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Functional diversity is at the heart of current research in the field of conservation biology. Most of the indices that
measure diversity depend on variables that have various statistical types (e.g. circular, fuzzy, ordinal) and that go through
a matrix of distances among species. We show how to compute such distances from a generalization of Gower’s distance,
which is dedicated to the treatment of mixed data. We prove Gower’s distance can be extended to include new types of
data. The impact of this generalization is illustrated on a real data set containing 80 plant species and 13 various traits.
Gower’s distance allows an efficient treatment of missing data and the inclusion of variable weights. An evaluation of the
real contribution of each variable to the mixed distance is proposed. We conclude that such a generalized index will be
crucial for analyzing functional diversity at small and large scales.

The measurement of distances or similarities among groups
of organisms has become a critical step in studies of
functional ecology. This increase in interest is largely due
to the growth in the number of studies tackling the concept
of functional diversity in the last decades (Petchey and
Gaston 2006) and to the way that functional diversity is
measured. Functional traits of organisms, which are
phenotypic traits that enable species to function in their
ecosystem, have become fundamental entities for under-
standing ecosystem processes and for predicting the con-
sequences of environmental modifications, especially on a
large scale due to global changes. Here, we consider
functional diversity as the variety of states that several
functional traits possess in natural conditions.

Various methods for measuring functional diversity exist
in the literature (reviewed by Petchey and Gaston 2006).
The first method distributes species into functional groups
(Walker 1992), and measures functional diversity as the
number of functional groups in a given community. The
Shannon (1948) or Simpson (1949) index can also be
applied to the relative abundances of the groups. Others
have proposed the sum and the average of distances between
species (Walker et al. 1999, Heemsbergen et al. 2004).
Petchey and Gaston (2002) suggested the sum of the
branches in a dendrogram (coefficient FD), which can be
built using the distances between species. Another alter-
native is Rao’s (1982) quadratic entropy, which includes

phenotypic distances among species and an estimation of
their abundance (Botta-Dukát 2005). A critical step of all of
these indices is defining a general measure of distances
based on mixed data. Indeed, phenotypic traits must be
measured, and depending on the instruments or experts
involved, the variables will be either nominal, ordinal,
interval or ratio-scale (Anderberg 1973). Moreover, there
may be special cases of scale variable types, such as binary,
circular and fuzzy. A potentially high number of statistical
types of variables must be integrated and a measure flexible
enough to apply to any statistical types of variables must be
identified.

Several coefficients of distance or similarity have been
developed to handle mixed data sets (Estabrook and Rogers
1966, Gower and Legendre 1986, Carranza et al. 1998).
We focused on Gower’s (1971) general measure of distance
because Gower defined the measure in a mathematical
framework associated with interesting properties of
Euclidean distances. Gower (1971) proposed measuring a
general similarity among entities from the following types
of variables: quantitative (variables measured on the interval
and ratio scale), nominal, and ‘dichotomous’ (presence/
absence variables). Although his paper was directed towards
taxonomists, it has impacted a much larger audience. His
measure has been used in a variety of fields, including
taxonomy, medicine (Kosaki et al. 1996), genetics
(Mohammadi and Prasanna 2003), morphometry (Loo
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et al. 2001), paleoecology (Elewa 2004) and physics
(Ogurtsov et al. 2002). Our research is motivated by the
fact that Botta-Dukát (2005) and Podani and Schmera
(2006) recently proposed this metric for the measurement
of functional diversity.

The aim of the paper is to show how Gower’s metric can
be extended to include more types of variables encountered
in studies of functional diversity and to highlight its
properties. We (1) develop an extension dedicated to
functional traits, called ‘mixed-variables coefficient of
distance’, to measure the functional distances among
species, (2) demonstrate that this extension can be general-
ized to handle any type of variables, (3) provide a measure
of the contribution of each variable to the global distance,
(4) provide a panel of possible analyses for measuring and
describing functional diversity from Gower’s extended
metric, (5) illustrate these theoretical presentations using a
field study case, and (6) discuss the performance of the
method to mix variables in a context of functional diversity
measurement.

Mathematical background

Gower’s general coefficient of similarity

The general similarity between species i and j is measured
by the following equation:

Sij�
Xn

k�1

sijkdijkwk=
Xn

k�1

dijkwk (1)

where n is the number of variables, sijk is the similarity
between i and j calculated on the kth variable, dijk is equal
to 0 if the value of the kth variable is missing for one of the
two species i and j and 1 if it is available for both species,
and wk are the variable weights. According to this equation,
the similarity for many variables is a weighted average of
similarities for all of the variables that are available for the
two species. For each pair of species, the average distance is
calculated for a subset of available variables. The values of
Sij lie in the interval [0; 1]: The following equation can be
used to calculate a coefficient of distance from Sij:/

/Dij�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Sij

p
: Gower demonstrated that, without missing

data, the matrix [Dij�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Sij

p
] obtained by pairwise

comparison is associated with a cloud of points in a
Euclidean space.

The first types of variables treated by Gower are
measured on the interval and ratio scale. Among various
existing metrics, Gower chose the Manhattan metric that
calculates the average absolute difference among pairs of
values. To normalize the variables, he suggested dividing
values by their range (maximum minus minimum values),
because the range is easy to calculate and the standard
deviation has little meaning for the heterogeneous popula-
tions where similarity or dissimilarity coefficients are
employed. Let Xk be a variable measured on interval or
ratio scale, where parameter k denote the index of the
variable out of the n variables considered in Gower’s
coefficient. Let xik be the value taken by this variable for
species i. Let Rk be the range of Xk either calculated on the
observed sample or on the whole population. Let zik�xik/
Rk, for the kth variable Xk, sijk�1� jzik�zjkj: If n

variables are used, then Gower’s coefficient of similarity is
equal to Cain and Harrison’s (1958) taxonomic similarity:
sij�1�an

k�1jzik�zjkj=n: Thus, the distance proposed by
Gower is the following equation:

dij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k�1
jzik�zjk

s
j (2)

Alternatives exist, for example the Euclidean metric:

dij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k�1
(zik�zjk)

2

s
(3)

Gower also distinguished ‘dichotomous’ variables, which
are binary variables with only two levels: 1 (presence) and 0
(absence). Let Xk be a dichotomous variable and xik be the
value taken for this variable for species i. In that case, sijk�
1 if xik�1 and xjk�1 and sijk�0 if either xik or xjk equals
zero.

For a nominal variable (Xk), the value for species i are
denoted by xik. sijk�0 if species i and j disagree in the kth
character (xik"xjk) and 1 if they agree (xik�xjk). Gower
distinguished the special case of two-level nominal variables,
qualified as ‘alternative variables’. We will not make this
distinction and refer to them as ‘nominal variables’.

Existing extensions of Gower’s distance

Gower’s distance has been applied to additional types of
variables (Williams and Wentz 2008). Here, we propose to
review the extensions that could be useful for the measure-
ment of functional diversity, while other extensions are
possible.

Ordinal variables
The main extension of Gower’s distance accommodates
ordinal variables. The difficulty with ordinal variables is
that the operations of subtraction, multiplication and
division are not interpretable. Another difficulty is that
ties appear for partially ranked variables. Affirming these
two difficulties, Podani (1999) suggested one coefficient
very specific for ordinal variables but not metric, and
another one less specific but metric. The metric alternative
corresponds to Eq. 2 applied to ranks.

Multichoice nominal variables
Questions were raised about how to treat binary variables
when some of them are associated. For example, a bird
species can be both granivorous and frugivorous. In that
case, the variable ‘trophic habit’ is encoded with several
columns that are labeled by the trophic states (granivorous,
frugivorous). The ith row for species i contains a 1 for each
food category it usually uses and 0 elsewhere. These
variables can be named ‘multichoice nominal variables’ in
reference to multichoice questions in the sample survey.
Podani and Schmera (2007), who tackled this problem
explicitly in the context of Gower’s formula, used the
expression ‘trait with non-exclusive states’. Numerous
coefficients of distance have been proposed for multichoice
nominal variables, such as the simple matching coefficient

392



or the complement of Jaccard’s coefficient (Gordon 1990,
reviewed by Legendre and Legendre 1998).

Methods

Toward a more general index of functional distances

Gower’s coefficient as the mean of squared distances
Extensions of Gower’s coefficient are possible; however,
such extensions or merely such possibilities of extensions are
scattered in literature. They are scarcely known and, as far as
we know, have never been clarified into a general frame-
work. There is a pressing need for a synthesis of the
extensions of Gower’s distance because these extensions can
be used in the framework of functional diversity. Indeed,
Botta-Dukát (2005) concluded his article by writing the
following: ‘‘If categorical and qualitative traits are consid-
ered in the same analysis, the number of potential distance
functions is strongly limited. Development of a new
function more flexible than the Gower distance would be
effective.’’

Gower’s distance formula is as follows:

Dij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn

k�1

sijkdijkwk=
Xn

k�1

dijkwk

vuut (4)

The possibility to weight variables through the wk values
is useful in functional ecology because ‘‘if in reality some
traits are more important for determining ecosystem
functioning than others then they should be given greater
weighting in the trait matrix’’ (Petchey and Gaston 2002).
Let us introduce dijk�

ffiffiffiffiffiffiffiffiffi
1-sijk

p
: We will now complete the

discussion in terms of distances instead of similarities.

Dij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k�1

(1�sijk)dijkwk=
Xn

k�1

dijkwk

vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k�1

d 2
ijkdijkwk=

Xn

k�1

dijkwk

vuut (5)

Consequently, for many variables, the global distance
between two species is the squared root of the average
squared distances between species for all the variables

considered. Let Dk �[dijk] be the matrix of pairwise

distances between species for the kth variable, and let
Dmean� [Dij] be the average matrix of pairwise distances

between species. If for all k, Dk is Euclidean, then Dmean is
Euclidean, even if the values in Dmean are not comprised
between 0 and 1. The Euclidean property is assured by (1)
the fact that each function used on a variable (whatever its
type) is a metric with Euclidean properties and (2) the use
of a weighted mean on the squared distances, instead of the
raw distances (demonstration in Appendix 1). We call Dij

the ‘mixed-variables coefficient of distance’.

Including more types of variables
Gower distance is actually flexible. In this section, we
explain how circular and proportion variables can be
included in the mixed-variables coefficient of distance.
These types of variables are very useful when measuring
phenotypic traits in a view of capturing a functional
diversity. For example, they allow seasonal traits to be
circular variables and diet habits in animals and dispersal
mode in plants to be fuzzy variables.

Podani and Schmera (2006) stated that one variable had
to be corrected for circularity in their case study, but they
did not explain how that transformation was done. There
are, however, existing formulas that handle circular vari-
ables. For example, Jammalamadaka and SenGupta (2001)
presented the following two distances:

d0(a; b)�min(a�b; 2p�(a�b))
�p� jp�ja�bjj (6)

d(a; b)�1�cos(a�b) (7)

where a and b are given in Fig. 1A. The distance d0 lies in
[0,p], while d lies in [0; 2]: Consequently, choosing either
d0/p or d/2 would lead to the desired property of having a
distance lying in [0; 1]: In addition, the variables used for
functional ecology are often evenly distributed on the circle
and have a finite possible number of levels. For example,
there are 12 months in a year (we do not know exactly when
in each month the event happened) and four seasons in a
year (Fig. 1B). An evenly distributed circular variable is
composed of m levels, which are numbered from 1 to m. All
of the levels are not necessarily present in the data set. We
define below a measure for treating such variables based on

Figure 1. Circular variables. (A) circular distances are often defined as functions of differences in angles. (B) in functional ecology,
variables that describe time periodicity are often used. They are characterized by an even distribution along the circle. (C) in case of a
finite odd number of levels evenly distributed along the circle (say five levels M1, M2, . . ., M5), the maximum theoretical distance
(distance between 0 and p) will never be observed. This last property led us to define Eq. 8.
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a modification of d0/p, including a correction for the odd
numbers of levels (Fig. 1C). Let Xk be an evenly distributed
circular variable, and let xik be the number of the level taken
by species i,

dijk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j1�2j xik

m
�

xjk

m jj
s

; if m is evenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j1� 2m

m � 1 j xik

m
�

xjk

m jj
s

; if m is odd

8>>>><
>>>>:

(8)

The advantage of Eq. 8 is that it provides a Euclidean
matrix of values varying from 0 to 1, inclusive. For example
in Fig. 1B, if the months are coded by 1 (January) to 12
(December), then the maximal distance is a time lag of six
months. The distance between November and May is/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j1�2j 11

12
�

5

12 jj
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j1�6

6 j
s

�1

while in Fig. 1C, the distance between M1 and M3 is/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j1�2

5

4 j 1

5
�

3

5 jj
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j1�4

4 j
s

�1

Consider again the example of feeding habits. Suppose that
we have a more detailed idea of the affinity of a species for
each feeding category. For example, if we defined a
macroinvertebrate species behavior as shedder, scraper and
engulfer, do we know whether it spends more time being a
shedder, scraper, engulfer? Thus, the affinity can be
measured as the proportion of time spent at each activity.
It can also be measured according to a fuzzy coding scheme
if the determination of the affinity is provided by the global
knowledge of an expert, instead of by an experimental
measurement. Therefore, affinities are rarely precise; in-
stead, they provide a ‘best we can do’ attitude as for the
treatment of missing data (Estabrook and Rogers 1966).
The affinity for a level lies from no affinity (0) to high
affinity (fixed to a number specified by the expert). Let aimk

be the affinity of species i for the level m of the kth variable,
1 5 m 5 Mk. Fuzzy variables can be transformed into
proportion variables via qimk �aimk=amaimk (Chevenet et al.
1994, Bady et al. 2005). Let Xk be a variable defined on
P�f(p1; . . . ; pm; . . . ; pMk

)jaMk

m�1pm�1; pm]0g: The
value taken by species i is the vector
(qi1k; :::; qimk; :::; qiMk k): As for multichoice nominal vari-
ables, numerous distance metrics have been suggested to
treat variables that are expressed as proportions of several
levels (Legendre and Legendre 1998).

The choice of each metric for each type of variable
should be justified with both statistical and biological
arguments. In the first case, one might justify their choice
by affirming that the selected metric will subsequently
improve statistical methods that will be applied to the
distances. For example, Milligan and Cooper (1988) found
that the standardization by the range for interval and ratio
scale variables improved the step of classification methods.
They concluded with ‘‘Deciding on a suitable form of
standardization of variables can improve recovery of the
true cluster structure, but it is only one of the several
decisions faced by the applied researcher’’. Several metrics
have been developed in the context of a precise application,
such as niche recovery, which will help users to decide.

Measuring the contribution of each variable to the global
distance
Even if the weights (wk) of the variables in the calculation of
the global distance are equal, the contributions of the
variables can be different. Let dk be the vector with the
S(S�1)/2 pairwise distances between species for the kth
variable, where S is the number of species. Without missing
data, the correlation between the squared pairwise distances
defined by the kth variable and the global squared distances
defined by the mixed-variables coefficient of distance is
equal to

cor

�
d2

k;
Xn

l�1

wld
2
l


�

Xn

l�1

(wl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(d2

l )
q

)cor(d2
k; d

2
l )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var

�Xn

l�1

wld
2
l

vuut
(9)

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðan

l�1wld
2
l Þ

q
is positive and does not

influence the relative contribution of dk
2 to the global

squared distance. Consequently, even if wl �1/n for all l,
the relative contribution of d2

k to the squared global distance
will be higher if it has high correlation with the squared
distances obtained on the other variables that lead to the
highest variance of squared distances. These correlation
values inform thus on the contribution of each variable to
the global distance. For n variables verifying, cov(d2

k; d
2
l )�

0 for all k"l, the contribution of a variable in the global
distance will still depend on its weight wk and the variance

of the squared distances obtained from it (var(d2
k)):

cor

�
d2

k;
Xn

l�1

wld
2
l


�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

kvar(d2
k)

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Xn

l�1

w2
l var(d2

l )

vuut
(10)

If those variances are equal (var(d2
k)�var(d2

l )) for all k, l,
then

/corðd2
k;a

n
l�1wld

2
l Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

k=a
n
l�1w2

l

p
and

/corðd2
k;a

n
l�1d2

l =nÞ�
ffiffiffiffiffiffiffiffi
1=n

p

Visualizing the distances
Ordination and clustering methods can be used for
visualizing distances. Euclidean distances can be embedded
in a Euclidean space where the geometric distances between
points are exactly equal to the focus distances. This
representation is obtained by principal coordinate analysis
(PCoA) (Gower 1966). Each axis in the PCoA maximizes

the statistic /a
s

i�1a
s

j�1

1

S

1

S

d2
ij

2
This statistic, which can be considered as a measure of
functional diversity for the global data set, is equal to the
average half-squared distance between species. If the
distances are not Euclidean, then PCoA provides a distorted
scatter of points with dimensions in an imaginary space. If
the absolute sum of negative eigenvalues is low, then PCoA
can still be considered. Otherwise, transformations (Lingoes
1971) or non-metric multidimensional scaling (Kruskal
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1964) are useful alternatives. More complicated methods
may be envisaged depending on the objective of the study;
for example, discriminant analyses based on distances can
be used if species have to be included into groups (Arenas
and Cuadras 2002). Pavoine et al. (2004) developed a
double principal coordinate analysis (DPCoA), which
measures diversity by Rao’s (1982) quadratic entropy and
provides a graphical description of the diversity within and
between sample units.

Several clustering processes have been developed. Podani
and Schmera (2006) suggested the use of the average link
(UPGMA) for Gower’s distance (but see Petchey and Gaston
2007 for a critical comment). The distances among species
that are calculated by the sum of branches in the minimum
path connecting them on the dendrogram are ultrametric. A
n�n matrix D�[dij] is ultrametric if and only if dij]0, for
all i and j, dij5max (dik,dkj), for all i, j and k, and
diiBminj"i(dij), for all j (dii�0). Therefore, the dendro-
gram can be seen as an ‘ultrametric representation of a
dissimilarity matrix’. Processes have been developed to find
the ultrametric that minimizes the least square distance to a
given distance matrix (de Soete 1986); we suggest that this
procedure could be a relevant alternative to the more well-
known clustering analyses for measuring functional diversity.

Studying diversity from the distances
For measuring functional diversity, several indices can
include phenotypic differences among species. Ordination
analyses, or more often clustering methods, can serve to
design functional groups of species. These analyses have been
very frequent over the last decades, but are now controversial
largely because within-group diversity is eliminated. The
functional groups and the functional diversity index (FD)
(Petchey and Gaston 2002) depend on the quality of the
clustering method selected. On the other hand, the average
distance and the sum of all pairwise distances avoid using
clustering methods. Regarding Rao’s (1982) quadratic

entropy, Pavoine et al. (2005) demonstrated interesting
properties of Rao’s index when the distances are ultrametric
and the ultrametric property is generally obtained via
clustering methods. In that context, the processes that
provide the ultrametric minimizing least square distance to
a given dissimilarity matrix might be useful. More studies on
the impact of clustering methods on the measurement of
functional diversity are necessary.

A case study

We programmed a flexible function for R (R Development
Core Team 2007) available in Supplementary material
Appendix 1, with a manual in Supplementary material
Appendix 2. It can handle interval, ratio scale, dichoto-
mous, nominal, ordinal, circular, multichoice nominal and
fuzzy variables.

We analyzed a data set of 80 plant species collected in 15
periurban woodlands with a total of 75 quadrats and species
were characterized by 13 phenotypic variables of differing
types (Table 1). This data set is described in Appendix 2
and Supplementary material Appendix 3�5. Ratio scale
variables are treated by Euclidean metric (Eq. 3). Nominal
variables are treated as in Gower (1971). The circular
variable is treated by Eq. 8, and ordinal variables are treated
by Eq. 3 applied to ranks. Justifications for all of these
metrics have been given in previous sections. To compute
dissimilarities from the fuzzy variables, we selected the
Orloci’s chord distance (Orloci 1967) defined as

Dijk�
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XMk

m�1

qimkqjmk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XMk

m�1

[qimk]
2
XMk

m�1

[qjmk]
2

vuut
vuuut �

(11)

where qimk and qjmk are the percentage of affinity of species
i and j, respectively, for the level m of the kth variable.

Table 1 Variables used for the description of plants

Code Variable Statistical type Description

li ligneous1 nominal presence or absence of ligneous structures
pr prickly1 nominal presence or absence of prickly structures
fo start month of flowering period2 circular month when the flowering period starts
he plant height2 ordinal maximum height of the leaf canopy (from 1: B10 cm to 8: �15 m)
ae aerial vegetative multiplication2 ordinal from 0: lack of aerial vegetative multiplication; 1: vegetative

multiplication occurring infrequently or only on very short distances
to 2: vegetative multiplication occurring frequently

un underground vegetative multiplication2 ordinal same scale as aerial vegetative multiplication
lp leaf position2 nominal rosette, semi-rosette (rosette before the flowering period), leafy stem
le leaf persistence2 nominal leaves: seasonal aestival; seasonal hibernal; seasonal vernal; always

evergreen; partially evergreen
mp mode of pollination3 fuzzy respective frequency of autopollination, pollination by insects and

pollination by wind
pe life-cycle2 fuzzy respective frequency of annual, monocarpic (but live more than one year)

and polycarpic life cycles
di dispersion2 fuzzy respective frequency of dispersion by ants; ingestion by animal; external

transport by animals; transport by wind; unspecialized transport
lo seed bank longevity index4 ratio scale index proposed by Bekker et al. 5 in order to take into account results

obtained from different studies. The index ranges from 0 (strictly transient)
to 1 (strictly persistent)

lf length of flowering period2 ratio scale number of months of the flowering period

1 Field observations by J. Vallet, 2 (Grime et al. 1988), 3 (Kühn et al. 2004), 4 (Thompson et al. 1997), 5 (Bekker et al. 1998)
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Its value lies in [0;
ffiffiffi
2

p
]: To obtain a metric with

Euclidean properties that is bounded between 0 and 1, we
used

dijk �Dijk=
ffiffiffi
2

p
(12)

First, we calculated the representation of each variable in
the global distance by using Eq. 9. We then applied a PCoA
using Lingoes (1971) transformation to render our distance
matrix Euclidean. The particular variables considered in this
paper are circular and fuzzy. Consequently, we applied the
PCoA to a circular variable (start month of flowering
period) and a fuzzy variable (mode of pollination),
separately. We used Eq. 8 to compute distances between
species based on the start month of flowering period, and
we used Eq. 12 to compute distances between species based
on the mode of pollination. As indicated in the text, we also
transformed the distances into ultrametric distances by
minimizing the least square difference between the raw
distances and the transformed ultrametric distances (de
Soete 1986). These ultrametric distances were used for
calculating functional diversity within quadrat by two
indices: Petchey and Gaston (2002) FD index and the
average distance between pairwise species. Two additional
diversity indices were included: the species richness within
the quadrats and the equitability between ligneous and
herbaceous species measured by four times the product of
the proportion of herbaceous species and the proportion of
ligneous species (index lying between 0 and 1). We used
DPCoA to describe diversity within and between quadrats
and a principal component analysis (PCA) to compare the
four diversity indices.

Results

Most of the correlations among the squared distances
obtained by pairs of variables were close to zero, with a
mean of 0.036 and a standard deviation of 0.111, suggesting
low redundancy between the variables (Fig. 2A). However,
five variables have higher correlations with each other and are
consequently well represented in the final distance (Fig. 2B):
ligneous versus herbaceous, mode of dispersion, plant
height, leaf position and leaf persistence.

The first axis of the PCoA (Fig. 3) mainly separates
ligneous species that use endozoochory as a way of dispersal
from herbaceous species, that include species with rosettes
and semi-rosettes and mostly use epizoochory. For
the circular variable itself, a perfect symmetrical figure,
like the circle displayed in Fig. 1B, would be obtained if all
of the months were represented with equal frequencies in
the data set (i.e. an equal number of species having each
start month for the flowering period). For our data set,
however, each month was not represented with equal
frequencies; therefore, we obtained Fig. 4A and 4C. The
cloud of points is included in a six-dimensional space. On
the first two axes, which express 50% and 23% of the
average half-squared distance between species, points form a
curve starting from January to September. The fuzzy
variable describes three levels (autopollination, pollination
by insects and pollination by wind). On the first two axes of
the PCoA (Fig. 4D), which express 79% and 20% of the

average half-squared distance between species (Fig. 4B), the
convex hull enclosing the points looks like a slightly
distorted triangle. Species that are specialized for one of
the three modes of pollination are located on the vertices of
the triangle-like hull. Species that use two modes of
pollination are located on the edges of the triangle-like
hull. Their exact position depends on the affinity of the
species (expressed as percentage) for each of the two modes.
For example, Stellaria holostea is located at x�0.27 and y�
0.07 on Fig. 4D. Its affinity for autopollination is 25% and
for insect pollination is 75%. Therefore, this species is
located on the edge of the triangle-like hull that connects
species that use autopollination with species that are
specialized for pollination by insects. It is closer to insect
pollinated species because it has a higher affinity for this
mode of pollination. No species in our data set had positive
affinities for more than two modes of pollination. These
species would have been located inside the triangle-like hull.
This reasoning is also valid for more complicated convex
hull structures that have more than three levels within the
fuzzy variable.

Figure 2. Covariances, variances and contributions of squared
distances obtained from variables: (A) variance/covariance matrix
between the squared distances obtained for pairwise variables; (B)
contribution of each variable to the global distance obtained by
Eq. 9 and displayed by a Cleveland’s (1994) dot plot.
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The first axis of the DPCoA (Fig. 5A) expresses 42% of
the diversity between quadrats. It is highly correlated (r�
0.93) with the first axis of the PCoA applied to the same
distances between species (abscissa axis in Fig. 3). According
to Fig. 5C�5F, the less diverse quadrats in term of average
functional distance, which are on the left of Fig. 5B, contain
only or mostly ligneous plants, especially the two most
common species, Hedera helix and Rubus fruticosus. In
addition to ligneous species, the most diverse quadrats
also contain abundant herbaceous species that are rarely
found in the other quadrats, including Alliaria petiolata,
Dactylis glomerata, Geranium robertianum, Holcus mollis,
Hyacinthoides non-scripta and Stellaria holostea, depending
on the quadrat. The addition of these herbaceous species
increased the functional diversity of the quadrats as shown
in Fig. 5C�D, mostly in term of average distance. The
correlations between the first axis of the DPCoA (Fig. 1)
and the four diversity indices are 0.79 (equitability between
ligneous and herbaceous species), 0.73 (average distance),
0.57 (FD), and 0.45 (species richness). A total of 13
quadrats only contained ligneous species. The average
global functional distance within those quadrats was lower
while the index FD depended on the number of species in
each quadrat (Fig. 5G�H). The other quadrats containing
also herbaceous species generally displayed higher average
functional distance between species especially if the balance
between herbaceous and ligneous species was even, but not
necessarily higher FD values. However even if the difference
between ligneous and herbaceous is the main factor
expressed in the global distances, species richness and

functional differences within the group of ligneous species
and within the group of herbaceous species also influenced
the values of functional diversity within quadrats. For
example, the point highlighted by a star in Fig. 5G
corresponds to a quadrat (BAN5 see codes in Supplemen-
tary material Appendix 4) with only nine species (against 18
for the richest quadrat) and no herbaceous species but
displays a high FD value. The nine ligneous species it
contains are characterized by a large range of vegetative as
well as reproductive trait values.

Discussion

The mixed-variables coefficient of distance is a simple index
that corresponds to the squared root of the average squared
distance between species over all the variables considered.
We presented ways of standardizing the variables between 0
and 1, so that the distances obtained from different
statistical types of variables will not be skewed by differences
of scales. The Eq. 9 provides a solution to evaluate the
relative contribution of each variable to the global distances
obtained from the mixed-variables coefficient of distances.
Those contributions can differ even if equal weights are
given to the variables. The global distances were used to
obtain a description of the functional diversity within and
between species assemblages. Here we discuss the perfor-
mance of the method to mix variables, to provide details on
the result of the mixing, and to improve measurement of
functional diversity.

Performance of the method

Botta-Dukát (2005) stated that the following questions
must be considered when choosing a measure of distance:
(1) in which scale are the traits measured? (2) is standardi-
zation of character values desirable or not? (3) is log-
transformation of character values possible and meaningful
or not? (4) are correlations among descriptors taken into
account? Concerning the first two questions, all traits are
standardized in the mixed-variables coefficient of distance
so as to obtain distances between 0 and 1 for each trait and
for the global distance. For ratio-scale variables, the
standardization by the range assures that the resulting
distance is not modified by a change in the scale of
measurement (for example cm or m for tree heights).
Concerning the third question, log-transformation of ratio-
scale variables is possible, and useful in case of skewed
distribution of the values to avoid a high effect of extreme
values. As for the fourth question, the correlations between
the variables are not removed in the global distance, but
their effect on the contribution of each variable to the global
distance can be calculated. If only ratio-scale variables are
considered, a well-known metric of distance that removes
the correlations between variables is the Mahalanobis
distance. As far as we know, no equivalent metric exist
when mixed variables are considered.

Relative contributions of the variables
Even if the distances are constrained between 0 and 1 and
the values of wk are equal for all k, the contributions of the

Figure 3. Principal coordinate analysis (PCoA) applied to the
global distances among species. Axis 1 (horizontal) expresses 20%
of the variation and axis 2 (vertical) expresses 8% of the variation.
The eigenvalue barplot is provided at the bottom left-hand corner
of the factorial map. The labels of the species are given by codes;
full Latin names are given in Appendix 2. Some of the variables or
levels of variables have been added to the graph to help the
interpretation. The most clear-cut variable (ligneous versus
herbaceous) is displayed by grouping species in dashed boxed.
The variables located outside the map are associated with arrows
indicating clear separations of the species according to the first or
second axis, and the framed variables located inside the map
indicate tendencies. The scale is given in the top right-hand corner
of the map.
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variables included in the global distance can differ. First the
alternative choice of sample range versus population range
for interval and ratio scale variables might have an
overwhelming effect on the distances and therefore the
functional diversity. Leps et al. (2006) illustrated this point
by considering tree height. If the sample is composed of
grasslands and if the range is calculated on this sample, then
differences of a few centimeters between the heights of
individual meadow species might largely contribute to
functional diversity. If the whole community also includes
woody vegetation, however, then the height distances
between grassland species and consequently the height
diversity within meadows become negligible. In this latter
case, the weight of the variable height will be low in the
calculation of the average functional distances, resulting in a
variable with observed distances close to zero.

Next, once the standardizing schemes have been selected,
the contributions of the variables in the final mixed distance
depend on the correlations among variables. If highly
correlated variables are included in the calculation of the
functional distance, then the information shared by
redundant variables will have an exaggerated weight in the
final functional diversity. The representation of a trait in the
global distance depends on its correlation with the squared
pairwise distances it generates and the squared pairwise

distances generated by the other variables, especially those
with high variances. Variables leading to high variance of
pairwise distances between species will thus be more likely
to have a high contribution into the global distance,
provided that they have correlations with some other
variables. Clear-cut variables such as a nominal variable
with two levels that define two groups and equitability of
the distribution of species into the two groups lead to high
variance in pairwise distances. Such variables are likely to be
more influent in the calculation of the global distance.

Studying functional diversity
One of the main advantages of obtaining a mixed-variable
coefficient of distance in functional ecology is that current
indices of functional diversity are based on distances and
numerous studies collect functional traits from various
statistical types. We highlighted that such an index can be
used in diversity indices based on distances such as the FD
index, the average and sum of distances, the quadratic
entropy. It can also be associated with clustering and
ordination methods. The principal coordinate analysis and
the double principal coordinate analysis are linked with the
average squared distance and quadratic entropy indices of
diversity, while FD is related with clustering methods.
Therefore distances, clouds of points in multidimensional

Figure 4. Principal coordinates analysis (PCoA) applied to distances on a circular and a fuzzy variable. Figures on the left illustrate the
PCoA applied to distances between species based on the start month of flowering period (circular variable) calculated with Eq. 8. (A)
Eigenvalue barplot; (C) factorial map, the abscissa is the first axis of the PCoA and the ordinate is the second axis. Figures on the right
illustrate the PCoA applied to distances between species based on the mode of pollination (fuzzy variable) calculated with Eq. 12. The
spore-bearing fern, Pteridium aquilinum, was removed from the analysis of pollination because it lacks pollen. (B) Eigenvalue barplot; (D)
factorial map, the abscissa is the first axis of the PCoA and the ordinate is the second axis. In panel (C) and (D), R indicates the number of
species clustered on a given location. In panel (C), each point represents the month during which the flowering period started. On panel
(D), the squares represent specialized species for a single mode of pollination, which is specified. The broken lines define the convex hull
of the scatter of points.
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space and at the tips of ultrametric trees, and functional
diversity indices are connected.

Each kind of variables leads to a specific shape of cloud
of points in a univariate or multivariate Euclidean space.
This will have influences on the value of the functional
diversity indices. For example, nominal variables separate
species into distinct groups, with equal unit distances
between the groups. This leads to regular-polygon shapes
where each group is a distinct vertex of the polygon. If used
with only one nominal variable, the index FD will be a
function of the number of groups represented in the

community, while the average distances will depend both
on the number of groups represented and the equitability of
the distribution of species into the groups. If the relative
abundances of the species are used then Rao’s quadratic
entropy index will depend on the number of groups
represented and the equitability of the distribution of
individuals into the groups. The circular variables lead to
circles, arcs of circles, or arcs of ellipsoids. The proportion
variables lead to more or less distorted regular polygons
delimiting the subspace within which species points are
located. Finally, each ratio-scale and ordinal variable leads

Figure 5. Functional diversity analysis between and within quadrats. We removed one quadrat (FON5, see data set in Supplementary
material Appendix 4) because it contained only one species (Rubus fruticosus). Panels (A) to (F) are graphical representations associated
with the DPCoA applied on the presence/absence of species in quadrats and the ultrametric distances between species: (A) eigenvalue
barplot (the first axis expresses 42% of the variation in quadrat points); (B) scores of species and quadrats on the first axis of the DPCoA.
Quadrats are located at the average score of the species they contain. The standard deviation of the scores of the species are given for each
quadrat; (C) Petchey and Gaston FD index measured for each quadrat as a function of the quadrat scores on the first axis of the DPCoA;
(D) average distance between species within quadrats as a function of the quadrat scores on the first axis of the DPCoA; (E) the
equitability between ligneous and herbaceous species measured by 4 times the product of the proportion of herbaceous species and the
proportion of ligneous species (index between 0 and 1) as a function of the quadrat scores on the first axis of the DPCoA; (F) species
richness as a function of the quadrat scores on the first axis of the DPCoA. Panels (G) and (H) analyze the correlations between the four
diversity indices: (G) first factorial map of the principal component analysis applied to four variables: the species richness within quadrats,
the FD index, the average distance (AD) between pairwise species, and the equitability between ligneous and herbaceous species. The open
circles indicate quadrats with only ligneous species. The closed circles denote quadrats with both ligneous and herbaceous species. The star
highlights a quadrat with a relatively high FD value despite the complete absence of herbaceous species; (H) the eigenvalue barplot is
provided in the bottom right-hand corner.
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to a continuous one-dimensional cloud of points. The
shape of the global distances, which will influence the value
of the functional diversity indices (Pavoine et al. 2005),
results from the combination of these different structures
and from the correlations between the variables, even
variables from different statistical types.

Case study

The case study concerned 80 plant species and 13 variables
in vegetative and reproductive trait space. The best
represented trait in the global distance was the distinction
between ligneous and herbaceous species. This trait led to
the highest correlations with the distances obtained from
other traits and had the highest variance of pairwise squared
distances. Despite the plant height led to a low variance in
squared distances between species, it was well represented in
the global distance, because of its high correlation with the
ligneous/herbaceous nominal trait. Three of the four
nominal traits were associated to the highest variance in
the inferred squared distances between species. This high-
lights the characteristic of nominal variables as providing
clear-cut distinction between species associated with high
variance of pairwise distances. Thanks to the matrix of
correlation between squared distances, we are able to know
what kind of diversity will be measured by using the global
distances. Here the diversity mostly increases by the
addition of herbaceous species to ligneous species assem-
blages, but not only, as illustrated by the low correlation
between the FD index and the equitability of the distribu-
tion of species between ligneous and herbaceous groups. In
addition, the other variables provide squared distances that
have correlations with the global squared distances varying
from to 0.13 to 0.53, and thus influence the measures of
functional diversity.

The first axis of Fig. 3 mostly separate ligneous from
herbaceous species, but the separation is not perfect. If only
the variable ligneous/herbaceous was considered, we would
have obtained two points, that would have represented the
two groups, on the opposite side of the first axis. Instead of
two points, the species are continuously dispersed along the
first axis and only 20% of the distances between species are
represented by this first axis. Even three herbaceous species
are on the left part of the axis with the ligneous species.
Those three species (Bryonia dioica, Cucubalus baccifer and
Tamus communis) exhibit endozoochory, aestival leaf
persistence, and pollination by insects, like most of the
ligneous species. The five most contributing variables all
influence the distribution of points on this first axis. The
sixth most contributing variable (underground vegetative
multiplication) is correlated with the second axis.

The functional diversities of the quadrats were different
according to the index used. FD was more related to species
richness and the AD to the balance between ligneous and
herbaceous species. FD measures the extent of complemen-
tarity among species in the trait space, while AD measures
the average distance in a pair of species. Therefore the
shared differences between ligneous and herbaceous species
are counted only once in FD while they are counted in each
pairwise comparison in the AD index. Because the DPCoA

method measures point dispersion by the average squared
distances, it is mostly related to the AD index.

Following this exploratory study, a selection of traits
might be done by considering the subset of traits correlated
with a focus ecosystem process (Petchey and Gaston 2006)
or environmental gradient (e.g. difference between edges
and centers of woodlands, urbanization gradient). Solutions
must also be taken if we want to remove the strong effect of
the difference between ligneous and herbaceous species (e.g.
separated analyses).

Conclusion

In conclusion, Gower’s index allows us to consider various
traits, with or without missing data. Extending Gower’s
measure with a more wide range of variable types will
enable us to compute distances among species at the various
scales where the functions of the species are studied.
Whether we can obtain a distance metric that is based on
mixed variables and that corrects for the correlations
between variables is still an open question. Associating the
mixed variables coefficient of distances with diversity
indices and ordination methods allows a description of
both within and between-sample diversity. Moreover, it
improves our possibilities for including various variables
when comparing functional diversity to measurements
derived from species count and phylogeny. A wide range
of applications is possible, because the use of functional
distances between species in studies of community struc-
tures and dynamics is increasing.
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Appendix 1. Proof that Dmean is Euclidean

Let D�[dij] be a matrix of dissimilarities. D is Euclidean if
and only if, for any vector a such as at1�0 then atDa50,
where D�[d2

ij].
We imposed that Dk � [dijk] be Euclidean, and Dk�

[d2
ijk], which implies that for any vector a such as at1�0

then atDka50. Consider Dmean�an
k�1lkDk; where for

any k, lk corresponds to wk=a
n
k�1wk; l]0; and

an
k�1lk �1: For all vector a such as at1�0,

atDmeana�atðan

k�1lkDkÞa�a
n

k�1lkatDka
For all k, atDka50; consequently, an

k�1lkatDka50;
which leads to atDmeana50; therefore Dmean is Euclidean.
Note that, as Gower (1971) indicated, the Euclidean
property is not assured in case of missing data.

Appendix 2. Description of the data set

The study was conducted in Angers conurbation located
very close to the Loire River in northwest France (longitude:

00833?07ƒW, latitude: 47828?16ƒN). It is characterized by
an oceanic climate with a mean annual rainfall of 605 mm
(Braud and Hunhammar 1999); the monthly mean
temperature ranges from 138C to 248C in July. The
geological substratum is mainly schist. Fifteen woodland
stations of around one ha each were surveyed along a rural-
urban gradient. Sampling vegetation was undertaken in July
2003. This sampling period permitted the detection of both
vernal plants (with dead leaves and fruits) and summer
species. These two phenologies are dominant in forest
environment. We established five quadrats of 30 m2

situated in the core area of each woodland. The list of
species was established in each quadrat. The nomenclature
is taken from Lambinon et al. (1992). Species codes used in
Fig. 3 are as follows:

Species name Species name

Aceca Acer campestre Launo Laurus nobilis
Aceps Acer pseudoplatanus Ligvu Ligustrum vulgare
Agrca Agrostis capillaris Lonpe Lonicera periclymenum
Allpe Alliaria petiolata Melpr Melampyrum pratense
Anene Anemone nemorosa Melun Melica uniflora
Antod Anthoxanthum odoratum Milef Milium effusum
Aruma Arum maculatum Molca Molinia caerulea
Brydi Bryonia dioica Polmu Polygonatum multiflorum
Calvu Calluna vulgaris Poptr Populus tremula
Carbe Carpinus betulus Privu Primula vulgaris
Cardi Carex divulsa Pruav Prunus avium
Cirlu Circaea lutetiana Pruce Prunus cerasifera
Conmj Conopodium majus Prula Prunus laurocerasus
Corav Corylus avellana Prusi Prunus spinosa
Corsa Cornus sanguinea Pteaq Pteridium aquilinum
Crala Crataegus laevigata Pyrsp Pyrus sp.
Cramo Crataegus monogyna Queil Quercus ilex
Cucba Cucubalus baccifer Ranac Ranunculus acris
Cytsc Cytisus scoparius Ranre Ranunculus repens
Dacgl Dactylis glomerata Robps Robinia pseudacacia
Dapla Daphne laureola Rosar Rosa arvensis
Desfl Deschampsia flexuosa Rosca Rosa canina
Eupam Euphorbia amygdaloides Rubfr Rubus fruticosus
Evoeu Euonymus europaeus Rumac Rumex acetosa
Fagsy Fagus sylvatica Rumco Rumex conglomeratus
Fraal Frangula alnus Rusac Ruscus aculeatus
Fraan Fraxinus angustifolia Samni Sambucus nigra
Frasp Fraxinus excelsior Soldu Solanum dulcamara
Galap Galium aparine Sordo Sorbus domestica
Galmo Galium mollugo Sorto Sorbus torminalis
Gerro Geranium robertianum Stasy Stachys sylvatica
Geuur Geum urbanum Steho Stellaria holostea
Glehe Glechoma hederacea Tamco Tamus communis
Hedhe Hedera helix Taxba Taxus baccata
Holla Holcus lanatus Teusc Teucrium scorodonia
Holmo Holcus mollis Ulemi Ulex minor
Hyahi Hyacinthoides hispanica Urtdi Urtica dioica
Hyano Hyacinthoides non-scripta Vinmi Vinca minor
Hyppe Hypericum perforatum Viohi Viola hirta
Ileaq Ilex aquifolium Viore Viola reichenbachiana
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