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On the Centroids of Polygons and Polyhedra

Maria Flavia Mammana, Biagio Micale, and Mario Pennisi

Abstract. In this paper we introduce the centroid of any finite set of points of
the space and we find some general properties of centroids. These properties are
then applied to different types of polygons and polyhedra.

1. Introduction

In elementary geometry the centroid of a figure in the plane orspace (triangle,
quadrilateral, tetrahedron, . . . ) is introduced as the common point of some ele-
ments of the figure (medians or bimedians), once it has been proved that these
elements are indeed concurrent. The proofs are appealing and have their own
beauty in the spirit of Euclidean geometry. But they are different from figure to
figure, and often use auxiliary elements. For example, the centroid of a triangle
is defined as the common point of its three medians, after proving that they are
concurrent. It is usually proved considering, as an auxiliary figure, the Varignon
parallelogram of the quadrilateral whose vertices are the vertices of the triangle
and the common point to two medians ([3, p. 10]). We can also define the cen-
troid of a tetrahedron after proving that the four medians ofthe tetrahedron are
concurrent (Commandino’s Theorem, [1, p.57]). A natural question is: is it possi-
ble to characterize the properties of centroids of geometric figures with one unique
and systematic method? In this paper we introduce the centroid of a finite set of
points of the space, called a system, and find some of its general properties. These
properties are then applied to different types of polygons and polyhedra. Then it
is possible to obtain, in a simple and immediate way, old and new results of ele-
mentary geometry. At the end of the paper we introduce the notion of an extended
system. This allows us to find some unexpected and charming properties of some
figures, highlighting the great potential of the method thatis used.

2. Systems and centroids

Throughout this paper, the ambient space is either a plane ora 3-dimensional
space. LetS be a set ofn points of the space. We call this ann-system or a system
of ordern. LetS ′ be a nonempty subset ofS of k points, that we call ak-subsystem
of S or a subsystem of orderk of S. There are

(

n
k

)

different subsystems of order
k. We say that two subsystemsS ′ andS ′′ of ann-systemS arecomplementaryif
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S ′ ∪S′′ = S andS ′ ∩S′′ = ∅. We also say thatS ′ is complementary toS ′′ andS ′′

is complementary to S’. IfS ′ is a k-subsystem,S ′′ is an(n − k)-subsystem. Let
Ai, i = 1, 2, . . . , n, be the points of ann-systemS andxi be the position vector
of Ai with respect to a fixed pointP . We call thecentroidof S the pointC whose
position vector with respect toP is

x =
1

n

n
∑

i=1

xi.

xi

x

x
′

x
′

i

Ai

P
P

′

C

Figure 1

The pointC does not depend onP . In fact, letP ′ be another point of the space

andx
′

i be the position vector ofAi with respect toP ′. Sincex′

i = xi +
−−→
P ′P , we

have
1

n

n
∑

i=1

x
′

i =
1

n

n
∑

i=1

xi +
−−→
P ′P .

Every subsystem ofS has its own centroid. The centroid of a1-subsystem{Ai}
is Ai. The centroid of a2-subsystem{Ai, Aj} is the midpoint of the segment
AiAj .

Let S ′ be ak-subsystem ofS andC ′ its centroid. LetS ′′ be the subsystem ofS
complementary toS ′ andC ′′ its centroid. We call the segmentC ′C ′′ themedian
of S relative toS′. The median relative toS ′′ coincides with the one relative toS ′.

Let S be ann-system andC its centroid.

Theorem 1. The medians ofS are concurrent inC. Moreover,C divides the
medianC ′C ′′ relative to ak-subsystemS ′ of S into two parts such that:

C ′C

CC ′′
=

n − k

k
. (∗)

Proof. In fact, letv, v
′, v

′′ the position vectors ofC, C ′, C ′′ respectively. It is
easy to prove that

v − v
′ =

n − k

k
(v′′ − v).

This relation means that
−−→
C ′C = n−k

k

−−→
CC ′′. Hence,C, C ′, C ′′ are collinear and (*)

holds. �
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Here are some interesting consequences of Theorem 1.

Corollary 2. The system of centroids of thek−subsystems ofS is the image of
the system of centroids of the(n − k)-subsystems ofS in the dilatation with ratio
−n−k

k
and centerC. In this dilatation the centroid of ak-subsystem is the image

of the centroid of its complementary.

Corollary 3. The segmentC ′

1C
′

2 that joins the centroids of twok-subsystemsS ′

1,
S ′

2 of S is parallel to the segmentC ′′

1 C ′′

2 that joins the centroids of the(n − k)-
subsystems complementary toS ′

1, S ′

2. Moreover,

C ′

1C
′

2

C ′′

1
C ′′

2

=
n − k

k
.

Corollary 4. If n = 2k, C is the center of symmetry of the system of centroids of
thek-subsystems ofS. Moreover, the segmentC ′

1C
′

2 that joins the centroids of two
k-subsystemsS′

1, S ′

2 of S is parallel and equal to the segmentC ′′

1 C ′′

2 that joins the
centroids of thek-subsystems complementary toS ′

1, S′

2.

We conclude this section by the following theorem which is easily verified.

Theorem 5. The centroidC of S is also the centroid of the system of centroids of
thek-subsystems ofS.

3. Applications

We propose here some applications to polygons and polyhedra. Let P be a
polygon or a polyhedron. We associate with it the systemS whose points are the
vertices ofP.

3.1. Triangles. Let T be a triangle, with associated systemS and centroidC. The
1-subsystems ofS detect the vertices ofT , the2-subsystems detect the sides. The
centroids of the2-subsystems ofS are the midpoints of the sides ofT and detect
the medial triangle ofT . The medians ofS are the medians ofT .

As a consequence of Theorem 1, we have

Proposition 6 ([3, p.10], [4, p.8]). The three medians of a triangle all pass through
one point which divides each median into two segments in the ratio 2 : 1.

It follows that the centroid ofT coincides with the centroidC of S.
From Theorem 5 and Corollary 2, we deduce

Proposition 7 ([4, p.18], [5, p.11]). A triangleT and its medial triangle have the
same centroidC. Moreover, the medial triangle is the image ofT in the dilatation
with ratio −1

2
and centerC. See Figure 2.

Corollary 3 yields
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Proposition 8 ([4, p.53]). The segment joining the midpoints of two sides of a
triangle is parallel to the third side and half as long as thatthird side.

C

Figure 2.

3.2. Quadrilaterals. Let A1A2A3A4 be a quadrilateral which we denote byQ.
Let S be the system associated withQ andC its centroid. The1-subsystems ofS
detect the vertices ofQ, the2-subsystems detect the sides and the diagonals, the
3-subsystems detect the sub-triangles ofQ. The centroids of the2-subsystems of
S are the midpoints of the sides and of the diagonals ofQ. The centroids of the
3-subsystems are the centroidsC1, C2, C3, C4 of the trianglesA2A3A4, A1A3A4,
A1A2A4, A1A2A3 respectively. We callC1C2C3C4 the quadrilateral of centroids
and denote it byQc ([6]). The medians ofS relative to the2-subsystems are the
bimediansof Q and the segment that joins the midpoints of the diagonals ofQ. The
medians ofS relative to the1-subsystems are the segmentsAiCi, i = 1, 2, 3, 4.

A1

A2

A3

A4

C

Figure 3

From Theorem 1 it follows that

Proposition 9 ([4, p.54]). The bimedians of a quadrilateral and the segment join-
ing the midpoints of the diagonals are concurrent and bisectone another. See
Figure 3.

Thus, the centroid of the quadrilateralQ, i.e., the intersection point of the bime-
dians, coincides with the centroidC of S. From Corollary 4, we obtain
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Proposition 10 ([4, p.53]). The quadrilateral whose vertices are the midpoints of
the sides of a quadrilateral is a parallelogram(Varignon’s Theorem). Moreover,
the quadrilateral whose vertices are the midpoints of the diagonals and of two
opposite sides of a quadrilateral is a parallelogram.

Thus, three parallelograms are naturally associated with aquadrilateral. These
have the same centroid, which, by Theorem 1, coincides with the centroid of the
quadrilateral.

Theorem 5 and Corollary 2 then imply

Proposition 11 ([6]). The quadrilateralsQ and Qc have the same centroidC.
Moreover,Qc is the image ofQ in the dilatation with ratio−1

3
and centerC. See

Figure 4.
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Figure 4

Some of these properties, with appropriate changes, hold also for polygons with
more than four edges. For example, from Theorem 1 it follows that

Proposition 12. The five segments that join the midpoint of a side of a pentagon
with the centroid of the triangle whose vertices are the remaining vertices and the
five segments that join a vertex of a pentagon with the centroid of the quadrilateral
whose vertices are the remaining vertices are all concurrent in a point C that
divides the first five segments in the ratio 3:2 and the other five in the ratio 4:1.

The pointC is the centroid of the systemS associated with the pentagon.C will
also be called the centroid of the pentagon.

3.3. Tetrahedra.Let T be a tetrahedron. LetS be the system associated withT
andC its centroid. The subsystem ofS of order1, 2, and3 detect the vertices, the
edges and the faces ofT , respectively. The centroids of the2-subsystems are the
midpoints of the edges. Those of the3-subsystems are the centroids of the faces
of T , which detect the medial tetrahedron ofT . The medians ofS relative to the
2-subsystems are the bimedians ofT , i.e., the segments that join the midpoints of
two opposite sides. The medians ofS relative to the1-subsystems are the medians
of T , i.e., the segments that join one vertex ofT with the centroid of the opposite
face.

From Theorem 1 follows Commandino’s Theorem:
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Proposition 13 ([1, p.57]). The four medians of a tetrahedron meet in a point
which divides each median in the ratio1 : 3. See Figure 5.

C

Figure 5

It follows that the centroid of the tetrahedronT , intersection point of the medi-
ans, coincides with the centroidC of S. From Theorem 5 and from Corollary 2 it
follows that

Proposition 14 ([1, p.59]). A tetrahedronT and its medial tetrahedron have the
same centroidC. Moreover the medial tetrahedron is the image ofT in the dilata-
tion with ratio−1

3
and centerC. The faces and the edges of the medial tetrahedron

of a tetrahedronT are parallel to the faces and the edges ofT .

Finally, Theorem 1 and Corollary 2 yield

Proposition 15 ([1, pp.54,58]). The three bimedians of a tetrahedron are con-
current in the centroid of the tetrahedron and are bisected by it. Moreover, the
midpoints of two pairs of opposite edges of tetrahedron are the vertices of a paral-
lelogram.See Figure 6.

C

Figure 6
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By using the theorems of the theory it is possible to find lots of interesting prop-
erties on polyhedra. For example, Corollary 4 gives

Proposition 16. The centroids of the faces of an octahedron with triangular faces
are the vertices of a parallelepiped. The centroids of the faces of a hexahedron with
quadrangular faces are the vertices of an octahedron with triangular faces having
a symmetry centerC. See Figures 7A and 7B.

Figure 7A

C

Figure 7B

The pointC is the centroid of the systemS associated with the hexahedron.
This point is also called the centroid of the hexahedron.

4. Extended systems and applications

Let S be ann-system andh a fixed positive integer. LetH be a set ofh points
such thatS ∩ H = ∅. We callh-extension ofS the systemSH = S ∪ H.

Let t be a fixed integer such that1 ≤ t < n. Consider the systemCH,t of cen-
troids of the subsystems ofSH , of orderh+ t, that containH. The complementary
subsystems of these subsystems are the subsystems ofS of ordern − t and we
denote the system of their centroids byC′

n−t.
Let us consider now twoh-extensions ofS, SH1

andSH2
, and letC1 andC2 be

their centroids. Consider the systemsCH1,t
andCH2,t

, and the systemC′

n−t.
From Corollary 2 applied to the systemSH1

(respectivelySH2
) it follows that

CH1,t
(respectivelyCH2,t

) is the image ofC′

n−t in the dilatation with ratio−n−t
h+t

and
centerC1 (respectivelyC2).

Thus, we have

Theorem 17. If SH1
andSH2

are twoh-extension ofS, then the systemsCH1,t
and

CH2,t
are correspondent in a translation.
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It is easy to see that the vector of the translation transforming CH1,t
into CH2,t

is
n+h
h+t

−−−→
C1C2.

The following theorem is also of interest.

Theorem 18. If S is an n-system,SH is a 1-extension ofS, SK is a (n − 1)-
extension ofS, then the systemsCH,n−1 andCK,1 are correspondent is a half-turn.

Proof. Let C andCK be the centroids ofSH andK respectively. From Corollary
2 the systemCH,n−1 is the image of the systemC′

1 = S in the dilatation with ratio
1

n
and centerC that is,S is the image ofCH,n−1 in the dilatation with ratio−n and

centerC.
Let C ′ ∈ CK,1 and suppose thatC ′ is the centroid of then-subsystemS ′ =

K ∪ {A} of SK , with A ∈ S. From Theorem 1,C ′ lies on the medianCKA of S ′

and is such thatCKC′

C′A
= 1

n−1
. It follows that CKC′

CKA
= 1

n
, andCK,1 is the image of

S in the dilatation with ratio1

n
and centerCK .

SinceS is the image ofCH,n−1 in the dilatation with ratio−n and centerC and
CK,1 is the image ofS in the dilatation with ratio1

n
and centerCK , thenCH,n−1

andCK,1 are correspondent in a dilatation with ratio−1, i.e., in a half-turn. �

It is easy to see that the centerC of the half-turn is the point of the segment
CCK such that CC

CCK
= n−1

n+1
.

Now, we offer some applications of Theorems 17 and 18.

4.1. Triangles. Let T be a triangle andS its associated system. LetSH be a1-
extension ofS, with H = {P}, andSK be a2-extension ofS, with K = {P1, P2}.
The points of the systemCH,2 are vertices of a triangleTH and the points of the
systemCK,1 are vertices of a triangleTK . Theorem 18 gives

Proposition 19. The trianglesTH andTK are correspondent in a half-turn.See
Figure 8.

Let {TH} be the family of trianglesTH obtained by varying the pointP and
{TK} be the family of trianglesTK obtained by varying the pointsP1 andP2.

From Theorem 17 the triangles of the family{TH} are all congruent and have
corresponding sides that are parallel. The same property also holds for the triangles
of the family{TK}. On the other hand, each triangleTH and each triangleTK are
correspondent in a half-turn, then:

Proposition 20. The triangles of the family{TH} ∪ {TK} are all congruent and
have corresponding sides that are parallel.

4.2. Quadrilaterals. LetQ be a quadrilateralA1A2A3A4 andS its associated sys-
tem. LetSH be a1-extension ofS, with H = {P}, and letC be its centroid.

Let us consider the subsystems{P, A1, A2}, {P, A2, A3}, {P, A3, A4},
{P, A4, A1} of SH and their centroidsC1, C2, C3, C4 respectively, that are points
of CH,2. From Corollary 3 applied to the systemSH , the segmentsC1C2, C2C3,
C3C4, C4C1 are parallel to the sides of the Varignon parallelogram ofQ respec-
tively. Thus,C1C2C3C4 is a parallelogram, that we denote byQH . Moreover,
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A1 A2

A3

P

P1

P2

Figure 8.

from Corollary 2,QH is the image of the Varignon parallelogram ofQ in the di-
latation with ratio−2

3
and centerC. In the case whenP is the intersection point

of the diagonals ofQ, the existence of a dilatation betweenQH and the Varignon
parallelogram ofQ has already been proved ([2, p.424], [7, p.23]).

If we consider two1-extensions ofS, the systemsCH,2, for Theorem 17, are
correspondent in a translation. Thus, if{QH} is the family of the parallelograms
obtained asP varies, we obtain

Proposition 21. The parallelograms of the family{QH} are all congruent and
their corresponding sides are parallel.

Moreover, takingP as the vertex of a pyramid with baseQ, we are led to

Proposition 22. The centroids of the faces of a pyramid with a quadrangular base
are vertices of the parallelogram that is the image to Varignon parallelogram ofQ
in the dilatation with ratio−2

3
and centerC. Moreover, asP varies, the parallel-

ograms whose vertices are the centroids of the faces are all congruent.See Figure
9.

The pointC is called the centroid of the pyramid.
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