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Abstract

In this paper, we generalize the notions of centroids and barycenters to the broad class of
information-theoretic distortion measures called Bregman divergences. Bregman divergences
are versatile, and unify quadratic geometric distances with various statistical entropic measures.
Because Bregman divergences are typically asymmetric, we consider both the left-sided and
right-sided centroids and the symmetrized centroids, and prove that all three are unique. We
give closed-form solutions for the sided centroids that are generalized means, and design a
provably fast and efficient approximation algorithm for the symmetrized centroid based on
its exact geometric characterization that requires solely to walk on the geodesic linking the
two sided centroids. We report on our generic implementation for computing entropic centers
of image clusters and entropic centers of multivariate normals, and compare our results with
former ad-hoc methods.

Keywords: Centroid, Bregman divergence, Legendre duality.

Additional materials including C++ source codes, videos and JavaTM applets available at:
http://www.sonycsl.co.jp/person/nielsen/BregmanCentroids/

ar
X

iv
:0

71
1.

32
42

v1
  [

cs
.C

G
] 

 2
1 

N
ov

 2
00

7

http://www.sonycsl.co.jp/person/nielsen/BregmanCentroids/


1 Introduction

Content-based multimedia retrieval applications with their prominent image retrieval systems
(CBIRs) are very popular nowadays with the broad availability of massive digital multimedia li-
braries. CBIR systems spurred an intensive line of research for better ad-hoc feature extractions
and effective yet accurate geometric clustering techniques. In a typical CBIR system [15], database
images are processed offline during a preprocessing step by various feature extractors computing
image characteristics such as color histograms. These features are aggregated into signature vectors
that represent handles to images. Then given an online query image, the system first computes
its signature, and search for the first, say h, best matches in the signature space. This requires
to define an appropriate similarity measure between pairs of signatures. Designing an appropriate
distance is tricky since the signature space is often heterogeneous (ie., cartesian product of feature
spaces) and the usual Euclidean distance or Lp-norms do not always make sense. For example,
it is better to use the information-theoretic relative entropy, known as the Kullback-Leibler diver-
gence, to measure the oriented distance between image histograms [15]. Efficiency is another key
issue of CBIR systems since we do not want to compute the similarity measure (query,image) for
each image in the database. We rather want to prealably cluster the signatures efficiently dur-
ing the preprocessing stage for fast retrieval of the best matches given query signature points. A
first seminal work by Lloyd in 1957 [18] proposed the k-means iterative clustering algorithm. In
short, k-means starts by choosing k seeds for cluster centers, associate to each point its “clos-
est” cluster “center,” update the various cluster centers, and reiterate until either convergence
is met or the difference of the “loss function” between any two sucessive iterations goes below a
prescribed threshold. Lloyd choosed the squared Euclidean distance since the minimum average
intracluster distance yields centroids, the centers of mass of the respective clusters, and further
proved that k-means monotonically converges to a local optima. Cluster Ci’s center ci is defined by
the minimization problem ci = arg minc

∑
pj∈Ci ||cpj ||

2 = 1
|Ci|
∑

pj∈Ci pj
def= arg minc AVGL2

2
(Ci, c),

where |Ci| denotes the cardinality of Ci. Half a century later, Banerjee et al. [4] showed that
the k-means algorithm extends to and only works for a broad family of distortion measures called
Bregman divergences [8]. Bregman divergences DF are parameterized families of distortion mea-
sures that are defined by a strictly convex and differentiable generator function F : X → R+

(with dim X = d) as DF (p||q) = F (p) − F (q)− < p − q,∇F (q) >, where < ·, · > denotes
the inner product (< p, q >=

∑d
i=1 p

(i)q(i) = pT q) and ∇F (q) the gradient at point q (ie.,

∇F (q) =
[
∂F (q)

∂x(1) , ...,
∂F (q)

∂x(d)

]
). Further, Teboulle [26] generalized this Bregman k-means algorithm

in 2007 by considering both hard and soft center-based clustering algorithms designed for both
Bregman [8] and Csiszár f -divergences [1, 12]. The fundamental underlying primitive for these
center-based clustering algorithms is to find the intrinsic best single representative of a cluster.
As mentionned above, the centroid of a point set P = {p1, ..., pn} is defined as the optimizer of
the minimum average distance: c = arg minc 1

n

∑
i d(c, pi). For oriented distance functions such as

Bregman divergences that are not necessarily symmetric, we thus distinguish sided and symmetrized
centroids as follows: cFR = arg minc∈X 1

n

∑n
i=1DF (pi|| c ), cFL = arg minc∈X 1

n

∑n
i=1DF ( c ||pi), and

cF = arg minc∈X 1
n

∑n
i=1

DF (pi|| c )+DF ( c ||pi)
2 . The first right-type and left-type centroids cFR and

cFL are called sided centroids, and the third type centroid cF is called the symmetrized Bregman
centroid. Except for the class of generalized quadratic distances with generator FQ(x) = xTQx,
SF (p; q) = DF (p||q)+DF (q||p)

2 is not a Bregman divergence, see [20]. Since the three centroids
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coincide with the center of mass for symmetric Bregman divergences, we consider in the re-
mainder asymmetric Bregman divergences. We write for short AVGF (P||c) = 1

n

∑n
i=1DF (pi||c),

AVGF (c||P) = 1
n

∑n
i=1DF (c||pi) and AVGF (c;P) = 1

n

∑n
i=1 SF (c; pi) , so that we get respectively

cFR = arg minc∈X AVGF (P||c), cFL = arg minc∈X AVGF (c||P) and cF = arg minc∈X AVGF (P; c).
The symmetrized Kullback-Leibler [25, 19] and COSH centroids [10, 29] (symmetrized Itakura-
Saito divergence obtained for F (x) = − log x, the Burg entropy) are certainly the most famous
symmetrized Bregman centroids, widely used in image and sound processing. These symmetrized
centroids play a fundamental role in applications that require to handle symmetric information-
theoretic distances.

1.1 Related work, contributions and paper organization

Prior work in the literature is sparse and disparate. We summarize below main references that
will be concisely revisited in section 2 under our notational conventions. Ben-Tal et al. [7] studied
entropic means as the minimum average optimization for various distortion measures such as the
f -divergences and Bregman divergences. Their study is limited to the sided left-type (generalized
means) centroids. Basseville and Cardoso [6] compared in the 1-page paper the generalized/entropic
mean values for two entropy-based classes of divergences: f -divergences [12] and Jensen-Shannon
divergences [13]. The closest recent work to our study is Veldhuis’ approximation method [27] for
computing the symmetrical Kullback-Leibler centroid.

We summarize our contributions as follows:

• In section 2, we show that the two sided Bregman centroids cFR and cFL with respect to Bregman
divergence DF are unique and easily obtained as generalized means for the identity and ∇F
functions, respectively. We extend Sibson’ s notion of information radius [24] for these sided
centroids, and show that they are both equal to the F -Jensen difference, a generalized Jensen-
Shannon divergence [17] also known as Burbea-Rao divergences [9].

• Section 3 proceeds by first showing how to reduce the symmetrized min AVGF (P; c) optimiza-
tion problem into a simpler system that depends only on the two sided centroids cFR and cFL .
We then geometrically characterize exactly the symmetrized centroid as the intersection point
of the geodesic linking the sided centroids with a new type of divergence bisector: the mixed-
type bisector. This yields a simple and efficient dichotomic search procedure that provably
converges fast to the exact symmetrized Bregman centroid.

• The symmetrized Kullback-Leibler divergence (J-divergence) and symmetrized Itakura-Saito
divergence (COSH distance) are often used in sound/image applications, where our fast
geodesic dichotomic walk algorithm converging to the unique symmetrized Bregman centroid
comes in handy over former complex adhoc methods [19, 10, 25, 3, 23]. Section 4 considers
applications of the generic geodesic-walk algorithm to two cases:

– The symmetrized Kullback-Leibler for probability mass functions represented as d-
dimensional points lying in the (d − 1)-dimensional simplex Sd. These discrete dis-
tributions are handled as multinomials of the exponential families [20] with d−1 degrees
of freedom. We instantiate the generic geodesic-walk algorithm for that setting, show
how it compares favorably with the prior convex optimization work of Veldhuis [27, 3],
and validate formally experimental remarks of Veldhuis.
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– The symmetrized Kullback-Leibler of multivariate normal distributions. We describe the
geodesic-walk for this particular mixed-type exponential family of multivariate normals,
and explain the Legendre mixed-type vector/matrix dual convex conjugates defining the
corresponding Bregman divergences. This yields a simple, fast and elegant geometric
method compared to the former overly complex method of Myrvoll and Soong [19] that
relies on solving Riccati matrix equations.

2 Sided Bregman centroids

2.1 Right-type centroid

We first prove that the right-type centroid cFR is independent of the considered Bregman divergence
DF : cF (P) = p̄ = 1

n

∑n
i=1 pi is always the center of mass. Although this result is well-known

in disguise in information geometry [2], it was again recently brought up to the attention of the
machine learning community by Banerjee et al. [4] who proved that Lloyd’s iterative k-means
“centroid” clustering algorithm [18] generalizes to the class of Bregman divergences. We state the
result and give the proof for completeness and familizaring us with notations.

Theorem 2.1 The right-type sided Bregman centroid cFR of a set P of n points p1, ...pn,
defined as the minimizer for the average right divergence cFR = arg minc

∑n
i=1

1
nDF (pi||c) =

arg minc AVGF (P||c), is unique, independent of the selected divergence DF , and coincides with
the center of mass cFR = cR = p̄ = 1

n

∑n
i=1 pi.

Proof For a given point q, the right-type average divergence is defined as AVGF (P||q) =∑n
i=1

1
nDF (pi||q). Expanding the terms DF (pi||q)’s using the definition of Bregman divergence,

we get AVGF (P||q) =
∑n

i=1
1
n (F (pi)− F (q)− < pi − q,∇F (q) >). Subtracting and adding F (p̄)

to the right-hand side yields

AVGF (P, q) =

(
n∑
i=1

1
n
F (pi)− F (p̄)

)
+

(
F (p̄)− F (q)−

n∑
i=1

1
n
< pi − q,∇F (q) >

)
,

=

(
n∑
i=1

1
n
F (pi)− F (p̄)

)
+

(
F (p̄)− F (q)−

〈
n∑
i=1

1
n

(pi − q),∇F (q)

〉)
,

=

(
1
n

n∑
i=1

F (pi)− F (p̄)

)
+DF (p̄||q).

Observe that since
∑n

i=1
1
nF (pi)−F (p̄) is independent of q, minimizing AVGF (P||q) is equivalent

to minimizing DF (p̄||q). Using the fact that Bregman divergences DF (p||q) are non-negative,
DF (p||q) ≥ 0, and equal to zero if and only if p = q, we conclude that cFR = arg minq AVGF (P||q) =
p̄, namely the center of mass of the point set. The minimization remainder, representing the
“information radius” (by generalizing the notion introduced by Sibson [24] for the relative entropy),
is JSF (P) = 1

n

∑n
i=1 F (pi)−F (p̄) ≥ 0, which bears the name of the F -Jensen difference1 [9]. For F =

1In the paper [9], it is used for strictly concave function H = −F on a weight distribution vector π: Jπ(p1, ..., pn) =
H(

Pn
i=1 πipi)−

Pn
i=1 πiH(pi). Here, we consider uniform weighting distribution π = u (with πi = 1

n
).
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−H = x log x the negative Shannon entropy, JF is known as the Jensen-Shannon divergence [17]:
JS(P) = H(

∑n
i=1 pi)−

∑n
i=1

1
nH(pi). The Jensen-Shannon divergence is also known as half of the

Jeffreys divergence (JD): JS(P ;Q) = 1
2JD(P ;Q), and can be interpreted as the expected information

gain when discovering which probability distribution is drawn from (either P or Q). The Jensen-
Shannon divergence can also be interpreted as the noisy channel capacity with two inputs giving
output distributions P and Q [11]. Jensen-Shannon divergences are also useful for providing both
lower and upper bounds for Bayes probability of error in decision problems [17].

2.2 Dual divergence and left-type centroid

Before characterizing the left-type sided Bregman centroid, we recall the fundamental duality
of convex analysis: convex conjugation by Legendre transformation. We refer to [20] for de-
tailed explanations that we concisely summarize here as follows: Any Bregman generator func-
tion F admits a dual Bregman generator function G = F ∗ via the Legendre transformation
G(y) = supx∈X {< y, x > −F (x)}. The supremum is reached at the unique point where the
gradient of G(x) =< y, x > −F (x) vanishes, that is when y = ∇F (x). Writing X ′F for the
gradient space {x′ = ∇F (x)|x ∈ X}, the convex conjugate G = F ∗ of F is the function
X ′F ⊂ Rd → R defined by F ∗(x′) =< x, x′ > −F (x). It follows from Legendre transformation
that any Bregman divergence DF admits a dual Bregman divergence DF ∗ related to DF as follows:
DF (p||q) = F (p) + F ∗(∇F (q))− < p,∇F (q) >= F (p) + F ∗(q′)− < p, q′ >= DF ∗(q′||p′). Using the
convex conjugation twice, we get the following (dual) theorem for the left-type Bregman centroid:

Theorem 2.2 The left-type sided Bregman centroid cFL , defined as the minimizer for the av-
erage left divergence cFL = arg minc∈X AVGF

L (c||P), is the unique point cFL ∈ X such that
cFL = (∇F )−1(p̄′) = (∇F )−1(

∑n
i=1∇F (pi)), where p̄′ = cF

∗
R (PF ′) is the center of mass for the

gradient point set PF ′ = {p′i = ∇F (pi) | pi ∈ P}.

Proof Using the dual Bregman divergence DF ∗ induced by the convex conjugate F ∗ of F , we
observe that the left-type centroid cFL = arg minc∈X AVGF (c||P) is obtained equivalently by mini-
mizing the dual right-type centroid problem on the gradient point set: arg min′c′∈X AVGF ∗(PF ′||c′),
where we recall that p′ = ∇F (p) and PF ′ = {∇F (p1), ...,∇F (pn)} denote the gradient point set.
Thus the left-type Bregman centroid cFL is computed as the reciprocal gradient of the center of mass
of the gradient point set cF

∗
R (PF ′) = 1

n

∑n
i=1∇F (pi) : cFL = (∇F )−1(

∑n
i=1

1
n∇F (pi)) = (∇F )−1(p̄′).

It follows that the left-type Bregman centroid is unique.

Observe that the duality also proves that the information radius for the left-type centroid is the
same F -Jensen difference (Jensen-Shannon divergence for the convex entropic function F ).

Corollary 2.3 The information radius equality AVGF (P||cFR) = AVGF (cFL ||P) = JSF (P) =
1
n

∑n
i=1 F (pi)− F (p̄) > 0 is the F -Jensen-Shannon divergence for the uniform weight distribution.

2.3 Generalized means centers and barycenters

We show that both sided centroids are generalized means also called quasi-arithmetic or f -means.
We first recall the basic definition of generalized means2 that generalizes the usual arithmetic and

2Studied independently in 1930 by Kolmogorov and Nagumo, see [22]. A more detailed account is given in [16],
Chapter 3.
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geometric means. For a strictly continuous and monotonous function f , the generalized mean [22]
of a sequence V of n real numbers V = {v1, ..., vn} is defined as M(V; f) = f−1( 1

n

∑n
i=1 f(vi)). The

generalized means include the Pythagoras’ arithmetic, geometric, and harmonic means, obtained
respectively for functions f(x) = x, f(x) = log x and f(x) = 1

x (see appendix A). Note that since
f is injective, its reciprocal function f−1 is properly defined. Further, since f is monotonous, it is
noticed that the generalized mean is necessarily bounded between the extremal set elements mini vi
and maxi vi: mini xi ≤ M(V; f) ≤ maxi xi. In fact, finding these minimum and maximum set
elements can be treated themselves as a special generalized power mean, another generalized mean
for f(x) = xp in the limit case p→ ±∞.

These generalized means highlight a bijection: Bregman divergence DF ↔ ∇F -means. The one-
to-one mapping holds because Bregman generator functions F are strictly convex and differentiable
functions chosen up to an affine term [20]. This affine invariant property transposes to generalized
means as an offset/scaling invariant property: M(S; f) = M(S; af + b) ∀a ∈ R+

∗ and ∀b ∈ R.
Although we have considered centroids for simplicity (ie., uniform weight distribution on the input
set P), this approach generalizes straightforwardly to barycenters defined as solutions of minimum
average optimization problems for arbitrary unit weight vector w (∀i, wi ≥ 0 with ||w|| = 1):

Theorem 2.4 Bregman divergences are in bijection with generalized means. The right-type
barycenter bFR(w) is independent of F and computed as the weighted arithmetic mean on the
point set, a generalized mean for the identity function: bFR(P;w) = bR(P;w) = M(P;x;w) with
M(P; f ;w) = f−1(

∑n
i=1wif(vi)). The left-type Bregman barycenter bFL is computed as a gener-

alized mean on the point set for the gradient function: bFL (P) = M(P;∇F ;w). The information
radius of sided barycenters is JSF (P;w) =

∑d
i=1wiF (pi)− F (

∑d
i=1wipi).

3 Symmetrized Bregman centroid

3.1 Revisiting the optimization problem

For asymmetric Bregman divergences, the symmetrized Bregman centroid is defined by the follow-
ing optimization problem cF = arg minc∈X

∑n
i=1

DF (c||pi)+DF (pi||c)
2 = arg minc∈X AVG(P; c). We

simplify this optimization problem to another constant-size system relying only the right-type and
left-type sided centroids, cFR and cFL , respectively. This will prove that the symmetrized Bregman
centroid is uniquely defined as the zeroing argument of a sided centroid function by generalizing the
approach of Veldhuis [27] that studied the special case of the symmetrized discrete Kullback-Leibler
divergence, also known as J-divergence.

Lemma 3.1 The symmetrized Bregman centroid cF is unique and obtained by minimizing
minq∈X DF (cFR||q) +DF (q||cFL ): cF = arg minq∈X DF (cFR||q) +DF (q||cFL ).

Proof We have previously shown that the right-type average divergence can be rewritten as
AVGF (P||q) =

(∑n
i=1

1
nF (pi)− F (p̄)

)
+ DF (p̄||q). Using Legendre transformation, we have

similarly AVGF (q||P) = AVGF ∗(PF ′||q′) = (
∑n

i=1
1
nF
∗(p′i) − F ∗(p̄′)) + DF ∗(p̄′F ||q′F ). But

DF ∗(p̄′F ||q′F ) = DF ∗∗(∇F ∗ ◦ ∇F (q)||∇F ∗(
∑n

i=1∇F (pi))) = DF (q||cFL ) since F ∗∗ = F , ∇F ∗ =
∇F−1 and ∇F ∗ ◦ ∇F (q) = q from Legendre duality. Combining these two sum averages,
it comes that minimizing arg minc∈X 1

2 (AVGF (P||q) + AVGF (q||P)) boils down to minimizing
arg minq∈X DF (cFR||q) + DF (q||cFL ), after removing all terms independent of q. The solution is
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unique since the optimization problem arg minq∈X DF (cFR||q) + DF (q||cFL ) can be itself rewritten
as arg minq∈X DF ∗(∇F (q)||∇F (cFR)) + DF (q||cFL ), where ∇F (q) is monotonous and DF (·||·) and
DF ∗(·||·) are both convex in the first argument (but not necessarily in the second). Therefore the
optimization problem is convex and admits a unique solution.

3.2 Geometric characterization

We now characterize the exact geometric location of the symmetrized Bregman centroid by intro-
ducing a new type of bisector3 called the mixed-type bisector:

Theorem 3.2 The symmetrized Bregman centroid cF is uniquely defined as the minimizer of
DF (cFR||q) + DF (q||cFL ). It is defined geometrically as cF = ΓF (cFR, c

F
L ) ∩ MF (cFR, c

F
L ), where

ΓF (cFR, c
F
L ) = {(∇F )−1((1−λ)∇F (cFR)+λ∇F (cFL )) | λ ∈ [0, 1]} is the geodesic linking cFR to cFL , and

MF (cFR, c
F
L ) is the mixed-type Bregman bisector: MF (cFR, c

F
L ) = {x ∈ X | DF (cFR||x) = DF (x||cFL )}.

Proof. First, let us prove by contradiction that q necessarily belongs to the geodesic Γ(cFR, c
F
L ).

Figure 1: The symmetrized
Bregman centroid necessarily
lies on the geodesic passing
through the two sided cen-
troids cFR and cFL .

Assume q does not belong to that geodesic and consider the point
q⊥ that is the Bregman perpendicular projection of q onto the (con-
vex) geodesic [20]: q⊥ = arg mint∈Γ(cFR,c

F
L )DF (t||q) as depicted in

Figure 1. Using Bregman Pythagoras’ theorem4 twice (see [20]),
we have: DF (cFR||q) ≥ DF (cR||q⊥) + DF (q⊥||q) and DF (q||cFL ) ≥
DF (q||q⊥) + DF (q⊥||CFL ). Thus, we get DF (cFR||q) + DF (q||cFL ) ≥
DF (cFR||q⊥) + DF (q⊥||cFL ) + (DF (q⊥||q) +DF (q||q⊥)). But since
DF (q⊥||q) + DF (q||q⊥) > 0, we reach the contradiction since
DF (cFR||q⊥) + DF (q⊥||cFL ) < DF (cFR||q) + DF (q||cFL ). Therefore
q necessarily belongs to the geodesic Γ(cFR, c

F
L ). Second, let us

show that q necessarily belongs to the mixed-type bisector. As-
sume it is not the case. Then DF (cFR||q) 6= DF (q||cFL ) and sup-
pose without loss of generality that DF (cFR||q) > DF (q||cFL ). Let
∆ = DF (cFR||q) − DF (q||cFL ) > 0 and l0 = DF (q||cFL ) so that
DF (cFR||q) + DF (q||cFL ) = 2l0 + ∆. Now move q on the geodesic
towards cFR by an amount such that = DF (q||cFL ) ≤ l0 + 1

2∆. Clearly, DF (cFR||q) < l0 and
DF (cFR||q) + DF (q||cFL ) < 2l0 + 1

2∆ contradicting the fact that q was not on the mixed-type bi-
sector.

The equation of the mixed-type bisector MF (p, q) is neither linear in x nor in x′ = ∇F (x) (nor in
x̃ = (x, x′)) because of the term F (x), and can thus only be manipulated implicitly in the remainder:
MF (p, q) = {x ∈ X | F (p)−F (q)−2F (x)− < p, x′ > + < x, x′ > + < x, q′ > − < q, q′ >= 0}. The
mixed-type bisector is not necessarily connected (eg., extended Kullback-Leibler divergence), and
yields the full space X for symmetric Bregman divergences (ie., generalized quadratic distances).

Using the fact that the symmetrized Bregman centroid necessarily lies on the geodesic linking
the two sided centroids cFR and cFL , we get the following corollary:

3See [20] for the affine/curved and symmetrized bisectors studied in the context of Bregman Voronoi diagrams.
4Bregman Pythagoras’ theorem is also called the generalized Pythagoras’ theorem, and is stated as follows:

DF (p||q) ≥ D(p||PΩ(q)) + DF (PΩ(q)||q) where PΩ(q) = arg minω∈Ω DF (ω||q) is the Bregman projection of q onto a
convex set Ω, see [4].
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(a) (b)
cF

R = (0.47, 0.78), cF
L = (0.25, 0.76),AVGF (P||cF

R,L) = 4.29 cF
R = (0.43, 0.11), cF

L = (0.13, 0.07),AVGF (P||cF
R,L) = 22.70

cF = (0.35, 0.77), ,AVGF (P; cF ) = 3.96 cF = (0.24, 0.09),AVGF (P; cF ) = 16.91

Figure 2: Bregman centroids for (a) the extended Kullback-Leibler and (b) Itakura-Saito diver-
gences on the open square X =]0, 1[2. Right-sided and left-sided, and symmetrized centroids are
displayed respectively as red, blue and purple points. The geodesic linking the right-sided centroid
to the left-sided one is shown in grey, and the mixed-type bisector is displayed in purple.

Corollary 3.3 The symmetrized Bregman divergence minimization problem is both lower and up-
per bounded as follows: JSF (P) ≤ AVGF (P; cF ) ≤ DF (cFR||cFL ).

Figure 2 displays the mixed-type bisector, and sided and symmetrized Bregman centroids for
the extended5 Kullback-Leibler (eKL) and Itakura-Saito (IS) divergences.

3.3 A simple geodesic-walk dichotomic approximation algorithm

The exact geometric characterization of the symmetrized Bregman centroid provides us a simple
method to approximately converge to cF : Namely, we perform a dichotomic walk on the geodesic
linking the sided centroids cFR and cFL . This dichotomic search yields a novel efficient algorithm
that enables us to solve for arbitrary symmetrized Bregman centroids, beyond the former Kullback-
Leibler case6 of Veldhuis [27]: We initially consider λ ∈ [λm = 0, λM = 1] and repeat the following
steps until λM − λm ≤ ε, for ε > 0 a prescribed precision threshold:

Geodesic walk. Compute interval midpoint λh = λm+λM
2 and corresponding geodesic point

qh = (∇F )−1((1− λh)∇F (cFR) + λh∇F (cFL )),

Mixed-type bisector side. Evaluate the sign of DF (cFR||qh)−DF (qh||cRL), and

Dichotomy. Branch on [λh, λM ] if the sign is negative, or on [λm, λh] otherwise.

Note that any point on the geodesic (including the midpoint q 1
2
) or on the mixed-type bi-

sector provides an upperbound AVGF (P; qh) on the minimization task. Although it was noted
experimentally by Veldhuis [27] for the Kullback-Leibler divergence that this midpoint provides

5We relax the probability distributions to belong to the positive orthant Rd+ (ie., unnormalized probability mass
function) instead of the open simplex Sd.

6Veldhuis’ method [27] is based on the general purpose Lagrangian multiplier method with a normalization step.
It requires to set up one threshold for the outer loop and two prescribed thresholds for the inner loops. For example,
Aradilla et al. [3] set the number of steps of the outer loop and inner loops to ten and five iterations each, respectively.
Appendix B provides a synopsis of Veldhuis’ method.
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“experimentally” a good approximation, let us emphasize that is not true in general, as depicted
in Figure 2(b) for the Itakura-Saito divergence.

Theorem 3.4 The symmetrized Bregman centroid can be approximated within a prescribed pre-
cision by a simple dichotomic walk on the geodesic Γ(cFR, c

F
L ) helped by the mixed-type bisector

MF (cFR, c
F
L ). In general, symmetrized Bregman centroids do not admit closed-form solutions.

In practice, we can control the stopping criterion ε by taking the difference WF (q) = DF (cFR||q)−
DF (q||cRL) between two successive iterations since it monotonically decreases. The number of it-
erations can also be theoretically upper-bounded as a function of ε using the maximum value of
the Hessian hF = maxx∈Γ(cFR,c

F
L ) ||HF (x)||2 along the geodesic Γ(cFR, c

F
L ) by mimicking the analysis

in [21] (See Lemma 3 of [21]).

4 Applications of the dichotomic geodesic-walk algorithm

4.1 Revisiting the centroid of symmetrized Kullback-Leibler divergence

Consider a random variable Q on d events Ω = {Ω1, ...,Ωd}, called the sample space. Its associated
discrete distribution q (with Pr(Q = Ωi) = q(i)) belongs to the topologically open (d−1)-dimensional
probability simplex Sd of Rd

+:
∑d

i=1 q
(i) = 1 and ∀i ∈ {1, ..., d} qi > 0. Distributions q arise

often in practice from image intensity histograms7. To measure the distance between two discrete
distributions p and q, we use the Kullback-Leibler divergence also known as relative entropy or
discrimination information: KL(p||q) =

∑d
i=1 p

(i) log p(i)

q(i) . Note that this information measure is

unbounded whenever there exists q(i) = 0 for a non-zero q(i) > 0. But since we assumed that
both p and q belongs to the open probability simplex Sd, this case does not occur in our setting:
0 ≤ KL(p||q) <∞ with left-hand side equality if and only if p = q. The symmetrized KL divergence
1
2(KL(p||q) + KL(q||p)) is also called J-divergence or SKL divergence, for short.

The random variable Q can also be interpreted as a regular exponential family member [20] in
statistics of order d − 1, generalizing the Bernoulli random variable. Namely, Q is a multinomial
random variable indexed by a (d−1)-dimensional parameter vector θq. These multinomial distribu-
tions belong to the broad class of exponential families [20] in statistics for which have the important
property that KL(p(θp)||q(θq)) = DF (θq||θp), see [20]. That is, this property allows us to bypass the
fastidious integral computations of Kullback-Leibler divergences and replace it by a simple gradient
derivatives for probability distributions belonging to the same exponential families. From the canon-
ical decomposition exp(< θ, t(x) > −F (θ)+C(x)) of exponential families [20], it comes out that the
natural parameters associated with the sufficient statistics t(x) are θ(i) = log q(i)

q(d) = log q(i)

1−
Pd−1
j=1 q

(j)

since q(d) = 1 −
∑d−1

j=1 q
(j). The natural parameter space is the topologically open Rd−1. The log

normalizer is F (θ) = log(1 +
∑d−1

i=1 exp θ(i)), called the multivariate logistic entropy. It follows that
the gradient is ∇F (θ) = η = (ηi)i with ηi = exp θ(i)

1+
Pd−1
j=1 exp θ(j)

and yields the dual parameterization of

the expectation parameters: η = ∇θF (θ). The expectation parameters play an important role in
practice for infering the distributions from identically and independently distributed observations

7To ensure to all bins of the histograms are non-void, we add a small quantity ε to each bin, and normalize to
unit. This is the same as considering the random variable Q+ εU where U is a unit random variable.
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x1, ..., xn. Indeed, the maximum likelihood estimator of exponential families is simply given by the
center of mass of the sufficient statistics computed on the observations: η̂ = 1

n

∑n
i=1 t(xi), see [5].

Observe in this case that the log normalizer function is not separable (F (x) 6=
∑d−1

i=1 fi(x
(i))). The

function F and F ∗ =
∫
∇−1F are convex conjugates obtained by the Legendre transformation that

maps both domains and functions (XF , F )←→ (XF∗, F ∗). We get the inverse ∇−1F = (∇F )−1 of

the gradient ∇F as ∇−1F (η) =
(

log η(i)

1−
Pd−1
j=1 η

(j)

)
i

= θ. Thus it comes that the Legendre convex

conjugate is F ∗(η) =
(∑d−1

i=1 η
(i) log η(i)

)
+ (1 −

∑d−1
i=1 η

(i)) log(1 −
∑d−1

i=1 η
(i)), the d-ary entropy.

Observe that for d = 2, this yields the usual bit entropy8 function F ∗(η) = η log η+(1−η) log(1−η).
To convert back from the multinomial (d − 1)-order natural parameters θ to discrete d-bin

normalized probability mass functions (eg., histograms) Λ ∈ Sd, we use the following mapping:
q(d) = 1

1+
Pd−1
j=1 (1+exp θ(j))

and q(i) = exp θ(i)

1+
Pd−1
j=1 (1+exp θ(j))

for all i ∈ {1, ..., d−1}. This gives a valid (ie.,

normalized) distribution q ∈ Sd for any θ ∈ Rd−1. Note that the coefficients in θ may be either
positive or negative depending on the ratio of the probability of the ith event with the last one,
q(d).

As mentioned above, it turns out that the Kullback-Leibler measure can be computed from the
Bregman divergence associated to the multinomial by swapping arguments: KL(p||q) = DF (θq||θp),
where the Bregman divergence DF (θq||θp) = F (θq) − F (θp)− < θq − θp,∇F (θp) > is defined for
the strictly convex (∇2F > 0) and diffentiable log normalizer F (θ) = log(1 +

∑d−1
i=1 exp θ(i)). We

implemented the geodesic-walk approximation algorithm for that context, and observed in practice
that the SKL centroid deviates much (20% or more in information radius) from the “middle” point
of the geodesic (λ = 1

2), thus reflecting the asymmetry of the underlying space. Further, note that
our geodesic-walk algorithm proves the empirical remark of Veldhuis [27] that “... the assumption
that the SKL centroid is a linear combination of the arithmetic and normalized geometric mean
must be rejected.” Appendix B displays side by side Veldhuis’ and the geodesic-walk methods
for reference, and appendix C report on the sided and symmetrized Bregman centroids of two
probability mass functions obtained from intensity histograms of apple images. Observe that the
symmetrized centroid distribution may be above both source distributions, but this is never the case
in the natural parameter domain since the two sided centroids are generalized means, and that the
symmetrized centroid belongs to the geodesic linking these two centroids (ie., a barycenter mean
of the two sided centroids).

Computing the centroid of a set of image histograms, a center robust to outliers, allows one
to design novel applications in information retrieval and image processing. For example, we can
perform simultaneous contrast image enhancement by first computing the histogram centroid of a
group of pictures, and then performing histogram normalization to that same reference histogram.

4.2 Entropic means of multivariate normal distributions

The probability density function of an arbitary d-variate normal N (µ,Σ) with mean µ and variance-
covariance matrix Σ is given by Pr(X = x) = p(x;µ,Σ) = 1

(2π)
d
2
√

detΣ
exp

(
− (x−µ)TΣ−1(x−µ)

2

)
.

It is certainly the engineer’s favorite family of distributions that nevertheless becomes intricate
8This generalizes the 1D case of Kullback-Leibler’s Bernoulli divergence: F (x) = log(1 + expx) is the logistic

entropy, F ′(x) = exp x
1+exp x

and F ′
−1

= log x
1−x , and F ∗(x) = x log x+ (1− x) log(1− x), is the dual bit entropy.
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to use as dimension goes beyond 3D. The density function can be rewritten into the canoni-
cal decomposition to yield an exponential family of order D = d(d+3)

2 (the mean vector and
the positive definite matrix Σ−1 accounting respectively for d and d(d+1)

2 parameters). The
sufficient statistics is stacked onto a two-part D-dimensional vector x̃ = (x,−1

2xx
T ) associ-

ated with the natural parameter Θ̃ = (θ,Θ) = (Σ−1µ, 1
2Σ−1). Accordingly, the source pa-

rameter are denoted by Λ̃ = (µ,Σ). The log normalizer specifying the exponential family is
F (Θ̃) = 1

4Tr(Θ−1θθT ) − 1
2 log detΘ + d

2 log π (see [30, 2]). To compute the Kullback-Leibler di-
vergence of two normal distributions Np = N (µp,Σp) and Nq = N (µq,Σq), we use the Bregman
divergence as follows: KL(Np||Nq) = DF (Θ̃q||Θ̃p) = F (Θ̃q) − F (Θ̃p)− < (Θ̃q − Θ̃p),∇F (Θ̃p) >.
The inner product < Θ̃p, Θ̃q > is a composite inner product obtained as the sum of inner products
of vectors and matrices: < Θ̃p, Θ̃q >=< Θp,Θq > + < θp, θq >. For matrices, the inner product
< Θp,Θq > is defined by the trace of the matrix product ΘpΘT

q : < Θp,Θq >= Tr(ΘpΘT
q ). In

this setting, however, computing the gradient, inverse gradient and finding the Legendre convex
conjugates are quite involved operations. Yoshizawa and Tanabe [30] investigated in a unifying
framework the differential geometries of the families of probability distributions of arbitrary mul-
tivariate normals from both the viewpoint of Riemannian geometry relying on the corresponding
Fisher information metric, and from the viewpoint of Kullback-Leibler information, yielding the
classic torsion-free flat shape geometry with dual affine connections [2]. Yoshizawa and Tanabe [30]
carried out computations that yield the dual natural/expectation coordinate systems arising from
the canonical decompotion of the density function p(x;µ,Σ):

H̃ =
(

η = µ
H = −(Σ + µµT )

)
⇐⇒ Λ̃ =

(
λ = µ
Λ = Σ

)
⇐⇒ Θ̃ =

(
θ = Σ−1µ
Θ = 1

2Σ−1

)
The strictly convex and differentiable dual Bregman generator functions (ie., potential functions

in information geometry) are F (Θ̃) = 1
4Tr(Θ−1θθT )− 1

2 log detΘ+ d
2 log π, and F ∗(H̃) = −1

2 log(1+
ηTH−1η)− 1

2 log det(−H)− d
2 log(2πe) defined respectively both on the topologically open space Rd×

Cone−d . Note that removing constant terms does not change the Bregman divergences. The H̃ ⇔ Θ̃
coordinate transformations obtained from the Legendre transformation (with (∇F )−1 = ∇F ∗) are

given by H̃ = ∇Θ̃F (Θ̃) =
(
∇Θ̃F (θ)
∇Θ̃F (Θ)

)
=
(

1
2Θ−1θ

−1
2Θ−1 − 1

4(Θ−1θ)(Θ−1θ)T

)
=
(

µ
−(Σ + µµT )

)
and Θ̃ = ∇H̃F

∗(H̃) =
(
∇H̃F

∗(η)
∇H̃F

∗(H)

)
=
(
−(H + ηηT )−1η
−1

2(H + ηηT )−1

)
=
(

Σ−1µ
1
2Σ−1

)
. These formula

simplifies significantly when we restrict ourselves to diagonal-only variance-covariance matrices Σi,
spherical normals Σi = σiI, or univariate normals N (µi, σi).

Computing the symmetrized Kullback-Leibler centroid of a set of normals (Gaussians) is an
essential operation for clustering sets of multivariate normal distributions using center-based k-
means algorithm [14, 26]. Myrvoll and Soong [19] described the use of multivariate normal clustering
in automatic speech recognition. They derived a numerical local algorithm for computing the
multivariate normal centroid by solving iteratively Riccati matrix equations, initializing the solution
to the so-called “expectation centroid” [23]. Their method is a complex and costly since it also
involves solving for eigensystems. In comparison, our geometric geodesic dichotomic walk procedure
for computing the entropic centroid, a Bregman symmetrized centroid, yields an extremely fast and
simple algorithm with guaranteed performance.
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A Dominance relationships of sided centroid coordinates

The table below illustrates the bijection between Bregman divergences and generalized f -means for
the Pythagoras’ means (ie., extend to separable Bregman divergences):

Bregman divergence DF F ←→ f = F ′ f−1 = (F ′)−1 f -mean
(Generalized means)

Squared Euclidean distance 1
2x

2 ←→ x x Arithmetic mean
(half squared loss)

∑n
j=1

1
nxj

Kullback-Leibler divergence x log x− x ←→ log x expx Geometric mean
(Ext. neg. Shannon entropy) (

∏n
j=1 xj)

1
n

Itakura-Saito divergence − log x ←→ − 1
x − 1

x Harmonic mean
(Burg entropy) nPn

j=1
1
xj

We give a characterization of the coordinates cFR
(i) of the right-type average centroid (center of

mass) with respect to those of the left-type average centroid, the cFL
(i) coordinates.

Corollary
Provided that ∇F is convex (e.g., Kullback-Leibler divergence), we have cFR

(i) ≥ cFL
(i) for all

i ∈ {1, ..., d}. Similarly, for concave gradient function (e.g., exponential loss), we have cFR
(i) ≤ cFL

(i)

for all i ∈ {1, ..., d}.

Proof Assume ∇F is convex and apply Jensen’s inequality to 1
n

∑n
i=1∇F (pi). Consider for

simplicity without loss of generality 1D functions. We have 1
n

∑n
i=1∇F (pi) ≤ ∇F ( 1

n

∑n
i=1 pi).

Because (∇F )−1 is a monotonous function, we get cFL = (∇F )−1( 1
n

∑n
i=1∇F (pi)) ≤

(∇F )−1(∇F ( 1
n

∑n
i=1 pi)) = 1

n

∑n
i=1 pi = cFR. Thus we conclude that cFR

(i) ≥ cFL
(i) ∀i ∈ {1, ..., d} for

convex ∇F (proof performed coordinatewise). For concave ∇F functions (i.e., dual divergences of
∇F -convex primal divergences), we simply reverse the inequality (e.g., the exponential loss dual of
the Kullback-Leibler divergence).

Note that Bregman divergences DF may neither have their gradient ∇F convex nor concave.
The bit entropy F (x) = x log x+ (1−x) log(1−x) yielding the logistic loss DF is such an example.
In that case, we cannot a priori order the coordinates of cFR and cFL .

This dominance relationship can be verified for the plot in natural parameter space of Ap-
pendix C.
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B Synopsis of Veldhuis’ and the generic geodesic-walk methods

The table below provides a side-by-side comparison of Veldhuis’ J-divergence centroid convex pro-
gramming method [27] with our generic symmetrized Bregman centroid (entropic means) geodesic-
walk instantiated for the Kullback-Leibler divergence.

Veldhuis’ algorithm Geodesic-walk algorithm

Both C++ source codes with cross-check validations are available at
http://www.sonycsl.co.jp/person/nielsen/BregmanCentroids/
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C Image histogram centroids with respect to the relative entropy

The plots below show the Kullback-Leibler sided and symmetrized centroids on two distributions
taken as the intensity histograms of the apple images shown below. Observe that the symmetrized
centroid distribution is above both source distributions for intensity range [100 − 145], but this is
never the case in the natural parameter space due to the property of generalized means.
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D Entropic sided and symmetrized centroids of bivariate normal
distributions

We report on our implementation for multivariate normal distributions below. Observe that the
right-type Kullback-Leibler centroid is a left-type Bregman centroid for the log normalizer of the
exponential family. Our method allowed us to verify that the simple generalized ∇F -mean formula
cFL (P) = (∇F )−1(

∑n
i=1

1
n∇F (pi)) coincides with that of the NIPS*06 paper [14]. Furthermore, we

would like to stress out that our method extends to arbitrary entropic centroids of members of the
same exponential family.

The figure below plots the entropic right- and left-sided and the symmetrized centroids in red,
blue and green respectively for a set that consists of two bivariate normals (D = d(d+3)

2 = 5). The
geodesic midpoint interpolant (obtained for λ = 1

2) is very close to the symmetrized centroid, and
shown in magenta.

m0 = (0.34029138065736869, 0.26130947813348798),

S0 =

»
0.43668091668767117 −0.42663095837289156
−0.42663095837289161 0.63899446830332574)

–
m1 = (0.95591075380718404, 0.6544489172032838),

S1 =

»
0.79712692342719804 −0.033060250957646142
−0.033060250957646142 0.14609813043797121

–
mR = (0.29050997932657774, 0.53527112890397821),

SR =

»
0.33728018979019664 −0.13844874409795613
−0.13844874409795613 0.2321103610207193

–
mF

L = (0.64810106723227623, 0.45787919766838603),

SF
L =

»
0.71165072320677747 −0.16933954090511438
−0.16933954090511441 0.43118595400867693

–
mF = (0.42475123207621085, 0.5062178606510539),

SF =

»
0.50780328118070528 −0.15653432651371618
−0.15653432651371618 0.30824860232457035

–
m 1

2
= (0.46930552327942698, 0.49657516328618234),

S 1
2

=

»
0.55643330303588234 −0.16081280872294987
−0.1608128087229499 0.33314553526979185

–
.

Information radius:

• right, left: 0.83419372149741644

• symmetrized: 0.64099815325721565

• geodesic λ = 1
2 : 0.6525069280087431

We give other pictorial results below for n = 2 and n = 10 bivariate normals, respectively.
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