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Abstract The objects of consideration are thin linearly elastic Kirchhoff–Love-type circular cylindrical shells
having a periodically micro-heterogeneous structure in circumferential direction (uniperiodic shells). The aim
of this contribution is to study certain problems of micro-vibrations and of wave propagation related to micro-
fluctuations of displacement field caused by a periodic structure of the shells. These micro-dynamic problems
will be analysed in the framework of a certain mathematical averaged model derived by means of the combined

modelling procedure. The combined modelling includes both the asymptotic and the tolerance non-asymptotic

modelling techniques, which are conjugated with themselves under special conditions. Contrary to the starting
exact shell equations with highly oscillating, non-continuous and periodic coefficients, governing equations
of the combined model have constant coefficients depending also on a cell size. Hence, this model takes into
account the effect of a microstructure size on the dynamic behaviour of the shells (the length-scale effect).
It will be shown that the micro-periodic heterogeneity of the shells leads to cell-depending micro-vibrations
and to exponential waves as well as to dispersion effects, which cannot be analysed in the framework of
the asymptotic models commonly used for investigations of vibrations and wave propagation in the periodic
structures.
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1 Introduction

Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells with a periodically micro-inhomogeneous
structure (a periodically varying thickness and/or periodically varying elastic and inertial properties) in cir-
cumferential direction are analysed. Shells of this kind are termed uniperiodic. At the same time, the shells
have constant structure in axial direction. The shells under consideration are composed of a large number of
identical elements, and every such element, called a periodicity cell, can be treated as a thin shell. It means
that the period of inhomogeneity is very large compared with the maximum shell thickness and very small as
compared to the midsurface curvature radius as well as the length dimension of the shell midsurface in the
periodicity direction. As examples, we can mention cylindrical shells with periodically spaced stiffeners as
shown in Fig. 1 or made of two kinds of periodically distributed materials as shown in Fig. 2.

It should be noted that in the general case, on the shell midsurface we deal with not periodic but locally
periodic structure. By a locally periodic shell we mean a shell which, in small subregions of the shell midsurface,
can be approximately regarded as periodic. Hence, a locally periodic shell is made of a large number of not
identical, but similar elements. However, for cylindrical shells the Gaussian curvature is equal to zero, and
hence, on the developable cylindrical surface we can separate a cell which can be referred to as the representative
cell for the whole shell midsurface. It means that on cylindrical surface, we deal not with locally periodic but
with a periodic structure.

Dynamic problems of periodic shells are described by partial differential equations with highly oscillating,
periodic and non-continuous coefficients. Thus, these equations are too complicated to be applied to the investi-
gations of engineering problems. To obtain averaged equations with constant coefficients, various approximate
modelling procedures for shells of this kind have been proposed. Periodic cylindrical shells (plates) are usually
described using homogenized models derived by means of asymptotic methods. These models from a formal

Fig. 1 Fragment of the shell with two families of uniperiodically spaced stiffeners

Fig. 2 Fragment of the shell made of uniperiodically distributed two component materials
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point of view represent certain equivalent structures with constant or slowly varying stiffnesses and averaged
mass densities. From the extensive list on this subject, we can mention monograph by Lewiński and Telega
[1], where asymptotic modelling of plates, laminates and shells is discussed. Unfortunately, in the models of
this kind the effect of a periodicity cell length dimensions (called the length-scale effect) on the overall shell
behaviour is neglected.

This effect can be taken into account using the modified couple stress-based theories of continuous media.
We mention here paper by Awrejcewicz et al. [2], where mathematical model for the analysis of static and
dynamic problems of micro/nano-beams is derived and discussed; the size-dependent model equations are
formulated on the basis of the Grigolyuk–Chulkov hypotheses and the modified couple stress theory.

The length-scale effect can be bearing in mind applying the multiscale-multifield models derived from a
non-classical (generalized) continuum formulation. These models take into account the microstructure size
by means of microdisplacement variables added to the standard macrodisplacements and of material internal

length parameters, cf., e.g. Settimi et al. [3], where the length-scale effect on the dynamic properties of a
composite microcracked elastic bar is studied; the internal parameters represent here density and length of
microcracks.

Some numerical approaches are also proposed to study the size effects in mechanical problems for micro-
heterogeneous structures. As example, we can mention here the paper by Hassani et al. [4], where the size-
dependent variational differential quadrature procedure is combined with the finite element method into a
new technique. In this paper, by considering several numerical examples, it has been shown that the proposed
size-dependent formulation and numerical solution approach have a good performance to study the large
deformations of hyperelastic microstructured bodies.

The length-scale effect can be also taken into account using the non-asymptotic-tolerance averaging tech-

nique, cf. Woźniak and Wierzbicki [5], Woźniak et al. [6,7]. Some applications of this method to the modelling
of mechanical and thermomechanical problems for various periodic structures are shown in many works. The
extended list of publications on this topic can be found in [5–7]. We mention here monograph by Tomczyk
[8], where the length-scale effect in dynamics and stability of periodic cylindrical shells is investigated, paper
by Marczak and Jędrysiak [9], where vibrations of periodic three-layered plates with inert core are studied and
papers by Tomczyk and Litawska [10,11], where certain extended co-called general tolerance and general

asymptotic-tolerance models for the analysis of dynamic problems for periodic cylindrical shells are proposed
and discussed. These general models are derived by means of a certain extended version of the tolerance
modelling technique presented by Tomczyk and Woźniak [12].

In the last years, the tolerance modelling was adopted for mechanical and thermomechanical problems
of functionally graded structures, e.g. for heat conduction in longitudinally graded structures by Ostrowski
and Michalak [13], for thermoelasticity of transversally graded laminates by Pazera and Jędrysiak [14], for
vibrations of functionally graded thin plates by Wirowski [15], for dynamics of transversally and longitudinally
graded thin cylindrical shells by Tomczyk and Szczerba [16–18].

The aim of this note is to study certain problems of cell-depending vibrations and of long wave propagation
related to micro-fluctuations of displacement field caused by a periodic structure of the shells. Note that
we deal with long waves if condition λ/L << 1 holds, where λ is the characteristic length dimension of
the cell and Lis the wavelength. These micro-dynamic problems will be analysed in the framework of the

combined asymptotic-tolerance model proposed in [8]. Governing equations of this averaged model have
constant coefficients depending also on a microstructure size. An important advantage of this model is that
it makes it possible to separate the macroscopic description of the modelling problem from its microscopic
description. It will be shown that the periodic micro-heterogeneity of the shells leads to vibrations depending
on a cell size and to exponential waves as well as to dispersion effects, which cannot be analysed in the
framework of the asymptotic models commonly used for investigations of vibrations and wave propagation
in the periodic shells under consideration. The new wave propagation speed depending on a cell size will be
obtained and analysed.

It should be noted that this article is a certain continuation of papers by Tomczyk and Szczerba [16–18]
and by Tomczyk and Litawska [10,11], in which some special dynamic problems for thin functionally graded
cylindrical shells [16–18] and for shells with two-directional periodic structure in directions tangent to the shell
midsurface (biperiodic shells) [10,11] are analysed by applying the tolerance modelling technique. Note that
in the non-asymptotic-tolerance approach, shells with one-directional periodic structure (uniperiodic shells)
being objects of consideration in this work are not special cases of biperiodic shells. Model equations for
uniperiodic shells are more complicated than those for biperiodic shells and contain a lot of length-scale terms
which do not have counterparts in the equations for biperiodic shells. The occurrence of these terms is strictly
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related to the fact that the modelling physical reliability conditions for uniperiodic shells are less restrictive

than those for biperiodic shells.
The periodic shells being objects of considerations in this paper are widely applied in civil engineering,

most often as roof girders and bridge girders. They are also widely used as housings of reactors and tanks.
Periodic shells having small length dimensions are elements of air-planes, ships and machines.

2 Formulation of the problem: starting equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M in circumferential and axial
directions, respectively. We denote x ≡ x1 ∈ � ≡ (0, L1) and ξ ≡ x2 ∈ � ≡ (0, L2), where L1, L2
are length dimensions of M,cf. Figs. 1 and 2. Let Ox̄1 x̄2 x̄3 stand for a Cartesian orthogonal coordinate
system in the physical space R3 and denote x̄ ≡ (x̄1, x̄2, x̄3). A cylindrical shell midsurface M is given by
M ≡

{

x̄ ∈ R3 : x̄ = r̄
(

x1, x2
)

,
(

x1, x2
)

∈ � × �
}

, where r̄(·) is the smooth invertible function such that
∂ r̄/∂x1 · ∂ r̄/∂x2 = 0, ∂ r̄/∂x1 · ∂ r̄/∂x1 = 1, ∂ r̄/∂x2 · ∂ r̄/∂x2 = 1. It means that on M , the orthonormal
parametrization is introduced. Note that derivative ∂ r̄/∂xα, α = 1, 2, should be understood as differentiation
of each component of r̄, i.e. ∂ r̄/∂xα = [∂ r̄1/∂xα, ∂ r̄2/∂xα, ∂ r̄3/∂xα] for r̄ = [r̄1, r̄2, r̄3].

Sub- and superscripts α, β,… run over 1, 2 and are related to x1, x2, summation convention holds. Partial
differentiation related to xα is represented by ∂α, ∂α = ∂/∂xα. Moreover, it is denoted ∂α...δ ≡ ∂α . . . ∂δ.
Let aαβ and bαβ stand for the midsurface first and second metric tensors, respectively. Under orthonormal
parametrization introduced on M , aαβ is a unit tensor and components of tensor bαβ are: b22 = b12 = b21 = 0,
b11 = −r−1. The time coordinate is denoted by t ∈ I = [t0, t1]. Differentiation with respect to time is
represented by the overdot. Let d(x), r stand for the shell thickness and the midsurface curvature radius,
respectively.

The basic cell � and an arbitrary cell �(x) with the centre at point x ∈ �� are defined by means of:
� ≡ [−λ/2, λ/2], �(x) ≡ x +�, x ∈ ��, �� ≡ {x ∈ � : �(x) ⊂ �}, where λ is a cell length dimension
in x ≡ x1-direction. The microstructure length parameter λ satisfies conditions: λ/dmax >> 1, λ/r << 1
and λ/L1 << 1.

Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the cell � has a symmetry axis for z = 0. It is also assumed
that inside the cell the geometrical, elastic and inertial properties of the shell are described by even functions
of argument z.

Denote by uα = uα(x,ξ, t), w = w(x, ξ, t), (x, ξ, t) ∈ � × � × I, the shell displacements in directions
tangent and normal to M , respectively. Elastic properties of the shells are described by shell stiffness tensors
Dαβγδ(x), Bαβγδ(x). Let µ(x) stand for a shell mass density per midsurface unit area. The external forces
will be neglected.

The considerations are based on the well-known Kirchhoff–Love theory of thin elastic shells, cf. Kaliski
[19].

In the framework of the shell theory under consideration, strain energy function E(x, ξ, t), (x,ξ, t) ∈
� × � × I, related to midsurface Mhas the form

E =
1

2
(Dαβγδεαβεγδ + Bαβγδκαβκγδ), (1)

where the membrane εαβ(x, ξ, t) and curvature καβ(x, ξ, t) strain tensors are

εαβ =
1

2
(∂βuα + ∂αuβ) − bαβw, καβ = −∂αβw. (2)

The kinetic energy function K (x, ξ, t), (x, ξ, t) ∈ � × � × I, related to midsurface M is given by

K =
1

2
µ(u̇αu̇β aαβ + ẇẇ). (3)

Let us introduce the action functional

A(uα, w) =

L1
∫

0

L2
∫

0

t1
∫

t0

L(x, ξ, t, ∂βuα, u̇α, ∂αβw, w, ẇ)dtdξdx, (4)
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with lagrangian L being a highly oscillating function with respect to x . Here, under assumption that the external
forces are neglected, lagrangian L have the form

L = K − E, (5)

where kinetic energy K and strain energy Eare given above.
Substituting (1)–(3) into (5) and taking into account that b22 = b12 = b21 = 0 and b11 = −r−1, we arrive

at Lagrange function (5) in the form

L = − 1
2 (Dαβγδ∂βuα∂δuγ + 2r−1 Dαβ11w∂βuα + r−2 D1111ww

+ Bαβγδ∂αβw∂γδw − µaαβu̇αu̇β − µẇ2).
(6)

Under assumption that ∂L/∂(∂βuα) and ∂L/∂(∂αβw) are continuous, from the principle of stationary action
applied to A(uα, w), we obtain the system of Euler–Lagrange equations, which can be written in an explicit
form as

∂β(Dαβγδ∂δuγ) + r−1∂β(Dαβ11w) − µaαβüβ = 0,

r−1 Dαβ11∂βuα + ∂αβ(Bαβγδ∂γδw) + r−2 D1111w + µẅ = 0.
(7)

Equations (7) coincide with the well-known governing equations of Kirchhoff–Love theory of thin elastic
shells, cf. Kaliski [19]. For periodic shells, coefficients Dαβγδ(x), Bαβγδ(x), µ(x) of (6) and (7) are highly
oscillating, non-continuous and periodic functions in x . Applying the combined asymptotic-tolerance mod-

elling technique, the averaged model equations with constant coefficients depending also on a cell size were
derived in [8]. The combined modelling given in the general form in Woźniak et al. [7] includes both the

asymptotic and the tolerance non-asymptotic modelling techniques, which are conjugated with themselves
under special conditions. Contrary to the starting exact shell equations with highly oscillating, non-continuous
and periodic coefficients, governing equations of the combined model have constant coefficients depending also
on a cell size. Hence, this model takes into account the effect of a microstructure size on the dynamic behaviour
of the shells (the length-scale effect). Here, the combined model equations formulated in [8] will be used for
investigations of two special micro-dynamic problems for cylindrical shell having constant thickness and made
of two component linearly elastic isotropic materials periodically distributed in circumferential direction as
shown in Fig. 2. The first of these problems deals with cell-depending micro-vibrations caused by a periodic
structure of the shell. The second one deals with propagation of the long waves related to micro-fluctuations
of axial displacements.

It has to be emphasized that these aforementioned special micro-dynamic problems can be studied in the
framework of neither the asymptotic models nor the known commercial numerical models based on the finite
element method.

To make the analysis more clear, in the next section the asymptotic-tolerance model for the shells under
consideration will be reminded, following [8]. Moreover, the basic concepts and assumptions of the tolerance
modelling technique and of the consistent asymptotic approach will be outlined, following [7,8].

3 Modelling procedure: asymptotic-tolerance model

The combined modelling technique under consideration is realized in two steps. The first step is based on
the consistent asymptotic modelling procedure [7,8]. The second one is realized by means ofthe tolerance

non-asymptotic modelling technique [7,8].

3.1 Step 1. Consistent asymptotic modelling

The fundamental concepts of the consistent asymptotic procedure are those of an averaging operation and
fluctuation shape functions. In what follows, the above-mentioned concepts will be specified with respect to
one-dimensional region � ≡ (0, L1) defined in this contribution.

Let f (x) be a function defined in �̄ ≡ [0, L1], which is integrable and bounded in every cell �(x), x ∈ ��.
The averaging operation of f (·) is defined by

< f > (x) ≡
1

|�|

∫

�(x)

f (z)dz, z ∈ �(x), x ∈ ��. (8)
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It can be seen that if f (·) is �-periodic, then < f > is constant.
Denote by ∂k

1 the kth derivative of function defined in �. Let h(x) be a λ-periodic, highly oscillating
function defined in �̄ = [0, L1], which is continuous together with derivatives ∂k

1 h, k = 1, . . . , R − 1, and
has a continuous or piecewise continuous bounded derivative ∂ R

1 h. Function h(·) will be called the fluctuation

shape function of the Rth kind, h(·) ∈ F SR(�, �), if it satisfies conditions: h ∈ O(λR), ∂k
1 h ∈ O(λR−k), k =

1, 2, . . . , R, < µh >= 0, whereµ(x) is a shell mass density. Nonnegative integer R is assumed to be specified
in every problem under consideration.

The first step of the combined modelling is based on the consistent asymptotic averaging of lagrangian (6).
To this end, we shall restrict considerations to displacement fields uα = uα(z, ξ, t), w = w(z, ξ, t) defined
in �(x)×�× I , z ≡ z1 ∈ �(x), x ∈ ��, (ξ, t) ∈ �× I . Then, we replace uα(z, ξ, t), w(z,ξ, t) by families
of displacements uεα(z, ξ, t) ≡ uα(z/ε,ξ, t), wε(z,ξ, t) ≡ w(z/ε, ξ, t), where ε = 1/m, m = 1, 2, . . . , (ε
is a small parameter), z ∈ �ε(x), �ε ≡ (−ελ/2, ελ/2) (scaled cell), �ε(x) ≡ x + �ε, x ∈ ��ε (scaled

cell with a centre at x ∈ ��ε).
We introduce the consistent asymptotic decomposition of families of displacements uεα(z, ξ, t),

wε(z, ξ, t), (z, ξ, t) ∈ �ε × � × I

uεα(z, ξ, t) ≡ uα(z/ε, ξ, t) = u0
α(z, ξ, t) + εhε(z)Uα(z, ξ, t),

wε(z, ξ, t) ≡ w(z/ε, ξ, t) = w0(z, ξ, t) + ε2gε(z)W (z, ξ, t).
(9)

Unknown functions u0
α, Uα in (9) are assumed to be continuous and bounded in � together with their first

derivatives. Unknown functions w0, W in (9) are assumed to be continuous and bounded in � together with
their derivatives up to the second order. Unknowns u0

α, w0and U
,
αW are called macrodisplacements and

fluctuation amplitudes, respectively. They are independent of ε. This is the main difference between the
asymptotic approach under consideration and approach which is used in the known homogenization theory,
cf. Bensoussan et al. [20], Jikov et al. [21].

By hε(z) ≡ h(z/ε) ∈ F S1(�, �) and gε(z) ≡ g(z/ε) ∈ F S2(�, �) in (9) are denoted λ-periodic highly
oscillating fluctuation shape functions depending on ε. The fluctuation shape functions are assumed to be
known in every problem under consideration. They have to satisfy conditions: hε ∈ O(ελ), λ∂1hε ∈ O(ελ),
gε ∈ O((ελ)2), λ∂1gε ∈ O((ελ)2), λ2∂11gε ∈ O((ελ)2), < µhε >=< µgε > 0. It has to be emphasized
that ∂1hε(z) ≡ 1

ε
∂1h(z/ε), ∂1gε(z) ≡ 1

ε
∂1g(z/ε), ∂11gε(z) ≡ 1

ε2 ∂11g(z/ε).

We substitute the right-hand sides of (9) into (6) and take into account that under limit passage ε → 0,
terms depending on ε can be neglected and every continuous and bounded function of argument z ∈ �ε(x)

tends to function of argument x ∈ �̄. Moreover, if ε → 0 then by means of a property of the mean value, cf.
[21], the obtained result tends weakly to the function being the averaged form of starting lagrangian (6) under

consistent asymptotic decomposition (9). Then, applying the principle of stationary action we obtaingoverning
equations of the consistent asymptotic model for the unperiodic shells under consideration. These equations
consist of partial differential equations for macrodisplacements u0

α, w0 coupled with linear algebraic equations
for fluctuation amplitudes Uα, W . After eliminating fluctuation amplitudes from the governing equations by
means of

Uγ = −(G−1)γη [< ∂1h D1ηµϑ > ∂ϑu0
µ + r−1 < ∂1h D1η11 > w0],

W = −E−1 < ∂11gB11γδ > ∂γδw0,
(10)

where Gαγ =< Dα1γ1(∂1h)2 >, E =< B1111(∂11g)2 >, we arrive finally at the asymptotic model equations

expressed only in macrodisplacements u0
α, w0

D
αβγδ
h ∂βδu0

γ + r−1 D
αβ11
h ∂βw0− < µ > aαβü0

β = 0,

B
αβγδ
g ∂αβγδw0 + r−1 D

11γδ
h ∂δu0

γ + r−2 D1111
h w0+ < µ > ẅ0 = 0,

(11)

where

D
αβγδ
h ≡< Dαβγδ > − < Dαβη1 ∂1h > (G−1)ηζ < ∂1h D1ζγδ >,

B
αβγδ
g ≡< Bαβγδ > − < Bαβ11∂11g > E−1 < ∂11gB11γδ >.

(12)
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Since displacement fields uα(x, ξ, t), w(x, ξ, t) have to be uniquely defined in � × � × I, we conclude that
uα(x,ξ, t), w(x,ξ, t) have to take the form

uα(x, ξ, t) = u0
α(x, ξ, t) + h(x)Uα(x,ξ, t),

w(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t), (x, ξ, t) ∈ � × � × I,
(13)

with Uα, W given by (10). Tensors D
αβγδ
h , B

αβγδ
g given by (12) are tensors of effective elastic moduli for

the considered composite uniperiodic shells.
In contrast to starting equations (7) with discontinuous, highly oscillating and periodic coefficients, the

asymptotic model equations (11) have coefficients constant but independent of the microstructure size λ. Hence,

the above model is not able to describe the length-scale effect on the overall shell dynamics. That is why, the
model derived in the first step of combined modelling is referred to as the macroscopic model for the problem
under consideration.

Unknown macrodisplacements u0
α, w0 and fluctuation amplitudes Uα, W must be continuously bounded

in �.
The resulting equations (11) are uniquely determined by the postulated a priori periodic fluctuations shape

functions, h(x) ∈ F S1(�, �), h ∈ O(λ), and g(x) ∈ F S2(�, �), g ∈ O(λ2), representing oscillations
inside a cell. These functions can be derived from the periodic discretization of the cell using, for example, the
finite element method or obtained as exact or approximate solutions to certain periodic eigenvalue problems
on the cell describing free periodic vibrations. If the fluctuation shape functions are not derived as solutions
to periodic eigenvalue cell problems mentioned above, then the effective moduli (12) of the shell are obtained

without specification of the periodic cell problems. This situation is different from that occurring in the known
asymptotic homogenization approach, cf., e.g. [20], where only solutions to the periodic cell problems make

it possible to define the effective moduli of the structure under consideration.
In the first step of combined modelling, it is assumed that within the asymptotic model, solutions u0

α, w0

to the problem under consideration are known. Hence, there are also known functions

u0α(x, ξ, t) = u0
α(x, ξ, t) + h(x)Uα(x, ξ, t),

w0(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t),

x ∈ �, (ξ, t) ∈ � × I,
(14)

where Uα, W are given by means of (10).

3.2 Step 2. Tolerance modelling

The second step of the combined modelling is based on the tolerance modelling technique, cf [7,8].
The fundamental concepts of the tolerance modelling procedure under consideration are those of two

tolerance relations between points and real numbers determined by tolerance parameters, slowly varying

functions, tolerance-periodic functions, fluctuation shape functions and the averaging operation.
In what follows, some of the above-mentioned concepts and assumptions will be specified with respect to

one-dimensional region � ≡ (0, L1) defined in this contribution.
Let F(x) be a function defined in �̄ = [0, L1], which is continuous, bounded and differentiable in �̄

together with their derivatives up to the Rth order. Note that function Fcan also depend on ξ ∈ �̄ = [0, L2]
and time coordinate t as parameters. Let δ ≡ (λ, δ0, δ1, . . . , δR) be the set of tolerance parameters. The first of
them is related to the distances between points in �, the second one is related to the distances between values
of function F(·) and the kth one to the distances between values of the kth derivative of F(·), k = 1, . . . , R.
A function F(·) is called slowly varying of the Rth kind with respect to cell � and tolerance parameters δ,
F ∈ SV R

δ (�, �), if and only if the following two conditions are satisfied

(∀(x, y) ∈ �2)[(x
λ
≈ y) ⇒ F(x)

δ0
≈ F(y) and ∂k

1 F(x)
δk
≈ ∂k

1 F(y), k = 1, 2, . . . , R], (15)

(∀x ∈ �)[λ

∣

∣

∣
∂k

1 F(x)

∣

∣

∣

δk
≈ 0, k = 1, 2, . . . , R], (16)

where symbols “
λ
≈” and “

δ0
≈”, “

δk
≈” denote tolerance relations.
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Roughly speaking, from (15) and (16) it follows that slowly varying function F(·) can be treated as
constant on an arbitrary cell and that the products of derivatives of slowly varying function in periodicity

direction andmicrostructure length parameter λ are treated as negligibly small.
An integrable and bounded function f (x) defined in �̄ = [0, L1], which can also depend on ξ ∈ �̄ and

time coordinate t as parameters, is called tolerance-periodic with respect to cell � and tolerance parameters
δ ≡ (λ, δ0),if for every x ∈ �� there exist �-periodic function f̃ (·) such that f |�(x) ∩ Dom f and

f̃

∣

∣

∣
�(x) ∩ Dom f̃ are indiscernible in tolerance determined by δ ≡ (λ, δ0). Function f̃ is a �-periodic

approximation of f in �(x). For function f (·) being tolerance-periodic together with its derivatives up to the
Rth order, we shall write f ∈ T P R

δ (�, �), δ ≡ (λ, δ0, δ1, . . . , δR).
The concepts of fluctuation shape functions and averaging operation have been explained in Sect. 3.1.
The tolerance modelling is based on two assumptions. The first assumption is called the tolerance averaging

approximation. The second one is termed the micro-macro decomposition.
Let f (·) be an integrable periodic function defined in �̄ = [0, L1] and let F(·) ∈ SV 1

δ (�, �), G(·) ∈

SV 2
δ (�, �), h(·) ∈ F S1(�, �), g(·) ∈ F S2(�, �). The tolerance averaging approximation has the form

< f ∂ R
1 F > (x) =< f > ∂ R

1 F(x) + O(δ), R = 0, 1, ∂0
1 F ≡ F,

< f ∂ R
1 G > (x) =< f > ∂ R

1 G(x) + O(δ), R = 0, 1, 2, ∂0
1 G ≡ G,

(17)

and

< f ∂1(hF) > (x) =< f ∂1h > F(x) + O(δ),

< f ∂1(gG) > (x) =< f ∂1g > G(x) + O(δ),

< f ∂2
1 (gG) > (x) =< f ∂2

1 g > G(x) + O(δ),

(18)

In the course of modelling, terms O(δ) in (17) and (18) are neglected. Let us observe that the slowly varying
functions can be regarded as invariant under averaging.

Approximations given above are applied in the modelling problems discussed in this contribution. For
details, the reader is referred to [5–8].

The second fundamental assumption, called the micro-macro decomposition, states that the displacements
fields occurring in the starting lagrangian under consideration can be decomposed into unknown averaged

(macroscopic) displacements being slowly varying functions in x ∈ � and highly oscillating fluctuations repre-
sented by the known highly oscillating λ-periodicfluctuation shape functions multiplied by unknownfluctuation

amplitudes (microscopic variables) slowly varying in x .
In the second step of combined modelling, we introduce the extra micro-macro decomposition superim-

posed on the known solutions u0α, w0 obtained within the macroscopic model.

ucα(x, ξ, t) = u0α(x, ξ, t) + c(x)Qα(x,ξ, t),

wb(x, ξ, t) = w0(x, ξ, t) + b(x)V (x, ξ, t),
(19)

where fluctuation (microscopic) amplitudes Qα, V are the new slowly varying unknowns, i.e. Qα ∈
SV 1

δ (�, �), V ∈ SV 2
δ (�, �). Functions c(x) ∈ F S1(�, �) and b(x) ∈ F S2(�, �) are the new peri-

odic, continuous and highly oscillatingfluctuation shape functions which are assumed to be known in every
problem under consideration. These functions have to satisfy conditions: c ∈ O(λ), λ∂1c ∈ O(λ), b ∈ O(λ2),
λ∂1b ∈ O(λ2), λ2∂11b ∈ O(λ2), < µc >=< µb >= 0, where µ(x) is the shell mass density.

We substitute the right-hand sides of (19) into (6). The resulting lagrangian is denoted by Lcb. Then, we
average Lcb over cell � using averaging formula (8) and applying the tolerance averaging approximation (17),
(18). As a result, we obtain function < Lcb > called the tolerance averaging of starting lagrangian (6) in

� under superimposed decomposition (19). Next, applying the principle of stationary action, under the extra
approximation 1 + λ/r ≈ 1, we arrive at the system of Euler–Lagrange equations for Qα, V , which can be
written in an explicit form as

< Dα22δ(c)2 >∂22 Qδ− < Dα11δ(∂1c)2 > Qδ − < µ(c)2 >aαβ Q̈β

= r−1 < Dα111∂1cw0 > + < Dαβγ1∂1c∂βu0γ >, (20)

< B2222(b)2 >∂2222V + [2 < B1122b∂11b > − 4< B1212(∂1b)2 >]∂22V

+ < B1111(∂11b)2 > V + < µ(b)2 >V̈ = − < Bαβ11∂11b∂αβw0 >, (21)
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Equations (20) and (21) together with the micro-macro decomposition (19) constitute the superimposed micro-

scopic model. Coefficients of the derived model equations are constant, and some of them depend on a cell

size λ (the underlined terms). The right-hand sides of (20) and (21) are known under assumption that u0α, w0
were determined in the first step of modelling. The basic unknowns Qα, V of the model equations must be the

slowly varying functions in periodicity directions. This requirement can be verified only a posteriori, and it
determines the range of the physical applicability of the model. The boundary conditions for Qα, V should
be defined only on boundaries ξ = 0, ξ = L2.

It can be shown that under assumption that fluctuation shape functions h(x), g(x) of macroscopic model
coincide with fluctuation shape functions c(x), b(x) of microscopic model, we can obtain microscopic model
equations (20), (21), in which c(x) and b(x) are replaced by h(x) and g(x), respectively, and in which the
right-hand sides are equal to zero. Moreover, taking into account a symmetric form of tensor Dαβγδ we arrive
finally at three equations for unknown fluctuation amplitudes Q1(x, ξ, t), Q2(x, ξ, t) and V (x, ξ, t), which
are not conjugated with themselves

< D1221(h)2 >∂22 Q1− < D1111(∂1h)2 > Q1 − < µ(h)2 >Q̈1 = 0, (22)

< D2222(h)2 >∂22 Q2− < D2112(∂1h)2 > Q2 − < µ(h)2 >Q̈2 = 0, (23)

< B2222(g)2 >∂2222V + [2 < B1122g∂11g > − 4< B1212(∂1g)2 >]∂22V

+ < B1111(∂11g)2 > V + < µ(g)2 >V̈ = 0. (24)

Equations (22)–(24) are independent of the solutions u0α, w0obtained in the framework of the macroscopic
model. Hence, they describe selected problems of the shell micro-dynamics (e.g. the free micro-vibrations,
propagation of waves related to the micro-fluctuation amplitudes) independently of the shell macro-dynamics.
Moreover, micro-dynamic behaviour of the shell in the axial and circumferential directions can be analysed
independently of its micro-dynamic behaviour in the direction normal to the shell midsurface.

Microscopic model equations (22)–(24) also describe certain time-boundary and space-boundary phenom-

ena strictly related to the specific form of initial and boundary conditions imposed on unknown fluctuation
amplitudes Qα, V . That is why, these equations are referred to as the boundary layer equations, where the
term “boundary” is related both to time and space.

Since equations (22)–(24) are not conjugated with themselves, the micro-dynamic behaviour of the shells
in the axial, circumferential and normal directions can be investigated independently of each other.

3.3 Combined asymptotic-tolerance model

Summarizing results obtained in Sects. 3.1 and 3.2, we conclude that the combined asymptotic-tolerance model

of selected dynamic problems for the uniperiodic shells under consideration presented here following Tomczyk
[8] is represented by:

(a) Macroscopic model defined by Eq. (11) for u0
α, w0 with expressions (10) for Uα, W , formulated by means

of the consistent asymptotic modelling and being independent of the microstructure length. Unknowns of
this model must be continuous and bounded functions in x . It is assumed that in the framework of this
model, the solutions (14) to the problem under consideration are known.

(b) Superimposed microscopic model equations (20), (21) derived by means ofthe tolerance (non-asymptotic)
modelling and having constant coefficients depending also on a cell size λ (underlined terms). Microscopic
model equations (20), (21) are coupled with the macroscopic model equations (11) by means of the known
solutions (14) obtained in the framework of the asymptotic model. Unknown fluctuation amplitudes Qα, V

of the tolerance model must be slowly varying functions in x .
(c) Decomposition

uα(x, ξ, t) = u0
α(x, ξ, t) + h(x)Uα(x, ξ, t) + c(x)Qα(x, ξ, t),

w(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t) + b(x)V (x, ξ, t),

x ∈ �, (ξ, t) ∈ � × I,
(25)

where functions u0
α, Uα, w0, W have to be obtained in the first step of combined modelling, i.e. in the

framework of the consistent asymptotic modelling.
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Coefficients of all equations derived in the framework of combined modelling are constant in contrast to
coefficients in starting Eq. (7) which are discontinuous, highly oscillating and periodic in x . Moreover, some
of them depend on a cell size λ. Thus, the combined model can be applied to the analysis of many phenomena

caused by the length-scale effect.
Under special conditions imposed on the fluctuation shape functions, we can obtain microscopic model

equations (22)–(24), which are independent of the solutions obtained in the framework of the macroscopic
model. It means that an important advantage of the combined model is that it makes it possible to separate

the macroscopic description of some special dynamic problems from the microscopic description of these

problems.

For details, the reader is referred to Tomczyk [8].
It should be noted that the combined asymptotic-tolerance model of dynamic problems for cylindrical shells

with periodic structure in both circumferential and axial directions (biperiodic shells) proposed in Tomczyk and
Litawska [11] cannot be applied for analysis of dynamic problems for uniperiodic shells considered here. Model
presented in [11] is derived in the framework of the extended version of the tolerance modelling technique
based on a new notion of weakly slowly varying function, cf. Tomczyk and Woźniak [12]. For this function,
restrictive condition (16) and approximations (18) do not hold. Moreover, in the non-asymptotic-tolerance
approach, the uniperiodic shells are not special cases of shells with two-directional periodic structure.

It should be also noted that the combined asymptotic-tolerance models for functionally graded cylindrical
shells are presented by Tomczyk and Szczerba in [17,18]. Coefficients of governing equations of these models
are not constant. They are smooth and slowly varying either in circumferential direction [17] or in the axial
one [18].

Some applications of micro-dynamic Eqs. (22)–(24) will be shown in the next section.

4 Examples of applications

In this section, we shall investigate two special micro-dynamic problems applying Eqs. (22)–(24). The first
of them deals with free cell-depending micro-vibrations. The second one deals with propagation of the waves
related to micro-fluctuations of axial displacements.

It has to be emphasized that these aforementioned special micro-dynamic problems can be studied in the
framework of neither the asymptotic models nor the known commercial numerical models for the periodic
shells under consideration.

4.1 Formulation of the problem

The object of considerations is a thin cylindrical shell with L1, L2, r , d as its circumferential length, axial length,
midsurface curvature radius and constant thickness, respectively. The shell has a periodically heterogeneous
structure along circumferential direction and constant structure in the axial direction. It is assumed that the
shell is made of two homogeneous elastic isotropic materials, which are perfectly bonded on interfaces, cf.
Fig. 2. The free micro-vibration problem will be studied for an open simply supported shell, i.e. for a shell
with hinged edges and with supports free to move, cf. [19]. The wave propagation problem will be investigated
for a closed shell (obviously, in this case L1 = 2πr). Moreover, we assume that L2 ≥ L1.

The shell’s mass density per midsurface unit area µ(x) and stiffness tensors Dαβγδ(x), Bαβγδ(x) are
described by functions λ-periodic in x and independent of ξ.

The basic cell � is defined by: � ≡ [−λ/2, λ/2], where λ is a cell length dimension in x ≡ x1-
direction, cf. Figs. 2 and 3. We recall that the microstructure length parameter λ has to satisfy conditions:
λ/d >> 1, λ/r << 1 and λ/L1 << 1. Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the cell has
a symmetry axis for z = 0. Inside the cell, the geometrical, elastic and inertial properties of the shell are
described by symmetric (i.e. even) functions of argument z.

Properties of the component materials are described by: Young’s moduli E1, E2, Poisson’s ratios ν1, ν2
and mass densities ρ1, ρ2, cf. Fig. 3. It is assumed that elastic E(·) and inertial ρ(·) properties of the composite
shell are periodic functions in x , but Poisson’s ratio ν ≡ ν1 = ν2 is constant. Inside the cell, functions E(z),
ρ(z) take the form

E(z), ρ(z) =

{

E1, ρ1 f or z ∈ (−ηλ/2,ηλ/2),

E2, ρ2 f or z = [−λ/2,−ηλ/2] ∪ [ηλ/2, λ/2],
(26)
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Fig. 3 Basic cell � ≡ [−λ/2, λ/2] of the uniperiodic shell

where η ∈ [0, 1] is a parameter describing distribution of material properties in the cell, cf. Fig. 3.
Inside the cell, the rigidities Dαβγδ(z), Bαβγδ(z), z ∈ �, of the shell are described by: Dαβγδ(z) =

D(z)Hαβγδ, Bαβγδ(z) = B(z)Hαβγδ, where D(z) = E(z)d/(1 − ν2), B(z) = E(z)d3/(12(1 − ν2)) and
the nonzero components of tensor Hαβγδ are: H1111 = H2222 = 1, H1122 = H2211 = ν, H1212 = H1221 =
H2121 = H2112 = (1 − ν)/2. The shell mass density per midsurface unit area is given by µ(z) = ρ(z)d .

The fluctuation shape functions h(z) ∈ F S1(�, �), g(z) ∈ F S2(�, �) describe the expected form of
displacement disturbances caused by a periodic structure of the shell. It means that they should approximate the
expected principal modes of the shell’s free vibrations. These modes have to beλ-periodic, and their mean values
in every cell must be equal to zero. On the basis of knowledge of the physically reasonable approximations of
principal modes of free vibrations in thin Kirchhoff–Love-type periodic cylindrical shells, cf. Tomczyk [8], and
also in thin Kirchhoff-type periodic plates, cf. Jędrysiak [22], in the problem under consideration the fluctuation
shape functions can be taken as: h(z) = λ sin(2πz/λ), g(z) = λ2[cos(2πz/λ) +

⌢
c], z ∈ �(x), x ∈ �, where

constant
⌢
c, calculated from condition < µg >= 0, is equal to

⌢
c = −(ρ1 −ρ2) sin(ηπ)[π(ηρ1 +(1−η)ρ2)]

−1.
The subsequent analysis will be based on Eqs. (22)–(24) describing the shell micro-dynamics.

4.2 Micro-vibrations

The cell-depending free micro-vibration frequencies of an open simply supported cylindrical shell described in
the previous subsection will be determined and discussed. Micro-dynamic equations (22)–(24) will be applied.

Solutions to Eqs. (22)–(24) satisfying boundary conditions for the shell simply supported on edges x = 0,
x = L1, ξ = 0, ξ = L2, i.e. conditions [19]

∂1 Q1(x = 0, ξ, t) = Q2(x = 0,ξ, t) = V (x = 0, ξ, t) = ∂11V (x = 0,ξ, t) = 0,

∂1 Q1(x = L1, ξ, t) = Q2(x = L1, ξ, t) = V (x = L1, ξ, t) = ∂11V (x = L1, ξ, t) = 0,

Q1(x, ξ = 0, t) = ∂2 Q2(x, ξ = 0, t) = V (x, ξ = 0, t) = ∂22V (x, ξ = 0, t) = 0,

Q1(x, ξ = L2, t) = ∂2 Q2(x, ξ = L2, t) = V (x, ξ = L2, t) = ∂22V (x, ξ = L2, t) = 0,

can be assumed in the form

Q1(x, ξ, t) = A cos(πx/L1) sin(πξ/L2) cos(ω̄t), (27)

Q2(x,ξ, t) = B sin(πx/L1) cos(πξ/L2) cos(
⌣
ωt), (28)

V (x, ξ, t) = C sin(πx/L1) sin(πξ/L2) cos(ωt), (29)

where A �= 0, B �= 0, C �= 0 are micro-vibration amplitudes being arbitrary constants, π/L1 and π/L2

are wave numbers and ω̄,
⌣
ω, ω are frequencies of free micro-vibrations along x−and ξ-coordinates and in

direction normal to the shell midsurface, respectively.
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Substituting the right-hand sides of (27), (28) and (29) into Eqs. (22), (23) and (24), respectively, and
setting h̄(z) = λ−1h(z),

⌣
g(z) = λ−1g(z), ḡ(z) = λ−2g(z), under extra denotations

d̄ ≡< D1111(∂1h)2 >, ē ≡ < D1212(∂1h)2 >,

k̄ ≡ π2(L2)
−2 < D1212(h̄)2 >,

l̄ ≡ π2(L2)
−2 < D2222(h̄)2 >,

ã ≡ 2π2(L2)
−2(< B1122 ḡ∂11g > −2 < B1212(∂1g̃)2 >),

d̃ ≡< B1111(∂11g)2 >,

ẽ ≡ π4(L2)
−4 < B2222(ḡ)2 >,

µ̄ ≡ < µ(h̄)2 >, µ̃ ≡< µ(ḡ)2 >,

(30)

we arrive at the following formulae for

• free micro-vibration frequency ω̄ in circumferential direction

(ω̄)2 =
k̄

µ̄
+

d̄

λ2µ̄
, (31)

• free micro-vibration frequency
⌣
ω in axial direction

(
⌣
ω)2 =

l̄

µ̄
+

ē

λ2µ̄
. (32)

• transversal free micro-vibration frequency ω

ω2 =
ẽ

µ̃
−

ã

λ2µ̃
+

d̃

λ4µ̃
. (33)

The free micro-vibration frequencies given by (31)–(33) depend on microstructure length parameter λ.

4.2.1 Numerical results

Let us define the following dimensionless free micro-vibration frequencies

(�̄)2 ≡ (1 − ν2)ρ1(L1)
2(E1)

−1(ω̄)2,

(
⌣

�)2 ≡ (1 − ν2)ρ1(L1)
2(E1)

−1(
⌣
ω)2,

�2 ≡ (1 − ν2)ρ1(L1)
2(E1)

−1(ω)2,

(34)

where frequencies ω̄,
⌣
ω, ω are determined by formulae (31)–(33), respectively.

The subsequent calculations will be made for η = 0.5, Poisson’s ratio ν = 0.3, for fixed ratios L2/L1 = 2,
d/λ = 0.1 and for various ratios ε ≡ λ/L1 ∈ [0.05, 0.1], κ ≡ E2/E1 ∈ [0.01, 1], φ ≡ ρ2/ρ1 ∈ [0.01, 1].

In Figs. 4, 6 and 8, there are presented diagrams of dimensionless free micro-vibration frequencies given
by (34) versus dimensionless microstructure length parameter ε ≡ λ/L1 ∈ [0.05, 0.1]. These diagrams are
made for three pairs of ratios: (κ = 0.9, φ = 0.1), (κ = 0.5, φ = 0.5), (κ = 0.1, φ = 0.9).

In Figs. 5a, 7a, 9a, the diagrams of dimensionless frequencies (34) versus ratio κ ≡ E2/E1 ∈ [0.01, 1] are
presented. These plots are made for φ = 0.1, φ = 0.5, φ = 0.9 and for ε = 0.1.

In Figs. 5b, 7b, 9b, the plots of dimensionless frequencies (34) versus ratio φ ≡ ρ2/ρ1 ∈ [0.01, 1] are
shown. These plots are made for κ = 0.1, κ = 0.5, κ = 0.9 and for ε = 0.1.

4.2.2 Discussion of computational results

On the basis of results shown in Figs. 4, 5, 6, 7, 8 and 9, the following conclusions can be formulated:

1. Values of the dimensionless frequencies decrease with the increasing of ratio λ/L1, i.e. with the decreasing
of differences between period length λ and the length dimension L1 of the shell midsurface in periodicity
direction, cf. Figs. 4, 6, 8.
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Fig. 4 Diagrams of dimensionless frequencies �̄ of free micro-vibrations in circumferential direction versus dimensionless
microstructure length parameter ε ≡ λ/L1; φ ≡ ρ2/ρ1, κ ≡ E2/E1

Fig. 5 Diagrams of dimensionless frequencies �̄ of free micro-vibrations in circumferential direction versus: a ratio E2/E1 and
b ratio ρ2/ρ1; λ/L1 = 0.1

2. Values of dimensionless free micro-vibration frequencies increase with the increasing of ratio E2/E1 ∈
[0.01, 1], i.e. with the decreasing of differences between elastic properties of the shell component materials,
cf. Figs. 5a, 7a, 9a, but they decrease with the increasing of ratio ρ2/ρ1 ∈ [0.01, 1], i.e. with the decreasing
of differences between inertial properties of the component materials, cf. Figs. 5b, 7b, 9b.

3. The highest values of frequencies �̄, cf. Fig. 5,
⌣

�, cf. Fig. 7, �, cf. Fig. 9, are obtained for pair of ratios
(E2/E1 = 1, ρ2/ρ1 = 0.01), i.e. for a periodic shell with a very strong inertial heterogeneity and with
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Fig. 6 Diagrams of dimensionless frequencies
⌣

� of free micro-vibrations in axial direction versus dimensionless microstructure
length parameter ε ≡ λ/L1; φ ≡ ρ2/ρ1, κ ≡ E2/E1

Fig. 7 Diagrams of dimensionless frequencies
⌣

� of free micro-vibrations in axial direction versus: a ratio E2/E1 and b ratio
ρ2/ρ1; λ/L1 = 0.1

elastic homogeneous structure. The smallest values of these frequencies are obtained for pair of ratios
(E2/E1 = 0.01, ρ2/ρ1 = 1), i.e. for a periodic shell with a very strong elastic heterogeneity and with
inertial homogeneous structure.
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Fig. 8 Diagrams of dimensionless frequencies � of transversal free micro-vibrations versus dimensionless microstructure length
parameter ε ≡ λ/L1; φ ≡ ρ2/ρ1, κ ≡ E2/E1

Fig. 9 Diagrams of dimensionless frequencies � of transversal free micro-vibrations versus: a ratio E2/E1 and b ratio ρ2/ρ1;
λ/L1 = 0.1

4.3 Long wave propagation problem

Now, let the shell under consideration be closed and unbounded along the axial coordinate ξ. We shall analyse
the long wave propagation problem. We deal with long waves if condition λ/L << 1 holds, where λ is the
characteristic length dimension of the cell and L is the wavelength. The waves related to micro-fluctuation
amplitude Q2 are taken into account. Hence, Eq. (23) describing the shells’ micro-dynamics in an axial direction
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will be applied. Let the investigated problem be rotationally symmetric with a period λ/r ; thus, unknown
Q2(·, t) of (23) is independent of x . We look for solution to Eq. (23) in the form Q2(ξ, t) = F(ξ− ct), where
c is the wave propagation velocity. Setting h̄ = λ−1h, from Eq. (23) we obtain

(c2 − c̃2)∂22 F + c̄2λ−2 F = 0, (35)

where speeds c̃ and c̄ are defined by

c̃2 ≡
< D2222(h̄)2 >

< µ(h̄)2 >
, c̄2 ≡

< D2112(∂1h)2 > + < D2222(∂2h)2 >

< µ(h̄)2 >
. (36)

Equation (35) implies the following special cases of wave propagation in the uniperiodic shells under consid-
eration

(a) sinusoidal waves if c > c̃,
(b) exponential waves if c < c̃,
(c) degenerate case if c = c̃

The above effect cannot be analysed in the framework of asymptotic models.

In order to determine the dispersion relation for the case (a), let us substitute to Eq. (23) solution of the
form Q2(ξ, t) = A sin(k(ξ − ct)), k = 2π/L , where L ≡ L2 and k are the wavelength and the wave number,
respectively; A is an arbitrary constant. It is assumed that L2 > L1 = 2πr , and hence L >> λ. The nontrivial
solution (A �= 0) exists only if

[(kλ)2c2 − (kλ)2c̃2 − c̄2] = 0, (37)

where under assumption that L >> λ the following condition holds kλ = 2πλ/L << 1.
The above equation describes the effect of dispersion. It can be seen that for kλ → 0, the dispersion effect

disappears. From Eq. (37), it follows that the dispersive long waves related to micro-fluctuation amplitude
Q2(ξ, t) can propagate across the unbounded uniperiodic shells under consideration with propagation speed

c2 = c̃2 + c̄2(kλ)−2 (38)

depending on microstructure size λ. Note that for homogeneous isotropic shells, expression (38) leads to the
well-known results c2 = D/µ, D = Eδ/(1 − ν2), where E, ν, δ, µ are Young’s modulus, Poisson’s ratio, the
shell thickness and mass density of the shell material, respectively, cf. Kaliski [19].

4.3.1 Numerical results

Let us define the following dimensionless wave propagation speed

C2 ≡ ρ1(E1)
−1c2, (39)

where speed c is determined by formula (38).
The subsequent calculations will be made for parameter η = 0.05, 0.25, 0.5, where η is a parameter

describing distribution of material properties in the cell, for Poisson’s ratio ν = 0.3, for fixed ratio d/λ = 0.1
and for various ratios ε ≡ λ/L ∈ [0.0001, 0.01], κ ≡ E2/E1 ∈ [0.01, 1], φ ≡ ρ2/ρ1 ∈ [0.01, 1].

In Fig. 10, the diagrams of dimensionless wave propagation speed given by (39) versus dimensionless
microstructure length parameter ε ≡ λ/L ∈ [0.0001, 0.01] are presented. These diagrams are made for pair
of ratios: (κ = 0.01, φ = 0.01) and for η = 0.05, 0.25, 0.5.

In Fig. 11, the diagrams of dimensionless speed (39) versus ratio κ ≡ E2/E1 ∈ [0.01, 1] are presented.
These plots are made for ε = 0.01, η = 0.25 and φ = 0.01, 0.1, 0.5, 0.9, 1.

In Fig. 12, the plots of dimensionless speed (39) versus ratio φ ≡ ρ2/ρ1 ∈ [0.01, 1] are shown. These
plots are made for ε = 0.01, η = 0.25 and κ = 0.01, 0.1, 0.5, 0.9, 1.
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Fig. 10 Diagrams of dimensionless wave propagation speed C versus dimensionless microstructure length parameter ε ≡ λ/L;
E2/E1 = 0.01, ρ2/ρ1 = 0.01

Fig. 11 Diagrams of dimensionless wave propagation speed C versus ratio E2/E1; λ/L = 0.01, η = 0.25

4.3.2 Discussion of analytical and computational results

It was shown that the tolerance-periodic heterogeneity of the shells leads to exponential waves and to dispersion

effects, which cannot be analysed in the framework of the asymptotic models for periodic shells. Moreover,
the new wave propagation speed depending on the microstructure size has been obtained, cf. formula (38).

On the basis of results shown in Figs. 10, 11 and 12, the following conclusions can be formulated:
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Fig. 12 Diagrams of dimensionless wave propagation speed C versus ratio ρ2/ρ1; λ/L = 0.01, η = 0.25

1. Values of the dimensionless wave propagation velocity Cdecrease with the increasing of ratio λ/L , i.e.
with the decreasing of differences between period length λ and the wavelength L ≡ L2, cf. Fig. 10. The
strongest decrease in the dimensionless speed C takes place for ε ≡ λ/L ∈ [0.0001, 0.001].

2. Values of dimensionless speed C increase with the decrease in parameter η describing distribution of
material properties in the cell, i.e. with the decrease in the share of stronger material in the cell., cf. Fig. 10.

3. Values of dimensionless wave propagation velocity increase with the increasing of ratio E2/E1 ∈ [0.01, 1],
i.e. with the decreasing of differences between elastic properties of the shell component materials, cf.
Fig. 11, but they decrease with the increasing of ratio ρ2/ρ1 ∈ [0.01, 1], i.e. with the decreasing of
differences between inertial properties of the component materials, cf. Fig. 12.

4. The highest values of dimensionless speed C , cf. Figs. 11 and 12, are obtained for pair of ratios
(E2/E1 = 1, ρ2/ρ1 = 0.01), i.e. for a periodic shell with a very strong inertial heterogeneity and
with elastic homogeneous structure. The smallest values of this speed are obtained for pair of ratios
(E2/E1 = 0.01, ρ2/ρ1 = 1), i.e. for a periodic shell with a very strong elastic heterogeneity and with
inertial homogeneous structure.

5. For a homogeneous isotropic shell, expression (38) leads to result: c2 = E[(1−ν2)ρ]−1. For dimensionless
wave propagation speed C2

hom defined by: C2
hom ≡ ρ(E)−1c2, we obtain C2

hom = (1 −ν2)−1. For ν = 0.3,
the value of speed Chom is equal 1.05. Comparing this result with results shown in Figs. 11 and 12, we
conclude that in the unbounded homogeneous isotropic shell, the displacement wave propagates along
axial direction with speed which is much smaller, i.e. about 70 times smaller, than the smallest velocity
obtained for the periodic shell with a very strong elastic heterogeneity (E2/E1 = 0.01) and at the same
time with inertial homogeneous structure (ρ2/ρ1 = 1).

5 Final remarks and conclusions

The following remarks and conclusions can be formulated:

• Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells having a periodic microstructure in
circumferential direction (uniperiodic shells) are objects of consideration, cf. Figs. 1 and 2. At the same
time, the shells have constant geometrical and material properties in axial direction.

• The new averaged combined asymptotic-tolerance model for the analysis of selected dynamic problems for
the uniperiodic cylindrical shells under consideration was derived in Tomczyk [8]. Here, the governing
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equations of this model are recalled and applied for investigations of certain micro-dynamic problems for
the shells under consideration. The aforementioned model equations consist of macroscopic (asymptotic)
model equations (11) for macrodisplacements u0

α(x, ξ, t), w0(x, ξ, t), (x, ξ) ∈ � × �, t ∈ I, derived by
means of the consistent asymptotic procedure, cf. Woźniak et al. [7], and of microscopic tolerance (non-

asymptotic) model equations (20), (21) for fluctuation amplitudes Qα(x,ξ, t), V (x,ξ, t) formulated by
applying the tolerance modelling technique, cf. Woźniak et al. [7]. The tolerance modelling is based on the
concept of tolerance relations between points and real numbers related to the accuracy of the performed
measurements and calculations. The tolerance relations are determined by the tolerance parameters. Macro-
and microscopic models are combined together under assumption that in the framework of the asymptotic
model the solutions (14) to the problem under consideration are known. Contrary to the starting well-
known governing Eq. (7) of Kirchhoff–Love theory with highly oscillating, non-continuous and periodic
coefficients, equations of the asymptotic-tolerance model have constant coefficients depending also on a
microstructure size. Hence, this model allows us to describe the effect of a length scale on the dynamic
shell behaviour. The resulting combined model equations are uniquely determined by the highly oscillating
periodic fluctuation shape functions describing oscillations inside the cell. These functions have to be known
in every problem under consideration. Under special conditions imposed on the fluctuation shape functions,
we can derive microscopic equations (22)–(24), which are independent of solutions (14) obtained within the
macroscopic model. It means that an important advantage of this model is thatit makes it possible to separate
the macroscopic description of some special problems from their microscopic description. Moreover, Eqs.
(22)–(24) involve terms with time and spatial derivatives of fluctuation amplitudes. Hence, these equations
describe certain time-boundary-layer and space-boundary-layer phenomena strictly related to the specific
form of initial and boundary conditions imposed on the unknown fluctuation amplitudes.

• The main aim of this contribution was to apply micro-dynamic equations (22)–(24), proposed in [8] and
recalled here, to study two special micro-dynamic problems for a certain cylindrical shell made of two
homogeneous elastic isotropic component materials densely and periodically distributed in circumferential
direction, cf. Fig. 2. The first of these problems deals with cell-dependent micro-vibrations. The second
one deals with propagation of the long waves related to micro-fluctuations of axial displacements.

• The free micro-vibration frequencies have been determined, cf. Eqs. (31)–(33) and investigated. These
frequencies depend on a periodicity cell size. Hence, they cannot be obtained in the framework of the
asymptotic models commonly used for investigations of dynamics of periodic shells. The influence of
the shell elastic, inertial and geometrical properties on the free micro-vibration frequencies has been
analysed. From the numerical example, it follows that the free micro-vibration frequencies decrease with
the decreasing of differences between inertial properties of the component materials, i.e. with the increasing
of ratio ρ2/ρ1 ∈ [0.01, 1], cf. Figs. 5b, 7b, 9b, but they increase with the decreasing of differences between
elastic properties of the shell material components, i.e. with the increasing of ratio E2/E1 ∈ [0.01, 1], cf.
Figs. 5a, 7a, 9a. They also decrease with the decreasing of differences between the period length λ and the
length dimension L1 of the shell midsurface in periodicity direction, i.e. with the increasing of ratio λ/L1,
cf. Figs. 4, 6, 8.

• Some new important results have been obtained analysing the long wave propagation problem related to
micro-fluctuations in axial direction. We deal with long waves if condition λ/L << 1 holds, where λ is the
characteristic length dimension of the cell and L is the wavelength. It was shown that the tolerance-periodic

heterogeneity of the shells leads to exponential waves and to dispersion effects, which cannot be analysed

in the framework of the asymptotic models for periodic shells. Moreover, the new wave propagation
speed (38) depending on the microstructure size has been obtained and investigated. The influence of the
shell elastic, inertial and geometrical properties on this cell-dependent speed has been analysed. From
the numerical example, it follows that the values of the wave propagation velocity increase with the
decreasing of differences between elastic properties of the shell component materials, cf. Fig. 11, but they
decrease with the decreasing of differences between inertial properties of the component materials, cf.
Fig. 12. Values of the wave propagation speed decrease with the decreasing of differences between period
length λ and the wavelength L ≡ L2, cf. Fig. 10. The strongest decrease in the speed takes place for
ε ≡ λ/L ∈ [0.0001, 0.001].

Some others applications of the combined asymptotic-tolerance model will be shown in forthcoming papers.
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