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Abstract. Global classical solutions near Maxwellians are constructed for the Boltz-
mann and Landau equations with soft potentials in the whole space. The construction
of global solutions is based on refined energy analysis. Our results generalize the clas-
sical results in Ukai and Asano (Publ. Res. Inst. Math. Sci. 18 (1982), 477–519) to the
very soft potentials for the Boltzmann equation and also extend the classical results in
Caflisch (Comm. Math. Phys. 74 (1980), 97–107), Guo (Comm. Math. Phys. 231 (2002),
391–434), and Guo (Arch. Rat. Mech. Anal. 169 (2003), 305–353) in the periodic box to
the whole space for the Boltzmann equation and the Landau equation in the Coulomb
interaction.

1. Introduction. We consider the Cauchy problem of the Boltzmann and Landau
equations with soft potentials for dynamics of dilute particles. The equation considered
in this paper reads as

∂tF + v · ∇xF = Q(F, F ), (1.1)

where F (t, x, v) is the distribution function of the particles at time t ≥ 0, located at
x = (x1, x2, x3) ∈ R3 with velocity v = (v1, v2, v3) ∈ R3. The collision between particles
is given by the standard Boltzmann collision operator,

Q(F, G)(v) =
∫
R3

∫
S2

[F (u′)G(v′) − F (u)G(v)]B(|u − v|, ϑ)dudω,

where F (u) = F (t, x, u) etc., ω ∈ S2, the unit sphere in R3, and

v′ = v − [(v − u) · ω] ω, u′ = u + [(v − u) · ω] ω (1.2)
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282 LING HSIAO AND HONGJUN YU

denote the velocities of particles after the collision, with u and v being their velocities
before the collision.

For the interaction potentials of inverse power laws, the collision kernel B(|u − v|, ϑ)
takes the form [5, 10, 26]

B(|u − v|, ϑ) = B(ϑ)|u − v|γ , cos ϑ = ((u − v) · ω)/|u − v|, −3 < γ ≤ 1,

where it is customary to assume that B(ϑ) satisfies the Grad angular cutoff assumption,
0 < B(ϑ) ≤ const.| cos ϑ|. The exponent γ is related to the models of potentials of
intermolecular forces, namely, the soft potentials (−3 < γ < 0), Maxwellian molecules
(γ = 0), the hard potentials (0 < γ < 1) and the hard sphere model (γ = 1, B(ϑ) =const.
cos ϑ). We are concerned with the soft potentials −3 ≤ γ < 0.

For the Coulomb interaction, the Boltzmann equation becomes inadequate because
grazing collisions become preponderant over all other collisions. In 1936, Landau derived
from the Boltzmann equation another equation in which only grazing collisions are taken
into account written as (1.1), but the collision operator is given by

Q(F, G)(v) = ∇v ·
{∫

R3
φ(v − v′)[F (v′)∇vG(v) − F (v)∇v′G(v′)]dv′

}

=
3∑

i,j=1

∂i

∫
R3

φij(v − v′)[F (v′)∂jG(v) − F (v)∂jG(v′)]dv′,

where φ(w) is the positive-semi-definite matrix that takes the general form

φ(w) = B(|w|)S(w),

where B is a function depending on the nature of the interaction between the particles,
and S(w) is the 3 × 3 matrix

S(w) = I3 −
w ⊗ w

|w|2 ,

which is the orthogonal projection onto the orthogonal plane to w and I3 is the identity
matrix of order 3. When an interaction force � between the particles depends on the
inter-particle distance r according to an inverse power law � = r−s with s ≥ 2, the
function B takes the form B(|w|) = |w|γ+2 where γ = s−5

s−1 . This leads to the usual
classification in terms of hard potentials (γ > 0), Maxwellian molecules (γ = 0) or soft
potentials (γ < 0) ([6, 18, 29]). The original Landau collision operator for the Coulomb
interaction corresponds to the case γ = −3. The present study with the Landau equation
is restricted to the very soft potentials −3 ≤ γ < −2.

We denote a normalized global Maxwellian by µ(v) ≡ e−|v|2 . We define the standard
perturbation f(t, x, v) to µ(v) as F = µ +

√
µf . We plug this perturbation into (1.1) to

derive a perturbation equation for f(t, x, v). Equation (1.1) for the perturbation f(t, x, v)
takes the form

∂tf + v · ∇xf + Lf = Γ(f, f), (1.3)

with f(0, x, v) = f0(x, v). L is the linear part and Γ(f, f) is the nonlinear part.
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For the Boltzmann equation, the linearized collision operator Lf = ν(v)f − Kf and
notice that K = K2 − K1 is given by [5, 9]:

ν(v) =
∫
R3×S2

|v − u|γµ(u)B(ϑ)dudω,

[K1g](v) =
∫
R3×S2

|u − v|γµ1/2(u)µ1/2(v)g(u)B(ϑ)dudω,

[K2g](v) =
∫
R3×S2

|u − v|γµ1/2(u)[µ1/2(u′)g(v′) + µ1/2(v′)g(u′)]B(ϑ)dudω.

Notice that for the soft potentials, ν(v) behaves like (1 + |v|)γ . The nonlinear collision
operator Γ(f, g) = 1√

µQ(
√

µf,
√

µg).
For the Landau equation, the linearized collision operator L is defined by Lf = −Af−

Kf , where

Af =
1
√

µ
Q(

√
µf, µ), Kf =

1
√

µ
Q(µ,

√
µf)

and the bilinear collision operator Γ(f, g) is given by Γ(f, g) = 1√
µQ(

√
µf,

√
µg).

As expected from the H-theorem, L is nonnegative and for every fixed (t, x) the null
space of L is given by the five-dimensional space (1 ≤ j ≤ 3)

N = span{1, vj
√

µ, |v|2√µ}. (1.4)

We define the orthogonal projection from L2(R3) onto the null space N by P.
Notation. For notational simplicity, we shall use 〈·, ·〉 to denote the standard L2 inner

product in R3 and (·, ·) to denote the standard L2 inner product in R3 × R3. For the
Boltzmann equation, we introduce a weight function of v as w1(v) = [1 + |v|]γ , while we
introduce another weight function of v as w2(v) = [1 + |v|]γ+2 for the Landau equation.
We always denote the two weight functions as w = w(v).

We denote the weighted L2 norm as

|g|22,θ ≡
∫
R3

w2θg2dv, ‖g‖2
2,θ ≡

∫
R3×R3

w2θg2dvdx.

For the Boltzmann equation, define the weighted dissipation norm as

|g|2ν,θ ≡
∫
R3

ν(v)w2θg2dv, ‖g‖2
ν,θ ≡

∫
R3×R3

ν(v)w2θg2dvdx.

For the Landau equation, define the weighted dissipation norm as

|g|2σ,θ =
3∑

i,j=1

∫
R3

w2θ
[
σij∂ig∂jg + σijvivjg

2
]
dv,

‖g‖2
σ,θ =

3∑
i,j=1

∫
R3

∫
R3

w2θ
[
σij∂ig∂jg + σijvivjg

2
]
dvdx,

where | · |σ = | · |σ,0, ‖ · ‖σ = ‖ · ‖σ,0 and σij is defined as

σij =
∫
R3

φij(v − v′)µ(v′)dv′.
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We will unify the notation as ‖g‖w,θ, which denotes either ‖g‖ν,θ or ‖g‖σ,θ and if θ = 0,
‖g‖w,0 = ‖g‖w, which denotes either ‖g‖ν or ‖g‖σ. Let α and β be α = [α0, α1, α2, α3]
and β = [β1, β2, β3]. We denote

∂α
β ≡ ∂α0

t ∂α1
x1

∂α2
x2

∂α3
x3

∂β1
v1

∂β2
v2

∂β3
v3

.

If each component of β is not greater than that of β,
1s, we denote it by β ≤ β1. We

define β < β1 if β ≤ β1, and |β| < |β1|. We denote
(

β
β

)
by Cβ

β
. Let

|||f |||2|β| =
∑

|α|+|β|≤N

‖w|β|∂α
β f(t)‖2,

|||f |||2w,|β| =
∑

|β|≤N

‖w|β|∂β{I− P}f‖2
w +

∑
|α|+|β|≤N,|α|�=0

‖w|β|∂α
β f(t)‖2

w.

We next define the high order energy norm as

E(f(t)) ≡ 1
2
|||f(t)|||2|β| +

∫ t

0

|||f(s)|||2w,|β|ds,

with the initial energy

E(f0) = E(f(0)) ≡
∑

|α|+|β|≤N

‖w|β|∂α
β f0‖2.

Throughout this paper, N ≥ 8. The main results are stated as follows:

Theorem 1.1. Let F0(x, v) = µ +
√

µf0(x, v) ≥ 0. There exist C0 > 0 and M > 0 such
that if E(f0) ≤ M , then there exists a unique global classical solution f(t, x, v) to (1.3).
Moreover, F (t, x, v) = µ+

√
µf(t, x, v) ≥ 0 solves equation (1.1) and sup0≤s≤∞ E(f(s)) ≤

C0E(f0).

Although there is extensive mathematical literature for the Boltzmann theory (see
[1, 4, 8, 9, 15, 21, 31, 27, 28, 35] and their references), much less is known for soft potentials
γ < 0. Global smooth small-amplitude solutions of the Vlasov-Poisson-Boltzmann system
near vacuum were constructed with −3 ≤ γ < −2 in [11]. Caflisch [4] obtained the global
solutions of the Boltzmann equation near Maxwellians with −1 < γ < 0 in a periodic
box by use of spectral analysis. Recently Guo [15] generalized the results in [4] to the
cases −3 < γ < 0 by an energy method developed in [13, 14]. In the whole space, it was
Ukai and Asano [28] who obtained the global solutions of the Boltzmann equation near
Maxwellians with −1 < γ < 0. However, it is still an open problem to extend the results
in [28] to the general cases. On the other hand, there have been some investigations
on the global weak solutions for the inverse power law [8, 19], some even without any
angular cutoff [1, 2, 29].

Despite its physical significance for the Landau equation, few global solutions have
been constructed. Desvillettes and Villani [7] proved global existence and uniqueness
of classical solutions for the spatially homogeneous Landau equation for hard potentials
and a large class of initial data. Degond and Lemou [6] studied the spectral properties
and dispersion relation of the linearized Landau operator. For the Coulomb interaction
with γ = −3, global weak solutions have been studied in [2, 29, 30], up to some defect
measures, while Guo [12] constructed global classical solutions near Maxwellians for a
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general Landau equation (both hard and soft potentials) in a periodic box via an energy
method. There are many other studies on the Landau equation (see [28-32]).

In the present paper, we obtain global classical solutions of the Boltzmann and Landau
equations near Maxwellians in the whole space. Our results generalize the classical results
of Ukai and Asano [28] about the global solutions of the Boltzmann equation in the whole
space to the very soft potentials −3 < γ < 0. On the other hand, our results extend the
classical results of Claflisch [4] and Guo [15] about the Boltzmann equation in the periodic
box to the whole space. For the Landau equation in the Coulomb interaction γ = −3,
global weak solutions have been studied in [20, 29] and global classical solutions have
recently been constructed in the periodic box in [12], while no global classical solutions
in whole space have been known. Therefore, our global existence results are new on the
Landau equation near Maxwellians in the whole space.

Since the solutions to the linearized Boltzmann equation around µ have a slow time
decay rate for γ near −3, which is impossible to be used in the nonlinear problem,
instead of studying the linear problem like [4, 27, 28], we directly investigate the energy
estimates for the nonlinear problem. Our construction of the global solution, almost
positive definite for the solution to (1.3), is based on a recent nonlinear energy method
developed in [14, 16, 21] with a new a priori estimate for the linearized collision operator
L itself, not its time integration [13, 15, 12].

Although it has the same framework as [14, 16, 17], there are several major new
difficulties in this paper. First, it is impossible to directly control v-derivatives ∂β of
linear streaming term vj∂

jf in terms of the weaker ‖∂βf‖w. Thus we introduce the
additional weighted function w in the energy norm like [12, 15] to overcome this difficulty.
Since γ < 0, the estimates of the nonlinear term Γ(g1, g2) in terms of the weighted norms
for g1 and g2 are particularly delicate. To get rid of the singularity of Γ(f, f), we first
decompose Γ(f, f) into

Γ(Pf,Pf) + Γ({I− P}f,Pf) + Γ(Pf, {I− P}f) + Γ({I− P}f, {I − P}f),

carefully estimate each part by using the exponential decay of the hydrodynamic part
Pf about the velocity variable v and we obtain the new estimates (Theorem 2.1 and
Theorem 3.1), which are crucial to obtain the positivity of the linearized collision operator
L and the global existence of solutions. A sequence of carefully chosen decompositions
of various integration regions in [12, 15] is also used to overcome the singularity in the
collision kernels.

Since the Landau collision operator contains the derivative of v, and the estimates
of the nonlinear collision term Γ(g1, g2) indeed need the differentiability of v, we are
forced to take the v-derivative of (1.3). Unfortunately, the zero-th order hydrodynamic
part ‖∂βPf‖σ appears, which is difficult to be controlled. Therefore, we first introduce
the weighted norm |||f |||w,|β| which only excludes the L2(R3) norm of the zero-th order
hydrodynamic part, compared to the norm |||f ||||β|. Then we turn equation (1.3) into
a microscopic-type equation (5.4) and use the technique of [21, 32] to overcome these
difficulties. On the other hand, unlike the periodic box, the crucial Poincaré inequality
does not hold for the problem in the whole space and we have to refine the energy analysis
to obtain our results.
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2. Boltzmann estimates. In this section, we will give some basic estimates used to
obtain global existence of solutions for the Boltzmann equation. This section is mainly
devoted to the estimates for the nonlinear collision term Γ(g1, g2) with gi(x, v) (i = 1, 2).
In (1.3), the bilinear form Γ(g1, g2) in the Boltzmann equation is

Γ(g1, g2) = µ−1/2(v)Q(µ1/2g1, µ
1/2g2) ≡ Γgain(g1, g2) − Γloss(g1, g2)

=
∫
R3

∫
S2

|u − v|γµ1/2(u)g1(u′)g2(v′)B(ϑ)dudω

−
[ ∫

R3

∫
S2

|u − v|γµ1/2(u)g1(u)B(ϑ)dudω
]
g2(v).

Notice that the change of variables u − v → u gives

∂α
β Γ(g1, g2) = ∂α

β

[ ∫
R3

∫
S2

|u|γµ1/2(u + v)g1(v + u‖)g2(v + u⊥)B(ϑ)dudω
]

−∂α
β

[ ∫
R3

∫
S2

|u|γµ1/2(u + v)g1(v + u)g2(v)B(ϑ)dudω
]

≡
∑

Cβ0β1β2
β Cα1α2

α Γ0(∂α1
β1

g1, ∂
α2
β2

g1),

where the summation is over β0 + β1 + β2 = β and α1 + α2 = α. Here u‖ = (u · ω)ω and
u⊥ = u − u‖. By the product rule and a reverse change of variables, we have

Γ0(∂α1
β1

g1, ∂
α2
β2

g2) =
∫
R3

∫
S2

|u − v|γ∂β0 [µ
1/2(u)]∂α1

β1
g1(u′)∂α2

β2
g2(v′)B(ϑ)dudω

−∂α2
β2

g2(v)
∫
R3

∫
S2

|u − v|γ∂β0 [µ
1/2(u)]∂α1

β1
g1(u)B(ϑ)dudω

≡ Γ0
gain(∂α1

β1
g1, ∂

α2
β2

g2) − Γ0
loss(∂

α1
β1

g1, ∂
α2
β2

g2). (2.1)

Theorem 2.1. Recall (2.1) and let β0 + β1 + β2 = β, α1 + α2 = α and |β| ≤ θ. If
g1(x, v) = a(x)µ1/4(v), then

|(w2θΓ0(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)| ≤ C

∫
R3

|∂α1a(x)||∂α2
β2

g2(x)|ν,θ|∂α
β g3(x)|ν,θdx. (2.2)

If g2(x, v) = a(x)µ1/4(v), then

|(w2θΓ0(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)| ≤ C

∫
R3

|∂α2a(x)||∂α1
β1

g1(x)|ν,θ|∂α
β g3(x)|ν,θdx. (2.3)

Proof. First consider the second term Γ0
loss in (2.2). Note that g1(x, v) = a(x)µ1/4(v).

Since |∂β0 [µ
1/2(u)]| ≤ Ce−|u|2/4, then we have∫

R3
|u − v|γ∂β0 [µ

1/2(u)]∂α1
β1

g1(x, u)du

≤ C
{∫

R3
e−|u|2/4|∂α1

β1
g1(x, u)|2du

}1/2{∫
R3

|u − v|2γe−|u|2/4du
}1/2

≤ C
{∫

R3
e−|u|2/4|∂β1e

−|u|2/4|2|∂α1a(x)|2du
}1/2

× [1 + |v|]γ

≤ C|∂α1a(x)| × [1 + |v|]γ .
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Therefore, by 0 < B(ϑ) ≤ C, we have

|(w2θΓ0
loss(∂

α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)|

≤ C

∫
R3

∫
R3

[1 + |v|]γw2θ|∂α1a(x)||∂α2
β2

g2(x, v)∂α
β g3(x, v)|dxdv

≤ C

∫
R3

|∂α1a(x)||wθ∂α2
β2

g2(x)|ν |wθ∂α
β g3(x)|νdx.

Then we consider the second term Γ0
loss in (2.3). Since |∂β0 [µ

1/2(u)]| ≤ Ce−|u|2/4, then
we have

∫
R3

|u − v|γ∂β0 [µ
1/2(u)]∂α1

β1
g1(x, u)du

≤ C
{∫

R3
e−|u|2/4|∂α1

β1
g1(x, u)|2du

}1/2{∫
R3

|u − v|2γe−|u|2/4du
}1/2

≤ C|e−|u|2/8∂α1
β1

g1(x)|2 × [1 + |v|]γ .

Note that g2(x, v) = a(x)µ1/4(v). By |∂β2 [µ
1/4(v)]| ≤ Ce−|v|2/8 , we have

|(w2θΓ0
loss(∂

α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)|

≤ C

∫
R3

|∂α2a(x)||e−|u|2/8∂α1
β1

g1(x)|2dx

∫
R3

[1 + |v|]γw2θe−|v|2/8|∂α
β g3(x, v)|dv

≤ C

∫
R3

|∂α2a(x)||e−|u|2/8∂α1
β1

g1(x)|2|wθ∂α
β g3(x)|νdx

≤ C

∫
R3

|∂α2a(x)|wθ∂α1
β1

g1(x)|ν |wθ∂α
β g3(x)|νdx,

where we have used 0 < B(ϑ) ≤ C and the exponential decay of e−|u|2/8.
The next step is to estimate the first term Γ0

gain in (2.2). Here the (u, v) integration
domain is split into two parts:

{|u| ≥ |v|/2} ∪ {|u| ≤ |v|/2}.

For the first region {|u| ≥ |v|/2}, we have

e−|u|2/4 ≤ e−|u|2/8e−|v|2/32.
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Then the integral of w2θΓ0
gain(∂α1

β1
g1, ∂

α2
β2

g2)∂α
β g3 over such a region is bounded by∫

|u|≥|v|/2

B(ϑ)|u − v|γe−|u|2/8e−|v|2/32w2θ|∂α1
β1

g1(x, u′)∂α2
β2

g2(x, v′)∂α
β g3(x, v)|dωdudv

≤ C
{∫

B(ϑ)|u − v|γe−|u|2/8e−|v|2/32w2θ|∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dωdudv
}1/2

×
{ ∫

B(ϑ)|u − v|γe−|u|2/8e−|v|2/32w2θ|∂α
β g3(x, v)|2dωdudv

}1/2

≤ C|∂α1a||wθ∂α
β g3(x)|ν

×
{ ∫

B(ϑ)|u − v|γe−|u|2/8e−|v|2/32e−|u′|2/8w2θ|∂α2
β2

g2(x, v′)|2dωdudv
}1/2

≤ C|∂α1a||wθ∂α
β g3(x)|ν

{∫
B(ϑ)|u′ − v′|γe−|u′|2/32−|v′|2/32|∂α2

β2
g2(x, v′)|2dωdudv

}1/2

≤ C|∂α1a||wθ∂α
β g3(x)|ν

{∫
B(ϑ)|u − v|γe−|u|2/32−|v|2/32|∂α2

β2
g2(x, v)|2dωdudv

}1/2

≤ C|∂α1a||wθ∂α2
β2

g2(x)|ν |wθ∂α
β g3(x)|ν ,

where we have used the change of variables (u, v) → (u′, v′), B(ϑ) ≤ C and w2θ ≤ 1.
Similar arguments imply that if g2(x, v) = a(x)µ1/4(v), 〈w2θΓ0

gain(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3〉

over such a region is bounded by

C|∂α2a(x)||wθ∂α1
β1

g1(x)|ν |wθ∂α
β g3(x)|ν .

Now we turn to the gain term over {|u| ≤ |v|/2}. Since |u| ≤ |v|/2 implies |v − u| ≥
|v| − |u| ≥ |v|/2, we have, from γ < 0, that

|u − v|γ ≤ 2−γ |v|γ .

Further assume |v| ≤ 1; then |u| ≤ 1/2 and the gain term is bounded by∫
|v|≤1,|u|≤|v|/2

B(ϑ)|u − v|γe−|u|2/4w2θ|∂α1
β1

g1(x, u′)∂α2
β2

g2(x, v′)∂α
β g3(x, v)|dωdudv

≤ C

∫
|v|≤1

w2θ|∂α
β g3(x, v)|dv

×
{∫

|u|≤1/2

B(ϑ)|u − v|γe−|u|2/4|∂α1
β1

g1(x, u′)∂α2
β2

g2(x, v′)|dωdu
}

≤ C

∫
|v|≤1

w2θ|∂α
β g3(x, v)|dv

{ ∫
|u|≤1/2

|u − v|γe−|u|2/2du
}1/2

×
{∫

|u|≤1/2

B(ϑ)|v|γ |∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudω
}1/2

≤ C
{∫

|u|≤1/2,|v|≤1

B(ϑ)|v|γ |∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudvdω
}1/2

|ωθ∂α
β g3(x)|ν .

We now estimate the first factor. Since |u| ≤ |v|/2, we have

|u′| + |v′| ≤ 2[|u| + |v|] ≤ 3|v|.
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Since γ < 0, this implies that

|v|γ ≤ 3−γ |u′|γ , |v|γ ≤ 3−γ |v′|γ . (2.4)∫
|u|≤1/2,|v|≤1

B(ϑ)|v|γ |∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudvdω

≤ C

∫
|u′|≤3,|v′|≤3

B(ϑ) min[|u′|γ , |v′|γ ]|∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudvdω.

Now change variables (v, u) → (v′, u′) so that the above is bounded by

C

∫
|u|≤3,|v|≤3

B(ϑ) min[|u|γ , |v|γ ]e−|u|2/8|∂α1a(x)|2|∂α2
β2

g2(x, v)|2dudvdω

≤ C|∂α1a(x)|2
∫
|v|≤3

|∂α2
β2

g2(x, v)|2dv ≤ C|∂α1a(x)|2|wθ∂α2
β2

g2(x)|2ν .

Thus, 〈w2θΓ0
gain(∂α1

β1
g1, ∂

α2
β2

g2), ∂α
β g3〉 over {|u| ≤ |v|/2, |v| ≤ 1} is bounded by

C|∂α1a(x)||wθ∂α2
β2

g2(x)|ν |ωθ∂α
β g3(x)|ν .

If g2(x, v) = a(x)µ1/4(v), by similar arguments, 〈w2θΓ0
gain(∂α1

β1
g1, ∂

α2
β2

g2), ∂α
β g3〉 over such

a region is bounded by

C|∂α2a(x)||wθ∂α1
β1

g1(x)|ν |wθ∂α
β g3(x)|ν .

The last case is the gain term over the region {|u| ≤ |v|/2, |v| ≥ 1}. The integral of
〈w2θΓ0

gain(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3〉 over such a region is bounded by∫

|v|≥1,|u|≤|v|/2

B(ϑ)|u − v|γe−|u|2/4w2θ|∂α1
β1

g1(x, u′)∂α2
β2

g2(x, v′)∂α
β g3(x, v)|dωdudv

≤ C
{∫

|v|≥1,|u|≤|v|/2

B(ϑ)[1 + |v|]γe−|u|2/4w2θ|∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudvdω
}1/2

×
{ ∫

|v|≥1,|u|≤|v|/2

B(ϑ)[1 + |v|]γe−|u|2/4w2θ|∂α
β g3(x, v)|2dωdudv

}1/2

.

Here we have used |u − v|γ ≤ 4−γ [1 + |v|]γ in the above inequality.
Recalling (2.4), w2θ(v) ≤ C min[w2θ(u′), w2θ(v′)] for θ ≥ 0. Using the change of

variables (v, u) → (v′, u′), the first factor is bounded by∫
|v|≥1,|u|≤|v|/2

B(ϑ)[1 + |v|]γe−|u|2/4w2θ|∂α1
β1

g1(x, u′)|2|∂α2
β2

g2(x, v′)|2dudvdω

≤ C

∫
B(ϑ)[1 + |v′|]γ min[w2θ(u′), w2θ(v′)]|∂α1

β1
g1(x, u′)|2|∂α2

β2
g2(x, v′)|2dudvdω

≤ C

∫
B(ϑ)[1 + |v|]γ min[w2θ(u), w2θ(v)]|∂α1

β1
g1(x, u)|2|∂α2

β2
g2(x, v)|2dudvdω

≤ C|∂α1a(x)|2|wθ∂α2
β2

g2|2ν .

Therefore, the integral of 〈w2θΓ0
gain[∂α1

β1
g1, ∂

α2
β2

g2], ∂α
β g3〉 over {|u| ≤ |v|/2, |v| ≥ 1} is

bounded by
C|∂α1a(x)||wθ∂α2

β2
g2|ν |wθ∂α

β g3|ν .
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If g2(x, v) = a(x)µ1/4(v), by similar arguments, 〈w2θΓ0
gain(∂α1

β1
g1, ∂

α2
β2

g2), ∂α
β g3〉 over such

a region is bounded by

C|∂α2a||wθ∂α1
β1

g1(x)|ν |wθ∂α
β g3(x)|ν .

We deduce (2.2) and (2.3) by further integrating over R3 about the x variable.

Corollary 2.2. Let |α| + |β| ≤ N and |β| ≤ θ. If g1(x, v) belongs to the null space N

of L, namely, g1(x, v) = a(x)
√

µ +
∑3

j=1 bj(x)vj
√

µ + c(x)|v|2√µ, then

|(w2θ∂α
β Γ(g1, g2), ∂α

β g3)| ≤ C
∑ ∫

R3

[
|∂α1a(x)| + |∂α1bj(x)| + |∂α1c(x)|

]
×|∂α−α1

β−β1
g2(x)|ν,θ|∂α

β g3(x)|ν,θdx, (2.5)

and if g2(x, v) = a(x)
√

µ +
∑3

j=1 bj(x)vj
√

µ + c(x)|v|2√µ, then

|(w2θ∂α
β Γ(g1, g2), ∂α

β g3)| ≤ C
∑ ∫

R3

[
|∂α−α1a(x)| + |∂α−α1bj(x)| + |∂α−α1c(x)|

]
×|∂α1

β1
g1(x)|ν,θ|∂α

β g3(x)|ν,θdx, (2.6)

where the summation is over j, |α1| + |β1| ≤ N and β1 ≤ β.

Lemma 2.3. Let 0 < |α1| + |α2| = |α| ≤ N and h(v) be a smooth function so that
|h(v)| + |∇h(v)| + |∇2h(v)| ≤ Cµ1/4(v); then we have

∣∣∣〈Γ(g1, g2), h〉
∣∣∣
2
≤

⎧⎨
⎩

C
[∑

|αi|+|βi|≤N ‖w|βi|∂αi

βi
g1‖

]
‖g2‖ν ,

C
[∑

|αi|+|βi|≤N ‖w|βi|∂αi

βi
g2‖

]
‖g1‖ν ,

(2.7)∣∣∣〈Γ(∂α1g1, ∂
α2g2), h〉

∣∣∣
2

≤

⎧⎪⎨
⎪⎩

C
[∑

|αi|+|βi|≤N ‖w|βi|∂αi

βi
g1‖

]
‖∂α2g2‖ν , if |α1| ≤ N

2 ;

C
[∑

|αi|+|βi|≤N ‖w|βi|∂αi

βi
g2‖

]
‖∂α1g1‖ν , if |α1| > N

2 .

(2.8)

Proof. Notice that for the Boltzmann equation,

Γ(g1, g2) =
∫
R3×S2

|u − v|γµ1/2(u)g1(u′)g2(v′)B(ϑ)dudω

−
[ ∫

R3×S2
|u − v|γµ1/2(u)g1(u)B(ϑ)dudω

]
g2(v)

≡ Γ0
gain(g1, g2) − Γ0

loss(g1, g2).
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We first estimate the loss term Γloss(g1, g2). The term Γloss(g1, g2) is estimated as

|〈Γloss(g1, g2), h〉|

≤ C

∫
R3

|g2(v)h(v)|
∫
R3

|u − v|γe−|u|2/2|g1(u)|dudv

≤ C

∫
R3

|g2(v)h(v)|dv
{∫

R3
|u − v|2γe−|u|2/2du

}1/2{∫
R3

e−|u|2/2|g1(u)|2du
}1/2

≤ C
{∫

R3
e−|u|2/2|g1(u)|2du

}1/2
∫
R3

[1 + |v|]γ |g2(v)|e−|v|2/4dv

≤ C
{∫

R3
e−|u|2/2|g1(u)|2du

}1/2{ ∫
R3

e−|v|2/4|g2(v)|2dv
}1/2

, (2.9)

where we have used the Cauchy-Schwartz inequality and h(v) ≤ Ce−|v|2/4.
By H4(R3 × R3) ⊂ L∞(R3 × R3), it follows that

sup
x,u

{
|e−|u|2/8|g1(x, u)|2

}
≤ C

∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
g1‖2. (2.10)

Using the exponential factor, integrating over u and taking the L2 norm in x for
the last factor of (2.9) yields the first inequality of Γloss(g1, g2) of (2.7). By a similar
argument, we can obtain the second inequality of Γloss(g1, g2) of (2.7).

For the gain term, since |h(v)| ≤ Ce−|v|2/4 and 0 < B(ϑ) ≤ C, we have

|〈Γgain(g1, g2), h〉|

≤ C

∫
R3

∫
R3

∫
S2

B(ϑ)|u − v|γ |g1(u′)||g2(v′)h(v)|e−|u|2/2dudvdω

≤ C

∫
R3

∫
S2

{ ∫
R3

|u − v|γe−|u|2/2|g1(u′)|2|g1(v′)|2du
}1/2

×
{∫

R3
|u − v|γe−|u|2/2du

}1/2

B(ϑ)|h(v)|dvdω

≤ C
{∫

R3

∫
R3

∫
S2

B(ϑ)|u − v|γe−|u|2/2|h(v)||g1(u′)|2|g2(v′)|2dudvdω
}1/2

×
{∫

R3

∫
S2

B(ϑ)|h(v)|[1 + |v|]γdvdω
}1/2

≤ C
{∫

R3

∫
R3

∫
S2

B(ϑ)|u − v|γe−|u′|2/4−|v′|2/4|g1(u′)|2|g2(v′)|2dudvdω
}1/2

≤ C
{∫

R3

∫
R3

∫
S2

B(ϑ)|u − v|γe−|u|2/4−|v|2/4|g1(u)|2|g2(v)|2dudvdω
}1/2

,
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where we have used the change of variables (u′, v′) → (u, v). To establish the first
inequality of (2.7), we have, from the above inequality, that∣∣∣〈Γgain(g1, g2), h〉

∣∣∣ ≤ C sup
x,u

{
|e−|u|2/8|g1(x, u)|2

}1/2

×
{ ∫

R3
e−|v|2/4|g2(v)|2dv

∫
R3

|u − v|γe−|u|2/8du
}1/2

≤ C sup
x,u

{
|e−|u|2/8|g1(x, u)|2

}1/2{∫
R3

[1 + |v|]γ |g2(v)|2dvdx
}1/2

≤ C
∑

|αi|+|βi|≤N

‖w|βi|∂αi

βi
g1‖|g2|ν ,

where we have used (2.10). We deduce the first inequality of (2.7) by taking the L2 norm
in x. Similar arguments to the above imply that the second inequality of (2.7) holds.
The proof of (2.8) can be found in [15].

Next, we borrow two lemmas from [15] for the completeness of the paper.

Lemma 2.4. There is some constant C > 0 such that

|〈Kg1, g2〉| ≤ C|g1|ν |g2|ν . (2.11)

Let |β| > 0. For any η > 0, there exists Cη > 0 such that

〈w2θ∂β [Lg], ∂βg〉 ≥ |wθ∂βg|2ν − η
∑

|β1|≤|β|
|wθ∂β1g|2ν − Cη|wθg|2ν . (2.12)

Lemma 2.5. Recall (2.1) and let β0 + β1 + β2 = β, α1 + α2 = α and |β| ≤ θ.
If |α1| + |β1| ≤ N/2, then

|(w2θΓ0(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)|

≤ C
[ ∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
g1‖

]
‖wθ∂α2

β2
g2‖ν‖wθ∂α

β g3‖ν

+C
[ ∑
|αi|+|β1|≤N

‖w|β1|∂αi

β1
g1‖

]
‖wθ−|β1|∂α2

β2
g2‖ν‖wθ∂α

β g3‖ν . (2.13)

If |α1| + |β1| ≥ N/2, then

|(w2θΓ0(∂α1
β1

g1, ∂
α2
β2

g2), ∂α
β g3)|

≤ C
[ ∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
g2‖

]
‖wθ∂α1

β1
g1‖ν‖wθ∂α

β g3‖ν

+C
[ ∑
|αi|+|β2|≤N

‖w|β2|∂αi

β2
g2‖

]
‖wθ−|β2|∂α1

β1
g1‖ν‖wθ∂α

β g3‖ν . (2.14)

3. Landau estimates. In this section, we will prove the basic estimates used to
obtain the positivity of the linearized Landau operator and global existence of solutions
for the Landau equation. In this case, we need to exercise more care in estimating the
nonlinear collision term Γ(f, g), which is crucial in the later energy analysis.
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The operators A, K and Γ from (1.3) in the Landau equation are defined in [12] as
the following representations:

Ag1 = ∂i

[
σij∂jg1

]
− σijvivjg1 + ∂i

[
vjσ

ij
]
g1, (3.1)

Kg2 = −µ−1/2∂i

{
µ
[
φij ∗

{
µ1/2[∂jg2 + vjg2]

}]}
, (3.2)

Γ(g1, g2) = ∂i

[{
φij ∗

[
µ1/2g1

]}
∂jg2

]
−

{
φij ∗

[
viµ

1/2g1

]}
∂jg2

−∂i

[{
φij ∗

[
µ1/2∂jg1

]}
g2

]
+

{
φij ∗

[
viµ

1/2∂jg1

]}
g2. (3.3)

For any vector-valued function g(v) = (g1, g2, g3), we define the projection to the vector
v as

Pvgi ≡
vi

|v|

3∑
j=1

vj

|v|gj , 1 ≤ i ≤ 3. (3.4)

By Corollary 1 of [12], there exists some constant c > 0 such that∣∣∣[1 + |v|]
γ
2 {Pv∂ig}

∣∣∣2
2,θ

+
∣∣∣[1 + |v|]

γ+2
2 {[I−Pv]∂ig}

∣∣∣2
2,θ

+
∣∣∣[1 + |v|]

γ+2
2 g

∣∣∣2
2,θ

≤ c|g|2σ,θ. (3.5)

Theorem 3.1. Recall (3.3) and let |α|+ |β| ≤ N and |β| ≤ θ. If g1(x, v) = a(x)µ1/4(v),
then

|〈w2θ∂α
β Γ(g1, g2), ∂α

β g3〉| ≤ C
∑

|∂α1a(x)||wθ∂α−α1
β−β1

g2(x)|σ|wθ∂α
β g3(x)|σ. (3.6)

If g2(x, v) = a(x)µ1/4(v), then

|〈w2θ∂α
β Γ(g1, g2), ∂α

β g3〉| ≤ C
∑

|∂α−α1a(x)||wθ∂α1
β1

g1(x)|σ|wθ∂α
β g3(x)|σ, (3.7)

where the summation is over |α1| + |β1| ≤ N , β1 ≤ β.

Proof. By the product rule, we expand

〈w2θ∂α
β Γ(g1, g2), ∂α

β g3〉 =
∑

Cα1
α Cβ1

β × Gα1β1 ,

where Gα1β1 takes the form:

−
〈
w2θ

{
φij ∗ ∂β1

[
µ1/2∂α1g1

]}
∂j∂

α−α1
β−β1

g2, ∂i∂
α
β g3

〉
(3.8)

−
〈
w2θ

{
φij ∗ ∂β1

[
viµ

1/2∂α1g1

]}
∂j∂

α−α1
β−β1

g2, ∂
α
β g3

〉
(3.9)

+
〈
w2θ

{
φij ∗ ∂β1

[
µ1/2∂j∂

α1g1

]}
∂α−α1

β−β1
g2, ∂i∂

α
β g3

〉
(3.10)

+
〈
w2θ

{
φij ∗ ∂β1

[
viµ

1/2∂j∂
α1g1

]}
∂α−α1

β−β1
g2, ∂

α
β g3

〉
(3.11)

−
〈
∂i

[
w2θ

]{
φij ∗ ∂β1

[
µ1/2∂α1g1

]}
∂j∂

α−α1
β−β1

g2, ∂
α
β g3

〉
(3.12)

+
〈
∂i

[
w2θ

]{
φij ∗ ∂β1

[
µ1/2∂j∂

α1g1

]}
∂α−α1

β−β1
g2, ∂

α
β g3

〉
. (3.13)

The last two terms appear when we integrate by parts over the vi variable.
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We first establish (3.7). Since φij ∈ L2
loc(R

3) and |∂β1−β [µ1/2]| ≤ Cµ1/4, we deduce
that {

φij ∗ ∂β1

[
µ1/2∂α1g1

]}
≤ C

[
|φij |2 ∗ µ1/4

]1/2 ∑
β≤β1

∣∣∣µ1/8∂α1

β
g1

∣∣∣
2

≤ C[1 + |v|]γ+2
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ
, (3.14)

where we have used (3.5) and the exponential decay of µ1/8(v).
Since g2(x, v) = a(x)µ1/4(v), (3.8) is bounded by

C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∫
w2θ[1 + |v|]γ+2

∣∣∣∂j∂
α−α1
β−β1

g2∂i∂
α
β g3

∣∣∣dv

≤ C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ[1 + |v|]

γ+2
2 µ1/16

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 µ1/16∂i∂

α
β g3

∣∣∣
2

≤ C
∑

β≤β1

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣wθ∂α
β g3

∣∣∣
σ
, (3.15)(3.15)

where we have used (3.5) and the fact that |∂j∂β−β1µ
1/4| ≤ Cµ1/8.

Since ∂β1−β[viµ
1/2] ≤ Cµ1/4, then we have that{

φij ∗ ∂β1

[
viµ

1/2∂α1g1

]}
≤ C[1 + |v|]γ+2

∑
β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ
. (3.16)

By (3.5) and the fact that g2(x, v) = a(x)µ1/4(v), (3.9) is bounded by

C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∫
w2θ[1 + |v|]γ+2

∣∣∣∂j∂
α−α1
β−β1

g2∂
α
β g3

∣∣∣dv

≤ C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ[1 + |v|]

γ+2
2 ∂j∂β−β1µ

1/4
∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 ∂α

β g3

∣∣∣
2

≤ C
∑

β≤β1

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣wθ∂α
β g3

∣∣∣
σ
. (3.17)

By (3.14) and (3.16), we deduce from (3.5) that{
φij ∗ ∂β1

[
µ1/2∂j∂

α1g1

]}
+

{
φij ∗ ∂β1

[
viµ

1/2∂j∂
α1g1

]}
≤

[
|φij |2 ∗ µ1/4

]1/2 ∑
β≤β1

∣∣∣µ1/8∂j∂
α1

β
g1

∣∣∣
2

≤ C[1 + |v|]γ+2
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ
. (3.18)
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By using (3.18) and the fact that g2(x, v) = a(x)µ1/4(v), similar arguments as those
used in (3.15) and (3.17) imply that (3.10) and (3.11) can be controlled by the right-hand
side of (3.7).

Since |∂i[w2θ]| ≤ C[1 + |v|]−1w2θ and g2(x, v) = a(x)µ1/4(v), (3.12) is bounded by

C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∫
w2θ[1 + |v|]γ+1

∣∣∣∂j∂
α−α1
β−β1

g2∂
α
β g3

∣∣∣dv

≤ C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ[1 + |v|]

γ
2 ∂j∂β−β1µ

1/4
∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 ∂α

β g3

∣∣∣
2

≤ C
∑

β≤β1

∣∣∣∂α−α1a(x)
∣∣∣∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∣∣∣wθ∂α
β g3

∣∣∣
σ
, (3.19)

where we have used (3.5) and (3.14). By similar arguments as those used in (3.19), (3.13)
is controlled by the last line of (3.19).

In the following we will establish (3.6). We first estimate (3.11) and (3.13).
Since |∂i[w2θ]| ≤ C[1 + |v|]−1w2θ and g1(x, v) = a(x)µ1/4(v), (3.11) and (3.13) are

both bounded by

C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∫
w2θ[1 + |v|]γ+2

∣∣∣∂α−α1
β−β1

g2∂
α
β g3

∣∣∣dv

≤ C
∑

β≤β1

∣∣∣∂α1a(x)
∣∣∣∣∣∣wθ∂βµ1/4

∣∣∣
σ

∣∣∣wθ[1 + |v|]
γ+2
2 ∂α−α1

β−β1
g2

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 ∂α

β g3

∣∣∣
2

≤ C
∑

β≤β1

∣∣∣∂α1a(x)
∣∣∣∣∣∣wθ∂α−α1

β−β1
g2

∣∣∣
σ

∣∣∣wθ∂α
β g3

∣∣∣
σ
,

where we have used (3.5) and (3.18).
Since |∂i[w2θ]| ≤ C[1 + |v|]−1w2θ and g1(x, v) = a(x)µ1/4(v), we easily deduce, from

(3.5) and (3.18), that (3.12) is bounded by

C
∑

β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ

∫
w2θ[1 + |v|]γ+1

∣∣∣∂j∂
α−α1
β−β1

g2∂
α
β g3

∣∣∣dv

≤ C
∑

β≤β1

∣∣∣∂α1a(x)
∣∣∣∣∣∣wθ∂βµ1/4

∣∣∣
σ

∣∣∣wθ[1 + |v|]
γ
2 ∂j∂

α−α1
β−β1

g2

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 ∂α

β g3

∣∣∣
2

≤ C
∑

β≤β1

∣∣∣∂α1a(x)
∣∣∣∣∣∣wθ∂α−α1

β−β1
g2

∣∣∣
σ

∣∣∣wθ∂α
β g3

∣∣∣
σ
. (3.20)

We now estimate (3.8) to (3.10). We decompose their double integration region [v, v′] ∈
R3 × R3 into three parts:

{|v| ≤ 1}, {2|v′| ≥ |v|, |v| ≥ 1} and {2|v′| ≤ |v|, |v| ≥ 1}.
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For the first part, {|v| ≤ 1}, recall that φij(v) = O(|v|γ+2) ∈ L2
loc. By (3.14), (3.16)

and (3.18), we have ∣∣∣φij ∗ ∂β1

[
µ1/2∂j∂

α1g1

]∣∣∣ +
∣∣∣φij ∗ ∂β1

[
viµ

1/2∂j∂
α1g1

]∣∣∣
≤ C[1 + |v|]γ+2

∑
β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ
,

∣∣∣φij ∗ ∂β1

[
µ1/2∂α1g1

]∣∣∣ +
∣∣∣φij ∗ ∂β1

[
viµ

1/2∂α1g1

]∣∣∣
≤ C[1 + |v|]γ+2

∑
β≤β1

∣∣∣wθ∂α1

β
g1

∣∣∣
σ
. (3.21)

Hence their corresponding integrands over the region {|v| ≤ 1} are bounded by

C
∑ ∣∣∣wθ∂α1

β
g1

∣∣∣
σ
w2θ[1 + |v|]γ+2

[∣∣∣∂j∂
α−α1
β−β1

g2

∣∣∣ +
∣∣∣∂α−α1

β−β1
g2

∣∣∣][∣∣∣∂i∂
α
β g3

∣∣∣ +
∣∣∣∂α

β g3

∣∣∣].
Its v-integral over {|v| ≤ 1} is clearly bounded by the right-hand side of (3.6) because
of (3.5) and the fact that g1(x, v) = a(x)µ1/4(v). We thus conclude the first part of
{|v| ≤ 1} for (3.8) to (3.10).

For the second part, {2|v′| ≥ |v|, |v| ≥ 1}, we have

|∂β1{µ1/2(v′)}| + |∂β1{v′iµ1/2(v′)}| ≤ Cµ1/8(v′)µ1/32(v).

By the same types of estimates as in (3.21), the v-integrands in (3.8) to (3.10) are
bounded by

µ1/32(v)w2θ
∣∣∣∂j∂

α−α1
β−β1

g2

∣∣∣[∣∣∣∂i∂
α
β g3

∣∣∣ +
∣∣∣∂α

β g3

∣∣∣] ∫ ∣∣∣φij(v − v′)µ1/8(v′)∂α1

β
g1(v′)

∣∣∣dv′

+µ1/32(v)w2θ
∣∣∣∂α−α1

β−β1
g2

∣∣∣[∣∣∣∂i∂
α
β g3

∣∣∣ +
∣∣∣∂α

β g3

∣∣∣] ∫ ∣∣∣φij(v − v′)µ1/8(v′)∂j∂
α1

β
g1(v′)

∣∣∣dv′

≤ C
∣∣∣w2θ∂α1

β
g1

∣∣∣
σ
[1 + |v|]γ+2µ1/32(v)w2θ

[∣∣∣∂j∂
α−α1
β−β1

g2

∣∣∣ +
∣∣∣∂α−α1

β−β1
g2

∣∣∣][∣∣∣∂i∂
α
β g3

∣∣∣ +
∣∣∣∂α

β g3

∣∣∣]
≤ C

∣∣∣∂α1a(x)
∣∣∣[1 + |v|]γ+2µ1/32(v)w2θ

[∣∣∣∂j∂
α−α1
β−β1

g2

∣∣∣ +
∣∣∣∂α−α1

β−β1
g2

∣∣∣][∣∣∣∂i∂
α
β g3

∣∣∣ +
∣∣∣∂α

β g3

∣∣∣],
where we have used g1(x, v) = a(x)µ1/4(v). Its v-integral is bounded by the right-hand
side of (3.6) because of the fast decay factor µ1/32(v).

We finally consider the third part, {2|v′| ≤ |v|, |v| ≥ 1}, for which we shall estimate
each term from (3.8) to (3.10).

To estimate (3.8) over this region we expand φij(v − v′) to get

φij(v − v′) = φij(v) −
∑

k

∂kφij(v)v′k +
1
2

∑
k,l

∂klφ
ij(v)v′kv′l, (3.22)

where v is between v and v − v′. We plug (3.22) into the integrand of (3.8). Notice that
for either fixed i or j, ∑

i

φijvi =
∑

j

φijvj = 0. (3.23)
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From (3.4) and (3.23), we can decompose ∂j∂
α−α1
β−β1

g2 and ∂i∂
α
β g3 into Pv parts as well as

I− Pv parts. For the first term in expansion (3.22), we have∑
ij

w2θφij(v)∂j∂
α−α1
β−β1

g2∂i∂
α−α1
β−β1

g3

=
∑
ij

w2θφij(v){[I− Pv]∂j∂
α−α1
β−β1

g2[I − Pv]∂i∂
α
β g3}.

Here we have used (3.23) so that the sum of terms with either Pv∂j∂
α−α1
β−β1

g2 or Pv∂i∂
α
β g3

vanishes. The absolute value of this is bounded by

Cw2θ[1 + |v|]γ+2|[I − Pv]∂j∂
α−α1
β−β1

g2| × |[I− Pv]∂i∂
α
β g3|. (3.24)

For the second term in expansion (3.22), by taking the k derivative of∑
ij

φij(v)vivj = 0,

we have that ∑
ij

∂kφij(v)vivj = −2
∑

j

φkj(v)vj = 0.

Therefore, expanding ∂j∂
α−α1
β−β1

g2 and ∂i∂
α
β g3 into their Pv and I− Pv parts yields∑

ij

w2θ∂kφij(v)∂j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

=
∑
ij

w2θ∂kφij(v){[Pv∂j∂
α−α1
β−β1

g2][I − Pv]∂i∂
α
β g3 + w2θ[I − Pv]∂j∂

α−α1
β−β1

g2[Pv∂i∂
α
β g3]}

+
∑
ij

w2θ∂kφij(v)[I− Pv]∂j∂
α−α1
β−β1

g2[I− Pv]∂i∂
α
β g3,

where ∑
ij

w2θ∂kφij(v)[Pv∂j∂
α−α1
β−β1

g2][Pv∂i∂
α
β g3] = 0.

Noting that |∂kφij(v)| ≤ C[1 + |v|]γ+1 for |v| ≥ 1, we majorize the above by

Cwθ[1 + |v|]γ/2{|Pv∂j∂
α−α1
β−β1

g2| + |Pv∂j∂
α
β g3|}

×Cwθ[1 + |v|](γ+2)/2{|[I− Pv]∂j∂
α−α1
β−β1

g2| + |[I − Pv]∂i∂
α
β g3|}

+Cw2θ[1 + |v|]γ+2|[I − Pv]∂j∂
α−α1
β−β1

g2||[I − Pv]∂i∂
α
β g3|. (3.25)

Next, we estimate the third term in (3.22). Using the region, we have

1
2
|v| ≤ |v| − |v′| ≤ |v| ≤ |v| + |v′| ≤ 3

2
|v|. (3.26)

Thus we have
|∂klφ

ij(v)| ≤ C[1 + |v|]γ ,

and ∣∣∣w2θ∂klφ
ij(v)∂j∂

α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣ ≤ Cw2θ[1 + |v|]γ |∂j∂
α−α1
β−β1

g2∂i∂
α
β g3|. (3.27)
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Combining (3.22), (3.24), (3.25) and (3.27), we have∫ ∣∣∣ ∑
ij

w2θ∂kφij(v − v′)∂j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣dv

≤ C[1 + |v′|]2
∫ ∣∣∣ ∑

ij

w2θφij(v)∂j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣dv

+C[1 + |v′|]2
∫ ∣∣∣ ∑

ij

w2θ∂kφij(v)∂j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣dv

+C[1 + |v′|]2
∫ ∣∣∣ ∑

ij

w2θ∂klφ
ij(v)∂j∂

α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣dv

≤ C[1 + |v′|]2|wθ∂α−α1
β−β1

g2|σ|wθ∂α
β g3|σ,

where we have used (3.5). Therefore, (3.8) over {2|v′| ≤ |v|, |v| ≥ 1} is bounded by

Cw2θ

∫
[1 + |v′|]2|∂β1 [µ

1/2(v′)∂α1g1(v′)]|dv′ × |wθ∂α−α1
β−β1

g2|σ|wθ∂α
β g3|σ

≤ C|∂α1a(x)|
∫

[1 + |v′|]2|∂β1 [µ
1/2(v′)µ1/4(v′)]|dv′ × |wθ∂α−α1

β−β1
g2|σ|wθ∂α

β g3|σ

≤ C|∂α1a(x)||wθ∂α−α1
β−β1

g2|σ|wθ∂α
β g3|σ,

where we have used g1(x, v) = a(x)µ1/4(v).
Now we consider the second term in (3.9). We again expand φij(v − v′) as

φij(v − v′) = φij(v) −
∑

k

∂kφij(v)v′k,

with v between v and v − v′. Since
∑

j φij(v)vj = 0, we obtain∑
j

w2θφij(v)∂j∂
α−α1
β−β1

g2(v)∂α
β g3(v)

=
∑

j

w2θφij(v)[I− Pv]∂j∂
α−α1
β−β1

g2(v)∂α
β g3(v)

≤ Cw2θ[1 + |v|]γ+2|[I− Pv]∂j∂
α−α1
β−β1

g2(v)||∂α
β g3(v)|

≤ C|wθ[1 + |v|]
γ+2
2 [I − Pv]∂j∂

α−α1
β−β1

g2(v)||wθ[1 + |v|]
γ+2
2 ∂α

β g3(v)|. (3.28)

From (3.26), |∂kφij(v)| ≤ C[1 + |v|]γ+1. Hence, we have that

|w2θ∂kφij(v)∂j∂
α−α1
β−β1

g2(v)∂α
β g3(v)|

≤ Cw2θ[1 + |v|]γ+1|∂j∂
α−α1
β−β1

g2(v)||∂α
β g3(v)|

≤ C|wθ[1 + |v|]
γ
2 ∂j∂

α−α1
β−β1

g2(v)||wθ[1 + |v|]
γ+2
2 ∂α

β g3(v)|. (3.29)

From (3.28) and (3.29), we thus conclude∫ ∣∣∣ ∑
j

w2θφij(v − v′)∂j∂
α−α1
β−β1

g2(v)∂α
β g3(v)

∣∣∣dv ≤ C|wθ∂α−α1
β−β1

g2|σ|wθ∂α
β g3|σ.
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We conclude that (3.9) over {2|v′| ≤ |v|, |v| ≥ 1} can be majorized by∫ ∫ ∣∣∣w2θφij(v − v′)∂β1

[
v′iµ

1/2(v′)∂α1g1(v′)
]
∂j∂

α−α1
β−β1

g2(v)∂α
β g3(v)

∣∣∣dv′dv

=
∫ ∫ ∣∣∣w2θ

[
φij(v) − ∂kφij(v)v′k

]
∂β1

[
v′iµ

1/2(v′)∂α1g1(v′)
]∣∣∣

×
∣∣∣∂j∂

α−α1
β−β1

g2(v)∂α
β g3(v)

∣∣∣dv′dv

≤ C

∫
[1 + |v′|]|∂α1a(x)|∂β1

[
v′iµ

3/4(v′)
]∣∣∣dv′|wθ∂α−α1

β−β1
g2|σ|wθ∂α

β g3|σ

≤ C|∂α1a(x)||wθ∂α−α1
β−β1

g2|σ|wθ∂α
β g3|σ,

where we have used the Cauchy-Schwartz inequality and g1(x, v) = a(x)µ1/4(v).
We now consider the third term in (3.10) over {2|v′| ≤ |v|, |v| ≥ 1}. We use integration

by parts to split (3.10) into two parts:

φij ∗ ∂β1

[
µ1/2∂j∂

α1g1

]
= ∂jφ

ij ∗ ∂β1

[
µ1/2∂α1g1

]
− φij ∗ ∂β1

[
∂jµ

1/2∂α1g1

]
. (3.30)

We first decompose
∂i∂

α
β g3 = Pv∂i∂

α
β g3 + [I− Pv]∂i∂

α
β g3.

By similar estimates to (3.28) and (3.29), the second part of (3.10) over {2|v′| ≤ |v|, |v| ≥
1} can be estimated as∫ ∫ ∣∣∣w2θφij(v − v′)∂β1

[
∂jµ

1/2(v′)∂α1g1(v′)
]
∂α−α1

β−β1
g2(v)∂i∂

α
β g3(v)

∣∣∣dv′dv

=
∫ ∫ ∣∣∣w2θ

[
φij(v) − ∂kφij(v)v′k

]
∂β1

[
∂jµ

1/2(v′)∂α1a(x)µ1/4(v′)
]∣∣∣

×
∣∣∣∂α−α1

β−β1
g2(v)∂i∂

α
β g3(v)

∣∣∣dv′dv

≤ C
∣∣∣∂α1a(x)

∣∣∣∣∣∣wθ[1 + |v|]
γ+2
2 ∂α−α1

β−β1
g2

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ+2
2 [I− Pv]∂i∂

α
β g3

∣∣∣
2

+C
∣∣∣∂α1a(x)

∣∣∣∣∣∣wθ[1 + |v|]
γ+2
2 ∂α−α1

β−β1
g2

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ
2 ∂i∂

α
β g3

∣∣∣
2
.

By (3.5), this is bounded by the right-hand side of (3.6).
We now turn to the proof of the first part of (3.10). By (3.30), noticing that our

integration region implies

|∂jφ
ij(v − v′)| ≤ C[1 + |v|]γ+1,

the first part of (3.10) over {2|v′| ≤ |v|, |v| ≥ 1} can be estimated as∫ ∫
w2θ

∣∣∣∂jφ
ij(v − v′)

∣∣∣∣∣∣∂β1 [∂jµ
1/2(v′)∂α1g1(v′)]∂α−α1

β−β1
g2(v)∂i∂

α
β g3(v)

∣∣∣dv′dv

≤ C
∣∣∣∂α1a(x)

∣∣∣ ∫ w2θ[1 + |v|]γ+1
∣∣∣∂α−α1

β−β1
g2(v)∂i∂

α
β g3(v)

∣∣∣dv

≤ C
∣∣∣∂α1a(x)

∣∣∣∣∣∣wθ[1 + |v|]
γ+2
2 ∂α−α1

β−β1
g2

∣∣∣
2

∣∣∣wθ[1 + |v|]
γ
2 ∂i∂

α
β g3

∣∣∣
2
,

where we have used g1(x, v) = a(x)µ1/4(v). By (3.5), this is bounded by the right-hand
side of (3.6). We conclude our theorem.
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Corollary 3.2. Let |α| + |β| ≤ N and |β| ≤ θ. If g1(x, v) belongs to the null space N

of L, namely, g1(x, v) = a(x)
√

µ +
∑3

j=1 bj(x)vj
√

µ + c(x)|v|2√µ, then

∣∣∣〈w2θ∂α
β Γ(g1, g2), ∂α

β g3〉
∣∣∣ ≤ C

∑[
|∂α1a(x)| + |∂α1bj(x)| + |∂α1c(x)|

]
×

∣∣∣wθ∂α−α1
β−β1

g2(x)
∣∣∣
σ

∣∣∣wθ∂α
β g3(x)

∣∣∣
σ
. (3.31)

If g2(x, v) = a(x)
√

µ +
∑3

j=1 bj(x)vj
√

µ + c(x)|v|2√µ, then

∣∣∣〈w2θ∂α
β Γ(g1, g2), ∂α

β g3〉
∣∣∣ ≤ C

∑[
|∂α−α1a(x)| + |∂α−α1bj(x)| + |∂α−α1c(x)|

]
×

∣∣∣wθ∂α1
β1

g1(x)
∣∣∣
σ

∣∣∣wθ∂α
β g3(x)

∣∣∣
σ
, (3.32)

where the summation is over j, |α1| + |β1| ≤ N and β1 ≤ β.

Lemma 3.3. Let 0 < |α1| + |α2| = |α| ≤ N . Let g1(x, v), g2(x, v) and h(v) be smooth
functions. We have

∣∣∣〈Γ(g1, g2), h〉
∣∣∣
2
≤

{
C

∑
|β|≤2 |∂βh|σ

∑
|α|≤N ‖∂αg1‖‖g2‖σ,

C
∑

|β|≤2 |∂βh|2
∑

|α|≤N ‖∂αg2‖‖g1‖σ,
(3.33)

∣∣∣〈Γ(∂α1g1, ∂
α−α1g2), h〉

∣∣∣
2

≤
{

C
∑

|β|≤2 |∂βh|σ
∑

|α|≤N ‖∂αg1‖‖∂α−α1g2‖σ, if |α1| ≤ N
2 ;

C
∑

|β|≤2 |∂βh|2
∑

|α|≤N ‖∂αg2‖‖∂α1g1‖σ, if |α1| > N
2 .

(3.34)

Moreover,

|〈L∂αg, h〉|2 ≤ C
∑
|β|≤2

|∂βh|σ‖∂αg‖σ. (3.35)

Proof. We begin with the linear term. By (3.1) and (3.2), we have that

Lg = −∂i

[
σij∂jg

]
+ σijvivjg − ∂i

[
vjσ

ij
]
g + µ−1/2∂i

{
µ
[
φij ∗

{
µ1/2[∂jg + vjg]

}]}
.

Using integrations by parts, 〈L∂αg, h〉 is given by
∫ {

− ∂αg · ∂j

[
σij∂ih(v)

]
+ σijvivj∂

αg · h(v) − ∂i

[
vjσ

ij
]
∂αg · h(v)

}
dv

−
∫

µ
[
φij ∗

{
µ1/2[∂j∂

αg + vj∂
αg]

}]
∂i

[
µ−1/2h(v)

]
dv, (3.36)

where we implicitly sum over i, j ∈ {1, 2, 3}. Using the Cauchy-Schwartz inequality and
the following inequality

|σij | + |∂jσ
ij | + |∂i[vjσ

ij ]| ≤ C[1 + |v|]γ+2,
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we obtain that∣∣∣∫ {
− ∂αg · ∂j

[
σij∂ih(v)

]}
dv

∣∣∣
2
≤ C

∑
|β|≤2

|[1 + |v|]
γ+2
2 ∂βh|2‖[1 + |v|]

γ+2
2 ∂αg‖

≤ C
∑
|β|≤2

|∂βh|σ‖∂αg‖σ,

∣∣∣∫ {
∂i

[
vjσ

ij
]
∂αg · h(v)

}
dv

∣∣∣
2
≤ C|[1 + |v|]

γ+2
2 h|2‖[1 + |v|]

γ+2
2 ∂αg‖

≤ C
∑
|β|≤2

|∂βh|σ‖∂αg‖σ,

∣∣∣∫ σijvivj∂
αg · h(v)dv

∣∣∣
2
≤ C

{∫
σijvivjh

2dv
}1/2∣∣∣{∫

σijvivj |∂αg|2dv
}1/2∣∣∣

2

≤ C
∑
|β|≤2

|∂βh|σ‖∂αg‖σ,

where we have used the definition of the norm ‖ · ‖σ.
Using the inequality (3.21), we have that the second line of (3.36) is bounded by

C‖∂αg‖σ

∣∣∣∫ µ1/4[1 + |v|]γ+2
[
|h| + |∂ih|

]
dv

∣∣∣
2

≤ C‖∂αg‖σ

{∫
µ1/4[1 + |v|]2γ+4dv

}1/2

×
{∫

µ1/4
[
|h|2 + |∂ih|2

]
dv

}1/2

≤ C
∑
|β|≤2

|∂βh|σ‖∂αg‖σ.

This completes the proof of estimate (3.35).
Recalling (3.3), Γ(∂α1g1, ∂

α−α1g2)h takes the form

∂i

[{
φij ∗

[
µ1/2∂α1g1

]}
∂j∂

α−α1g2

]
h −

{
φij ∗

[
viµ

1/2∂α1g1

]}
∂j∂

α−α1g2h

−∂i

[{
φij ∗

[
µ1/2∂j∂

α1g1

]}
∂α−α1g2

]
h +

{
φij ∗

[
viµ

1/2∂j∂
α1g1

]}
∂α−α1g2h

≡ I1 + I2 + I3 + I4.

We first consider the term I1. We rewrite I1 as

I1 = ∂i

[{
φij ∗

[
µ1/2∂α1g1

]}
∂j∂

α−α1g2h
]
− ∂j

[{
φij ∗

[
µ1/2∂α1g1

]}
∂α−α1g2∂ih

]
+

{
∂jφ

ij ∗
[
µ1/2∂α1g1

]}
∂α−α1g2∂ih +

{
φij ∗

[
µ1/2∂α1g1

]}
∂α−α1g2∂ijh.

The Cauchy-Schwartz inequality implies that{
∂jφ

ij ∗
[
µ1/2∂α1g1

]}
≤

{
|∂jφ

ij |2 ∗ µ1/2
}1/2{ ∫

µ1/2(v′)|∂α1g1(v′)|2dv′
}1/2

≤ C[1 + |v|]γ+1 min{|∂α1g1|2, |∂α1g1|σ}.
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If |α1| ≤ N/2, by H2(R3) ⊂ L∞(R3), we have that

sup
x

|∂α1g(x)|22 ≤ C
∑

|α|≤N

|∂αg(x)|22.

If |α1| ≤ N/2, we have, from (3.5) and the Cauchy-Schwartz inequality, that∣∣∣ ∫ {
∂jφ

ij ∗
[
µ1/2∂α1g1

]}
∂α−α1g2∂ihdv

∣∣∣
2

≤ C
∣∣∣|∂α1g1|2

∫
[1 + |v|]γ+2|∂α−α1g2(x, v)∂ih(v)|dv

∣∣∣
2

≤ C
∣∣∣|∂α1g1|2|∂α−α1g2(x)|σ|∂ih|σ

∣∣∣
2

≤ C
∑
|β|≤2

|∂βh|σ
∑

|α|≤N

‖∂αg1‖‖∂α−α1g2‖σ.

If |α − α1| ≤ N/2, we also have, from γ + 1 ≤ −1, that∣∣∣ ∫ {
∂jφ

ij ∗
[
µ1/2∂α1g1

]}
∂α−α1g2∂ihdv

∣∣∣
2

≤ C
∣∣∣|∂α1g1(x)|σ

∫
[1 + |v|]γ+1|∂α−α1g2(x, v)∂ih(v)|dv

∣∣∣
2

≤ C
∣∣∣|∂α1g1(x)|σ|∂α−α1g2(x)|2|∂ih|2

∣∣∣
2

≤ C
∑
|β|≤2

|∂βh|2
∑

|α|≤N

‖∂αg2‖‖∂α1g1‖σ.

The fourth term of I1 has the same upper bound by the same arguments as above.
This completes the proof of (3.34) about the term I1.

For the term I2, we split I2 as

I2 = −∂j

[
φij ∗

[
viµ

1/2∂α1g1

]
∂j∂

α−α1g2h
]

+
{

∂jφ
ij ∗

[
viµ

1/2∂α1g1

]}
∂α−α1g2h

+
{

φij ∗
[
viµ

1/2∂α1g1

]}
∂α−α1g2∂jh.

By (3.16) and similar arguments as we used for I1, we can obtain the estimates of I2.
Similarly, we can rewrite I3 as

I3 = −∂i

[{
φij ∗

[
µ1/2∂j∂

α1g1

]}
∂α−α1g2h

]
+

{
φij ∗

[
µ1/2∂j∂

α1g1

]}
∂α−α1g2∂ih

= −∂i

[{
φij ∗

[
µ1/2∂j∂

α1g1

]}
∂α−α1g2h

]
+

{
∂jφ

ij ∗
[
µ1/2∂α1g1

]}
∂α−α1g2∂ih

−
{
φij ∗

[
∂jµ

1/2∂α1g1

]}
∂α−α1g2∂ih.

Applying similar estimates as we used for I1, we also can obtain (3.34) about the term
I3. We now split I4 as follows:{

∂jφ
ij ∗

[
viµ

1/2∂α1g1

]}
∂α−α1g2h −

{
φij ∗

[
∂j [viµ

1/2]∂α1g1

]}
∂α−α1g2h.

Similar arguments as the last two terms of I3 imply that (3.34) about the term I4 holds.
This completes the proof of (3.34). The similar argument as we used for (3.34) implies
that (3.33) holds.
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In the following, we recall the basic estimates in [12].

Lemma 3.4. Let |β| + |α| ≤ N and θ ≥ 0. For any η > 0, there exists Cη > 0 such that

〈w2θ∂β [Lg], ∂βg〉 ≥ |wθ∂βg|2σ − η
∑

|β1|≤|β|
|wθ∂β1g|2σ − Cη|g|2σ (|β| > 0), (3.37)

|〈w2θ∂α
β Γ(f, g), ∂α

β h〉|

≤ C
∑ [

|∂α1

β
f |2,θ|∂α−α1

β−β1
g|σ,θ + |∂α1

β
f |σ,θ|∂α−α1

β−β1
g|2,θ

]
|∂α

β h|σ,θ, (3.38)

where the summation is over |α1| + |β1| ≤ N , α1 ≤ α, β ≤ β1 ≤ β.

4. Positivity of L. In this section, we shall establish the positivity of the linearized
operator L for any classical solution f(t, x, v) to (1.3), which plays an important role in
obtaining the global existence result of (1.3).

Lemma 4.1. It holds that ∂αPf = P∂αf . Moreover, there exists C > 1 such that

1
C
‖w|β|∂α

β Pf‖2
w ≤ ‖∂αa‖2 + ‖∂αb‖2 + ‖∂αc‖2 ≤ C‖w|β|∂α

β Pf‖2
w (4.1)

for any smooth function f(t, x, v) and any multi-indices β.

Proof. A direct computation implies that ∂αPf = P∂αf . We plug the expression
w|β|∂α

β Pf = w|β|∂αa(t, x)∂β[µ1/2] + w|β|∂αb(t, x) · ∂β [vµ1/2] + w|β|∂αc(t, x)∂β[|v|2µ1/2]
into the norms ‖ · ‖ν and ‖ · ‖σ. Using ν(v) ≤ C[1 + |v|]γ , |σij | ≤ C[1 + |v|]γ+2 and
the exponential decay of µ, we can obtain the first half of (4.1) by a direct computation.
For the second half of (4.1), since a, b and c are the coefficients of a basis to the finite
dimensional space N , |∂αa|2 + |∂αb|2 + |∂αc|2 is bounded by C

∫
R3 w2|β|ν(v)|∂α

β Pf |2dv,
C

∑3
i,j=1

∫
R3 w2|β|σij∂i∂

α
β Pf∂j∂

α
β Pfdv and C

∑3
i,j=1

∫
R3 w2|β|σijvivj |∂α

β Pf |2dv for any
(t, x). We then deduce (4.1) by a further integration over x.

We know that P is a projection from L2(R3) to the null space N of the linearized
operator L. Thus for any fixed (t, x), we can decompose any function f(t, x, v) uniquely
as

f(t, x, v) = {Pf}(t, x, v) + {I− P}f(t, x, v),

where Pf is called the hydrodynamic part, and {I − P}f is called the microscopic part
[14, 21, 22]. We plug f = {Pf} + {I − P}f into equation (1.3). By separating its
linear and nonlinear parts, and using L{Pf} = 0, we can express the hydrodynamic part
through the microscopic part {I− P}f :

[∂t + v · ∇x]Pf = l({I− P}f) + h(f), (4.2)

where l({I− P}f) = −[∂t + v · ∇x + L]{I− P}f , and h(f) = Γ(f, f).
By further expanding Pf as a linear combination of the basis in (1.4),

[
a(t, x) +

3∑
j=1

bj(t, x)vj + c(t, x)|v|2
]√

µ,
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we can derive the macroscopic equations for Pf ,s coefficients a, b and c. In fact, the
left-hand side of (4.2) now becomes∑

i

[
vi∂

ic|v|2 + [∂0c + ∂ibi]v2
i +

∑
j>i

[∂ibj + ∂jbi]vivj + [∂0bi + ∂ia]vi + ∂0a
]√

µ, (4.3)

where ∂0 = ∂t, ∂j = ∂xj
and ∂i = ∂xi

. For fixed (t, x), this is an expansion to the
left-hand side of (4.2) with respect to the basis of (1 ≤ i �= j ≤ 3):

√
µ, vi

√
µ, v2

i

√
µ, vivj

√
µ, |v|2vi

√
µ.

We denote an orthogonal basis for this 13-dimensional space by εj , 1 ≤ j ≤ 13 as in
[9]. We expand the right-hand side of (4.2) with respect to the same basis, and compare
with their coefficients on both sides. Then we have

(1) ∇xc = lc + hc, (2) ∂0c + ∂ibi = li + hi,

(3) ∂ibj + ∂jbi = lij + hij , i �= j (4) ∂0bi + ∂ia = lbi + hbi, (5) ∂0a = la + ha.

Here lc(t, x), li(t, x), lij(t, x), lbi(t, x) and la(t, x) are the corresponding coefficients of
such an expansion to the linear term −[∂t + v · ∇x + L]{I−P}f , while hc(t, x), hi(t, x),
hij(t, x), hbi(t, x) and ha(t, x) are the corresponding coefficients of the same expansion
of the higher-order term Γ(f, f). �

Now we estimate the L2 norm of l({I−P}f) through the macroscopic equations (1-5).

Lemma 4.2. Let α = [α0, α1, α1, α2]; then for any 1 ≤ i, j ≤ 3,∑
|α|≤N−1

[‖∂αlc‖ + ‖∂αli‖ + ‖∂αlij‖ + ‖∂αlbi‖ + ‖∂αla‖] ≤ C
∑

|α|≤N

‖{I− P}∂αf‖w.

Proof. We first normalize the basis {εj} (1 ≤ j ≤ 13). Let

[µ1/2, viµ
1/2, v2

i µ1/2, vivjµ
1/2, |v|2viµ

1/2]A13×13 = [ε∗j ],

with detA �= 0 [9]. Then for any fixed (t, x), lc(t, x), li(t, x), lij(t, x), lbi(t, x) and la(t, x)
take the form

13∑
i,n=1

λijλin

∫
R3

l({I− P}f)εn(v)dv,

where λij and λin are the entries of the matrix A.
The same is true after we take ∂α. Let |α| ≤ N − 1. Notice that∫

R3
∂αl({I− P}f)εn(v)dv = −

∫
R3

{∂t + v · ∇x + L}{I− P}∂αf(v) · εn(v)dv.

We now estimate the first two terms:∥∥∥〈{∂t + v · ∇x}{I− P}∂αf(v), εn(v)〉
∥∥∥2

≤ 2
∫
R3

|εn(v)|dv

∫
R3×R3

|εn(v)|(|{I− P}∂0∂αf |2 + |v|2|{I − P}∇x∂αf |2)dxdv

≤ C{‖{I− P}∂0∂αf‖w + ‖{I − P}∇x∂αf‖w}2,

where ∂0 = ∂t, and we have used (3.5) and the exponential decay of εn(v).
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By (2.11) in Lemma 2.4 and (3.35) in Lemma 3.3, we have that

‖〈L{I− P}∂αf, εn〉‖ ≤ C‖{I− P}∂αf‖w.

We next estimate the coefficients of the higher-order term h(f). For convenience, we
define the temporary energy norm:

[[f ]]2w = ‖{I − P}f(t)‖2
w +

∑
|α|≤N,α�=0

‖∂αf(t)‖2
w.

Noticing that the weaker dissipation norm [[f ]]2w without the L2 norms of a, b and c, we
carefully estimate coefficients of the higher-order terms in macroscopic equations.

Lemma 4.3. Let α = [α0, α1, α1, α2]; then for any 1 ≤ i, j ≤ 3,∑
|α|≤N

[‖∂αhc‖ + ‖∂αhi‖ + ‖∂αhij‖ + ‖∂αhbi‖ + ‖∂αha‖] ≤ C|||f ||||β| · [[f ]]w.

Proof. Let |α| ≤ N . Notice that ∂αhc, ∂αhi, ∂αhij , ∂αhbi and ∂αha are again of the
form

13∑
i,n=1

λijλin

∫
R3

∂αΓ(f, f) · εn(v)dv,

where λij and λin are the entries of the matrix A. It again suffices to estimate
〈∂αΓ(f, f), εn〉. If 0 < |α| ≤ N , then we are able to apply (2.8) for the Boltzmann
collision operator to get

‖〈Γ(∂α1f, ∂α−α1f), εn〉‖ ≤ C
[ ∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
f‖

]
‖∂α−α1f‖ν

≤ |||f ||||β| · [[f ]]ν ,

and we are able to apply (3.34) for the Landau collision operator to get

‖〈Γ(∂α1f, ∂α−α1f), εn〉‖ ≤ C
[ ∑
|α1|≤N

‖∂αf‖
]
‖∂α−α1f‖σ

≤ |||f ||||β| · [[f ]]σ,

where, without loss of generality, we have assumed that |α − α1| > 0.
In the following, we consider the case α = 0. We split f = Pf + {I − P}f so that

‖〈Γ(f, f), εn〉‖ is decomposed into

‖〈Γ(Pf, {I− P}f), εn〉‖ + ‖〈Γ({I− P}f,Pf), εn〉‖
+‖〈Γ({I− P}f, {I− P}f), εn〉‖ + ‖〈Γ(Pf,Pf), εn〉‖.

For the Boltzmann collision operator, by applying (2.7) in Lemma 2.3, we easily obtain
that the first three terms are bounded by

C
[ ∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
f‖

]
‖{I − P}f‖ν ≤ C|||f ||||β| · [[f ]]ν .
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For the Landau collision operator, by applying (3.33) in Lemma 3.3, we easily obtain
that the first three terms are bounded by

C
[ ∑
|α|≤N

‖∂αf‖
]
‖{I − P}f‖σ ≤ C|||f ||||β| · [[f ]]σ.

On the other hand, we plug Pf = [a(t, x)+b(t, x) ·v+c(t, x)|v|2]√µ into the last term
to get

‖〈Γ(Pf,Pf), εn〉‖ ≤ C‖a2 + |b|2 + c2‖.

For the estimate of the terms a2, |b|2 and c2, we shall use the similar method as used in
[16]. By the generalized Hölder inequality, we obtain

‖a2 + |b|2 + c2‖ ≤ C{‖a(t, ·)‖L6 + ‖b(t, ·)‖L6 + ‖c(t, ·)‖L6}
×{‖a(t, ·)‖L3 + ‖b(t, ·)‖L3 + ‖c(t, ·)‖L3}. (4.4)

This first factor is bounded by Sobolev’s inequality in R3 and Lemma 4.1 as[
‖∇xa(t, ·)‖ + ‖∇xb(t, ·)‖ + ‖∇xc(t, ·)‖

]
≤ C[[f ]]w,

while the second factor is bounded by an interpolation as[
‖a(t, ·)‖H1 + ‖b(t, ·)‖H1 + ‖c(t, ·)‖H1

]
≤ C|||f ||||β|.

Thus, we have the following L2(R3) estimate for Γ(f, f):∑
|α|≤N

[
‖∂αhc‖ + ‖∂αhi‖ + ‖∂αhij‖ + ‖∂αhai‖ + ‖∂αha‖

]
≤ C|||f ||||β| · [[f ]]w. (4.5)

We thus conclude the proof of Lemma 4.3.

Theorem 4.4. Let f(t, x, v) be the unique classical solution to (1.3). There exist positive
constants M0, δ0 = δ0(M0), C1 and C2 such that if∑

|α|+|β|≤N

‖w|β|∂α
β f(t)‖2 ≤ M0/2, (4.6)

then ∑
0<|α|≤N

(L∂αf(s), ∂αf(s)) ≥ δ0

∑
0<|α|≤N

‖∂αf(s)‖2
w

−C1
d

dt

∫
R3

∇ · bcdx − C2‖{I− P}f‖w.

Proof. Since (L∂αf(s), ∂αf(s)) ≥ δ‖{I − P}∂αf‖2
w, it thus suffices to show that if

(4.6) is valid for some small M0 > 0, then there is a constant C > 0 such that∑
0<|α|≤N

‖P∂αf‖2
w ≤ C

∑
0<|α|≤N

‖{I− P}∂αf(s)‖2
w + C2‖{I − P}f‖2

w

+C1
d

dt

∫
R3

∇ · bcdx. (4.7)
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By Lemma 4.1, equivalently, we therefore need only to establish that∑
0<|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖}2 ≤ C
∑

|α|≤N

‖{I− P}∂αf(t)‖2
w

+C|||f |||2|β| · [[f ]]2w + C1
d

dt

∫
R3

∇ · bcdx, (4.8)

that is, ∑
0<|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖}2

≤ C
∑

|α|≤N

‖{I− P}∂αf(t)‖2
w + C1

d

dt

∫
R3

∇ · bcdx

+CM0{
∑

0<|α|≤N

{‖∂αa‖ + ‖∂αb‖ + ‖∂αc‖} +
∑

|α|≤N

‖{I − P}∂αf(t)‖w}2,

which implies (4.7) when M0 is sufficiently small. By Lemma 4.2 and Lemma 4.3, similar
arguments as those used in [14, 16] imply that (4.7) holds.

5. Global Solutions. In this section we shall derive a refined energy estimate, which
is a crucial step in constructing global solutions. We first review the local existence
results. For periodic initial data, the local existence result of (1.3) was given in [12, 15].
By a straightforward modification of the arguments there, we have the following local
existence result in the whole space.

Lemma 5.1. There exist M0 > 0 and T ∗ > 0 such that if T ∗ ≤ M0/2 and E(f0) ≤ M0/2,
then there is a unique solution f(t, x, v) to (1.3) in [0, T ∗) × R3 × R3 such that

1
2
|||f(t)|||2|β| +

∑
|α|+|β|≤N

∫ t

0

‖∂α
β f(s)‖2

w,|β|ds ≤ M0. (5.1)

Moreover, |||f(t)|||2|β| is continuous over [0, T ∗). If F0(x, v) = µ +
√

µf0(x, v) ≥ 0, then
F (t, x, v) = µ +

√
µf(t, x, v) ≥ 0.

Proof of Theorem 1.1. Taking ∂α on (1.3)(0 < |α| ≤ N), we obtain

1
2

d

dt

∑
|α|�=0

‖∂αf(t)‖2 +
∑
|α|�=0

(L∂αf, ∂αf) =
∑
|α|�=0

(∂αΓ(f, f), ∂αf).

The goal is to show that

(∂αΓ(f, f), ∂αf) ≤ C|||f ||||β| · |||f |||2w,|β|.

We split f = {Pf} + {I − P}f to further decompose (∂αΓ(f, f), ∂αf) into

(∂αΓ(Pf,Pf), ∂αf) + (∂αΓ({I− P}f,Pf), ∂αf)

+(∂αΓ(Pf, {I − P}f), ∂αf) + (∂αΓ({I− P}f, {I− P}f), ∂αf). (5.2)
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Now we consider the first part. We plug Pf = [a(t, x)+ b(t, x) · v + c(t, x)|v|2]√µ into
the expression and apply Corollary 2.2, Corollary 3.2 and Lemma 4.1 to get

(∂αΓ(Pf,Pf), ∂αf)

≤ C
∑

α1≤α

∫
R3

(|∂α1a| + |∂α1b| + |∂α1c|)(|∂α−α1a| + |∂α−α1b| + |∂α−α1c|)|∂αf |wdx

≤ C
∑

α1≤α

sup
x

(|∂α1a| + |∂α1b| + |∂α1c|)
∫
R3

(|∂α−α1a| + |∂α−α1b| + |∂α−α1c|)|∂αf |wdx

≤ C
∑

α1≤α

∑
|�|≤2

[
‖∂α1+�a‖ + ‖∂α1+�b‖ + ‖∂α1+�c‖

]

×
[
‖∂α−α1a‖ + ‖∂α−α1b‖ + ‖∂α−α1c‖

]
· ‖∂αf‖w

≤ C
∑

α1≤α

‖∂α1f‖‖∂α−α1f‖w · ‖∂αf‖w

≤ C|||f ||||β| · |||f |||2w,|β|,

where we have assumed that |α1| ≤ N/2 and used H2(R3) ⊂ L∞(R3).
We apply Corollary 2.2 and Corollary 3.2 to get

(∂αΓ({I− P}f,Pf), ∂αf) + (∂αΓ(Pf, {I− P}f), ∂αf)

≤
∑

α1≤α

∫
R3

(|∂α1a| + |∂α1b| + |∂α1c|)|{I− P}∂α−α1f |w|∂αf |wdx

+
∑

α1≤α

∫
R3

(|∂α−α1a| + |∂α−α1b| + |∂α−α1c|)|{I− P}∂α1f |w|∂αf |wdx.

The first summation of the above inequality is bounded by∑
|α1|≤|α|/2

∫
R3

(|∂α1a| + |∂α1b| + |∂α1c|)|{I− P}∂α−α1f |w|∂αf |wdx

+
∑

|α1|≥|α|/2

∫
R3

(|∂α1a| + |∂α1b| + |∂α1c|)|{I− P}∂α−α1f |w|∂αf |wdx

≤
∑

|α1|≤|α|/2

sup
x

(|∂α1a| + |∂α1b| + |∂α1c|)
∫
R3

|{I− P}∂α−α1f |w|∂αf |wdx

+
∑

|α1|≥|α|/2

sup
x

|{I− P}∂α−α1f |w
∫
R3

(|∂α1a| + |∂α1b| + |∂α1c|)|∂αf |wdx

≤
∑

|α1|≤|α|/2

[ ∑
|�|≤N

‖∂�f‖
]
‖{I − P}∂α−α1f‖w‖∂αf‖w

+
∑

|α1|≥|α|/2

[ ∑
|�|≤N

‖{I− P}∂�f‖w

]
‖∂α1f‖‖∂αf‖w

≤ C|||f ||||β| · |||f |||2w,|β|,

where we have used Lemma 4.1 and Sobolev’s inequality.
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For the last term of (5.2), we can apply Lemma 2.5 and Lemma 3.4 with θ = 0 and it
can be bounded by C|||f ||||β| · |||f |||2w,|β|.

We therefore conclude by Theorem 4.4 that

d

dt

[ ∑
|α|�=0

‖∂αf(t)‖2 − 2C1

∫
R3

∇ · bcdx
]

+ δ0

∑
|α|�=0

‖∂αf(s)‖2
w

≤ C|||f ||||β| · |||f |||2w,|β| + C‖{I− P}f‖w. (5.3)

The second step is to treat pure v-derivatives of {I − P}f . We first turn (1.3) into a
microscopic-type equation:

[∂t + v · ∇x + L]{I− P}f = −[∂t + v · ∇x]Pf + Γ(f, f). (5.4)

Taking the pure ∂β ( 0 < |β| ≤ N) derivatives of (5.4), we obtain

[∂t + v · ∇x]∂β{I− P}f +
∑

|β1|=1

Cβ1
β ∂β1v · ∇x∂β−β1{I− P}f + ∂βL{I− P}f

= ∂βΓ(f, f) − [∂t + v · ∇x]∂βPf −
∑

|β1|=1

Cβ1
β ∂β1v · ∇x∂β−β1Pf. (5.5)

By multiplying w2|β|∂β{I− P}f to (5.5) and then integrating over R3 × R3, we get

1
2

d

dt
‖w|β|∂β{I− P}f‖2 + (w2|β|∂βL{I− P}f, ∂β{I− P}f)

+
∑

|β1|=1

Cβ1
β (w2|β|∂β1vj∂

j∂β−β1{I− P}f, ∂β{I − P}f)

+
∑

|β1|=1

Cβ1
β (w2|β|∂β1vj∂

j∂β−β1Pf, ∂β{I− P}f)

= (w2|β|∂βΓ(f, f), ∂β{I − P}f) − (w2|β|∂β[∂t + v · ∇x]Pf, ∂β{I − P}f). (5.6)

We now estimate term by term. Applying (2.12) in Lemma 2.4 and (3.37) in Lemma 3.4
and integrating over R3, we deduce, for any η > 0, that

(w2|β|∂βL{I− P}f, ∂β{I− P}f) ≥ ‖w|β|∂β{I− P}f‖2
w

−η
∑

|β1|≤|β|
‖w|β1|∂β1{I− P}f‖2

w − Cη‖{I− P}f‖2
w.

We estimate the third term on the left-hand side of (5.6). For any η > 0, we have

(w2|β|∂β1vj∂
j∂β−β1{I − P}f, ∂β{I− P}f)

≤
∫ ∫

w2|β||∂j∂β−β1{I− P}f∂β{I − P}f |dxdv

≤ ‖w1/2+|β|∂β{I− P}f‖‖w1/2+{|β|−1}∂j
β−β1

{I− P}f‖

≤ η‖w|β|∂β{I− P}f‖2
w + Cη‖w|β−β1|∂j

β−β1
{I − P}f‖2

w.

Here |β − β1| = |β| − 1. For the Boltzmann equation, we have used the fact that ‖g‖ν

is equivalent to ‖w1/2g‖ for w = [1 + |v|]γ , and for the Landau equation, we have used
‖w1/2g‖ ≤ C‖g‖σ by (3.5) for w = [1 + |v|]γ+2.
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By similar arguments as used in the third term and by Lemma 4.1, for any η > 0, the
fourth term on the left-hand side of (5.6) is bounded by

(w2|β|∂β1vj∂
j∂β−β1Pf, ∂β{I− P}f)

≤ η‖w|β|∂β{I− P}f‖2
w + Cη‖w|β−β1|∂j

β−β1
Pf‖2

w

≤ η‖w|β|∂β{I− P}f‖2
w + Cη

∑
|α1|=1

‖∂α1f‖2
w.

By similar arguments as used above, we have that, for any η > 0, the second term on
the right-hand side of (5.6) is bounded by

η‖w|β|∂β{I− P}f‖2
w + Cη

∑
|α1|=1

‖∂α1f‖2
w.

Finally, we estimate the nonlinear collision term. Our goal is still to show

(w2|β|∂βΓ(f, f), ∂β{I − P}f) ≤ C|||f ||||β| · |||f |||2w,|β|. (5.7)

We treat this term similarly as (5.2) and first decompose (w2|β|∂βΓ(f, f), ∂β{I − P}f)
as follows:

(w2|β|∂βΓ(Pf, {I− P}f), ∂β{I− P}f) + (w2|β|∂βΓ({I− P}f,Pf), ∂β{I− P}f)

+(w2|β|∂βΓ(Pf,Pf), ∂β{I− P}f) + (w2|β|∂βΓ({I− P}f, {I− P}f), ∂β{I− P}f).
(5.8)

For the first term of (5.8), by (2.5) and (3.31) with θ = |β|, we have

(w2|β|∂βΓ(Pf, {I− P}f), ∂β{I − P}f)

≤ C
∑

|β1|≤|β|

∫
R3

(|a| + |b| + |c|)|w|β1|∂β1{I − P}f |w|w|β|∂β{I− P}f |wdx

≤ C sup
x

(|a| + |b| + |c|)
∑

|β1|≤|β|

∫
R3

|w|β1|∂β1{I− P}f |w|w|β|∂β{I − P}f |wdx

≤ C
∑
|�|≤2

‖∂�f‖
∑

|β1|≤|β|
‖w|β1|∂β1{I − P}f‖w‖w|β|∂β{I − P}f‖w,

where we have used Lemma 4.1, w ≤ 1 and w|β| ≤ w|β1| for β1 ≤ β. Obviously, the last
line of the above inequality is controlled by C|||f ||||β||||f |||2w,|β|.

The second term of (5.8) has the same upper bound as the first term by (2.6), (3.32)
with θ = |β| and Lemma 4.1 as well as by Sobolev’s inequality.

For the third term ∂βΓ(Pf,Pf), we apply (2.5) and (3.31) with θ = |β| to get

(w2|β|∂βΓ(Pf,Pf), ∂β{I− P}f)

≤ C
∑

|β1|≤|β|

∫
R3

(|a| + |b| + |c|)|w|β1|∂β1Pf |w|w|β|∂β{I− P}f |wdx

≤
∑

|β1|≤|β|

∫
R3

(|a|2 + |b|2 + |c|2)|w|β|∂β{I− P}f |wdx

≤ C‖a2 + |b|2 + c2‖‖w|β|∂β{I− P}f‖w.
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The similar argument as used in (4.4) implies that the first factor of the above is bounded
by C|||f ||||β||||f |||w,|β|. Thus this term is bounded by C|||f ||||β||||f |||2w,|β|.

For the last term of (5.8), we directly apply Lemma 2.5 with θ = |β| for the Boltzmann
equation to get

(w2|β|∂βΓ({I− P}f, {I − P}f), ∂β{I − P}f)

≤ C
[ ∑
|αi|+|βi|≤N

‖w|βi|∂αi

βi
{I − P}f‖

]
‖w|β2|∂β2{I− P}f‖ν‖w|β|∂β{I − P}f‖ν

≤ C|||f ||||β||||f |||2ν,|β|.

For the last term of (5.8) in the Landau equation, we apply (3.38) in Lemma 3.4 with
θ = |β| and the Sobolev embedding theorem to get

(w2|β|∂βΓ({I− P}f, {I− P}f), ∂β{I− P}f)

≤ C
[{∑

‖∂α1
β1

{I − P}f‖|β1|

}{ ∑
‖∂α2

β2
{I− P}f‖σ,|β2|

}
+

{ ∑
‖∂α1

β1
{I − P}f‖|β1|

}{ ∑
‖∂α2

β2
{I− P}f‖σ,|β2|

}]
‖∂β{I− P}f‖σ,|β|

≤ C|||f ||||β||||f |||2σ,|β|,

where the summations are over |α1| + |β1| ≤ N and |α2| + |β2| ≤ N respectively.
If we collect the above inequalities and choose η > 0 small enough, we have

1
2

d

dt

∑
|β|�=0

‖∂β{I− P}f‖2
|β| +

∑
|β|�=0

‖∂β{I − P}f‖2
w,|β|

≤ C|||f ||||β||||f |||2w,|β| + C
∑

|α1|=1

‖∂α1f‖2
w + C‖{I− P}f‖2

w. (5.9)

The standard energy estimate for β = 0 is

1
2

d

dt
‖f‖2 + (Lf, f) = (Γ(f, f), f).

It is easily known that
〈Γ(f, f),Pf〉 = 0.

A similar argument to (5.2) implies that

(Γ(f, f), {I− P}f) ≤ C|||f ||||β||||f |||2w,|β|.

Therefore, we get

1
2

d

dt
‖f‖2 + δ1‖{I− P}f‖2

w ≤ C|||f ||||β||||f |||2w,|β|. (5.10)

In the following we consider ∂α
β derivatives of (1.3) where |α| �= 0, and |β| �= 0.

Assuming |α| + |β| ≤ N and taking ∂α
β derivatives of (1.3), we obtain

[∂t + v · ∇x]∂α
β f +

∑
|β1|=1

Cβ1
β ∂β1v · ∇x∂α

β−β1
f + ∂β [L∂αf ] = ∂α

β Γ(f, f). (5.11)

We take the inner product of (5.11) with w2|β|∂α
β f over R3 ×R3 and estimate this inner

product term by term.
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Now we consider the nonlinear collision term ∂α
β Γ(f, f). We first decompose the inner

product of ∂α
β f with the collision term, (w2|β|∂α

β Γ(f, f), ∂α
β f), as follows:

(w2|β|∂α
β Γ(Pf, {I− P}f), ∂α

β f) + (w2|β|∂α
β Γ({I− P}f,Pf), ∂α

β f)

+(w2|β|∂α
β Γ(Pf,Pf), ∂α

β f) + (w2|β|∂α
β Γ({I− P}f, {I− P}f), ∂α

β f). (5.12)

For the first term of (5.12), we directly apply Corollary 2.1 and Corollary 3.1 to get

(w2|β|∂α
β Γ(Pf, {I− P}f), ∂α

β f)

≤ C
∑∫

R3
(|∂α1a| + |∂α1b| + |∂α1c|)|w|β|∂α2

β2
{I− P}f |w|w|β|∂α

β f |wdx

≤ C
∑

sup
x

(|∂α1a| + |∂α1b| + |∂α1c|)
∫
R3

|w|β|∂α2
β2

{I− P}f |w|w|β|∂α
β f |wdx

≤ C|||f ||||β|‖w|β2|∂α2
β2

{I− P}f‖w‖w|β|∂α
β f‖w ≤ C|||f ||||β| · |||f |||2w,|β|,

where without loss of generality we have assumed that |α2|+ |β2| ≥ N/2. For the second
and third terms of (5.12), they have the same upper bound as the above by similar
arguments.

For the last term of (5.12), we directly apply Lemma 2.3 and (3.38) in Lemma 3.4
with θ = |β| to get

(w2|β|∂α
β Γ({I− P}f, {I− P}f), ∂α

β f)

≤ C|||f ||||β|‖w|β2|∂α2
β2

{I− P}f‖w‖w|β|∂α
β f‖w ≤ C|||f ||||β| · |||f |||2w,|β|.

Using a similar method as above, the inner product of the second term on the left-hand
side of (5.11) is bounded by

∑
|β1|=1

(w2|β|∂β1vj · ∂j∂α
β−β1

f, ∂α
β f) ≤ Cη

∑
|β1|=1

‖w|β1|∂j∂α
β1

f‖2
w + η‖w|β|∂α

β f‖2
w.

From Lemma 2.4 and Lemma 3.4, we deduce that, for η > 0 small enough, the inner
product of the third term on the left-hand side of (5.11) is controlled by

(w2|β|∂βL∂αf, ∂α
β f) ≥ ‖w|β|∂α

β f‖2
w − η

∑
β1≤β

‖w|β1|∂α
β1

f‖2
w − Cη‖∂αf‖2

w.

Thus, for any 0 < |β| ≤ N , we have

1
2

d

dt
‖w|β|∂α

β f‖2 + δN‖w|β|∂α
β f‖2

w ≤ C|||f ||||β| · |||f |||2w,|β|

+ C
∑
|α|�=0

‖∂αf‖2
w + Cη

∑
|β1|=1

‖w|β1|∂j∂α
β1

f‖2
w + η

∑
β1<β

‖w|β1|∂α
β1

f‖2
w. (5.13)
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Thus, for any 0 < |β| ≤ N and suitable linear combination of (5.13) depending on |β|,
we have that∑

α,β∈Λ

[1
2

d

dt
‖∂α

β f‖2
|β| + δN‖∂α

β f‖2
w,|β|

]

≤ C|||f ||||β| · |||f |||2w,|β| + C
∑
|α|�=0

‖∂αf‖2
w, (5.14)

where the indices set Λ = {|α| + |β| ≤ N, |α| �= 0, |β| �= 0}.
A suitable linear combination of (5.3), (5.9), (5.10) and (5.14) yields the following

estimates:
1
2

d

dt

[
C1

∑
α,β∈Λ

‖∂α
β f‖2

|β| + C2

∑
0<|β|≤N

‖∂β{I− P}f‖2
|β|

+C3

∑
0<|α|≤N

‖∂αf‖2 + C4‖f‖2 − C5

∫
R3

∇ · bcdx
]

+δ
[ ∑
|β|≤N

‖∂β{I− P}f‖2
w,|β| +

∑
|α|+|β|≤N,|α|�=0

‖∂α
β f(t)‖2

w,|β|

]

≤ C|||f ||||β| · |||f |||2w,|β|. (5.15)

Here C1, C2, C3, C4, C5 and δ are positive constants where C4 is sufficiently large.
We can choose C4 large enough such that, for some constant C6 > 0, we have

y(t) ≡ C1

∑
α,β∈Λ

‖∂α
β f‖2

|β| + C2

∑
0<|β|≤N

‖∂β{I − P}f‖2
|β|

+C3

∑
0<|α|≤N

‖∂αf‖2 + C4‖f‖2 − C5

∫
R3

∇ · bcdx ≥ C6|||f |||2|β|.

We easily obtain that y(t) ≤ C7|||f |||2|β| for some constant C7 > 0. Therefore, (5.15) is
rewritten as

1
2
y′(t) + δ|||f |||2w,|β| ≤ C|||f ||||β| · |||f |||2w,|β|. (5.16)

To proceed, we define

M ≡ min
{ δ

2C
, M0

}
> 0,

and choose initial data so that y(0) ≤ M
2 < M0. From Lemma 5.1 we may choose T > 0

so that

T = sup{t : y(t) ≤ M} > 0

since y(t) is continuous. Notice that for 0 ≤ t ≤ T , M ≤ M0. Thus, the small amplitude
assumption (4.6) is valid. We apply (5.16) to get, for 0 ≤ t ≤ T , that

1
2
y′(t) + δ|||f |||2w,|β| ≤ C|||f ||| · |||f |||2w,|β| ≤

δ

2
|||f |||2w,|β|.

Therefore, an integration over 0 ≤ t ≤ T yields

y(t) + δ

∫ t

0

|||f(s)|||2w,|β|ds ≤ y(0) ≤ M

2
< M. (5.17)
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Since y(t) is continuous in t, this implies that y(T ) ≤ M if T < ∞. This is a contradiction
to the definition of T . Hence T = ∞. It is straightforward to verify that, for any s > 0,
E(f(s)) ≤ C0E(f0) by (5.17).
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