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ROBERT BURTON AND MANFRED DENKER 

ABSTRACT. Given an aperiodic dynanlical system (X, T, p,) then there is an 
! E L2{p,) with J ! dp, = 0 satisfying the Central Limit Theorem, i.e. if Sm! = 
! +! 0 T + ... +! 0 Tm-1 and Urn = IISm!112 then 

p, {xI S~X) < u} ~ {21T)-1/2 i~ exp [ _;2] dv. 
The analogous result also holds for flows. 

1. Introduction. The most important and most studied theorem in probability 
theory is the Central Limit Theorem (CLT) which may be stated in the context 
of dynamical systems. If (X, T, J.L) is a dynamical system (i.e. T is a measurable, 
measure-preserving transformation of the Lebesgue probability space (X,J.L)) and 
if I E L2 (J.L) is centered, i.e. J x I dJ.L = 0, with I, loT, I 0 T2, . .. forming an 
independent sequence then 

(1) 

where 8m l = I + loT + ... + f 0 rm- 1 , II 8m III = L2-norm of 8m l = standard 
deviation of 8m/, and ~(u) = 2(11')-1/2 J~oo exp[-v2 /2] dv. In this case 118m /ll = 
Vmii7if but we shall drop the independent assumption above, and we shall then 
say that IE L2 (J.L) satisfies the CLT if (1) holds. 

Many generalizations of the CLT are in the literature where (1) is shown to hold 
for a wider class of functions. To the authors' knowledge, all of these work by 
weakening the independence assumptions. As examples, (1) still holds for certain 
functions I where I, loT, ... satisfy mixing conditions of Rosenblatt or Ibragimov 
[8, 14] or form a martingale [2] or satisfy positive dependence conditions with 
summable convariance functions as in Newman and Wright [10]. 

Some attention has been paid to CLT for special dynamical systems, such as 
Ratner [12], Denker and Philipp [4], Hofbauer and Keller [7], and others cited 
there. All these results are deduced from kinds of mixing as described above. 
Similar things can be said about flows, built under a function, but the situation is 
somewhat more complicated. All these theorems and examples imply at least the 
K-property, so far no CLT for a dynamical system seems to be published where 
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716 ROBERT BURTON AND MANFRED DENKER 

the system is not K, especially where the system has zero entropy. On the other 
hand examples of zero entropy Gaussian processes are known to exist, e.g. [9]. The 
question whether the irrational rotation has a function with CLT was raised by 
J. P. Conze (see [3, p. 159]). See also the forthcoming paper of Durr and Goldstein 
[11]. To make the idea of this paper clear, we would like to point out that there are 
other types of CLTs known in probability and number theory, and we would like 
to make them applicable to dynamical systems, as was done for the probabilistic 
mixing CLTs. 

In particular, another sort of generalization of the CLT due to Salem and Zyg-
mund [16] uses the fact that trigonometric functions whose frequencies are far 
enough apart are 'almost independent'. Specifically given a lacunary sequence sat-
isfying nk+1 > 3nk for k = 1,2, ... and Ck, Dk E R with ak = V(Cf + Dn > 0 
then 

(2) 
as m --+ 00 

where Am = {HCf+D~+·. ·+C,; +D,;)}1/2 provided am/Am --+ 0 and Am --+ 00 

and where f..L denotes Lebesgue measures. 
Rothstein [15] has constructed a class of Vershik processes of zero entropy and a 

function I taking only a finite number of values with IISm/1l2/m --+ 1 that satisfies 
the CLT. 

The main result of the present paper is 

THEOREM 1. II (X, T, f..L) is an aperiodic dynamical system then there exists 
IE L2(f..L) which satisfies the CLT. 

In the second part, we prove Theorem 1 in the case where (X, T, f..L) is an irrational 
rotation using Fourier series. In the third part, Rochlin towers will provide a 
structure that will allow us to imitate the construction for a rotation in the general 
case. 

REMARK. If the entropy of (X, T, f..L) is positive, then by Sinai's theorem, there 
are Bernoulli factors so Theorem 1 is trivial. However, the method of construction 
will be flexible enough to obtain the following results. 

THEOREM 2. The lunction I in Theorem 1 may be chosen to be a generator 
lor the a-field. 

We may also extend the theorem to flows built under a function by making the 
construction on the base transformation and appealing to standard arguments, see 
Renyi [13, p. 390]. 

THEOREM 3. Let Tt (t E R) be an aperiodic measure preserving flow on (X, f..L). 
Then there exists a function f E L2(J.L) satisfying the CLT, i.e. letting Stl = 
J~ I 0 T-r dr; then 

f..L {xIStl(x)/IIStlll ~ u} --+ <I>(u). 

We conjecture that there are such functions I satisfying the almost sure invari-
ance principle, namely there is a time change A(t) and possibly after enlarging the 
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CLT FOR DYNAMICAL SYSTEMS 717 

probability space, a Brownian motion B(t) so that ISA(t)! - B(t)1 = O(t1/ 2->.) for 
some). > O. See Philipp and Stout [11, p. 60ff.]. 

REMARK. It is an open problem to determine the category in L2 of the set of 
functions satisfying the CLT. It will be clear from the proofs that this set of func-
tions is dense in L2, if J.L is ergodic. This also follows more directly from the observa-
tion that the subspace {cpoT-cp: cp E L2(J.L)} is dense in {g E L2(J.L): I gdJ.L = O} 
(see Gordin and Lifsic [6, Remark 1, p. 393] and Bhattacharya [1, Proposition 2.2, 
p. 191]. We would like to thank the referee for helpful suggestions, especially for 
pointing out this last fact. 

II. CLT for rotations. Now let X = R/Z be the unit circle with J.L Lebesgue 
measure and suppose Q E X is irrational and T: X ---+ X is defined by T(x) = X+Q. 
Now any! E L2(J.L) with Ix fdJ.L = 0 has a Fourier representation! = L~-~ bkgk 
where bo = 0 and gk(X) = e21rikx are eigenfunctions. Our functions will be real 
valued with real Fourier coefficients so bk= Lk and !(x) = L~l 2bk cos(27rkx). 
Now Tgk = {3kgk where {3 = e21rio and it follows easily that 

(3) 

and 

(4) 

00 1- {3mk 
Sm! = L bk 1 _ {3k gk 

k=-oo 

00 11 - {3mk 12 u! := II Sm!1I2 = L 2b~ 1 _ (3k 
k=l 

The examples we construct will all have the following structure: there are 
J 1 , J2, ... subsets of the natural numbers so kn = #(In), min(Jn+d > 3max(Jn) 
and i,j E I n , i < j => 3i < j for each n = 1,2, .... 

We also have real numbers cn ! 0, en ! 0 such that j E I n implies {3i is in the 
first quadrant of the circle and cn > 11- {3il > Cn -en> c/2 which gives for j E I n, 
and mcn ~ 1 

(5) 1
1- {3im I 

m > 1 _ (3i > m(1 - mcn) ~ O. 

Further, we have numbers an > 0 for n = 1,2, ... so J. E I n => bi = b-i = an 
and j r:t Un I n => bi = o. ! so defined will belong to L2 provided 

(6) 

and because Q is irrational, given Cn, e, kn, an satisfying the above conditions, we 
can find I n as above and define f. 

For such an ! we can rewrite (4) 

(7) 

Now we set L(n) = 2a;kn. Because 411 - {3il-2 ~ 1(1 - {3im)/(1 - {3i)12 and 
(5) we have the following estimate on the variance of Sm!: for any no such that 
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718 ROBERT BURTON AND MANFRED DENKER 

meno ~ 1 
L(no)m2(1 - meno)2 ~ 118m !1I2 

(8) ~ L 16L(n)e~2 + L(no)m2 + m 2 L L(n). 
n<no n>no 

LEMMA 1. For each 1, 0 < 1 < 2, there is an ! of the above form and a 
subsequence No ~ N so that for m E No 
(9) 118m !1I2 '" m2-'Y 
and (1) is satisfied, i.e. 8m ! satisfies the CLT along the subsequence No. 

2 2 2 PROOF. Set L(n) = 2-'Yn , m = 2no, and en = 2-n -no Then for large enough 
no (8) becomes 

m-'Ym2(1- Tn0) ~ 118m !1I2 
~ 4 L (2-'Yn2)(22n2+2n) + m 2-'Y + m 2 L 2-'Yn2 

n<no n>no 
~ 8(2(2-'Y)(no-l)2) + m2-'Y + 2m22-'Y(no+l)2 

which implies (9) for No = {2n21n = 1,2, . .. }. 
This estimate on the variance of 8m ! shows that 8m ! is well approximated in 

L2 by the terms in its Fourier series coming from the block corresponding to Jno . 
2 Thus to prove (1) for m = 2no ~ 00 we may replace 8m f by 

Knowing kno we may assume eno is so small that 11 - ,8jl is essentially ena and 
so by making another small L2 error, we may replace 

1 - ,8jm 1 - ,8-jm 
1 -,8j gj + 1 - ,8-j gj 

by 
Cno cos(21rjx) + Dno sin(21rjx) 

where Cna , Dna depend only on eno. 
Thus the lemma will be proven if we can satisfy (1) with 8m ! /1I8m !1I replaced 

by 
~ L (Cno cos(21rjx) + Dna sin(21rjx)) 

Ana kna "EJ J no 

where Ana = v'(C~a + Daa)/2. But this is clear because we are still free to make 
kna as large as we want which makes this expression arbitrarily close in distribution 
to the standard normal as is written in (2). 0 

THEOREM 1a. In the case where (X, T, p,) is an irrational rotation, there exist 
! E L2 satisfying the CLT. 

PROOF. We will slightly modify the construction in the proof of Lemma 1. For 
large m let no = no(m) = sup{nl2n2 ~ m}. The estimates above show that most 
of the variance of 8m f is carried by terms from the Jna and Jna+1 blocks. 
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CLT FOR DYNAMICAL SYSTEMS 719 

Thus 

8m!(x) 1-1 ~ ,,1- f3mj . 118m !1I = 118m !1 ~ 2ak ~ 1 _ f3j cos 27rJx 
k=1 ±JEJk 

(m ~ 1) 

is L2-equivalent to 

( 11-f3jm12 11-f3jmI2)-1 
2a;o.L 1- f3j + 2ano+1 . L 1- f3j 

JEJno JEJno +l 

( 1 - f3 jm 1 - f3 jm ) 
ano L 1 - f3j gj + ano+l L 1 - f3j gj 

±jEJ"o ±jEJno +l 

(10) 

as m -+ 00, i.e. both functions will have the same limit distribution if there is any. 
We still are free to choose the size kn of the sets I n as large as we want. If n is 
fixed choose kn so large that according to (2) for each 2n2 :::; m < 2(n+l)2 

( 1 - f3 jm 1 - f3jm ) 
A;;"/ an L 1 _ f3j gj + an+l L 1 - f3j gj 

±jEJn ±jEJn +l 

are approaching the standard normal distribution uniformly in m as n -+ 00. Here, 

2 1 (2 {( 1_ f3jm )2 ( 1_f3jm )2}) 
Am = 2 an J.t:n 2 Re 1 _ f3j + 21m 1 - f3j 

and consequently (10) is asymptotically normal. This proves the theorem. 0 

III. Proof of Theorem 1. Let (X, T, J.l) be an arbitrary aperiodic dynamical 
system, invertible or not. We will use a structure of Rochlin towers as a frame that 
will allow us to imitate the construction for rotations. Recall that a measurable 
set F c X is called an (N, e)-Rochlin set if F, T- 1 F, ... , T- N +1 F are disjoint and 
J.l(U~:ol T- l F) > 1 - e. Rochlin's lemma states that these sets exist for any e > 0 
and N EN, provided the system is aperiodic. 

DEFINITION. Let K, N, L be integers, K < N, K odd, N even and let e > o. If 
F is an (NL,e)-Rochlin set, a function g: X -+ {-I, 0, I} will be called special for 
(F, N, K) if it has the following properties: 

(i) g(x) = 0 ¢> x rt U~t-l T-IF. 
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720 ROBERT BURTON AND MANFRED DENKER 

(ii) Jl({x E Flg(x) = I}) = Jl({x E Flg(x) = -I}) = ~Jl(F). 
(iii) There exist functions gl: F -+ {-I, I} (l = 0, 1, ... , N - 1) such that gO, g2, 

g4, ... , gN -2 are independent, identically distributed with respect to the measure 
JlIF and such that g(x) = gl(Tlx) if x E T-l F (l = 0, ... , N - 1). 

(iv) g21(x) = _g21+K(X) where indices are modN. 
(v) If x E T-jN+1 F (j = 2,3, ... , L) and if 0 ~ I < N, then g(TI(x)) = 

g(TN+I(x)). 
Before we proceed with a construction of special functions, let us note the fol-

lowing properties, which immediately follow from the definition. 

LEMMA 2. Let g be a special function for (F,N,K). Then we have 
(1) fxgdJl=O. 
(2) If x E T-jN+1F for some j = 1,2, ... ,L, then L~(/ g(TI(x)) = O. 
(3) Let K ~ m < N - K and 0 ~ I < N. Then there exists a set J c 

{O, 1, ... , m - I} of cardinality K - 1, K or K + 1 such that for every 
L 

X E U T-jN+1F 
j=1 

we have 
m-1 L g(Ti+I(x)) = L g(Ti+I(x)). 
i=O iEJ 

More precisely, if I and m + 1- 1 are even then 

J = {l,3, ... ,K,m - K,m - K + 2, ... ,m -I}. 

If I is even and m + I - 1 is odd, then 

J + {I, 3, ... , K, m - K + 1, m - K + 3, ... , m - 2}. 

If I is odd and m + I - 1 is even then 

J + {0,2, .. . ,K -1,m- K,m-K +2, ... ,m -I}. 

If I and m + I - 1 are odd, then 

J = {O, 2, ... , K - 1, m - K + 1, m - K + 3, ... , m - 2}. 

LEMMA 3. Let g be a special function for (F, N, K). Then we have 
(1) ISmg(x)1 ~ 2(K + 1), m ~ 0, x E X, where Smg(x) = L;:~1 g(TI(x)). 
(2) If 0 ~ m ~ K then (1 - 8)m ~ IISmgll2 ~ (1 + 8)m and 

Jl( {x E XISmg(x)/v'm ~ t}) = 4>(t) + ~ + O(m-1/2) 

where max(8,~) -+ 0 as m(L -1 + c) -+ 0, m, L -+ 00 and c -+ O. 
(3) If K ~ m < N - K then (1 - 8)K ~ IISmgll2 ~ (1 + 8)K and 

Jl( {x E XISmg(x)/-IK ~ t}) = 4>(t) + ~ + O(K-1/2) 

where max(8,~) -+ 0 as K(L- 1 + c) -+ 0, K,L -+ 00 and c -+ O. 
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CLT FOR DYNAMICAL SYSTEMS 721 

PROOF. (1) follows immediately from Lemma 2(2), (3) and (i) in the definition 
of a special function. (2) is similar to (3), hence we only prove (3). Let G = 
Uf:;1 T-IF and B = Ge. Then p,(G) = (L - 1)Np,(F) ~ (L -1)N(1- £)/LN = 
1-£(L-1)/L-1/L. We have 

II Smyll2 = fa ISmyl2 dp, + L ISmyl2 dp" 

L ISmyI2dP,:5 4(K + 1)2p,(B):5 4(K + 1)2(£+L-1) 

and 

Fix 1 and denote by J the set of at most K + 1 indices determined in Lemma 2(3) 
for m and jN -1 -l, where 1 = jN - 1-l', 0 :5 l' < N, J' ~ 2. Let x E T-IF. 
Choose y E T-jN+1 F with TI' y = x. Then by (3) in Lemma 2 

iEJ iEJ 

Now Ti(x) E T-(/-i)F, where l- i ~ 0, so by (iii) and (v) 

If i runs through J the indices 1 - i mod N are all different and if i E J, i ± K rf- J. 
Thus the functions yl-i(modN) (i E J) are independent identically distributed and 
so are the functions yo Ti (i E J) with respect to P,IT-IF' Since 

it follows that 

This shows the lemma, since we have 

IISmyll2 :5 4(K + 1)2(£ + L-1) + (K + 1)(L - 1)Np,(F) 

= K (1 + K- 1 + 4 K .: 1 (K + 1)(£ + L -1)) , 
IISmyll2 ~ (K - 1)(L - 1)N p,(F) 

( L-1) 1 1 
~ K - 1)-L-(1- £ ~ K(1- L- - £ - K- ) 
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722 ROBERT BURTON AND MANFRED DENKER 

and by the Central Limit Theorem with remainder 

~({x E XISmg(x)/v'K ~ t}) 

LN-1 ({ K }) ~ ~(B) + l~ ~(T-IF)~IT-IF X E T-IFISmg(x)/M ~ VfJft 

~ c + L-1 + L~l ~(T-IF) {q, ( ~t) + 0(IJI-1/2)} 
I=N vlJI 

= q,(t) + s"1 + 0(K- 1/ 2 ), 

~({X E XISmg(x)/v'K ~ t}) 

~ ~~1 ~(T-IF)~IT-IF ({XET-1FIS~) ~ ~t}) 

= L~l ~(T-l F) (q, ( ~t) + 0(IJI-1/2)) 
I=N vlJI 

~ (1- L- 1 )(1- c)(q,(t) + s"2 + 0(K- 1/ 2 )) 

= q,(t) + s"3 + 0(K-1/2), 

where 1s"31, 161 ~ 0 as L,K ~ 00 and c ~ O. 
We will now turn to the construction of special functions as we will need it below. 

We begin with 

LEMMA 4. Let F be an (NL,c)-Rochlin set, K < N, K odd and N even. Let 
/31 be a finite partition ofT-IF (l = 0,1, ... , LN -1). Then there exists a partition 
a of F into 2N/2 sets such that for every A E a and B E /31 (0 ~ 1 < LN) 
~(B nT-IA) = 2-N/2~(B). 

PROOF. We will use Zorn's lemma as a convenience. Let E be the family of all 
systems a = {AI,'" ,A2 NI2} where 

(i) Ai n Aj = 0, Ai C F (1 ~ i "I j ~ 2N/2). 
(ii) If BE /31 then ~(BnT-IAi) ~ 2-N/2~(B) (1 ~ i ~ 2N/2). 

If /3 = {B1, ... , B2N12} is another system then A ~ B if and only if Ai c Bi, 
i = 1, ... , 2N/2. Clearly, E is nonempty and if Eo C E is totally ordered, the 
system a = {A 1 , ..• , A2N12} defined by 

u B· • 
BiEa'EEo 

belongs to E. Denote by a a maximal element in E. We claim that a is the partition 
we seek. For this it is sufficient to show that LAEa ~(A) = ~(F). Assume that 
this is not true. Let c = inf ~(B \ uf:a-1 T- l UAEa A) where the infimum extends 
over all B E /31 (l = 0, ... , LN - 1) for which the ~(B \ T- I U AEa A) > O. Thus 
c > 0 and therefore we can find a set E C F \ U AEa A with 0 < ~(E) ~ 2- N / 2 C. 

Then for B E /31 
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CLT FOR DYNAMICAL SYSTEMS 723 

if J.L(B \ UA T-IA) > o. Then define ii by enlarging one set of a by E, and this 
contradicts the assumption since ii E E. It is also clear that this argument may be 
made independent of the axiom of choice. 0 

Now, let a be a partition as in the previous lemma. Write 

a = {A(co, ... , cN/2-dlci E {±1}}. 

Define functions g21 (l = 0, ... , N /2 - 1) on F by setting g21 (x) = Cl if x E 
A(co, ... ,cl, ... ,CN/2-d (l = 0, ... ,N/2 -1). Moreover we set g21+K(x) = _g21 
(I = 0, ... , N /2 - 1) where the indices are mod N and 

{ gl(TjN+I(x)) if x E T-jN-IF (0 ~ I < N,j = O, ... ,L -1), 
(*) g(x) = 0 if x Et uf:O- 1 T-IF. 

LEMMA 5. The function g defined in (*) is special for (F, N, K) and each of 
the functions Smg, restricted to T- l F, is independent of PI (I = N, . .. , N L -1; 1 ~ 
m ~ N) with respect to the measure J.LIT-IF. 

PROOF. That g is special follows from the definition and Lemma 4: (i), (iv), 
and (v) in the definition of a special function follow immediately from the above 
definitions of gl and g. We show (ii) and (iii). 

(ii) Let x E F. Then g(x) = gO(x) and for c E {±1}, 

J.L({y E Flg(y) = c}) = 

= 2N/2-12-N/2J.L(F) = ~J.L(F). 
(iii) J.L(gO = co,g2 = Cll ... ,gN-2 = cN/2-d = J.L(A(co, ... ,cN/2-d) = 

2N/2- 1J.L(F) and J.L(g21 = c) = ~J.L(F) (as in (ii)). Thus gO,g2, ... ,gN-2 are in-
dependent with respect to J.LIF. 

Let us now show the additional independence statement in the lemma. Let I ~ N 
and m ~ N be fixed. Fix an atom B E PI and let A = {x E T-IFlg(Tj(x)) = 
Cj,O ~ j < m}, where a priori Cj E {-1,0,1}. But for x E T-IF g(Tj(x)) = 0 
never happens (l- j ~ 0 for all j < m ~ N), so we take Cj E {±1}. We have 
seen earlier that for x E T-1F g(Tj(x)) = gl-j(modN) (T1(x)). It follows that 
either A = 0 (if the C j do not match, condition (iv)) or A is a finite union of sets 
T-IA("'l, ... , "'N/2-d with "'i E {±1} (depending on m and I). It follows from 
Lemma 4 that 

J.LIT-IF(B n A) = J.LIT-IF(B n UT-l A(",o,· .. , "'N/2-1)) 

= J.L(F)-l L J.L(B n T-l A(",o, ... , "'N/2-1)) 

= J.L(F)-l LTN/2J.L(B) = [J.L(A)/J.L(F)][J.L(B)/J.L(F)] 

since 

After these preparations we are ready to define the functions f: X -+ R for which 
we will show the CLT property below. We start with a sequence cn '\. 0, a sequence 
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724 ROBERT BURTON AND MANFRED DENKER 

Kn /' 00 of odd integers, a sequence Nn /' 00 of even integers, and a sequence 
Ln /' 00 of integers (n ~ 1) satisfying (c) below and 

(a) Kn < Nn- l , 
(b) Kn(L;;l + en) -+ 0 (n -+ 00). 

Let Fn (n ~ 1) be (NnLn,en)-Rochlin sets and let gn be special functions for 
(Fn, Nn, Kn) such that for each m = 1, ... , Nn, 8m gn is independent on T- 1 Fn 
(I = N, ... , LN - 1) of the partition generated by {Tign_lIO :::; i < Nn} (w.r.t. 
I-LIT-IFJ. By Lemma 5, this is possible. Finally, let an '\. 0 (n -+ 00) be a sequence 
of positive real numbers, such that 

(c) 

Then we define f = En>l angn. It is left to show that f satisfies the CLT. Given 
m ~ 1 define no = no(m) = sup{nlKn :::; m}. 

LEMMA 6. We have 

(1) (1 - 8) (Knoa~o + ma;o+l) :::; 118m (anogno + ano+1gno+dIl 2 

:::; (1 + 8) (Knoa;o + ma~o+1) 
where 8 -+ 0 as m -+ 00. 

(2) 

2 

L 8m (angn) -+ 0 as m -+ 00. 
n;6no 

n;6no+l 

118m (anogno + ano+1gno+l)1I2 

:::; 2 L (8m (ano gno ))2 dl-L + 2 L (8m (ano+lgno+t})2 dl-L 

Lno+lNno+l-l 
+ L 1 (8m (ano gno ))2 

I=Nno+l T-IFno+ 1 

+ [ (8m (ano+1gno+d)2 dl-L 
IT-IFnO+l 

:::; 8 [a;o (Kno+d2 + a~O+lm2] (eno+1 + L;;~+l) 
+ 118m (ano gno )1I2 + 118m (ano+1gno+l) 112 

= [a;oKno + a;o+lm] (1 + 8') 
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where 6' ~ 0 as m ~ 00 by our general assumptions. By a similar argument one 
obtains 

IISm (anogno + ano+1gno+dIl2 ~ IISm (anogno)1I2 + IISm (ano+19no+dIl2 

- 4 [a~o (Kno+d2 + a~o+lm2] 

= [a~oKno +a~o+lm] (1- 6') 

where 6' ~ o. 
(2) Using Lemma 3 again we have 

n#no 
n#no+l 

and (2) follows from (c). 

LEMMA 7. We have 

as m ~ 00. 

n#no 
n#no+l 

n<no n~no+2 

PROOF. A b £ It uLnO+1NnO+1-1T-IF. dB G C S· s e ore, e 9 = I= Nno+1 no+l an = . Ince 
Sm(ano+lgno+d is independent of Sm(anogno ) on T- l Fno+1 with respect to 
IlIT-IFno+l (Nno+1 :5 1 < Lno+1Nno+d we have (using Fourier transforms): 

LnO+1Nno+l 

= L Il (T- l Fno+1) 
I=Nno+l 
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where "'m ~ 0 as m ~ 00, because 8m(ano+1gno+d/ano+1m1/2 converges to the 
standard nonnal distribution. Hence the last expression equals 

{ (·t anoK;~2 8m (anogno)) d if. exp z 1/2 1/2 P, 
G (a;oKno + a~o+l m) anoKno 

( ( 1 a~o+lmt2 ) ) . exp -- +"'m 
2 a;oKno + a~o+1m 

and this converges to exp - ~ t2, since 8m (ano gno) / ano K~~2 converges to the stan-
dard nonnal distribution and since p,( G) ~ 1. Lemmas 6 and 7 now imply that 
f satisfies the CLT. Lemma 6 shows that for a given m only the contributions of 
angn +an+1gn+l (n = no(m)) determine the limit and by Lemma 7 this limit exists 
and is the standard nonnal distribution. The details are carried out as in the proof 
of Theorem la for the irrational rotation. 

REFERENCES 

1. R. N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm 
for Markov processes, Z. Wahrsch. Verw. Gebiete 60 (1982), 185-201. 

2. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. 
3. M. Denker and M. Keane, Almost topological dynamical systems, Israel J. Math. 34 (1979), 

139-160. 
4. M. Denker and W. Philipp, Approximation by Brownian motion for Gibbs measures and flows 

under a function, Ergodic Theory Dynamical Systems 4 (1984), 541-552. 
5. D. Diirr and S. Goldstein, Remarks and the central limit theorem for weakly dependent sequences, 

Preprint, 1985. 
6. M. I. Gordin and B. A. Lifsic, The central limit theorem for stationary Markov processes, Soviet 

Math. Dokl. 19 (1978), 392-394. 
7. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic 

transformations, Math. Z. 180 (1982), 119-140. 
8. I. A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), 

349-382. 
9. G. Maruyama, Nonlinear functions of Gaussian stationary processes and their applications, 

(Proc. Third Japan-U.S.S.R. Sympos. on Probability), Lecture Notes in Math., vol. 550, 
Springer, 1975, pp. 375-378. 

10. C. M. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. 
Probab.9 (1981),671-675. 

11. W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent 
random variables, Mem. Amer. Math. Soc. No. 161, 1975. 

12. M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative 
curvature, Israel J. Math. 16 (1973), 181-197. 

13. A. Renyi, Wahrscheinlichkeitrechnung, VEB Deutscher Verlag Wiss., Berlin, 1962. 
14. M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. 

U.S.A. 42 (1956), 43-47. 
15. A. Rothstein, Personal communication, 1984. 
16. R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 

33 (1947), 333-338; II ibid. 34 (1948), 54-62. 

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 
97331 

INSTITUT FUR MATHEMATISCHE STOCHASTIK, UNIVERSITAT GOTTINGEN, 3400 GOT-
TINGEN, FEDERAL REPUBLIC OF GERMANY 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	0010335
	0010336
	0010337
	0010338
	0010339
	0010340
	0010341
	0010342
	0010343
	0010344
	0010345
	0010346

