{: SCISPACE

formerly Typeset

@ Open access « Proceedings Article « DOI:10.1145/2370216.2370377
On the challenges of building a web-based ubiquitous application platform
— Source link (4

Heiko Desruelle, John Lyle, Simon Isenberg, Frank Gielen

Institutions: Ghent University, University of Oxford

Published on: 05 Sep 2012 - Ubiquitous Computing

Topics: Web application, User experience design and Software portability

Related papers:

« Multi-device application middleware: leveraging the ubiquity of the Web with webinos

« Architectural Modifiability Considerations for Designing a Multi-device Web Application Platform
« SENSE-SATION: An extensible platform for integration of phones into the Web

« New trends on ubiquitous mobile multimedia applications

« Web services on embedded devices

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-
oyzdgq9alb

https://typeset.io/
https://www.doi.org/10.1145/2370216.2370377
https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb
https://typeset.io/authors/heiko-desruelle-2q5647v20h
https://typeset.io/authors/john-lyle-syi1yl6ww9
https://typeset.io/authors/simon-isenberg-4agp4as44y
https://typeset.io/authors/frank-gielen-5gg6wdlruh
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/conferences/ubiquitous-computing-1m6glsq6
https://typeset.io/topics/web-application-129oh824
https://typeset.io/topics/user-experience-design-4mi8qsn1
https://typeset.io/topics/software-portability-1rgtkq11
https://typeset.io/papers/multi-device-application-middleware-leveraging-the-ubiquity-3yol6eb0it
https://typeset.io/papers/architectural-modifiability-considerations-for-designing-a-29kijb71y1
https://typeset.io/papers/sense-sation-an-extensible-platform-for-integration-of-58uqac1kx7
https://typeset.io/papers/new-trends-on-ubiquitous-mobile-multimedia-applications-2e5t886ygp
https://typeset.io/papers/web-services-on-embedded-devices-3b6qotr6in
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb
https://twitter.com/intent/tweet?text=On%20the%20challenges%20of%20building%20a%20web-based%20ubiquitous%20application%20platform&url=https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb
https://typeset.io/papers/on-the-challenges-of-building-a-web-based-ubiquitous-oyzdgq9alb

On the Challenges of Building a Web-based Ubiquitous
Application Platform

Heiko Desruelle
Ghent University — IBBT
heiko.desruelle @intec.ugent.be

John Lyle
University of Oxford
john.lyle@cs.ox.ac.uk

Simon Isenberg
BMW Forschung und Technik
simon.isenberg @bmw.de

Frank Gielen
Ghent University — IBBT
frank.gielen @intec.ugent.be

ABSTRACT

People use an increasing number of consumer electronic de-
vices to access their mobile apps. To enhance the appli-
cations’ immersive user experience, these devices often ex-
pose APIs for accessing a wide array of sensors and domain-
specific capabilities. Existing mobile application environ-
ments, however, only provide limited support for cross-device
access of such APIs. To address this limitation, the Webinos
platform was designed. Webinos is a virtualized Web-based
application platform, aiming to support the collaboration of
multiple devices within a single mobile application. In this
paper we elaborate on the Webinos platform design. We dis-
cuss the encountered design challenges regarding portability,
scalability, and privacy, and how these were mitigated.

Author Keywords
mobile applications; ubiquitous web; distributed application
platform.

ACM Classification Keywords

D.2.2 Software Engineering: Design Tools and Techniques;
H.5.2 Information Interfaces and Presentation: User Inter-
faces

General Terms
Design; Human Factors.

INTRODUCTION

The diversity and availability of personal computing devices
is growing rapidly. In their everyday life, people already use
a multitude of consumer electronic devices that are able to
run third-party applications [6]. Such devices currently range
from desktop PC, to mobile and tablet devices, to home enter-
tainment and even in-car units. From an application develop-
ment perspective, the greatest common denominator amongst
all these devices is the Web. By adopting the Web as an appli-
cation platform, mobile apps can be made available whenever

Copyright is held by the author/owner(s).
UbiComp12, September 5-8, 2012, Pittsburgh, USA.
ACM 978-1-4503-1224-0/12/09.

and wherever the user wants, regardless of the type of device
that is being used. Nevertheless these advantages, existing
Web application platforms are generally founded on the prin-
ciples of porting traditional API support and operating sys-
tem aspects to the Web. The evolution towards large-scale
distributed service access and sensor usage is often not sup-
ported [2]. In result, the true immersive nature of ubiquitous
web applications is mostly left behind.

To enable developers to set up Web applications and services
that fade out the physical boundaries of a device, we propose
the Webinos platform. Webinos is a virtualized application
platform that spans across the various Web-enabled devices
owned by an end-user. Webinos integrates the capabilities of
these devices by seamlessly enabling the distribution of API
requests. We briefly introduce the platform and elaborate on
the encountered challenges during the design and prototype
implementation phases. The paper is structured as follows.
Related work is covered in Section 2. In Section 3, we dis-
cuss a vehicular use case scenario that emphasizes the need
for a ubiquitous application solution. Furthermore, Section
4 provides a high-level introduction to the Webinos platform
and its concepts. Section 5 highlights a number of pertinent
challenges faced during the design of Webinos. Finally, our
conclusions are presented in Section 6.

RELATED WORK

Despite the prevalence of mobile applications that dynami-
cally use features of multiple devices and sensors, existing
work focuses on integrating Web applications more tightly
with the local device’s resources. Early work goes back to the
Lively Kernel experiments for leveraging the Web as a full-
fledged application platform [9]. More recently, a number of
stable approaches have emerged, exposing a rich set of local
APIs through injected JavaScript interfaces and the HTML
Document Object Model (DOM). In this context, application
developers can turn to Web widget engines such as specified
by BONDI/WAC [14], device-independent wrapping frame-
works such as PhoneGap [1], and even completely Web-
centered operating systems such as Mozilla Boot to Gecko
and HP webOS [17].

For distributed application solutions, existing work is still
largely confined to specifically targeted platforms and ven-
dors (e.g., Connected TV platforms supporting second screen
applications via smartphone devices). As a counter, the Funf

Figure 1. Vehicle use case application. A ubiquitous park distance con-
trol (PDC) application able to access a vehicle’s internal state

project aims to open up the ecosystem by deploying light-
weight sensor probes on mobile devices [4]. The probes’
states are aggregated within the cloud. In result, Funf mainly
focuses on unidirectional state extraction from the probed de-
vices. The Munin toolkit broadens this scope with a more
flexible peer-to-peer design for distributed mobile applica-
tions over the Internet [3]. Furthermore, the Gibraltar frame-
work adds up to Munin’s approach with security-related de-
sign measures and resource usage monitoring [7].

VEHICULAR USE CASE APPLICATION

A Parking distance control (PDC) system enables the assis-
tance of a driver whilst maneuvering a car. Figure 1 depicts a
typical PDC application interface. The system relies on mon-
itoring a car’s parking sensors and gear status to provide both
visual and auditive feedback. Moreover, to avoid distraction,
the PDC’s application interface is only activated when the car
is put in reverse gear (R) and remains active until the gear is
put into neutral (N), parking (P), or above second gear.

When bringing this use case to a ubiquitous ecosystem con-
text, various new opportunities arise. From this perspective,
PDCs could cover cross-device parking assistance applica-
tions. Any mobile device should, e.g., be able to represent a
car’s dashboard interface by remotely accessing the vehicle’s
internal state and its sensor data. To ensure maximal interop-
erability, this type of dashboard application should run on a
variety of devices (smartphone, tablet, car head-unit, etc.). In
this use case we can distinguish three different setup require-
ments that need to be supported by the underlying application
platform:

e Local setup: The PDC application runs within the vehi-
cle’s own runtime environment. All data and required APIs
are offered by the local application platform. There is no
need to access any external device for the application to
correctly work.

e Peer-to-peer setup: The PDC application is being executed
on a secondary device. The executing device needs to ac-
cess the vehicle’s application runtime to retrieve up-to-date
information regarding the car’s sensor data and gear sta-
tus. Both devices are connected via a local area network
(LAN). The application platform should provide local dis-
covery mechanisms to detect the remote vehicle’s runtime
and the services it offers. The communication between the
two devices is set up through a peer-to-peer connection.

o Proxy mediated setup: As with the previous setup, the PDC
application is being executed on a secondary device. How-
ever, in some cases the devices’ runtimes will not be able

P gl o ¥

{-("/ | Other users’
s | i

A B PIH's

! N =

s - 4
b Inter-zone discovery)
LI and communication j"

4
I Wi bieiesk Bvus it (o tahe) e })
Web runtime (browser] I > z""‘“‘* e, s
Parsonal Zong Praxy (PZP)
Device Buser ||y otation
Lentit i Webinos Webinos
i Ime & &pzp
XACML policy Credential y i
enforcement | storage R — —
! APIs, apps and APls, apps and APls, apps and
services

APls

JERE] & Q

Figure 2. High-level Webinos platform overview. Enabling immersive
ubiquitous application support via the federation of context-aware Per-
sonal Zones

to establish direct communication (e.g., due to firewall and
network address translation (NAT) boundaries). In this
case, a trusted proxy should be available to mediate the
communication setup between the two devices.

WEBINOS APPLICATION PLATFORM

Webinos is a service platform project under the European
Union’s FP7 ICT Programme. The Webinos project speci-
fies a distributed Web runtime, organizing all of a user’s de-
vices within a federated hierarchy. The runtime components
are distributed over the device, as well as the cloud. Webinos
offers developers access to a common set of device APIs. To
leverage the availability of device-specific resources and sen-
sors, every local API call can be dispatched off-platform. In
case an application’s API call can’t be served by the execut-
ing device, the request is forwarded to a better-suited device.
Webinos handles this process seamlessly. The interconnec-
tion principle is cornered around the concept of a so called
Personal Zone. Figure 2 depicts a high-level overview of the
platform’s structure and deployment. The Personal Zone con-
stitutes a secure overlay network, virtually grouping a user’s
personal devices and services.

To enable external access to and from devices in a zone, the
Webinos platform defines a centralized proxy component: the
Personal Zone Hub (PZH). Each user has his own trusted
PZH instance running in the cloud. The PZH keeps track
of all personal devices and services in the zone and provides
functionality to coordinate their remote discovery and com-
munication. Moreover, PZHs have the ability to request inter-
action permissions. PZH components are designed to dynam-
ically join a federation of trusted peers, allowing applications
to more easily discover and share data and services residing
on other people’s devices.

On the device-side, a Personal Zone Proxy (PZP) component
is deployed. The PZP manages the exposure of local ser-
vices and handles the direct communication with the zone’s
PZH. As all external communication goes through the PZP,
this component is responsible for acting as a policy enforce-

ment point and authorizing access to the device’s available
resources. In addition, the PZP is a fundamental component
in upholding the Webinos platform’s offline usage support.
Although the proposed platform is designed with a strong fo-
cus on taking benefit from online usage, all devices in the
Personal Zone have access to a locally synchronized subset
of the data being maintained by the PZH. The PZP can thus
temporarily act in place of the PZH in case no reliable Internet
connection can be established. This allows users to still op-
erate the basic functionality of their applications, even while
being offline and unable to access the Internet. Through com-
munication queuing, all data to and from the PZP is again
synchronized with the PZH as soon as the device’s Internet
access gets restored.

The Web Runtime (WRT) represents the last main compo-
nent in the Webinos architecture. The WRT can be consid-
ered as the extension of a traditional Web render engine (e.g.,
WebKit, Mozilla Gecko). The WRT contains all necessary
components for running and rendering Web applications de-
signed with standardized Web technologies: a HTML parser,
JavaScript engine, CSS processor, rendering engine, etc. Fur-
thermore, the WRT maintains a tight binding with the local
PZP. The WRT-PZP binding exposes JavaScript interfaces, al-
lowing the WRT to be more powerful than common browser-
based application environments. Through this binding, ap-
plications running in the Webinos WRT are able to securely
interface with both local and remote device services.

DISCUSSION

Privacy and Security

The Webinos platform aims to meet the security and privacy
requirements of applications and end-users primarily through
a access control policy system. Every access to a Webinos
API is mediated by policies, which are enforced by the PZPs
on each device as well as in the PZH. This action follows
the principle of least privilege, granting applications only the
permissions they require. Access policies are set when an
application is first installed within the WRT and can be up-
dated by the user subsequently. The policy system is derived
from the BONDI/WAC architecture and uses XACML (eX-
tensible Access Control Markup Language). Furthermore,
specific mobile-related adaptations were made, including a
number of extensions developed by the PrimeLife project
[13]. XACML is a general-purpose access control language
for defining policies based on subjects, resources, action and
conditions [11]. By including the PrimeLife XACML ex-
tensions, the Webinos policy enforcement framework enables
users to specify detailed situation-specific access control poli-
cies. This is a significant advantage over current web run-
time solutions and native mobile application platforms, where
once an application has been granted access to a particular as-
set this access can be reused without further control [8].

The data and services managed by Webinos are often privacy-
sensitive, as their analysis might reveal a user’s history of ac-
tions or the people and devices that have been interacted with.
The Webinos platform tends to follow an approach of least
surprise, so that a minimum of unexpected data disclosures
ought to occur. This is achieved by disabling the collection

of contextualized data by default. Where possible, data and
actions are filtered to remove unnecessary personal data. The
main advantage of the Webinos platform is that context data
remains within the Personal Zone and under the control of the
end-user. This compares favorably to online user tracking, as
users are able to view and manage the data stored about them.
Furthermore, applications need to request specific access to
this information. The policy example in Listing 1 shows a fil-
ter that restricts calendar information access to devices within
the same Personal Zone. This case can intuitively be extended
to first prompt the Personal Zone owner to grant the request
when an external device tries to access the API. Alternatively,
the owner can configure the policy to reject external devices
by default access without any user intervention.

Listing 1. Webinos XACML calendar access policy
| <!--Accept requests from within zone-->
2 <policy combine="first-applicable"

description="owner">
3 <target>

4 <subject>

5 <subject-match attr="user-id" value=
"owner" />

6 <subject-match attr="device-id"
value="x"/>

7 </subject>

8 </target>

9 <rule effect="permit">

10 <condition>

1 <resource-match attr="api-feature"
value="http://www.w3.0rg/ns/api-
perms/calendar.read"/>

12 </condition>

13 </rule>

14 </policy>

Portability and Scalability

The Webinos platform’s operation heavily relies on service
discovery. Webinos has been designed to incorporate two lay-
ers of service discovery abstractions. On a local level, Webi-
nos’ PZPs support various fine-grained discovery techniques
to maximize their capability to detect devices and services.
Resources can be discovered through multicast DNS, UPnP,
Bluetooth discovery, USB discovery, and RFID communica-
tion. Secondly, on a wider-area level, the local discovery data
is propagated within the Personal Zone and with authorized
external PZHs. Driven by Webinos’ aim for flexible Personal
Zones in terms of scalability and portability, the overlay net-
work is designed based on an event-driven publish-subscribe
pattern. Furthermore, its high-level communication infras-
tructure is founded on the Extensible Messaging and Presence
Protocol (XMPP) over HTTP and WebSockets [10].

In order to validate the portability as well as the scalability
qualities of our approach, a proof-of-concept of the proposed
platform is implemented. The implementation is made avail-
able as part of the Webinos open source project [15]. Based
on the project’s extensive analysis of the current ubiqui-
tous ecosystem [16], the following prototype platforms have
been selected: PC (Linux, Windows, Mac OS X), mobile
(Android), vehicles (Linux), home entertainment (Linux).
Both PZP and PZH implementations are an extension of the
NodelS platform. NodelJS is an high-performance evented

runtime environment for Google’s V8 JavaScript engine [12].
For the vehicular runtime environment, the prototype plat-
form is developed to run on the Pandaboard hardware. This
single-board computer is intended for mobile and embedded
software development and optimally reflects the resource lim-
itations of in-car head-units.

Furthermore, the presented vehicle use case application is im-
plemented on top of the prototype Webinos platform. The
park distance control application is implemented as a regu-
lar Web application, using only HTML, CSS, Canvas, and
JavaScript. The APIs to communicate with the Webinos plat-
form are provided through JavaScript interfaces by means
of the local WRT-PZP binding. As discussed in Section 4,
the Personal Zone overlay abstracts the communication be-
tween devices. API calls originating from the PDC appli-
cations are automatically dispatched by the platform based
on decisions made by the policy framework and the available
service discovery knowledge. The Webinos platform man-
ages all inter-device communication, which is implemented
to use the XMPP protocol running over WebSockets. Web-
Socket are optimized to reduce communication cost over the
Web to a minimum, with a header of only 2 byte compared
to the 8 Kbyte header limit for most HTTP messages [5]. Es-
pecially on a mobile connection the implementation of Web-
Socket communication shows its use. The median latency for
a Personal Zone containing 10 devices stays well below 25ms
in a WiFi LAN environment, below 125ms over a 3G mobile
network connection, and around 200ms over an Edge cellu-
lar connection. Even at a throughput rate of more than 100
messages/s, e.g., for communicating sensor data updates.

CONCLUSION

In this paper we presented the Webinos application platform,
aiming to enable immersive ubiquitous software applications
by leveraging some of the cross-platform possibilities of the
Web. The platform utilizes the Web infrastructure to estab-
lish its Personal Zone concept, a virtual overlay network for
grouping a user’s devices and their set of available services.
From this perspective, Webinos aims to be a key enabler in the
realization of ubiquitous applications that are able to execute
across the physical boundaries of devices. The first phase of
Webinos’ design has focused on ensuring specific quality re-
quirements. A number of architectural tactics were applied in
order to obtain acceptable quality attribute support for porta-
bility, scalability, and privacy.

The presented architecture only represents a first milestone
in the pursuit of true ubiquitous application convergence.
Whilst Webinos provides structured access to a remote-able
and Web-based API platform, it is still the application devel-
opers’ responsibility to incorporate the necessary logic that
allows their applications to act accordingly. Therefore, fu-
ture work should include research on extending the Webi-
nos platform with (semi-) automated application adaptation
mechanisms. This process should be driven by a high degree
of context-awareness regarding the user, his devices, and the
surrounding environment.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Pro-
gramme (FP7-ICT-2009-5, Objective 1.2) under grant agree-
ment number 257103 (Webinos project).

REFERENCES
1. Charland, A. and Leroux, B. Mobile application
development: web vs. native. Communications of the
ACM, 54,5 (2011) 49-53.

2. Desruelle, H., Blomme, D., Gionis, G. and Gielen, F.
Adaptive user interface support for ubiquitous
computing environments. In Proc. UIDL 2011, Thales
Research and Technology (2011), 107-113.

3. Elmgvist, N. Munin: a peer-to-peer middleware for
ubiquitous visualization spaces. In Proc. DUI 2011,
University of Castilla-La Mancha (2011), 17-20.

4. Funf Open Sensing Framework.
http://funf.media.mit.edu/.

5. Gutwin, C.A., Lippold, M. and Graham, T.C. Real-time
groupware in the browser: testing the performance of
web-based networking. In Proc. CSCS 2011, ACM Press
(2011), 167-176.

6. Holzer, A. and Ondrus, J. Mobile application market: A
developers perspective. Telematics and Informatics, 28
(2011), 22-31.

7. Lin, K., Chu, D., Mickens, J., Zhuang, L., Zhao, F. and
Qiu, J. Gibraltar: Exposing Hardware Devices to Web
Pages Using AJAX. In Proc. WebApps 2012, USENIX
(2012).

8. Lyle, J., Monteleone, S., Faily, S., Patti D. and Ricciato
F. Cross-platform access control for mobile web
applications. In Proc. POLICY 2012, IEEE Press (2012).

9. Mikkonen, T. and Taivalsaari, A. Creating a Mobile Web
Application Platform: The Lively Kernel Experiences.
In Proc. SAC 2009, ACM Press (2009), 177-184.

10. Paterson, I., Smith, D., Saint-Andre P. and Moffitt, J.
XEP-0124: Bidirectional-streams Over Synchronous
HTTP (BOSH). XMPP (2010).

11. Rissanen, E. (ed.). eXtensible Access Control Markup
Language (XACML) Version 3.0. OASIS (2010).

12. Tilkov, S. and Vinoski, S. Node.js: Using JavaScript to
build high-performance network programs. Internet
Computing, 14, 6 (2010) 80-83.

13. Trabelsi, S. and Njeh, A. Policy Implementation in
XACML. In Privacy and Identity Management for Life,
Springer (2011), 335-374.

14. Wholesale Application Community.
http://www.wacapps.net/.

15. Webinos Developer Portal.
http://developer.webinos.org/.

16. Webinos consortium. Industry landscape, governance,
licensing and IPR frameworks, Tech. Rep. D2.3 (2011).

17. Weiss, A. WebOS: say goodbye to desktop applications.
Networker, 9, 4 (2005), 18-26.

http://funf.media.mit.edu/
http://www.wacapps.net/
http://developer.webinos.org/

