,
"heat" cannot dissipate away fast enough and blow-up occurs, and in fact when
« = 1,2, blow-up always happens no matter how small the initial value is.

The following result is of independent interest. It implies that any nontrivial
radial regular equilibrium of (0.1) is unstable w.r.t. the CWo(R") topology when
p > (n + 2)/(n - 2) and w.r.t. a finer topology when p = (n + 2)/(n - 2).

Theorem 0.3. Suppose « > 3 and p >(n + 2)/(n - 2).
(i) If 0 < <f> < Xua for some 0 < X < 1 and some radial equilibrium ua

(defined in (Ef) and (E3)), then (0.1) has a global classical solution u
satisfying

\\u(-, i)IU-(Ä-) < ((A'-p - 1)(P - l))-1^-1'/-1^-".

(ii) If (p > Xua for some X > 1 and some ua (in (E2) and (E3)), then the
local classical solution blows up in finite time.

Remark 1. It is interesting to observe and easy to prove by using the continuity
of the solution with respect to the initial value that if 4> = ¿ua with X > 1 , then
the "life span" TkUn of local classical solution u of (0.1) satisfies TXUn î +00
as X I 1 .
Remark 2. When X is small, the decay rate of u in (i) was obtained in [24].

We remark the Theorems 0.1-0.3 follow from our general results, which
assert that if the initial value 4> m (0.1) is Xyp where y/ > 0 is a radial con-
tinuous distributional upper (lower) solution of (0.4) and 0 < X < (>) 1 , then

'»
!/(/>-!)
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for p > n/(n - 2) the solution of (0.1) decays as stated in (i) of Theorem 0.1
(or blows up in finite time); moreover, if X = 1 and \p is not an equilibrium,
then for (n + 2)/(n - 2) < p < pc, the solution of (0.1) decays (or blows up in
finite time).

We should mention a recent work of Bandle and Levine which is related to
Theorem 0.1. In [3], they consider the first initial-boundary value problem

ut = Au + up ,        p > 1,
(0.5) u(-,t)\9D = 0,

u\t=o = <t> > 0,        (p£ C0(D) = {</>£ C(D) | <p\dD = 0},
where D = Q x (0, oo) c R" , Qc Sn~x is a open connected manifold with
boundary. After obtaining an interesting Fujita-type nonexistence result, they
prove that if

{n + 1 .
n-V (l <Px(Ci)<-^) ,
oo, « = 2,3 ^ '

there exists a singular steady state uf and if u\t=o = <f> < uf, the classical
solution u is global and, when px (Í2) < p < (n + 2)/(n - 2), u decays to zero
pointwise as t —y +oo. They also considered the case when D is exterior to
a bounded domain and 0 G Dc, and proved that if « > 3, p > n/(n - 2)
and u\t=o < us (as in (Ex)), then u is a global classical solution, moreover, if
«/(« - 2) < p < (n + 2)/(« - 2), u decays to zero pointwise as t -> +00 .

By a simple comparison argument, using Theorem 0.1 and Remark 1 follow-
ing, we make concerning (0.5) the following observations. When D is either
a cone or an exterior domain as mentioned above (but we allow 0 £ D), then
Theorem 0.1 is true for (0.5); moreover, when « > 3, p > pc, 0 £ D, and
0 < cp < us, (0.5) still has a global classical solution.

Remark 1. This result does not cover the case when px(£l) < p < n/(n - 2)
and « > 3 , and the case when « = 2. These cases are covered by Bandle and
Levine [3] when D is a cone. However, when « > 3, our result covers the cases
that remained open in [3] and provides the decay rates for global solutions.

Remark 2. By (3.3) and (3.6) in [3], uf(r, 6) = r-W-Vaifl) where Aea -
Lp~xa + ap = 0 in Í2, a = 0 on 8Ú. Suppose a(f?o) = max06nQ> tnen
Aea(60) < 0; hence -Lp-Xa(60) + ap(d0) > 0, a(d0) > L when p >
«/(« - 2). Now by the strong maximum principle (the manifold version; see
[2]), a(6o) > L. Thus the graph of uf intersects (transversely) that of us
when p > n/(n - 2). So in case D is a cone, the result in [3] mentioned above
and our result, when they overlap, are not comparable.

Remark 3. Theorem 0.1 can be applied to (0.5) when D is of other geometric
types.

In this paper, we also consider the following more general version of (0.1):

en fil Ut = Au + \x\'up, x £ Rn ,  t>0, andw>0,
(U-Ö) u\t=0 = <p£ C(Rn),       0>Oand0^O,
where p > 1, / > -2, and N > 3. When / < 0 it is generally impossible to
obtain a classical solution for (0.6). Therefore we consider only those "C^-mild"
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solutions of (0.6), i.e., flows in Cb(R") , and by contraction mapping method,
we prove the local existence of C^-mild solution for (0.6) with -2 < / < 0
and <p £ CB(Rn). When / > 0, we prove that if 0 < <f>(x) < C\x\-'Kp-i) on
Rn, then (0.6) has a local classical solution with the same decay rate in the
jc variable, while when <j> decays more slowly than |jc|_'^p_1) , (0.6) does not
possess any local solution which can be dominated by any polynomial of |x|
(see Theorem 2.5).

As for global existence, we observe that by modifying the arguments of Lee
and Ni [24], one can prove that if (0.6) has a global solution, then necessarily
liminf|x|_+00 |.x|(2+/)/(i,-1)0(.x) < +00. Also, by a Fujita type blow-up result of
Bandle and Levine [4] for the exterior domain case and a comparison argument,
when 1 < p < (n+2+l)/n , the local solution of (0.6) blows up in finite time if <p
is nontrivial. When p > (n+2+l)/n and / > 0, by the proof of Theorem 3.1 in
[4], if cp is dominated by a small multiple of a Gaussian, (0.6) possesses a global
solution u whose L°°(Rn) norm decays like t~y where y = (2 + l)/2(p - 1)
(it seems that the proof there cannot be applied to (0.6) when -2 < / < 0). In
this paper, for p > (n + /)/(« - 2) (> (« + 2 + /)/«), for larger initial values and
even for -2 < / < 0, we establish a global existence and large-time behavior
result similar to Theorem 0.1. Results similar to Theorem 0.2 and Theorem 0.3
are also obtained for (0.6). Before we describe them more precisely, again we
need to recall some brief background on the equilibria of (0.6). Henceforth, we
redefine that

(2 + l)(n-2) (p_n + l
(p-1)2      V      n-2

i/(p-i)

f0 7) „ = (« - 2)2 - 2(1 + 2)(n + l) + 2(1 + 2)y/(n + I)2 - (n - 2)2
Pc (n - 2)(n - 10 - 41)

n> 10 + 41,
= +00,        « > 3 and « < 10 + 4/,

and:
(Ei)/ When p > (n + /)/(« - 2), us(r) = Lr-v+W<p-D tr = \x\) is a singular

stationary solution of (0.6).
(E2)/ When p > (n + 2 + 21)/(n - 2), all radial positive regular stationary so-

lutions of (0.6) are included in a family {«Q}a>o with ua(r) decreasing
in r, ua(0) = a, r<-2+l^p-Vua(r) -» +00 .

(E3)/ When p = (n + 2 + 21)/(n - 2), all radial positive stationary solutions
of (0.6) are included in a family {uf }li>0 ,

(n-2)/(2+l)E     _    XV(n + l)(n-2)
u^n-y      Jfi-f-fiTi       J

Our main results for global existence and nonexistence of solutions (0.6) are
as follows.

Theorem 0.1'. Suppose « > 3.
(i)   When (n + /)/(« - 2) < p < pc, if 0 < <f> < us (defined in (E,),), then

(0.6) has a global solution u such that 0 < u < us and \\u(-, 0IIl°°(a")
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—► O as t —y +00 ; the same is true with 0 < u < Xus  when p >
(n +1)/(n - 2) and 0 < </> < Xus for some 0 < X < 1.

(ii)  When p > max{(« + 4 + 2/)/«, (« + 2 + 2/)/(«-2)}, there exists a small
X>0 such that if 0 < <p'x) < X(l + |^c|)_(2+/)/(,,_1) on Rn, then (0.6)
has a global solution u with \\u(', í)IIl°°(a") < Afí"(2+/)/2^-1).

Remark. We are unable to obtain the decay rate for global solutions when X is
close to 1 and p is small, as we can do when / = 0 in (0.6). However, the
observations in Remark 3 of Theorem 0.1 about the stability of uq = 0 still
hold with obvious modifications.

Theorem 0.2'. Suppose in (0.6) that <f> is bounded and when / > 0, 0 < <f>(x) <
cl-xl-'/^-1) on Rn . Then (0.6) has a local solution which blows up infinite time
if

(i) when p > pc, liminf|xH+00 |x|(2+/^-1^(jc) > L,or
(ii) when (n + /)/(« - 2) < p < pc, <p>4>ß for some <pß described in (ii)

of Theorem 0.2 but with us replaced by the us in (Ex)¡.

Theorem 0.3'. Suppose that p >(n + 2 + 21)/(n - 2).
(i) If 0 < 4> < Xua for some 0 < X < 1  and some radial equilibrium

ua in (E2)/ and (E3)/, then (0.6) has a global solution u satisfying
0 < u < Xua and \\u(-, i)lk°°(Ä») -* 0.

(ii) If (p> Xua for some X > 1 and some ua in (i), (¡> is bounded and, when
1 > 0, 0 < <p(x) < C\x\-'l{p-x) on R", then (0.6) has a local solution
which blows up in finite time.

We wish to point out that in Theorem 0.2' and (ii) of Theorem 0.3', by
the results in §2, the L°° norm of the local solution u blows up in finite time
when -2 < / < 0 and ||«(», t)(l + \ • |)//'(í'-1)||l°°(,r") blows up in finite time
when / > 0.

Finally, we remark that Theorem 0.1' can also be used to obtain global
existence for various related first boundary-initial value problems.

The organization of this paper is as follows. Section 1 contains some pre-
liminary lemmas. In §2, we establish local existence for (0.6) and give some
properties of local solutions. In §3, existence and nonexistence of global solu-
tions for (0.6) are studied. In §4, we derive the decay rate of global solutions
in various cases. Section 5 includes some observations about first boundary-
initial value problems (including (0.5)) related to (0.6). Theorem 0.1 follows
from Theorem 3.9 and Corollary 4.2, while Theorem 0.1' is a consequence of
Theorem 3.9 and Theorem 4.9. Theorem 0.2 and Theorem 0.2' are implied by
Theorem 3.11. Finally, Theorem 0.3 is a consequence of Theorem 4.1 and (iv)
of Theorem 3.11, and Theorem 0.3' follows from (iv) of Theorem 3.9 and (iv)
of Theorem 3.11.

1. Preliminaries

Suppose D is an unbounded domain in R" with 3D satisfying thejexterior
sphere condition. Let T > 0, Q = D x (0, T), and T = dD x (0, T) UD x {0} .
For a given function  y/ £ C(T), we consider the following boundary value
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problem:

u, = Au + f(x, t, u)   in Q,
w|r = ¥■

Definition 1.1. We call a function u a continuous weak (c.w.) upper (lower)
solution o/(l.l) if u is continuous on Q, u\r > (<) V and ut > (<) Au +
f(x, t, u) in the distributional sense, i.e., for any n g C2'x(D x [0, T]) with
r\ > 0 and supp »(•, i) <g D for all t £ [0, T],

t=T,/ u(x, t)n(x, t)dx\'tJ
Jd

r-T,
> (<) /     / [«(*» s)(A" + »/*)(*, s) + n(x, s)f(x,s,u)]dxds,

Jo   Jd
if Tx £ [0, T]. If u is a c.w. upper and also a c.w. lower solution of (1.1), we
say « is a continuous weak (c.w.) solution. We call a function u a classical
solution of (1.1) if u £ C2''(Q) n C(Q) and (1.1) is satisfied.

The monotonicity method for (1.1) when D is bounded was settled by Sat-
tinger [33] (more general operators were considered). When D is unbounded,
the method is also well known. However, it seems difficult to find a proof in
the literature. Therefore, for the sake of completeness, we include such a proof
here. We shall content ourselves with just dealing with (1.1), though the re-
sult can be generalized to more general parabolic operators (second order) and
boundary operators.

Lemma 1.2. Suppose that f(x, t, u) is continuous on £2 x R, locally Holder
continuous in (x, t) £ Q locally uniformly with respect to u, locally Lipschitz
continuous in u uniformly for (x, t) in any bounded subset of Q. Assume that
w and u are continuous weak upper and lower solutions of (1.1) with ~u~>u on
Q. Then (1.1) has a classical solution u satisfying u<u<u on Q..
Proof. First, when D is bounded, the conclusion is true. This is basically
covered by [33]. But since our conditions are slightly different from Sattinger's,
we present a proof here using the ideas in [33] as follows. Without loss of
generality, suppose / is nondecreasing with respect to « G [minn u, maxß u]
(otherwise, for a large k , replace /by ku + f(x, t, u) and A by A - k in
the following argument).

Let G(x, y, t) be the Green's function of

u, = Au,        (x, t) £ Q,
u\\- = 0.

Let uv be the classical solution of

ut = Au,        u\r = ip,

G and uv can be obtained by the Perron method because of the regularity of
dD (see [9]). Define uq = u, ux = uv + T(uf) where

/   ÍG(x,y,
Jo Jd

T(u0)(x ,t)= G(x,y,t- s)f(y, s, u(y, s)) dy ds.
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We claim that T(uf) is a continuous weak solution of

ut = Au + f(x, t,u)   onfí,
«|r = 0.

To see this, take a sequence ^ G CX(Q.) such that ^ -» A in C(Q) where
A(jc , i) = /(* , í, "(•* » 0) • By classical theory

vk(x,t)= /   / G(x,y,t-s)gk(y,s)dyds
Jo Jd

is the classical solution of
vt = Av + gk(x, t)   on £2,
t/|r = 0.

Since g* is uniformly bounded on Q,, i.e., \gk\ <CX< +oo on Q, then by the
comparison principle, \vk\ <wx on Q where wx is the solution of (1.2) with
f(x, t, u) replaced by Ci , in particular, vk is uniformly bounded on Q. Now
by the LP interior estimate for parabolic equations, for any q > 1 and any Q' <g
ß» IIvA:IL„2.Iíom < Af(ß') < +00 where M (O!) is independent of fc. By the
embedding theorems and a diagonalization argument, there exists a subsequence
of vk (still denote it by {vk}) such that vk —> some v in Cl0~a'1_a/2(Q) for a
0 < a < 1. Since \vk\ < wx and wx\r = 0, then t> G C(Í2) and v\r = 0. Also,
using Definition 1.1, it is easy to check that v is a distributional solution of
(1.2). On the other hand, by the Lebesgue Dominated Convergence Theorem,
vk -» T(uf) pointwise in Q. Thus T(uq) = v and T(uf) is a c.w. solution of
(1.2).

Now, ux =uv + T(uf) is a c.w. solution of
u,=Au + f(x,t,u)    on£2,
"lr = in-

observe w(ïï) is a c.w. lower (upper) solution of (1.3) (note f(x, t, u) <
f(x, t,u)). By the strong maximum principle for weakly subparabolic func-
tions (see [8]), we have ux > u and ux < ü on £2. Define uk = uv + T(uk_x)
then similarly as above, we have u < ux < Ui < ••• < uk <ïï on Q. Let
u = lim^_+0O uk, then by the Lebesgue Dominated Convergence Theorem,
lim^_+00 T(uk) = T(u) and by the same reasoning regarding T(uf) in the
previous paragraph, we can prove that u = uv + T(u) is a c.w. solution of
(1.1). A bootstrap argument then implies that « is a classical solution of (1.1).
Obviously u < u < ü. We have completed the proof of Lemma 1.2 in case of
bounded D.

Now suppose D is unbounded. In R", take an increasing sequence of
bounded domains {Dk} such that each dDk satisfies the exterior sphere con-
dition, \JDk = D and \J(dD¡ D 3D) = 3D. Let Clk = Dk x (0, T) and Tk
be the parabolic boundary of Clk . Let ip be a continuous extension of >// in
Rn+X . On Í2 define O = max(min(«, ip), u). Clearly 0|r = y/\r, u < O < ïï
on Í2. Consider

M, = Aw + /(x, r, m),        (x,í)gQa:,
(1.4)* "Ir* = * rt-
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By the conclusion for bounded domains proved above, ( 1.4)k has a classical
solution uk with u<uk<Jl for each k > 1. Applying LP interior estimates
and then Schauder interior estimates to uk , we have for any Ql (g Q.,

||«jtllc2+«.'+«/j(n') <M(S¥),
where M(Q') is independent of k and 0 < a < 1. From this and a diago-
nalization argument, there is a subsequence of {uk} (still denote it by {uk})
such that uk —y u in ^'(Q). Obviously u satisfies the differential equation
in (1.1) and u< u < ïï on Í2.

It remains to prove u £ C(Q) and u\r = y/ (= <P|r). We use the standard
barrier method. Take and fix any Q £ T. Then there exists ko > 0 such
that Q £ Tk for any k > kx. Find a barrier wq (the existence is justified by
the regularity of 3Dkl) such that wQ £ C(Uki) n C^(Qki), wQ(P) > 0 for
P £ Qki and P ¿ Q, wQ(Q) = 0 and 3wQ/dt-AwQ > 1 on £\, (see [9]).
Let v+ = y/(Q) + e + mwQ, vf = y/(Q) - e - mwQ, where e > 0 is fixed,
m a constant to be chosen. Since uk and f(x, t, uk) (k > kx) are uniformly
bounded on Qk¡ and uk\rk = Q>\rk near Q for large k, there exists an me
such that on £lkt for each k > kx,

v?\rk¡ >ujc\rkt >vf\rkl

and

(*-*)**(á-4Má-4h-
By the maximum principle, v£+ >uk> vf on Qki . Thus

\uk(P) - y/(Q)\ < e + mewQ(P)
for P £ ilkl and k> kx. Letting k -* +oo, we have

\u(P) - y/(Q)\ < e + mcwQ(P)   for P £ Cïkr
Hence

lim sup \u(P) - <p(Q)\ < s.

Therefore u £ C(Q) and u\\- = y .
Next, we recall a comparison principle of Phragmèn-Lindelof type for (1.1).

Lemma 1.3. Suppose ü and u are continuous weak upper and lower solutions
o/(l.l) and (ïï-u)(x, t) > -B e\p[ß\x\2] on Q with B and ß > 0. Assume
f(x, t,H(x, t))-f(x, t,u(x, t)) > C(x,t)(H-u)(x,t) where C £ C^a'\ÇÎ)
and C(x, t) < Cq(\x\2 + 1) on Q, for some Co > 0. Then ü>u on Q.

Remark. This lemma can be proved essentially by the same argument involved
in the proof of Theorem 9 in Chapter 2 in [9] (see also Theorem 10 in Chapter
3 in [32]) except that whenever the classical minimum principle (in bounded
domain) is used in [9], we have to use the minimum principle for weak super-
parabolic functions in [8].

Now we make an observation which simply says that the convolution of two
radial and radially nonincreasing functions is still radial and radially nonin-
creasing.
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Lemma 1.4. Suppose that both f and g are measurable and radial functions
in R", and that for each x £ R", h(x) = JR„ f(x -y)g(y)dy exists as a
Lebesgue integral. Then h is also radial. Moreover, if both f and g are
radially nonincreasing, so is h.
Proof. The first part follows from the fact that for any rotation A in R",
h(x) = h(Ax), which can be proved by change of variables. To prove the
second part, it suffices to prove that for any X > 0, u(x) > u(xf) where x £
X¿ = {x £ Rn\xx < X} , xx = (2X - xx, x'), i.e., xx is the reflection of x about
d'Ex. Observe

u(x)= U +J)f(x-y)g(y)dy

= [ f(x- y)g(y) dy+ I f(x - yx)g(yx) dy
JZx JZx

= Í (fix - y)g(y) + fix - yx)g(yx)) dy.
JXx

Similarly,

u(xf) = I (f(xx - y)g(y) + f(x - y)g(yx)) dy      (\xk - yx\ = \x- y\).

So we just need to show

fix - y)g(y) + f(x - yx)g(yx) > f{xx - y)g{y) + f(x - y)g(yx)
for x, y £ Lx , i.e.,

(Ax - y) - f(x - yx))(g(y) - g(yx)) > 0.
This is proved by \x - yx\ > \x - y\ (x, y £ 2ZX) and the properties of / and
8-   a

The next lemma concerns the relation between (0.6) and the corresponding
"variation of constants formula".
Lemma 1.5. Suppose that u is a continuous weak upper (lower) solution of

< u, = Au + \x\'up ,        x£Rn,  t>0,  up = \u\"-xu,
\u\t=0 = <p£C(Rn),

where I > -2, p > 1, and « > 3. Assume that there exist k, ß > 0, and
0 < a < 2 such that \u(x, t)\ < A:exp(^|x|a) on R" x [0, T]. Then

«(•, t) > (<) etA(p + f i>(/-i,A| • \'up(-, s) ds
Jo

on Rn x[0, 71.
Proof. Let

v(x, t) = (e'A(p + f e{t-s)A\ • \'up(-, s) ds) (x).

Claim 1.  v is a c.w. solution of
,, „ vt = Av + \x\lup,        x£Rn,  t£(0,T],
(l.o)

v\t=o = <t>-
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By the classical theory (see [9]), e'A4> is a classical solution of (1.6) without
the term \x\lup . Thus to prove Claim 1, we just need to show that

I(x,t)= [ e{'-s)A\-\'upi-,s)ds
Jo

is a c.w. solution of (1.6) with <f) = 0. Let

/(*,<> = {¡fup(x,t),        (x,t)£Rnx[0,T],
otherwise.

For a > 0, take & G C¡f>(Rn), 0 < Ça < 1, and

\x\ > a + 1,w«>-{î;Cu,
|x| < fl.

Let ; be the standard mollifier on R"+x and je(x, t) = (l/e"+x)j(x/e, t/e).
Denote fc¡a by fa, jE *fa by fa¡e, let

Ia,e(x,t)= f e^Afa,e(-,s)ds.
Jo

Then fa¡e £ C$°(R"+X) and fa,E -* fa in L"(Rn x [0, T]) for 1< q < -n/l
when -2 < / < 0, and 1 < q when / > 0, as e -> 0+ (the condition on g
makes \x\l £ L^0C(Rn)). Also, from the classical theory, Ia^ is the bounded
smooth solution of

(1.7) It-AI = fa,£,        I\l=0 = 0.

In virtue of the standard LP theory, 7a,e -> 7a in Wa2'x(Rnx[0, T]) as e -» 0+
where 4(x, r) = /0'i(,-,)A/«(-, *)^- Thus /a is a W2'X(R" x [0, T]) and
hence (by embedding) a C^a/2(Ä" x [0, T]) weak solution of (1.7) with /a>£
replaced by 7à . From the growth condition on u and by the proof of Claim
2 below, we have Ia -» 7 locally uniformly on i?" x [0, T] as a —> +oo.
Therefore, 7 is a c.w. solution of (1.6) with <f> = 0.

Claim 2. There exist k and ß > 0 such that |w(x, i)| < kexp(ß\x\a) on
R" x [0, T]. We just prove that I satisfies the claim. The fact that etA4> also
satisfies the claim follows similarly. For any (x, t) £ R" x[0, T],

s cí Ä/,.exp ( W ) "I'BPMW*

+í'^Lexp(^)exp(W,<i>)
= C(7, + 72).
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When / > O, Ix<t <T, and when -2 < / < O, by Lemma 1.4,
fi A*    r /_h,i2>

'\y\<\

<   [ ds f expí-^j-^í'^ICl'rfC
<C(n,l)Tx+"2.

Thus, in any case, 7, < C(n,/)(! + T)x+'l2 .

= i'^L^zfe¿2£)exp(W)*'

<  [ ds [ exp(^-)exp(2pß\x-Vsri\a)dn

Í ds (  exp(^^\exp(2pßc(a)(\x\a + Tal2\n\a))dr]<

<C(n,p,a, ß,T)exp(£|xn   for suitable ß = ß(a,ß, p).
Therefore I < C(IX + If) < k exp(ß\x\a), and the claim is proved. (We notice
that the last inequality for 72 is true even when a = 2 if T = T(p, ß) is
small.)

Now let w = u- v , then w is c.w. upper solution of
wt-Aw = 0,        w\t=o = 0,

with |u>| satisfying a growth condition like the one on u in the statement of
this lemma. Lemma 1.3 yields w > 0, i.e., u>v.   D

Remark 1. If a = 2, then the conclusion is still true for small T = T(p, ß).
Moreover, if u > 0, T can also be large. The proof of the second part of
this remark is as follows. By the first part of this remark, there exists an e =
e(P, ß) > 0 such that for t £ [0, e] and f(x, t) = \x\'up(x, t)>0,we have

u(-,t + e)> e'Au(-,e)+[ e{'-^Af(-,s + e)ds
Jo

> etA (eeA(p + T e(e-*>A/(-, s) ds\ + ( e('-s)Af(- ,s + e)ds

/•e rt+e
e)A4> + /  e{,+E-s)Af(- ,s)ds+        el'+'-s)&A-, s) ds

JO Je
ft+e

e)A</)+ /     e{l+e-s)Af(-,s)ds.
Jo

(The third step can be justified by Fubini Theorem for positive functions). Thus
Lemma 1.5 is also true on R" x [0, 2e]. In the same way, we can prove that
Lemma 1.5 holds on Rn x[0, 3e], ... , Rn x[0,ke], R" x [0, T].
Remark 2. Lemma 1.5 is also true for the first boundary-initial value problem
with some obvious modifications.

2. Local solutions

_ e(t+e),

- e('+4

In this section, we shall establish local existence of solutions for Cauchy
problem (0.6) and some properties of local solutions.   We first consider the
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singular case when -2 < / < 0, i.e.,

u, = Au + \x\'up,       x£R", t>0,
u\t=o = 4>£CB(Rn),

where p > 1, « > 3, -2 < / < 0, and up = \u\p~xu (to include solutions
without sign condition, though we are mainly concerned with nonnegative solu-
tions in the other sections). As was mentioned in §0, when / < 0, it is generally
impossible to obtain classical solutions for (2.1). We need the following

Definition 2.1. When -2 < / < 0, we call a function u a Cß-mild solution of
(2.1) on Rnx[0, T) if

(i)   u £ CB(R" x [0, T']) = C(R" x [0, T']) n L°°(R" x [0, T']) for any
0<r < T;

(ii)   u(x, t) = (e^cp+J1,e^'-^A\-\lup(-, s)ds)(x) for all (x, t) £ Rnx[0, T).

We define a Cß-mild upper (lower) solution by replacing "=" in (ii) by ">"
(»<-).

Remark. By Lemma 1.5, a continuous weak solution of (2.1) satisfying (i) of
Definition 2.1 is also a Cß-mild solution. The converse of this is also true by
the proof of Lemma 1.5. By the regularity theory for parabolic equations, a
Cß-mild solution u belongs to C^OfT'UO}) x (0, T)) n C"0Cal2(Rn x [0, T])
for any a £ (0,2 +1). Also from Lemma 1.5, we have

Lemma 2.2. If u is a bounded and continuous weak upper (lower) solution of
the elliptic equation Au + \x\!up = 0 in R" (n > 3 and I > -2), then u is a
Cß-mild upper (lower) solution of (2.1) provided <f> < (>)u.

Now we use contraction mapping arguments to obtain local existence for
(2.1) as well as some properties of local solutions of (2.1).

Theorem 2.3. (2.1) has a unique Cß-mild solution u on R" x [0, Tf) such that
If T^ < +00, then lim^j.- ||w(-, í)\\l°°(R") = +°o.   Furthermore, if <f> > 0,
then u > 0 ; if (f) is radial, then u is radial in x; if <f> is radial and radially
nonincreasing, then u is nonincreasing in r = \x\.

Proof. Define F(u) = etA<p + /„' e^-^A\ ■ \lup(- ,s)ds. Let Bj(<¡>) be the closed
ball in Cß(Rn x [0, T]) with center at </> and radius S = 3||0||¿oo(An) (T is
to be chosen later). We shall show F: B¿(<f>) -* Bj(cp) and is contracting for
^ — 3||</>||l°°(.r») and some T depending only on ||0||l°°(a») , /, « , and p . Then
the existence and uniqueness part of Theorem 2.1 follows.

If « G Bj(cp), then for any (x, t) £ R" x [0, T]

\F(u)-cp\(x,t)

< 2M\\L<~m + f J (4*(t - s))-n/2 exp ("j^f) M'M'k' - s) dV ds
= 2||0||loo(ä») + 7,
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I < f J(4n(t - s))-"'2 exp ( J*_^) \y\l dy ds(4\\cp\\Lao{Rn))p

< fj^nd-s^exp (4-^y) \y\ldyds(4\\cp\\Lx{Rn))p

(by Lemma 1.4)

< f I e-M2/4y/(t-s)'\r1\!dr1ds(4\\(p\\Loom)p
Jo Jr"

<C(p,n,l)\\ct>\\pLoo{Rn)Tx+"2.

Therefore,

\\F(u) - <r\\L<~<R'xio,T]) < 2||0|k=o(Ä.) + C(p,n, l)\\<p\\pLao(Rn)Tx+'l2.

Similarly, for u and v £ Bj(4>), there exists C(p, n, I) such that

\\F(u) - F(v)\\Lce{R„x[0tTX) <C(p,n, /)||(/)||^1(R„)r1+//2||M-v||Loo(Änx[o;r]).

Thus we can choose a T depending on p, /, «, and H^lkoo^») such that
F : B^.((p) —y B^.((p) and is contracting (as shown in Claim 1 of proof of Lemma
1.5, F(u) £ C(R" x [0, 71) if « G CB(R")). The proof of the first part of this
theorem can be completed now by a ladder argument.

To prove the second part, we observe that it suffices to prove that u satisfies
those properties when 0 < t < T (T is chosen as in the proof above), because
t can go up to 7¿ by a ladder argument. Suppose we take <f> at the beginning
of the iteration scheme from which the fixed point u of F is obtained. Since
etA and hence F preserve the properties desired (see Lemma 1.4), all terms in
the iteration scheme satisfy the properties we want and hence so does the fixed
point u (on R" x[0, T]).   D

The next theorem sets up a comparison principle for (2.1), which cannot be
obtained either by lemma 1.2 or Lemma 1.3 owing to the singularity in (2.1).

Theorem 2.4. (i) Suppose that ïï and u are Cß-mild upper and lower solutions
o/(2.1) on R" x [0, T). Then ~u">u on R" x [0, T), and the unique Cß-mild
solution of (2.1) on Rn x [0, Tf) satisfies that u<u<u on R" x [0, T) and
T$>T.

(ii) If the initial value </> in (2.1) is a bounded c.w. upper (lower) solution
of Au + \x\l\u\p~xu = 0, then the Cß-mild solution u of (2.1) is nonincreasing
(nondecreasing) in t £ [0, Tf).

Proof of (i). Let T = min(7\ Tf). It suffices to prove that u < u < w on
R" x [0, T). By the proof of Theorem 2.3, there exists T0 = 7o(||0||oo , P, I, «)
(without loss of generality, assume f > T0) such that the operator

F(u) = etA4> + [ e{'~s)A\ • IV(., s) ds
Jo

maps Bj°(<j)) into Bj°((p) and is contracting, where S = 3\\4>\\oo ■ Let B =
{v G bJ°(<p)\v < Ü). For any v £~B, F(v) < F(u) < Ü, i.e., F(v) £ B. So
u, which is also the fixed point of F in B, satisfies u < ïï on R" x [0, T0].
Now, taking <p as u\1=t0 , we use the same reasoning to conclude that « < ïï on
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= etA

etA

R"x[Tq, Ti], where Tx depends on L°° norm of u(-, Tf) which is dominated
by that of ïï(», Tf). Similarly, u < ïï on [Tx, Ti], ... . Such a ladder argument
then yields u < ü on R" x [0, f). Similarly u < u on R" x [0, T).

Proof of (ii). From Lemma 2.2, <f> is also a Cß-mild upper solution of (2.1). So
by (i), u < (p on Rn x [0, Tf). For any 0 < h < T^ , let v(x, t) = u(x, t + h)
on R" x [0, 7¿ - h), then

rt+h
V(t) = e('+h)A<p + /     e('+h-s)A\ • \lup(-, s) ds

Jo

iehA+ f e{h-s)A\-\'up(-,s)ds\ + Í e{'-s)A\ - \'up(-, s + h)ds

u(h)+ [ e{'-s)A\-\'vp(-,s)ds
Jo

<etA<t>+ [ e{'-s)A\-\lvp(-,s)ds.
Jo

So v is a Cß-mild lower solution of (2.1) on R" x [0, T^ - h). By (i) again,
v < u on R" x [0, T^ - h), i.e., u is nonincreasing in t G [0, Tf).   D

Next, we turn to (2.1) with / > 0 (we just need « > 1 when / > 0).

Theorem 2.5. Suppose / > 0 in (2.1). Let w(x) = (1 + \x\)x/{p~V .
(i) If the initial value 4> e CW(R") = {4>£ C(R")\ ||</Hk<x.(Rn) < +00}, then

there exists a 7^ > 0 so that (2.1) has a unique classical solution u
on Rn x [0, Tf) so that \\u(-, t)\\cw(R») is bounded on [0, T'\ for any
V <T^, and if T^ < +00, then lim^r- ||m(- , OIIc^r-) = +00.

(ii) If <p G C(Rn), liminfkH+00 \x\a<p(x) > 0 for some a = l/(p - 1) -
e (e > 0), then there exists no T > 0 such that (2.1) has a classical
solution u on Rn x [0, T] with 0 < u(x, t) < C(T)(l + \x\)m on
R" x [0, 7"] for some m > 0.

Proof of (i). The uniqueness is a simple consequence of Lemma 1.3. For the
existence, let X = L^(R") = {(p\ \\<f>w\\Lx,(Rn) < +00}. We claim that there
exists a r^, > 0 such that the integral equation

(2.2) u = etA<p + [ e{'-s)A\ • \'u"(-, s) ds
Jo

has a solution u g L¡Jc([0, Tf), X) satisfying that if 7^ < +00 , then ||u(-, í)||a-
—y +00 as t —y Tf . From this assertion and by the proof of Lemma 1.5, u is a
c.w. solution of (2.2) satisfying the properties in the statement of (i). Then (i)
follows from the fact that u is also a classical solution, which is a consequence
of the regularity theory for parabolic equations. The proof of the claim is as
follows. Let

Bj(cp) = {u£ L°°([0, T], X)\ ||w(-, i) - 4>\\x <ofor0<t<T}.
S and T are to be chosen so that F (F(u) is defined as the right-hand side
of (2.2)) satisfies F: Bj(cp) —> Bj(cp) and is contracting. For any u £ Bj and
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0<t< T,

\F(u) -cp\(x,t)< ^L jRn exp (   |X4/'2) \m\ dy + \<Pix)\

£ jR(4n(t - s))-"'2 exp ("j*"^) \y\l\u\p(y, s) dy ds

= Ix + \cp(x)\+I2
<ix + w\\x(w(x)rx+i2.

h < (4nt)-"/2 j^exp (~l^y|2) ||^|U(1 + \y\rl">-lUy

= CUWx j exp (^¡P) (1 + k - a/íiíI)-1/*-" ¿«

= CUWx (jR+fR) exp (^) (1 + l-x- v^l)-^-1' ¿«

(Äi = {77I \x - Vtn\ < \x\/2}, R2 = {n\ \x - Stn\ > \x\/2})

< CU\\x U e-W2'< dn + (l + M) ~'/{P~l) £ e-W2/* dr\

<C\\4\\x( i      e-r2'4r"-xdr + w-xix))
\J\x\/2Vt J

< C\\4>\\x ( T     e-^rdr + w-^x))
\J\x\/2Vt J

<C\\<f>\\x(e-W2l™ + w-\x))
<C(p,n,l)W<p\\xw-x(x)

(without loss of generality, assume T > 1);

72 < f ¡R(4n(t - s))-»'2 exp (~J*~^) \y\'\\u(., s)\\"xw->>(y) dy ds

< J' J (4n(t - s))-n'2 exp (~^I^) (1 + M)-"*-" dy ds(W<p\\x + ¿")

<C f (e-M2t32s + w-x(x))ds(W<pWPx + Sp)   (just as for 7i)
Jo

<C(p,n,l)(WnPx + ôp)tw-x(x).
Now returning to the estimate of \F(u) - tp\, we have

(2.3) ||f («) - <j>Wx(t) <Cx(p,n, l)(U\\x + T(\\4>\\x+ *"))■
Similarly, for any u and v £ Bj((p),

(2.4) \\F{u) - F(v)Wx(t) < C2(P, «, l)T(WnPx-X + ôp~x)Wu - v\\x(t).
Let ö = 2Cx(p, «, 011011a- (Cx is as in (2.3)), and take T=T(p,n,l, \\<p\\x) <
1 such that the right-hand side of (2.3) < S and the coefficient of ||m - v\\x
on the right-hand side of (2.4) < 1. These, (2.3), and (2.4) then imply that
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F(u) has a (unique) fixed point in Bj(4>). A ladder argument then completes
the proof of the claim concerning (2.2) and (i) is proved.

Proof of (ii). Suppose that there exists T > 0 such that (2.1) has a classical
solution u on R" x [0, T] with 0 < u(x, t) < C(T)(l + \x\)m on Rn x [0, T]
for some m > 0. Without loss of generality, assume T = 1. By Lemma 1.5,
for (x,t)£Rnx[0, 1],

u(x, t) = (etA<j)+ ( e('-s)A\ - \lup(-,s)ds\ (x).

Since u > 0, we have for (x, t) £ R" x [0, 1],

u(x, t) > (etA(p)(x)

> Ce"'2 [      exp f"1*"^2) \y\-ady       (liminf \x\acp(x) > o)

> Crn/2 [ exp (~\X~y\ ) \y\~ady   if\x\>R+l.
J\x-y\<Vt \        4t        )

Observe that when \x-y\<\ß, \x\- yft <\y\ <\x\ + \ß. So if |jc| > R + 1

u(x, t) > Crn<2 [ exp (~\*~y\ ) (1 + \x\)~a dy
J\x-y\<Vt V       4i       /

= C(<p,n)(l + \x\)-a.

Let Bx(x, t) = \x\lup(x, t). By the lower bound of u obtained above,

Bx(x,t)>C(n,4>,p)(l + \x\)-ap+l   for\x\>R+l, íg[0,1].
Let ax = -(-ap +1) = l/(p - 1) - ep . Then as above, we have for \x\> R + 2

u(x,t)>  [ e«-s)ABx(-,s)ds
Jo

>  [ C(n,<p,p)(i
Jo

+ |jc|)-<" ds

>tC(n,cp,p)(l + \x\)-a>.

Take a small Ô > 0. Then for \x\> R + 2 and â < t < 1, we have u(x, t) >
SC(n, cp,p)(l + |x|)-a' . Note by Lemma 1.5 again, on R" x [0, 1 -ô]

u(x,t + S)= (etAu(-, Ô) + Í e((-i)A| • \lup(-,s + S)ds\ (x),

especially

u(x,t + S)> [ e{t-s)A\'\lup(-,s + ô),
Jo

)ds.
/o

Thus the same argument as above implies that for \x\> R + 3 and 26 < t < 1,
u(x, t) > C(n, cp, 5, p)(l + \x\)-"2, where a2 = -(-axp + l) = l/(p-l)-ep2.
In such a way, for any integer 0 < k < 1 /S , we have

u(x,t) > C(n,<p,ô,p,k)(l + \x\)~a*

for \x\ > R + C(k)  and t £ [ko, 1], where ak = l/(p - 1) - epk.   This
contradicts the growth condition on u.   o
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Remark 1. By simple modifications of the proof above, Theorem 2.4 remains
true for the case -2 < / < 0. In particular, when —2 < / < 0, (2.1) still has a
c.w. solution even when </> has a certain growth. But in this paper we would like
to concentrate only on bounded solutions and hence, not pursuing the greatest
generality, we prefer Cß-mild solutions.

Remark 2. The local classical solution of (2.1) with / > 0 is unique with respect
to the more general class consisting of all smooth u such that \u(x, t)\ <
K(l + \x\)(-2~l'>l(p~xî, by the Phragmen-Lindelöf principle (see Lemma 1.3).

Lemma 2.6. Consider (2.1) with / > 0. Suppose that u is a classical solution
on Rn x [0, T) with \u(x, t)\ < K(T')(l + ¡jc^2-^-1» on R" x [0, T] for
any 0 < V < T. Then the following statements hold.

(i) If the initial value <p is radial, then u is radial in x.
(ii) If 4> isac.w. upper (lower) solution but not a solution ofAu+\x\'\u\p~x u =

0, then u,(x, t) < (>) 0, t>0.
Proof, (i) can be easily proved by the reflection argument as in [13], we omit
the detail. To prove (ii), using Phragmen-Lindelöf principle (see Lemma 1.3),
we have <p>u. For a small h > 0, let uh(x, t) = u(x, t + h), w = u - uh ■
Then iu|.=o = <P - u(-, h) > 0, wt - Aw = \x\l(up - uph) = C(x, t)w , where
C(x, t) < C0(T')(l + \x\2) on Rn x [0, T']. Therefore, by Lemma 1.3 again,
w > 0, i.e., m is nonincreasing in /. Hence ut < 0 if t > 0. Now (ii) follows
from the strong maximum principle.   D

3. Global existence and finite time blow-up
We begin with a necessary condition for existence of nonnegative global so-

lutions of
Ut = Au + \x\!up ,        x £ R" ,  t>0,  u>0,
u\l=0 = <p£C(R"),        <p>0,  0^0,

where p > 1, / > -2, and « > 3.
For a bounded domain Q in Rn, let A(Q) be the first eigenvalue of -A

with zero boundary condition, and let y/Q be the corresponding eigenfunction
with ¡ay/n= I. Let BR = {\x\ < R} and Q« = {R < \x\ < 2R}. Following
the idea of Lee and Ni [24], we have
Proposition 3.1. If (3.1) has a (nonnegative) global c.w. solution u, then

(i) when / > 0,

/  u(x, t)y/çiRix)ds < (/r^+'U^,))1^-"
JnR

and
liminf iJcp+WC-'y*, t) < 2(2+/)/C-"(A(n,)),/(p-1)
|jc|—>+oo

for all t>0;
(ii) when -2 < I < 0,

[  u(x,t)ipBR(x)<(R-^X(Bx))x«p-V
Jbr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CAUCHY PROBLEM FOR REACTION-DIFFUSION EQUATIONS 569

and
liminf \x\{2+'V{p-x)u(x, t) < (X(Bx))xl(p~x)
\x\-y+oo

for all t>0.
Remark. Proposition 3.1 applies to Cß-mild solutions because a Cß-mild solu-
tion is also a c.w. solution.

Proof of Proposition 3.1. To prove (i), we notice that by regularity theory of
parabolic equation, u is classical when / > 0. Multiplying y/aR to the differ-
ential equation in (3.1 ) and integrating over Q,R , we have by Jensen's inequality

(3.2) FR(t) > -X(ClR)FR(t) + R'Fp(t),        t>0,
where

Fr(í)= /   uix,t)y/çlRix)dx.
JaR

If there exists t0 > 0 such that -X(ClR)FR(t0) + RlF^(t0) > 0, then by (3.2),
FR(t) ultimately increasingly —y +oo as t —y +oo . Therefore there exists c > 0
and tx > 0 such that FR(t) > cF^(t) if t > tx, hence

rFdt) dF

JFR(n)

This is impossible. Therefore for all t > 0, -X(£1R) + R'Fg~l(t) < 0, i.e.,

/   u<pçlR = FR(t)<(R-'X(nR))x«p-x\
JaR

Since X(Q.R) = R~2X(Q.X), we then have

/   u(x, t)WiiR(x)dx < (Ä-(2+,U(£2i))1/(p_l).
JnR

To prove the remainder of (i), we observe

/   \x\x-2+l^p-X]u(x,t)y/R(x)dx
JaR

< (2R)(2+'V(p-V [   u(x, t)y/R(x)dx < 2<2+/»/C-')(/l(Q,))1/C-1).
JaR

Thus
inf    \x\{2+l)'{p-X)u(x,t)

R<\x\<2R

rpR(t) ¿p
/       ^>c(t-tx)   ift>tx.

< í   \xf+l^p-x)u(x,t)ipR(x)dx<2^2+l^p-x\X(ilx))x^p-
JciR

and hence
liminf |x|(2+/^-"W(x, t) < 2(2+Wp-x\X(nx))x«p-xl
|x|-»+oo

To prove (ii), we notice that by a standard manipulation,

/   u(x, s)y/BR(x)dx\'Q =   /   /   uAy/BR + \x\'upy/ßRdxds
/i ■*■, Jbr Jo Jbr

fit       ,dy/R(x) A- u(x, s)—-^-t-dods.
Jo JdBR on
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It is easy to see that the right-hand side of (3.3) is differentiable in t. Then so
is the left-hand side and

j At

TtFR^~dtl   u{x^)yBR{x)dx

>  /   m(x, t)A\pBR(x) + \x\lup(x, t)tpßR(x)dx.
Jbr

From this and by the same argument in the proof of (i), we have

/  u(x, t)y/ßR(x)dx < (R-{2+l)X(Bx))x«»-x\
Jbr

To prove the second part of (ii), we notice y/ßR(x) = (l/Rn)y/ßx (x/R), so from
the above inequality we have

Jbx
u(Rx, t)y/Bfx)dx < R-l-2+I)^-x)(X(Bx))x^p-

hence

Jbx
\Rx\{2+l)/{p-X)u(Rx, t)y/Bl(x)dx < (X(BX))X^-V ,

inf    \x\i2+l)^-X)u(x,t) [       y/Bt(x)dx<(X(Bx))xHp-x).
e*<\x\<R JBX-BZ

Letting R —> +00 and then e —> 0+ , we obtain the result desired.   G

Corollary 3.2. For any sequence tm —> +00, denote liminfOT^+00 u(x, tm) by
Moo(x), then the conclusion of Proposition 3.1 is true for Mœ. 7« particular,
Moo e ¿,^(^{0}) when / > 0, Uoo G LJ^R") when -2 < / < 0.

This corollary follows from the proof of Proposition 3.1 and Fatou's Lemma.
Next, we recall some results of positive radial solutions of

(3.4) Au + \x\lup = 0   inR",  l>-2,  «>3, anda>0,
and of the Dirichlet boundary problem

.... Au + \x\lup = 0   onBR,  l>-2,  «>3, and«>0,
(3.5)/?

u\dBR = 0.

Definition 3.3. We say that « is a regular solution of (3.4) (or (3.5)*) if « G
C2(i?"\{0}) n C(R") (or u £ C2(BR\{0}) n C(BR)) and u satisfies (3.4) (or
(3.5)*) when x ^ 0. We call u a singular solution of (3.4) (or (3.5)«) if
u £ C2(Rn\{0}) (or u £ C2(BR\{0})) satisfies (3.4) ((3.5)*) in Rn\{0} (or
#r\{0}) with nonremovable singularity at x = 0.

Proposition 3.4. (i) When p > (n+l)/(n-2), us(r) = Lr~(2+/)/(p_1) is a singular
solution of (3.4) (L is as in (0.7)).

(ii) When (n+l) / (n-2) < p < (n+2+2l)/(n-2), for each R>0, (3.5)* has
a unique radial regular solution uR ^ 0 and uR(r) = R-^+'^Kp-^uf (r/R) on
[0, R], uR(r) is decreasing in r £ [0, R]. Furthermore, (3.4) has no nontrivial
radial regular solution. The set of all radial singular solutions of (3.4) consists of
us and a family of singular solutions {Us} with decay like r~("~2) at r =+00
and Us(r)/us(r) —»1 as r —► 0.
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(iii) When p = (n + 2 + 21)/(n - 2), all nontrivial regular solutions of (3.4)
are of the form

/,    i,     ,   ,u-=t\ (n-2)/(2+0

The set of all radial singular solutions of (3.4) consists of us and a family of
singular solutions oscillating around us near r = 0, +oo.

(iv) When p > (n + 2 + 21)¡(n - 2), all nontrivial radial regular solutions of
(3.4) are included in a family {ua}a>o with ua decreasing in r, r(2+/)/(p_1)Ma(r)
-» L as r -> +00, wQ(0) = a(2+/)/(p-D, and ua(r) = d2+ly^>-x^ux(ar). The
only radial singular solution of (3.4) is us.

Remark 1. The above results about (3.5)* can be found in [30], the results
about (3.4) are listed in Appendix A of [15] and can be proved by phase plane
analysis.

Remark 2. All solutions above (regular or singular) are distributional solutions.
This can be proved by the argument in the proof of Proposition 3.1 in [14].

Remark 3. When 1 < p < (n + /)/(« - 2), by Theorem 3.41 in [28], (3.4) has
no nontrivial solution even in exterior domains. We should point out that when
1 < P < (« + /)/(« - 2), u% in (ii) still exists (see [30]).

The next proposition will be useful in our analysis and may be of independent
interest.

Proposition 3.5. (i) When (n + /)/(« - 2) < p < pc (pc is as in (0.7)), if U £u
are two positive radial singular (regular) solutions of Au + \x\'up = 0 on Bx (Bcf
with r(2+lV(p-xW(r) -» L, r(2+')HP-nu(r) -» L as r -» 0+ (r -» +oo) (L is as
in (0.7)), then U oscillates around u.

(ii) When (« + 2 + 2/)/(« - 2) < p < pc, assume ïï (u) is a radial regular
upper (lower) solution of (3.4). If ua is a positive radial regular solution o/(3.4)
such that ïï > ua (u<ua), then ua=ü (u).

(iii) When p > pc, for any X > (<) 1, ïï (u) and ua as in (ii), then ü (u)
cannot stay above (below) Xua .

Remark, (ii) is also true when p = (n+2+2l)/(n-2). This can be proved either
by an elliptic argument or by Theorem 3.6 and Theorem 3.10. Furthermore, we
note that when p > pc, two radial regular solutions of (3.4) can never intersect
(see Proposition 3.7).

Proofof (i) of Proposition 3.5. Let v(t) = U(r)/u(r), t = logr. Then

(3.6) v"(t)+ f^Öp + (n - 2)) v'(t) + r2+lup-x(r)(vp-v)(t) = 0,        t<0,

and lim,^_ooV(r) = 1. Since ^^/^"'»«(r) -» L as r -» 0+, r2+lup-x(r) -»
Lp~x as r->0+ or r-> -co.

To find limr_o+ 2ru'(r)/u(r), we define wx(t) = u(r)/us(r), i = logr (us is
given in Proposition 3.4). Then wx(t) -+ 1 as t —> -co and

(3.7) w'x' + c0w'x +Lp~x(wp -wx) = 0   on (-oo,0],
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where
« - 2 /       « + 2 + 2/

We claim that w[ —y 0 as t —y -co (the following proof of this assertion is
inspired by [29]).

Case 1. p > (n + 2 + 21)/(n - 2). In this case c0 in (3.7) > 0. Multiplying
(3.7) by w[ and integrating over [t, 0], we have

(3.8) ^(w[(t))2 + cQj (w'x)2 = 0(l).

Thus w[  is bounded and jl^w'f2 < +oo.   From this and (3.7),  w"  is
bounded and hence ío¡ -» 0 as . -► -co.

Case 2. p = (n + 2 + 21)/(n - 2). In this case cq in (3.7) = 0. Similarly as
in Case 1, we have for Tx < T2 < 0

1 „        rw\(Ti)
^(w'x)2\Tf + l Lp-x(wp-w)dw=0.

This and the fact that wx —y 1 as / -> -co imply (w[)2(t) -* 0 as t -+ -co .
Case 3.   (n + /)/(« -2)<p<(« + 2 + 2/)/(« - 2).  In this case c0 < 0

in (3.7). It is easy to see that both w[ and w" must be bounded. By (3.8),
I-ooiw\)2 < +00 • Thus w\ -+ 0 as t —» -co .

Now the proof of the claim is complete. From the claim, it follows that

w[(t) = I (l±Lf2+l^-x)u(r) + r^+')/(P-x^u'(r)) ^0   as r -» 0+.

Thus
2rV(r) _ 2/-<2+/)/^-')+1u'(r) _^ -2(2 + /)

u(r)    ~    r(2+')/(p-i)u(r)    ~*    p - 1
Let iu = v — 1. Then by (3.6) and the discussion above

w" + f(t)w' + g(t)w = 0   on (-co,0]

with

/(*)-> en   and   g(t) = r2+lup-x(r)^—y ^ (p - 1)LP~X       as / -» -oo.

(If there exist im -> -co such that v(tm) = 1, then we are done. So we assume
v(t) ^ 1 for large t and hence g(t) is well defined.)

By direct calculation, when (« + /)/(« -2) <p <pc

[ßmj(t)\  - 4 (hrn^ g(t)^j = cl - 4(p - l)Lp~x < 0.

From this and Sturm-type arguments (or see the proof of (ii), we conclude that
w oscillates around 0 near t = -oo and (i) of this proposition follows.

Proof of (ii). Suppose that ïï > ua and ïï ^ ua. Let v(t) = u(r)/ua(r), t =
log r, then v > 1 and

as r

(3.9) w"+ ('2^M + (n- 2)) v'(t) + r2+lup-
\ ua(r) )

[r)(vp-v) < 0   on(-oo,+co)
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Denote the coefficient of v' by f(t). Exactly like in the proof of (i), we have
f(t) -y c0 as t -y +00 (recall from Proposition 3.4, r(2+/)/(;'_1)Ma(r) -»Í, as
r —y +00, so the argument there can go through.)

We claim limt-,+0oV(t) = 1.  In fact, by (3.9) and the fact v > 1, v" +
f(t)v' < 0. Hence

(3.10) exp([f(s)ds\v'(t)<exp([f(s)ds\v'(T)   ift>r.

By the proof of (iii) of Proposition 4.4 in [30], ru'a(r) —»0 as r —» 0+ , hence
f(t) —y « - 2 as t —> -co. Since v(t) -» Jl(0)/ua(0) as / -> -co, there
exists a sequence tm —> -oo such that v'(tm) —y 0. Now in (3.10), letting
t = tm —y -co, we have either v' < 0 on (-co, +co) or v' = 0. (A priori,
v' < 0 and if there exists t0 suchthat v'(t0) < 0, then by (3.10) again v'(t) < 0
if t > íq . So v > 1 and hence the strict inequality in (3.10) must be true which
in turn implies that v' < 0 on (-co,+oo).) But v' = 0 is impossible because
ïï ^ ua . Suppose lim;_+00 v(t) > 1, then by (3.9) and the fact v' < 0, we have
for a large T and some constant c > 0

v" + f(t)v' <-c   if t > T.
This forces v = 0 at some t. Thus we finish the proof of lim,_+00 t>(i) = 1
(and v > 1, v' < 0).

Now let w = v - 1 > 0. By (3.9) and the discussion above, we have

(3.11) w" + f(t)w'+ g(t)w <0,       w'<0   on(-oo,+co),

with fit) -» c0, g(t) = r2+lupfx(r)(vp-v)/(v-l)^(p-i)Lp-x as t ^+oo.
As before, when (« + /)/(« - 2) < p < pc,

( lim f(t))  -4 (lim g(/))<0.
y—»+oo ) \t—»+oo y

Then there exist T > 0, èi and Ci such that b\-4cx < 0, /(/) < bx, and
g(t) > c*i if í > T. Observe that any solution of

(3.12) W" + bxW' + cxW = 0
is oscillatory; in particular, there exist b > a> T such that W(a) = W(b) = 0,
W > 0 on (a, b) (and hence W'(a) > 0 > W'(b)). Multiplying (3.11) by W
and (3.12) by w , we have

(3.13) w"W + f(t)w'W + g(t)wW <0   on[a,b],

(3.14) W"w + bxW'w + cxwW = 0   on[a,b].

Subtracting (3.14) from (3.13) yields

(Ww' - W'w)' + (f(t)w'W - bx W'w) + (g(t) - cx)wW < 0   on [a, b].
Thus by the fact that f(t) < bx , g(t) > cx , and w' < 0, we have

(Ww' - W'w)' + bx(w'W - W'w) < 0   on (a, b),
eblb(Ww' - W'w)(b) < eb'a(Ww' - W'w)(a).

This is impossible and (ii) is proved.
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Proof of (Hi). We use the same v as in the proof of (ii), then v > X > 1 if
ïï > Xua . Hence the proof of (ii) implies v = 0 at some t.   O

Now we are ready to give the first global existence and large time behavior
result.
Theorem 3.6. Suppose that p > (n + /)/(« - 2), y/ ^ 0 is a nonnegative radial
continuous weak upper solution of (3.4) and the initial value cf> < y/ in (3.1).
Then (3.1) has a unique global solution u, which is Cb-mild when -2 < I < 0
and classical when I > 0, satisfying 0 < u(x, t) < y/(x) < c(l + \x\)-(-2+lV(p-x'>
on R" x [0, oo). Furthermore, if (n + /)/(« - 2) < p < pc and y/ is not
an equilibrium of (3.1), then lim7_+00 ||m(-, r)lk°°(Rn) = 0. This is also true if
<j> < Xyi for some constant 0 < X < 1 when p > pc (in this case, y/ can be a
equilibrium, and 0 < u < Xy/).
Remark 1. When (« + /)/(« -2)<p<(n + 2 + 21)/(n - 2), (3.1) has no
nontrivial regular radial equilibrium (see Proposition 3.4). Also, by slightly
extending Theorem 3.41 in [28], when 1 < p < (n + /)/(« - 2) the y/ in the
statement of Theorem 3.6 cannot exist.
Remark 2. From Theorem 3.6, it is easy to see that the regularity condition on
ïï in (ii) of Proposition 3.5 can be reduced. This is also true for u as we shall
see from Theorem 3.10.
Remark 3. As mentioned in §0, whenever ||w(>, t)Woo -» 0 as í -» +co in the
above theorem, we can actually say that u(-, t) decays in some weighted L°°
norms as t -» +co, because 0 < u(x, t) < y/(x) < c(l + \x\)~^2+l)/{p~x).

To prove Theorem 3.6, we need the following decay result on y/ which is
basically covered by Theorem 3.35 in [28].
Proposition 3.6'. Suppose y/ is as stated in Theorem 3.6, then y/ is nonincreas-
ing in r and 0 < y/(r) < ((« + l)(2 + l)/(p - i))i/(/>-i)r-(2+.)/(/>-i).
Proof of Proposition 3.6'. Since y/ is also a continuous weak superharmonic
function, the mean-value inequality implies that y/ > 0 (if we proceed by the
maximum principle, y/(r) > cr2~" at r = +oo).

To prove the remaining part, let j be the standard mollifier in R" , and for
each e > 0, let je(x) = (l/en)j(x/e), y/c = j£ * y/, and f = jE * (\ • \'y/p(-)) ■
Then A<//£ + f£ < 0 holds classically in R" . Since j is radial, by Lemma 1.4,
y/e and f are also radial. Therefore

(rn-xy/'E(r))' + r"-xfi(r)<0.

Integrating from 0 to r gives

r"-y£'(r)+ /'s"-xMs)ds<0.
Jo

So y/'tir) < 0 (r > 0) and

ir4p-dt+rdtfr-y-lJ^ids<o.
Jo  V!(t) Jo       Jo^t)       ippit)      -

Hence y/E(r) is decreasing in r and

^-*!-pv+r!-'v»+Cd<I'iT'mds-°-
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Note yiE-* yi pointwise and fE(r) -» rly/p(r) as e —> 0+ if r ^ 0. So by the
Fatou Lemma

^(-„-'M + „-'(0» + jf a jf (i)-' ̂ |U < o
and since y/ is nonincreasing, we have

Wir) < (in + /)(2 + /)/(/? - l))i/(P-i)r-(2+0/(*-i).   d

Proof of Theorem 3.6. The uniqueness of the global solution is a simple conse-
quence of Theorem 2.3 (when -2 < / < 0) and Lemma 1.3 (when / > 0). To
prove the remaining part, consider

(3.15) vt = Av + \x\'vp,       v\t=o = y/.
Claim 1. (3.15) has a global nonnegative solution v, which is Cß-mild

when -2 < / < 0 and classical when / > 0, satisfying that v is radial in
x and v is nonincreasing in t > 0. The proof of this claim is as follows.
When -2 < / < 0, by Proposition 3.6', y/ is bounded; by Lemma 2.2, y/ is
a Cß-mild upper solution of (3.15). By Theorem 2.3, (3.15) has a nonnegative
CB-mild solution v on R" x [0, Tf) such that v is radial in x. In virtue
of Theorem 2.4, Tv = +co and v is nonincreasing in t. Claim 1 is proved
when -2 < / < 0. When / > 0, it is routine to see that y/ is also a c.w. upper
solution of (3.15) (see Definition 1.1). Applying Lemma 1.2 with ïï = y/ and
u = 0, we have that (3.15) has a classical global solution v with 0 < v < y/.
By Proposition 3.6' and Lemma 2.6, v is radial in x and v is nonincreasing
in t. Now the proof of Claim 1 is completed.

Since cp < y/ , v of (3.15) is an upper solution of (3.1). Applying Lemma
1.2 (when / > 0) and Theorem 2.4 (when -2 < / < 0) with ïï = v and u = 0,
we have that (3.1) has a nonnegative global solution u <v < y/ . This together
with Proposition 3.6' imply the global existence part of Theorem 3.6.

Now we turn to the large time behavior of u. By Claim 1, v^ix) =
lim._+00t;(x, t) exists, i^ is radial and 0 < «oo < y/ .

Claim 2. The function Voo is a (radial) regular solution of (3.4). Since even
when -2 < / < 0, v is also a c.w. solution of (3.15) (see the remark following
Definition 2.1), we have for any t > 0 and tf>x £ C03O(/?")

/   vix,s + T)<pxix)dx\ssZx0
Jr"

= I   ds      vix, s + z)A4>xix) + \x\lvpix, s + x)<pxix)dx.
Jo       Jr»

Let t -» +00 , by the Lebesgue Dominated Convergence Theorem,

0 = /   vocA(px + \x\'vp0<px dx.
Jr»

Thus Woo is a (bounded) distributional solution of (3.4). Now Claim 2 follows
from the regularity theory for elliptic equations.

Claim 3. The function v^, = 0 if (« + /)/(« - 2) < p < pc. We prove it in
the following cases.

Case 1. (« + /)/(« -2)<p<(« + 2 + 2/)/(« - 2). By Proposition 3.4, (3.4)
has no nontrivial regular radial solution. So i>oo = 0.
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Case 2. (« + 2 + 2/)/(« - 2) < p < pc. If y/ is a regular upper solution of
(3.4), by Claim 2, the fact i>oo < y, and Proposition 3.5, either vœ = 0 or
Voo = y/. By assumption, v^ ^ y/ (y/ is not an equilibrium). So i>oo = 0.
Now if y/ is not regular, observe that since v is nonincreasing in t, we can
prove easily that for each t > 0, v(-, t) is a c.w. upper solution of (3.4). By
regularity theory, v(-, t) is regular if t > 0. Note also that v(-, t) is radial
and t>oo < vi' > 0 • Now by Proposition 3.5, either Vqo = 0 or v^ = w(-, t) for
all / > 0 (here we should also use the fact that v(., i) is nonincreasing in t).
Since the latter implies ^oo = W which contradicts our assumption, w^o = 0.

Case 3. p = in + 2 + 2/)/(« - 2). By the strong maximum principle for
weakly superparabolic functions [8], it is easy to see that vix, t) < y/(x) for
t > 0 and hence v^ < y/. If v^ ^ 0, by Claim 2 and Proposition 3.4, there
exists ß > 0 such that

(.-\   (7!-2)/(2+/)ß^fW])     •
Let a be close to ß and a < ß such that iy/(0) > wf (0) (> uEßiO)). By a
simple computation, we see that wf and wf intersect at and only at raj =
iaß)x/(2+I) which goes to ß2H2+!*> as a —> ß~ . Obviously uf —> wf uniformly
on [0, /?(2/(/+2' + 1] as a -» ß~ . Thus there exists a < ß such that «f < y/
on R" . When -2 < / < 0, by Lemma 2.2, wf is a Cß-mild lower solution
of (3.15). In virtue of Theorem 2.4 (when -2 < / < 0) and Lemma 1.3 (when
/ > 0) with ïï = v and u = u% , we have v > wf and hence «oo > wf • This is
impossible because wf (0) > «¿¡(0) = ^(O). This completes the proof of Claim
3.

Now lim^+00i;(x, t) = 0. By the Lp interior estimate and embedding,
it is easy to see ||t>(-, t)\\Ca(B ) < C* < +co for a £ (0,2 + 1) and for
all t > 1. Thus v(x, t) —y 0 locally uniformly on Rn as / —► +oo. But
since 0 < v(x, t) < y/(x) < C(l + |x|)-(2+/)/(p-i) on /jn x [q, co), we have
Wv(-, Olk00^") -» 0 as í -* +00 . Now the fact 0 < u < v completes the proof
of the large time behavior of u when (« + /)/(« - 2) < p < pc.

To prove the large time behavior of u when p > pc and <f> < Xyi for some
0 < X < 1, we follow the same line of reasoning. First replace y/ in (3.15)
by Xy/ and denote the corresponding solution of (3.15) by vx. Since Xyi is
also a c.w. upper solution of (3.4), Claim 1 is true for vl. Claim 2 holds for
v^ = limi_+0o vx by the same argument there. To prove v^ = 0, noticing
v^ < vx < Xy/, we have v^/X < \p. Now consider the global solution v of
(3.15) (keep v\t=o = y/). Since v^/X is a c.w. lower solution of (3.15) (1/A > 1
and u¿o is an equilibrium), we have by the comparison principle (see Theorem
2.4 when -2 < / < 0 and Lemma 1.3 when / > 0) that v^/X < v and hence
v^/X <voc = lim,_,+00 w(-, t) (note Claim 1 and Claim 2 are of course true for
v). If v^ ^ 0, then i>¿, and v^ , as nontrivial regular solutions of (3.4), satisfy
limr_+00t>¿0/í;oo = 1 by Proposition 3.4, a contradiction! Therefore v^ = 0.
Similarly as for the case (« + /)/(« - 2) < p < pc, we have ||m(-, i)lk°°(/?") <
||ua(-,i)IIl~(ii'')->0 as f-»+oo.   □

We shall use Theorem 3.6 to obtain more detailed global existence and large
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time behavior result. To this end, we use the solutions of (3.4) and (3.5)* to
construct various upper and lower solutions for (3.1 ). The following observation
will be useful (for notation used in the following statement, see Proposition 3.4).

Proposition 3.7. (i) When (n + /)/(« -2) </?<(«+ 2 + 2/)/(« - 2), the graph
of uR(r) intersects (transversely) that of us(r) for every R > 0.

(ii) When p = (n + 2 + 2l)/(n-2), the graph ofuf(r) intersects (transversely)
that of us(r) at and only at

r=   X 2 + 1 2/(2+/)

2     V «-2

(iii) When (« + 2 + 2/)/(« - 2) < p < pc, the graph of ua(r) oscillates around
that of us(r) for every a>0.

(iv) When p >pc, the graph of ua does not intersect that of us (i.e., ua(r) <
us(r) for all r > 0) for every a > 0. Furthermore, ua(r) is increasing with
respect to a > 0.

Remark 1. The above result can be observed from the phase diagram in [20]
when / = 0.

Remark 2. The following proof of the first part of (iv) is inspired by an idea in
[36].
Proof of Proposition 3.7. To prove (i), let v(t) = r^+'^-^u^r), t = logr.
Then

(3.16) v" + c0v' + v(vp-x -Lp~x) = 0   on (-co, logR],

where
« + 2 + 2/

Observe that

v(logR) = 0    and    v>0, v(t)^0   as t —> -oo.

So v must achieve its maximum value at some to . By (3.16),

v(t0)(v»-x(to)-Lp-x)>0,

hence v(to) > L. By the uniqueness for O.D.E., v(to) > L. The proof of
(i) is completed, (ii) follows from direct calculation, (iii) follows from (iv) of
Proposition 3.4 and (i) of Proposition 3.5.

Now we prove (iv). Let v(t) = r(2+/)/(/'~1)Ma(7"), t = logr. Then (3.16) is
true on (-co, +co) with v > 0 and limí__0of(í) = 0; limt-,+00v(t) = L.
If the first conclusion of (iv) is not true, let i0 = min{r|v(r) = L}. As in the
proof of Proposition 3.5, v' > 0 on [-co, to] and v'(t) -> 0 as t -> -co. Let
q(v) = v'(t). Then

t» ii\ àn v(vp-x-Lp'x)     . /n   _.3.17) -T- + C0 + —-¿=0   on (0,1],dv q
q > 0 on (0, L] and q(v) —y 0 as v —► 0+. Therefore in the q - v-plane,
the graph of q = q(v) intersects all lines q = p(L-v) with p > 0. For each
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p > O, denote the intersection with the smallest v coordinate by (vß, q(vß))
Then (dq/dv)(vß) > -p and

dq,   , vp-Lp~xvß
■M= -codv    ß piL -vß)

pvp-x -Lp~x
= - Co -\-    for some vß £ (vß, L)

< -c0 +

p
(p-l)Lp-

Thus

-p<-c0 + (p-l)Lp-x/p,
0<p2-c0p + (p-l)Lp-x   for all//>0.

Then Cq - 4(p - 1)LP~X < 0. But when p > pc, by a long but straightforward
calculation, c$ - 4(p - 1)LP~X > 0. We reach a contradiction. The first part
of (iv) is proved. To prove the second part, we note from the first part, 0 <
v < L on (-co, +oo) and hence v'(t) > 0 on (-co, +co) (this can be seen
from (3.16) and a similar argument in the proof of (ii) of Proposition 3.5).
Since v'(t) = rd(r(2+>V(P-Vua(r))/dr, d(r^2+lWp-x^ua(r))/dr > 0 if r ± 0. By
this and the fact ua(r) = a^2+l^<J,~x^ux(ar) ((iv) of Proposition 3.4), one has
3ua(r)/3a>0 if r > 0.   D

Next, we use the solutions of (3.4) and (3.5)* to construct some "good"
upper and lower solutions of (3.1 ). Before doing so, we introduce some notation.
When (n + /)/(« -2) < p < (n + 2 + 21)/(n - 2), let

r%(R)=min{r£[0,R]\uR,(r) = us(r)},
rD(R) = max{r £[0,R]\ uDR(r) = us(r)}.

By Proposition 3.7, they are well defined. Furthermore, from (ii) of Proposition
3.4, we have
(3.18) rZ(R) = RrZ(l),        rDM(R) = RrDM(l).
When p = (n + 2 + 2l)/(n - 2), denote by r%(X) and rf¡(X) the r coordinates
of the two intersections of the graphs of uf(r) and us(r) with r%(X) < rjfa(X)
(see (ii) of Proposition 3.7). We observe

(3.19) rEm(X) =X2l^rEm(l),        rEM(X) = X2'^rEM(l).

When (« + 2 + 2/)/(« - 2) < p < pc, let rx(o) = min{r > 0 | ua(r) = us(r)},
r2(a) = min{r > rx(a) | ua(r) = us(r)}. They are well defined by (iii) of
Proposition 3.7. From (iv) of Proposition 3.4, we have

(3.20) r¿(a) = r,(l)/a,        i =1,2.
Proposition 3.8. (i) When (n + /)/(« -2)<p<(« + 2 + 2/)/(« - 2), define in

_ jus(\x\), \x\>r%(R),
UR[X)     \udr(\x\), \x\<r°(R),

f «,(1*1), \x\>r°{R),
äR(X)     Ug(W), \x\<r°(R).
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Then for every R > 0, ïï* (uR) is a c.w. upper (lower) solution of (3.4).
(ii) When p = (n + 2 + 21)/(n - 2), define in R"

-E(  v_ f "*(l*l)>        1*1 >rm(X),
UAX)    \uE(\x\),       \x\<rm(k),

uJix) = {lI usQx\),        \x\ >rMiX),
x\),        \x\<rM(X).

Then for every X > 0, ïïf (uf ) is a c.w. upper (lower) solution of (3.4).
(iii) When p > (n + 2 + 2l)/(n -2), for every X>0, a > 0, and 0 < ß < 1,

ßua and ßuf are c.w. upper solutions of (3.4) and for ß > 1, they are c.w.
lower solutions of (3.4).

(iv) When (n + 2 + 21)/(n - 2) < p < pc, define in R"
_       f m,(|x|),        |x| >rx(a),

I ua(\x\),       \x\ <rx(a),
\x\ > r2(a),
\x\ < r2(a).

Then ua (ua) is a c.w. upper (lower) solution of (3.4).
Proof. We just prove (i); the proofs of (ii)-(iv) are either trivial or similar to
(i). For all <px £ C0x(Rn) with cpx > 0, we need to show

Ä     f "í(I*D,
l«a(|*|),

/Jr'
uRA<px + \x\l(üR)pcpx < 0.

IR»
Let j be the standard mollifier in R" , and for e > 0, let je(x) = j(x/e)/e" ,
f(x) = \x\'u% . Then

AUe *uR,) + jE*f = 0
classically in 5*_£. Denote {\x\ < r%iR)} by B ; then for small e > 0,

/ (jE * U%)A(px + (jE *f)(pX=    / A(je * UR)(p\ + (je *f)<t>\

(n is the outer normal of 3B). Let e -» 0+ , then

(3.2!) l^l+fh=j^-tP-g
(uR is classical at x ^ 0). It is easy to see

/ usA<t>i + \x\'up(px = [   -us^ + ^-4>x.Jb< Job       dn      3n
This and (3.21) yield

/ ïï*A0, + W'(ïï*)^, = /   (^£-^fWJr» Job \dtl       dtl )
Since u's(r%(R)) < (u%)'(r%(R)), the proof is finished.   D

We are ready to give a global existence and large time behavior result more
specific than that of Theorem 3.6.
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Theorem 3.9. (i) When (n + /)/(« - 2) < p < pc, if the initial value 4> < us on
R" , then (3.1) has a (unique) global solution u which is CB-mild when -2 <
/ < 0 and classical when / > 0, satisfying 0 < u <us and \\u(-, 0lk°°(Än) ~* 0
as t —y +00.

(ii) When p > pc, if <t> < ßus for some constant 0 < ß < 1, then the
conclusion of(i) still holds.

(iii) 7« (i) and (ii), if cp < ßus, for some constant 0 < ß < 1, then u < ßus.
(iv) When p>(n + 2 + 21)/(n - 2), if cp < ßua (or <p < ßuf) for some 0 <

ß < 1 and some equilibrium ua (uf) of (3.1) mentioned in Proposition
3.4, then the conclusion of(i) is true with "w < us" replaced by "u < ßua
(or ßuf)". Furthermore, if ß = I, then (3.1) has a (unique) global
solution u <ua (or uf).

Remark. As we mentioned in §0, if we replace in (ii) the condition "(/> < ßus"
by "0 < Ms", then the conclusion of (ii) is not true because by (iv) of Proposition
3.7, all radial regular equilibrium of (3.1) stay below us. However, let ßk ] 1
and if we take the initial value in (3.1) as ßkcp, then by (ii), for each k , (3.1)
has a bounded global solution uk < us. By the comparison principle (see
Theorem 2.4 when -2 < / < 0 and Lemma 1.3 when / > 0), uk < uk+x on
Rn x [0, +co) and uk <u on R" x [0, Tf) (note at least the local solution u of
(3.1) exists by Theorem 2.3 and Theorem 2.5). By the continuity of the solution
of (3.1) with respect to the initial value (this can be seen from the Gronwall
inequality and the proofs of Theorem 2.3 and Theorem 2.5), uk —> u (at least)
pointwise on Rn x [0, Tf) as k —► +co . On the other hand, on R" x [0, +co),
ü = lim¿_+0o uk exists and ü = u if 0 < t < T^, 0 < ü < us. Also, it is easy
to see that ü is at least a global distributional solution of (3.1). Therefore in
(ii), if we only have <f> < us, (3.1) at least has a global distributional solution
it < us which is, before time 7^, Cß-mild when -2 < / < 0 or classical
when / > 0. Note in any case, ü is classical outside {0} x [0, +co) by the
regularity theory for parabolic equations. The question of large time behavior
of ü remains open.

Proof of Theorem 3.9. We first prove (i). We shall use Proposition 3.8 to find a
positive radial c.w. upper solution of (3.4) which is above </5 and below us, then
(i) follows from Theorem 3.6. To this end, observe that since <f> is bounded
and 4> < us, there exists Rx > 0 such that cf> <us(Rx).

Case 1. (« + /)/(« -2)<p<(n + 2 + 2l)/(n -2). By (3.18), there exists
an R > 0 such that r%(R) = Rx . Since u^(r) is decreasing on [0, R] (see
Proposition 3.4), cp(x) < u%(x) if |x| < Rx = r%(R). Thus 0 < ïï* (< us) on
Rn  (ïï* is defined in Proposition 3.8). This ïï* is what we seek.

Case 2. p = (n + 2 + 21)/(n - 2). Using (3.19), we can find a X > 0 such
that (p < uf (< uf) and by Proposition 3.8, ïïf is what we want.

Case 3. (n+2+2l)/(n-2) < p < pc. This time we use (3.20) and Proposition
3.8 to find a ua desired.

The proof of (i) is now complete.
To prove (ii), we look for a constant 0 < ß2 < 1 and a radial equilibrium u„t

mentioned in Proposition 3.4 such that <f> < ß2uai on R" , then (ii) follows from
(iv) which is immediate from Theorem 3.6 (note if 0 < ß < 1 , ßua is a c.w.
upper solution of (3.4)). Since cp < ßus, lim supw_+00 \x\i2+lV<-p-])(p(x) < L .
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By (iv) of Proposition 3.4, L = limr^+00 r(2+/)/(í'~1)M1(r). Therefore, there exist
1 > ßo > 0 and R > 1 such that

(3.22) <p(x) < ß0ux(x)   for \x\ > R.

Obviously, there exists  1 > S > 0 such that <p(x) < ßous(o).  From (iv) of
Proposition 3.4 again,

ua(r) = a{-2+l)l{P-Vux(ar)

= ((ar)^2+l^-xhx(ar))r^2+l^p-x^ - Lr^2+'^p-^ = us(r)

as a —y oo.   So there exist  1 > ßx > ßo and q0 > 1  such that ßous(S) <
ßxuao(S). Thus

(3.23) <t>(x) < ßxuao(S) < ßxuao(\x\)   if|x|<á.

Since ua -y us uniformly on [S, R] as a —y +co and cp < us, there exists
1 > ß2 > ßx and ai > a-o such that

(3.24) cp(x) < ß2uai(\x\)   if Ô < \x\ < R.

Combining (3.22)-(3.24) and the fact that ua is increasing in a (see (iv) of
Proposition 3.7), we have <p < ß2uai < ßius on Rn . We finish the proof of
(ii).

To prove (iii), first we notice that when (« + /)/(« - 2) < p < pc if we
replace <j> in the proof of (i) by cp/ß (< us by the assumption), then we can
find a radial c.w. upper solution y/ of (3.4) such that <p/ß < y/ < us, i.e.,
<t> < ßw < ßus ■ Since ßy/ is also a c.w. upper solution of (3.4), by Theorem
3.6, u<ßyi (here we should notice that the global solution of (3.1) satisfying
the properties in (i) is unique by Theorem 2.3 when -2 < / < 0 and Lemma
1.3 when / > 0) and hence u < ßus. Next, when p > pc, by examining the
proof of (ii) closely, ßo can be chosen arbitrarily close to ß, ßx and ß2 can be
chosen arbitrarily close to ßo and ßx respectively. Hence ß2 can be arbitrarily
close to ß. Since <p < ßiua, and ß2uat is a c.w. upper solution of (3.4), we
have u < ß2uai (< ß2us). Letting ß2 —y ß, we have u < ßus. (iii) is now
proved.   G

Next, we turn to the finite time blow-up results. The following theorem is in
a direction opposite to that of Theorem 3.6.

Theorem 3.10. Suppose that y/ ^ 0 is a radial nonnegative c.w. lower solution
of (3.4) which is not a solution of (3.4) when (n + 2 + 2l)/(n - 2) < p < pc.

(i) When 1 < p < pc, if the initial value <p in (3.1) > y/, <f> is bounded
when -2 < I < 0, and <p(x) < c\x\~l^p~X) at \x\ = +oo when I >
0, then the local solution of (3.1), whose existence and uniqueness are
assured by Theorem 2.3 (when / < 0) and Theorem 2.5 (when I > 0),
satisfies that 7^ < +co and hence lim^j.- ||m(-, /)|k°°(*n) = +00 when
-2 < / < 0, and lim(^r- ||«(-, O^iOlk^fÄ") = +°° when / > 0, where
wix) = il + \x\)''(p-xK*

(ii)  When p > pc, if the conditions on <p in (i) hold with "</> > y/" replaced
by "</> > ßy/" for some constant ß > 1, then the conclusion of(i) is still
true.
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Remark 1. When / > 0, we can prove that if <f> > y/ when 1 < p < pc, or
if <f> > ßy/ (ß > 1) when p > pc, then (3.1) has no global classical solution
u with 0 < u(x, t) < C(T)(l + |x|)(2-/)/(j>-D on R" x [0, T] for any T > 0.
(This result is slightly different from Theorem 3.10.) The proof of this is the
same as that of Theorem 3.10.

Remark 2. When / = 0 and 1 < p < (n + 2)/n, Theorem 3.10 is immediate
from the Fujita-type blow-up results in [11, 22]. This is also true when / > -2
and 1 < p < (n + 2 + /)/« by the blow-up result in [4].
Proof of Theorem 3.10. To prove (i), suppose contrary to the conclusion, that
Tf = +00. Then « is a (CB-mild when / < 0, classical when / > 0) upper
solution of

(3.25) vt = Av + \x\lvp,       v\t=o = y/.
Applying Theorem 2.4 (when -2 < / < 0) and Lemma 1.2 (when / > 0) with
u = u and u = 0, we have that (3.25) has a global solution v , which is CB-mild
when -2 < / < 0 and classical when / > 0, satisfying 0 < v < u . Furthermore,
v is radial in x and v is nondecreasing in /, by Theorem 2.3, Theorem 2.4,
and Lemma 2.6 (note by Theorem 2.5 when / > 0, ||t/(-, t)w(-)\\L°o(Rn) is
locally bounded on [0, +oo) and hence v satisfies the condition in Lemma
2.6). Now, let Voo(*) = lim,_+0o v(x, t), then v^ is radial and y/ < v < i>oo .
By Corollary 3.2, vx £ Lxoc(R"\{0}).

Claim. The function v^ is a (radial) solution (either regular or singular at
x = 0) of (3.4). To prove this, let t > 0 and cpx g C{f(Rn\{0}), then

/Jr»
v(x, s + T)<t>x(x)dx\sszb

ds      v(x, s + t)A(px(x) + \x\lvp(x, s + r)(px(x)dx.
Jo       Jr„

Taking nonnegative <px, from the fact t>oo G Aoc(^"\W) anc* Fatou's Lemma,
one sees that | • ¡'v^ £ L/oc(iî"\{0}). Letting t -> +oo, by the Lebesgue
Dominated Convergence Theorem,

0= [ v^Acpi + | • |'t£,0, dx.
Jr»

Taking radial <px, it is easy to see that

{r*-xv'Jr))' + r"+/-'<,(/•) = 0   on (0, +co)

in the distributional sense. Since H'fg-, G L¡ociRn\{0}), we have r"+l~xvp0ir) g
l/oc^O* +oo) and therefore by a bootstrap argument, vœ(r) G C2(0, +oo).
Thus Voo is either a regular or a singular (at |a:| = 0) solution of (3.4). The
proof of the claim is completed.

Next, we prove by using elliptic theory that v«, cannot be a nontrivial solu-
tion of (3.4), and then (i) follows.

Case 1. 1 < p < (n + /)/(« - 2). By Theorem 3.41 in [28], (3.4) has no
nontrivial solution even on exterior domains. So Woo cannot be a solution of
(3.4).

Case 2. in + /)/(« -2) </><(«+ 2 + 2/)/(« - 2). In this case, (3.4)
has no nontrivial radial regular solution (see (ii) of Proposition 3.4). On the
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other hand, Voo £ us, for otherwise, <p < Vac = us and hence by Theorem
3.9, DooeO. A contradiction. If v^, is one of the other singular solutions
of (3.4), say, t>oo = Us (mentioned in Proposition 3.4), we shall also reach a
contradiction as follows. By (i) of Proposition 3.5, there exist rk -* 0+ such
that Us(rk) = us(rf). This and (3.18) imply that there exist Rk —» 0+ such that
«A (r) and Us(r) intersect at r = Rk with Us(r) > «*(/•) when r < Rk . (So
Rk is the r-coordinate of the first intersection of uR   and Us.) Define

_ f «2 (r),    if r < Rk,U(r) = \    R"K ' -    k'
\Us(r),     if r>Rk.

In the following, we assume Rk is chosen so that y/ < U on Rn . By the proof
of Proposition 3.8, U is a c.w. upper solution of (3.4) and hence of (3.25). By
the comparison principle (see Theorem 2.4 when -2 < / < 0 and Lemma 1.3
when / > 0), v < U on R" . Hence v,*, < U (< Us = v^). This is impossible.

Case 3. p = (n + 2 + 21)/(n - 2). As in Case 2, v^ ^.us. Suppose Woo is
another radial singular solution of (3.4), then the fact that Voo oscillates around
us near r = 0 (see (iii) of Proposition 3.4), (3.19) and the same reasoning as in
Case 2 lead us to a contradiction. Also, t>oo cannot be a radial regular solution
of (3.4). This can be proved by finding a regular solution uE of (3.4) so that
yi <uE and uE(0) < foo(O), if v^ is indeed a radial regular solution of (3.4).
The construction of uE is similar to that of uE in Case 3 of Claim 3 in the
proof of Theorem 3.6. We omit the details.

Case 4. (« + 2 + 2/)/(« - 2) < p < pc. First, as in Case 2, i>oo cannot be us.
Next, if «oo is a (radial) regular solution of (3.4), we still have a contradiction
as follows. Since v is nondecreasing in t, it is easy to see for each t > 0,
v(', t) is a (radial) regular lower solution of (3.4) with v(-, t) < v^ . By (ii)
of Proposition 3.5, v(-, t) = v^ for each t > 0 and hence y/ = v(-, 0) = t>oo •
This contradicts the assumption that y/ is not a solution of (3.4).

Now the proof of (i) is completed.
To prove (ii), replace the initial value y/ in (3.25) by ßyi. If the conclusion

of (ii) is untrue, then as in the proof of (i), (3.25) has a global solution v such
that v is radial in x and nondecreasing in t (note ßy/ with ß > 1 is a
c.w. lower solution of (3.4)), and i>oo(-*) = lim._+oo v(x, t) is a radial solution
(regular or singular at x = 0) of (3.4). If Uqo is singular, then Proposition
3.4 implies t>oo = us and hence ßyi < us,yi < us/ß. By (ii) of Theorem
3.9, the solution vw of (3.25) (keep v\i=o = v) decays to zero as t —> +oo if
H> < us ¡ß. But Vy, > y/ ^ 0, so we reach a contradiction and hence v^o can
only be a regular solution of (3.4). Yet this is impossible by (iv) of Theorem
3.9 and the reasoning as above.   D

As a consequence of Theorem 3.10 and Proposition 3.8, we have the following
result which is in a direction opposite to that of Theorem 3.9.

Theorem 3.11. Suppose that p > (n + /)/(« - 2), and that the growth condition
on cp in (i) of Theorem 3.10 holds. Then the conclusion of(i) in Theorem 3.10
holds true provided that

(i) when (n + /)/(« -2) </><(«+ 2 + 2/)/(« - 2),  <p > uR for some
R>0;
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(ii) when p = (n + 2 + 21)/(n - 2), (¡)>uf for some X > 0 ;
(iii) when p > (n + 2 + 21)/(n - 2), cp>ûa for some a > 0 ;
(iv) when p > (n + 2 + 21)/(n - 2), cp > ßua for some ß > 1 and some

a > 0 ; or when p = (n + 2 + 21)/(n - 2), <p> ßuf for some ß > 1 and
some X > 0 ;

(v) when p>pc, liminfM_+00 \x\^2+l^p^cf)(x) >L.

Proof, (i)-(iv) are immediate from Theorem 3.10 and Proposition 3.8. To
prove (v), we first assume that <p > 0. By (iv), it suffices to find ß > 1
and a > 0 such that cp > ßua. Since liminf^+oo \x\(2+l)l{p-l)cl>(x) > L =
limr_+00r(2+/'^p_1)Mi(r) (see (iv) of Proposition 3.4), there exist R > 0 and
ß > 1 such that cp(x) > ßux(x) if |x| > R. By the fact that cp > 0 and
ua(r) = oP+^l^-^u^ar) < q(2+/)/(p-i) ; there exists 1 > a > 0 such that
<p(x) > ßua(x) if \x\ < R. Since ua is increasing in a (see (iv) of Proposition
3.7), we then have cp > ßua on R" .

Now, suppose we only have cp > 0. By Lemma 1.5, for 0 < t < 7^ ,

u(-, t) > etAcp > 0.

On the other hand, by the assumption, it is easily seen that
liminf \x\{2+l)/{p-X)(e'A)(x) > L.
\x\—>+oo

Thus if we think of u(-, to) (for a positive to < Tf) as initial value, then the
result for positive initial value proved above implies the desired result.   D

4. Decay rate
In this section, we obtain the decay rate for global solutions of (3.1) in some

special cases.
Theorem 4.1. Suppose in (3.1), / = 0 and p > n/(n - 2). Assume y/ is a
bounded nonnegative c.w. upper solution of (3.4) with 1 = 0. If the initial value
cp < Xyi for some 0 < X < 1, then (3.1) has a unique global classical solution u
satisfying 0 < u < Xyi and for t > 0

ll"(-, 0lk-(*«) < ((¿1-p - !)(/> - i))-xi(»-xf-xKp-x\
Remark. By Proposition 3.6', if y/ is radial, then necessarily y/ is bounded.

Proof of Theorem 4.1. The global existence follows from Lemma 1.2 with ïï =
Xyi and u = 0 iXy/ is a c.w. upper solution of (3.1)). The uniqueness is
immediate from Lemma 1.3. To prove the large time behavior of u, it suffices
to take cp = Xy/. First, we assume y/ is C°° smooth, then u is C°° smooth
to the boundary t = 0. Consider v = ut + ôup (a function similar to this was
used in [10] in which the finite time blow-up was studied) where constant ó > 0
is to be determined later. By a straightforward computation we have

v, - Av <pup~xv   on R" x [0, +oo).

Observe that
v\t=o = iu, + ôup)\t=o = (Am + (1 + ô)u")\l=o

= XAyi + (1 + 6)Xpyip < Aíí/"((1 + Ô)XP~X - 1)
= 0   \fô=Xx-p-l.
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From Lemma 2.6, ut < 0. So v < ôup < ôyip. In particular, v and pup~x
are bounded above. Thus by the Phragmen-Lindelöf principle (see Lemma 1.3),
v < 0, i.e., Ut + 6up < 0 with S = Xx~p - 1 . This in turn implies that

u(x, t) < ((Xx~p - l)(p - l))-1/^-»/-'/^-!)    for t > 0

and this completes the argument for regular y/.
For the general case, consider the bounded global classical solution uv of

(3.1) with / = 0, cp = y/ (uv is assured by Lemma 1.2 again). By uniqueness,
this uv is the same one as in Theorem 2.5. Hence by the proof of Theorem 2.5,
u¥(-, t) -+ yi(-) in L°°(Rn) as t -+ 0+ . Also, by Lemma 2.6, 3u¥/3t < 0 for
t > 0 and hence yiE(-) = uv(-, e) is a bounded smooth (by regularity theory)
upper solution of (3.4) with / = 0. Therefore, the conclusion for smooth y/
implies that

uE(x, t) < ((Xx~p - l)(p - l))-»/(p-i)ri/(p-i)

where uE is the global classical solution of (3.1) with / = 0 and cp = Xy/E. We
claim that m£ —> u pointwise on Rn x [0, +co) (hence we are done). In fact, this
follows from the continuity of solutions with respect to the initial value. This
continuity can be proved by the integral equation and Gronwall inequality.   D

Corollary 4.2. Suppose in (3.1) that p > n/(n - 2) and 1 = 0. If the initial
value cp < Xus for some constant X < 1, then (3.1) has a unique global classical
solution u satisfying u < Xus and

ll«(-, Olk-i*.) < i^'p - i)Cp - ty-w-vt-w-v.
Proof. Again, the uniqueness immediately follows from the Phragmen-Lindelöf
principle (see Lemma 1.3). On the other hand, exactly as in the proof of (iii) of
Theorem 3.9, we can find a c.w. upper solution y/ of (3.4) such that cp < Xyi <
Xus when «/(« - 1) < p < pc, and cp < X'yi < X'us when p > pc, where X' and
yi can be chosen so that X' can be arbitrarily close to X and X < X' < 1. By
Theorem 4.1, in any case, (3.1) has a unique bounded global classical solution
u so that 0 < u < X'yi (< X'us) and

ll«(-, Olloo < (((A,)1-p - 1)(p - l))-1^-')?-1^-').
Letting X' -y X, we are done.   D

For (3.1) with / ^ 0, we are unable to obtain the decay rate for X close to 1.
However, we can do so for small X and large p . We shall use a self-similar solu-
tion, i.e., a solution v of vt = Av+\x\lvp with v(x, /) = t~(lJrl)l2(p~X)wix/\ft),
as an upper solution of (3.1). If w is bounded, then we obtain a decay rate
for the global solution of (3.1) (this idea was used in [24]). To find such a v ,
all we have to do is to find a radial w > 0. By direct calculation, w = wir)
should satisfy

(4.1) w"+ (^T^ + i) w' + ^w + r'wp = 0,        r>0,

where A: = (2 + l)/(p - 1), / > -2, « > 3 , and p > 1 . (4.1) with / = 0 has
been studied at least by [18] and [31]. We shall combine the ideas in these two
papers to obtain global existence for (4.1).
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First, for local existence, following [18], we consider

(4.2)     w(r) = w0- í(sn-xes2'4)-lds f ßw(t) + t'wp(t)) t"-xe'2'4dt,

where r > 0, wo > 0, and w > 0 on [0, +co). Observe that a continuous
solution w of (4.2) is also a solution of (4.1) and that a solution of (4.1)
which is continuous at r = 0 is a solution of (4.2). On the other hand, by the
standard contraction mapping argument, (4.2) has a unique positive continuous
local solution w. To prove w is global and positive, we observe from (4.2)
that except at r = 0, w'(r) < 0 before w = 0 occurs, and hence it suffices to
show that w never vanishes. To this end, we shall use a Pohozaev-type identity
which is directly inspired by the one in [31].

Lemma 4.3. If w is a solution o/(4.1) and w is continuous at r = 0, then for
every R > 0,

14 Í [(5-5)»2+(ftt-"-¥)^-\^-)1 '"-*
= Rn~l   ß-r^)Rw2(R)+r^w(R)wr(R)

R2   ,,„,     Rl+Xwp+X(R)
+^w2(R) +2    rv   ' p+l

Proof. By a straightforward calculation, for r > 0 we have

d_
dr

„_, /    « + 2     2    "-2 r2   2       (k   2    r'wp+x
r      I-5—rw  H-=—wwr + -z-wf + r I —w +

= rn~x

8 2       ~r '   2    r       V4 P + l

(k     n\    2     (n + l     «-1\   j   .,,     1 /« \:
(2 -4)W  +{j+-l- —) rwP    - 2 (2" + rW')

Integrating the above equation on [6, R] and letting S —y 0+ , we obtain (4.3)
by the fact that rur -» 0 as r —> 0+ , which is easily seen after differentiating
(4.2).   D

Now we continue our discussion concerning the global existence of (4.1) (or
(4.2)). Suppose that R > 0 is the first zero of the local solution w . Then by
the uniqueness for O.D.E., w'r(R) ± 0. Therefore if in (4.3) k/2-n/4 < 0 and
(n+l)/(p+l)-(n-2)/2 < 0, i.e., if p > max{(«+4+2)/«, («+2+2/)/(«-2)},
the left-hand side of (4.3) < 0 while the right-hand side > 0. Thus

Lemma 4.4. When p > max{(« + 4 + 2/)/«, (« + 2 + 2/)/(« - 2)}, (4.1) has a
global positive solution w which is also continuous at r = 0 and is decreasing
in r.

Remark. In [18], Haraux and Weissler proved such a result when / = 0 and
even when (« + 2)/« < p < (n + 2)/(« - 2) if w(0) is small.

Next, we prove limr_,+00 rkw(r) exists and is positive (this is also proved in
[18] when / = 0). We divide the proof into several lemmas below.

Lemma 4.5.  rkw(r) is bounded.
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Proof. Our approach is different from that of [18]. Let f(t) = rkw(r), t =
logr, then / > 0, lim^-oo f(t) = 0 and

(4.4) f" + (co + e2t/2)f + fp -U~xf = 0   on(-oo,+co),

where
«-2/      « + 2 + 2/\     .

co =-r   P-^—   ^ °p-1V n-2    )
and L is as in (0.7). Suppose rkw(r) is unbounded, then it is easy to see from
(4.4) that either / is increasing for large t or / oscillates around L. If / is
increasing for large t, then there exists a c > 0 such that fp - Lp~xf > cf
for a constant c > 0 and for large t. Then (4.4) implies that f" + cf<0 for
large /, (f')2+cf2 is therefore nonincreasing for large t. This contradicts the
assumption that / is unbounded. If / oscillates around L, choose tk —y +co
such that / achieves local maximum at each tk and f(tk) —y +oo . Multiplying
(4.4) by /' and integrating on [tx, tk], we have

' (/n + f' i,, + Ç) (/f + (_l_/f+. _ iÇf^ [. „.
So /°°(co + e2t/2)(f')2 < +00 and f(tk) is bounded which contradicts the
assumption that f(tk) —► +oo .   D

Next, by some easy modifications of Proposition 3.2 and Proposition 3.4 in
[18], we have the following three lemmas.

Lemma 4.6. If for some positive o > l/(p - 1), raw(r) is bounded, then
\ra+xw'(r)\ is also bounded at r = +co.

Lemma 4.7.  limr_+o0 rkw(r) exists.

Lemma 4.8. If limr_+00 rkw(r) = 0, then for all positive m, limr_+00 rmw(r)
= limr-,+oorm+xw'(r) = 0.

Now we can prove that the w in Lemma 4.4 satisfies limr_,+00 rkw(r) ^ 0.
For otherwise, by using Lemma 4.7 and letting R -» +co in (4.3), we have that
the left-hand side of (4.3) is negative and the right-hand side is 0.

Finally, we return to the decay rate problem for (3.1).

Theorem 4.9. Suppose that in (3.1), p > max{(n+4+2l)/n, (n+2+2l)/(n-2)}.
If the initial value cp(x) < X(l + \x\)~<-2+l)/<-p~X) on R" forsomesmall X > 0, then
(3.1) has a (unique) global solution (CB-mild when -2 < / < 0 and classical
when I > 0) satisfying

ll"(-. Olk-(Ä-) < Mr(2+"/2(p""   for t>0 and some M > 0.
Proof. Let

h(x,t) = v(x,t+ l) = (t+ i)-(2+i)ß{p-Dw (^Ú=\    for/>0.

Of course, when / > 0, h is a classical solution of u, = Au + \x\'up . When
/ < 0, it is not hard to prove that h  is a c.w. solution of u, = Au + \x\'up
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and hence by the remark following Definition 2.1, h is also a CB-mild solution
(note w is bounded and therefore h is bounded). Observe

lim   \x\(-2+l)^-^h(x,0) =   lim   \x\(2+l)l{p-X)w(\x\) > 0
|x|-»+oo |x|—»+00

by the result above. So if X is small and cp(x) < X(l + |x|)~(2+/)/,(p-1), we have
<fi < h\t=o . Then h is an upper solution of (3.1). Applying Theorem 2.4 (when
-2 < / < 0) and Lemma 1.2 (when / > 0), we conclude that (3.1) has a global
solution u with 0 < u < h . Since w is bounded, our proof is now finished.   D

5. A REMARK ON THE FIRST BOUNDARY VALUE PROBLEM

Consider the first initial-boundary problem

ut = Au + \x\lup ,       x£D, t>0, u>0,
(5.1) «|i = 0,

u\t=o = <t> € Co(D) = {cp £ C(D) | 4>\dD = 0},        <M0, <i>>0,
where D is a domain in Rn with 3D satisfying the exterior sphere condition,
S = 3D x (0, +co), p > 1, / > -2, and « j> 3 .

As for the Cauchy problem, when 0 G D and / < 0, it is necessary and
convenient to introduce the concept of "mild" solution for (5.1). This can be
done by replacing etA in Definition 2.1 by the Green function G. Note by the
maximum principle, 0 < G < T (T is the standard heat kernel). Theorem 2.3
and Theorem 2.4 still hold for (5.1) with some obvious modifications, hence the
local existence and comparison principle are valid for (5.1) even when 0 G D
and -2 < / < 0. Observe that if we let the initial value <fi = 0 outside
D (we still denote it by cp), then the corresponding solution (if any) of the
Cauchy problem (3.1) is an upper solution of (5.1). Therefore, by Theorem 2.4
(modified for (5.1)) and Lemma 1.2 with ïï = solution of (3.1) and u = 0, we
have for the existence and large time behavior of global solution of (5.1) that
Theorem 3.9, Corollary 4.2, and Theorem 4.9 with obvious modifications that
for (5.1).
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