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ON THE CHARACTER OF WEIL'S REPRESENTATION^)
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ROGER E. HOWE

ABSTRACT. The importance of certain representations of symplectic groups,

usually called Weil representations, for the general problem of finding representa-

tions of certain group extensions is made explicit. Some properties of the charac-

ter of Weil's representation for a finite symplectic group are given and discussed,

again in the context of finding representations of group extensions. As a by-prod-

uct, the  structure of anisotropic tori in symplectic groups is given.

I.  In the title above a pun is intended, for this paper is concerned with two

aspects of the celebrated Weil representation—first with its character in the sense

of character theory in group representations, then with its character in the more

everyday sense of its nature.   I think also that the character (in the technical sense)

of the Weil representation says something about the character in the general sense.

In any case, both facts presented here seem to me rather striking. We proceed to

describe them.
Let F be a field of characteristic not 2, and let K (F) be the group of in +

2) x in + 2) matrices of the form

O

with.entries in F.  H.     is a two-step nilpotent, unipotent algebraic group over  F.

It is called the zzth order Heisenberg group of  F.  Z, the center of H   , is one di-

mensional.   In the above realization, ¿ consists of those elements for which x.

x2=...= xn=0=yl=y2=.--=y  . H   /£> is isomorphic to F ". If % is identi
fied to F, then the commutator operation induces a symplectic form   ( , )  on
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n^      Using this form, K^ may also be realized as  F2n x F, with group law (v.,

x1)Av2, x2) = (v1 + v2, xx + x2 + lA (vx, v2)).  From this, we see that Sp2   (F),
the group of linear transformations of F2n preserving   ( , ), acts on H  (p) as a

group of automorphisms, preserving  F2n (in the decomposition  F2n x F), and leav-

ing ¿> pointwise fixed.
Now suppose  F  is locally compact.  It is well known (Stone-VonNeumann

Theorem when   F = R or C, and easier to show in all other cases) that any irre-

ducible unitary representation of K  (F) which is not one dimensional is determined

by the character y it determines on 2>. Call it  Ux . Since the action of Sp2     is

trivial on ¿, the dual action on K  , the space of irreducible representations, fixes

Ux. Thus one obtains, in the usual way [2], a projective representation of Sp2

on the space of  Ux.  In fact, this projective representation is often an actual repre-

sentation (it always is if F is finite), and, in general, it is "almost" an actual

representation (the "Mackey obstruction" is of order 2). These facts were first

exposed and exploited by Weil [7], and the projective representations thus found,

and ones derived from them, are known collectively as "the Weil representation".

The Weil representation has proved most useful for the concrete realization

of representations for various symplectic groups, or subgroups thereof, perhaps

most notably for SL  (also  GL; see [3], and [6]).
On the other hand, the Weil representation seems not to have a context be-

yond itself, and has not been made to fit into a framework encompassing (for

example) all semisimple groups. Thus we have the tantalizing prospect of general-

izing it in some way, to remedy this gap.  Such a generalization would probably

have implications not only for group representations, but also for number theory,

particularly the theory of ö-functions, which was Weil's original motivation.

One scheme for the generalization of the Weil representation might go as fol-

lows. Given a (say) semisimple algebraic group G over  F, find a unipotent alge-

braic group N  on which  G acts by automorphisms, and find a representation  U of

N, fixed by the action of  G  on  N, the space of irreducible representations of  N,

and look to see if the corresponding projective representation of G is interesting.

It is the burden of our first result that such an approach always essentially reduces

to the situation of the usual Weil representation.  That this is so is by no means an

accident, and in some sense is one of the underpinnings of Kirillov theory [l], L4j,

particularly in the solvable case, or whenever other than strictly nilpotent groups

are involved.  Thus, there is offered here some metaphysical evidence to supple-

ment C. Moore's cryptic comment [5] that the Weil representation is in some way

special.
There are several possible formulations of the first result, depending on the

context of its application. We give two.  One is in terms of Lie algebras, and will

be relevant to groups which have a good Kirillov theory, and the context of alge-

braic groups.  The second is directly in terms of representations, and goes beyond
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the context of algebraic groups.  We state it only for finite groups in order to avoid

technical complications, but it is true very generally.

Let  L be a Lie algebra over F. Take v £ L* (the dual space). Then v([/j, l2])

(where  [,] is the bracket operation on L) is an antisymmetric bilinear form on  L.

The set of  / such that vi[l, /']) = 0 for all  /' £ L (the radical of the form) is a sub-

algebra of L, which we will denote by  R. A subalgebra L^ C L  is subordinate to

v, if f([Lj, LA) = 0.  If PCL  is a subalgebra subordinate to v, and if dim P =
A(dim L + dim R), then we will say  P polarizes v, or is maximal subordinate to

v.  If  P polarizes  v, then necessarily  R C P.

Proposition IA.  Let L  be a nilpotent Lie algebra over F.  Let G be the group

of automorphisms of L which fix some v £ L*. Then there are subalgebras L. C

Lj C P C L., such that  L., L-  and L,  are invariant by G; P polarizes v; L. =

L- n ker v; dim L2 = dim L, + 1; L./L.   is isomorphic to the Lie algebra of K
for some n; L./L.   is the center of L./L.; and P/Ll  is maximal abelian in L./L..

For a finite group jV, let N denote the set of irreducible representations of N.

Since a representation is determined by its character, which is a class function, the

automorphism group of N, through its action on conjugacy classes of N, acts on N.

Proposition IB.  Let N be a finite p-group.  Let G be a group of automorphisms

of N which leave fixed a given  U £ N.  Then there are groups A/j C N, C P C N,
in N such that N., zV,, and N,  are invariant by a subgroup G   of the semidirect

product G x   N, such that iriG ) = G, where tt: G x   N —» G  is the natural projec-

tion; there is a linear character cb of P such that cß induces  U; cß is nontrivial

on N2  and N. = ker cß n N2; Nv N2  are normal in N,; AL/Nj   z's a two-step nilpo-

tent p-group; N~/N.   is the center and contains the commutator subgroup of N,/N.;

and P/N,   z's a maximal abelian subgroup of N,/N,.

In order not to interrupt the present discussion, we will prove Propositions IA

and IB in II.
Proposition IB shows that in investigating representations of groups which

have normal p-subgroups (which would happen, for instance, if one were to compare

representations of a group with representations of the normalizer of a Sylow p-sub-

group, and which also happens in analyzing compact p-adic groups), the Weil repre-

sentation and mild variants of it will play a pivotal role. Hence the character of

the Weil representation is important to know in this context.

Now let  F be a finite field. We will regard the Weil representation W as a

representation of the semidirect product G   = Sp2  (F) xs K (f), gotten by extend-

ing  IL , for a given character X °f ", ttota H    to   G.   (This extension is unique,

since Sp2    has no linear characters.) G    contains as a subgroup the direct product

Sp2  (F) x   2>. The restriction of W to this group will also be denoted  W. It is of
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course   just the (outer) tensor product of a representation of Sp^   (F) with the char-
ra 9 nacter x  of .£>.

We denote the character of W by Xw-

Proposition 2. (i) X\y vanishes except on conjugacy classes intersecting

Sp2  (F) x í.  Hence it is determined by  X arza1 by its restriction to Sp7   .

(ii) // q  is the cardinality of F, and g £ Sp2f¡, then XW^XW^ = IXi/z?)|2 =
qT e , where r(g) = dim ker(g — l).  (g  is regarded as a linear map of F2n.) Hence

IXiyV?)|   ls a power of q'2.  (Here   \  \  denotes absolute value and denotes com-

plex conjugate.)

(iii) Suppose F  " = Vj © V2  (direct sum), and g. acts trivially on  V.,  i =

1,2.  Then X^g^J « T^X-AlW^'
(iv)  If g € Sp2     is semisimple (in purely group theoretical terms, if g  is p-

regular), then Xn/g)  IS a rational integer.

We will prove this in II. Now we discuss its significance. The main fact is

(i).  From it, (ii) follows, as we will explain.  Parts (iii) and (iv) are complements.

Suppose   G  is a finite group, and  c., c2, • • • , c. ate the conjugacy classes

of G. Let  c. have    (c.) elements.  Let X\' X2>"''> Xz be the irreducible charac-

ters of G.  Then a standard way to write the Schur orthogonality relations is

'     #
(X^X,)^)-1   Z #(c,)x/c,Vy(cfe) = z5..,

k-1

where 8.. is Kronecker's 8.ii
Now suppose   G = H x    N is a semidirect product of a subgroup  H and a nor-

mal subgroup  N.  Let   U be a representation of  N which is fixed by the action of

H  on  N. Suppose furthermore that   U  may be extended to a representation  U    of

G. Then it is well known that there is a bijection between those representations

of G which yield a multiple of U when restricted to N, and representations of H.

If  V £ H, define  v"  £  G by lifting through 77: G —♦ H =^ G/N. Then the desired
bijection is the correspondence V —» V'  ® U . On the level of characters, this

sends a character Xy or  V to the character Xy„ 'Xyr Since this sends irreduc-

ible characters to irreducible characters, it may be regarded as an isometric injection of the

class functions of H (with their usual inner product, as in the Schur orthogonality relations)

into the class functions on G (with their inner product).
Let a ,... , a be the conjugacy classes of H, and let [ß...: 1 < i < m, 1 <

j < 72.} be the classes of G, such that, in the natural isomorphism H — G/N, ß..

is sent toa.. Then the fact that Xy ~* Xy „ ' Xz;, is an isometry is expressed

by the equation
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'(«-'(iV'V.^.u.))

From this we see that

zz.

#(W)-1#(a.)=#(G)-1  ¿   \Xu<ß1])\2U^

or
7Z.

E   IXu'ißJ^ißJ^HG/rtHa.).
;'=i

Now look at our particular G   = Sp2    xs H  , and  U' = W.  From (i) of Proposi-

tion 2, we have Xw^ß- ■' ~ ® unless jS.. intersects Sp2    x ¿.  Moreover, if z £ %,

then zß.. = ß     is also a conjugacy class of G  , whose projection onto Sp2    is

the same as ß... Moreover, ^(z/S..) = xi^Xw^ß--)-  Let a.   be the unique con-

jugacy class of  G    which intersects  Sp2     and projects onto the class  a . of

Sp.   .  Then we see that the above formula for general  G reduces in our case to

*««« \XW^¡)\2Hiza¡) = »iK/ia), or q\xw^¡)\2Uia'A = q2^\a), or
"(a ')/"(a .) = q2n/\xwia )|2-  (Here we write interchangeably ^(a .) or Xw^a'^
depending on whether  W  is considered as a representation of  G     or Sp2   .) Thus,

XH,> or more precisely its absolute value, simply expresses the difference in volume

between conjugacy classes of Sp7     and of the larger group G  .  One may draw an

analogy with the Weyl character formula for semisimple groups.  There the charac-

ters, as functions on the maximal torus, are simple expressions, which vary in a

simple way with the representations, multiplied by the Weyl denominator, which

essentially expresses the volume element of the group in terms of the volume ele-

ment of the torus.  In fact, there is evidence that this comparison is not too far-

fetched.

II.  Here we give the proofs of the propositions stated in I.

Both Propositions IA and IB are proved by induction.  Start with IA.  Let

¿>iL) be the center of L. Since  L  is nilpotent Z(L) ^ 0. Now dim Z(L) -
dim (ker v O 2>(L)) < 1.  If ker v n 2>(L) ¿ 0, then it is invariant by G. We may
therefore divide out by it, and the proposition is reduced to a case of smaller

degree, where we may assume it is true.

Thus we are reduced to the case when dim Z(L) = 1, and Z(L) "t ker v. Let

¿     (L) be the ideal of elements of  L which map into ¿ÍL/ZÍL)) under the natural

projection.  The action of G preserves 2>(  '(L), and 2(L), so the quotient action

of  G  on  ¿>     iL)/¿ÍL)  is defined.  Let S be the inverse image in  L  of an irreduc-
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ible supspace for the G-action.  The bracket operation defines on S/¿(L) an anti-

symmetric bilinear form, invariant by  G since G acts by automorphisms. Hence

this form is either trivial or nondegenerate, since its radical must be G-invariant.

Thus S is either abelian or a Heisenberg Lie algebra.

In any case, let C(S) be the centralizer of S. Since %(L) CSC Zr-  '(S), we

have  dim C(S) + dim(S) = dim L + 1.  In particular, dim C(S) < dim L, and  C(S) is
G-invariant, so we may assume the proposition holds for  C(S).  Let  L. , L      P ,

L     be the appropriate subalgebras of  C(S).

If S is abelian, then S C%(C(S)).  Thus S C R', the radical of i>([,]) on  C(S).
On the other hand, it is clear by the construction of S   that S O R = ¿(L); R  being

the radical of v([,])  on  L.  Since obviously  v ([ , ])  defines a nondegenerate pair-

ing between S/%(L) and L/C(S), we see R C R . Hence dim R   > dim R + dim S —
1. But we have also 2 dim P   = dim R   + dim C(S). Hence 2 dim P   > dim R +
dim L. Since  P    is still subordinate to v, whether considered as a subalgebra of

L  or  C(S), we must also have  2 dim P   < dim R + dim L.  Therefore, we see   P

polarizes  v on  L, and  L. , L2 , P    and  L     satisfy the conditions of the proposi-

tion for L as well as for C(S).
The other possibility is that S  is Heisenberg. Then C(S) n S = Z(L). Let

TCS be a maximal abelian subalgebra, so  2 dim T = dim S + 1.  If  L. , L      P ,
L     satisfy the proposition for C(S), put L.=L.,  L2 = L2,  P = P  +T, and L   =
L    + S.  Then  L., L.  and L    are certainly G-invariant, and since  P   and  T com-

mute, and  T is abelian, P is certainly subordinate to v. We check

2 dim P = 2 (dim P'+ dim T - l) = dim C(S) + dim P' + dim S - 1 = dim R' + dim L.

But since  S  is Heisenberg and  v is nonzero on ¿(L) = .¿(S),  ja[, J)  is nondegen-

erate on  S/i(L).  Since  C(S) commutes with S, and is the annihilator of S with

respect to v([ , ]), we see  R   = R.  Therefore   P polarizes   v. We have checked the

main properties of  L., L2, P, L- the others are easily verified.  This concludes

the proof of Proposition 1A.
We proceed to Proposition IB.  If the group G of automorphisms leaves  U £ N

invariant, then it leaves  ker U C N invariant. If ker ¡J is nontrivial, we may divide

out by it and reduce the problem to an N of lower cardinality. Therefore, we might

as well assume   U is faithful on N.  Let 2>(/V) be the center of N.  If  U is faithful,
the character if/ which  U defines on 2>(/V) must be faithful.  Hence Z>(n) is cyclic.

Let 2>(  '(N) be the inverse image in N of 2>(/V/Z(/V)) by the natural projection.

Let H be a subgroup of £>     (N) which contains Z(/V) and is invariant by G, and

is minimal with respect to those two properties. We note then that all elements of

H/¿(N) have order p, and so H/¿(N) may be regarded as a vector space over the

prime field of characteristic  p, and  G then acts as linear transformations on

H/¿(N).  As before, a commutator induces an antisymmetric bilinear form on  H/¿(N),
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and G preserves this form.  By minimality of H,  G acts irreducibly, so the form

is either nondegenerate, or trivial and H is abelian.  In any case, let  C(H) be the

centralizer of H in N.

First suppose  H is abelian, so H C ein).  Then in fact H C 2>(C(r/)). We see

that commutator induces a nondegenerate pairing between H/¿ÍN) and N/CÍH)

into ZiN). This implies  "iN/CiH)) = H(tf/Z(/V)).  Clearly C(w) is normal in N and
is G-invariant.

Let  V be an irreducible component of the restriction of   (7 to  C(H). Since

H C 2>(c(/i)), the restriction of V to W is a multiple of a linear character iß' which

extends  iß on 2>(/V). Now since  C(H) is G-invariant and normal, it is normal in

the semidirect product G x   N. Hence G x   N acts on C(H). Since the action of G on N
.    s     .    /^       s

fixes U, the G x   N orbit of V in C(f/) must be contained in the set of representations of

C(H) which appear as irreducible components of the restriction of  U to H.  On the

other hand, standard representation theory ("Clifford's theorem"; see [2]) shows

N acts transitively on this set.  Therefore, we see that the isotropy group G   C

G x    N of  V projects onto  G  under the natural map n: G x    N —► G.

We may now by induction assert the existence of subgroups   N.   CN,  C P    C

N,    of  C(H) which satisfy the theorem with respect to  V. We see that necessarily

H C P, and that if cß is the character of P which induces  V, then cß must agree

with iß   on H.  But now since the commutator pairing of H/ÍÍN) and  N/CÍH) is

nondegenerate, and since iß is faithful on ¿>ÍN), we see that N/CÍH) acts faith-

fully and transitively on the characters of H which extend  iß.  It follows that cß

on P induces an irreducible representation of AÍ; this representation obviously is

Í7. Hence we see that A/j , N2, P , and /V,   satisfy the proposition for N as well

as for C(H).
Therefore we are left with the case when  H  is nonabelian.  Then we see that

C(H) O H = %(N), and that the restriction of  (7 to  C(H)  is a sum of  "(W/Z(r/))H
copies of a fixed representation V. Let N. CN, C P' C N ,' be groups satisfying the

proposition for  C(H) and  V.  Let / be a maximal abelian subgroup of H, so that

H]/ZiN)) = "(////).  Put zVj = zVj ,  N2 = N2,  P = P' •],  /V3 = A?, • /7. Then it may
easily be checked that these gtoups satisfy the conditions of the proposition for

N and   Í7.   Proposition IB is now proved.

Remarks, (a) The similarity between the proofs of Propositions IA and IB of

course forces itself upon one.

(b) In fact, the above induction shows that one may always choose N,/N?

to have exponent p—that is, so that all elements of N./N2 have order p. Then

one is indeed very close to Weil's representation.

(c) It also follows from the inductive step that if G  is a p-group, then we can

take  N2 = P = zV
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Now we turn to the proof of Proposition 2. As we have seen (i) is the impor-

tant part. We see Sp2  (F) xs F2n is the quotient of G^ = Sp2J,F) xs K„(F) by
%, and a conjugacy class in G    intersects Sp2  (F) x % if and only if its image in

Sp2(F)xs F2n intersects Spjn.  If gQ £ Sp2n, and gx -v £ Sp2(F) xs _F2n, we

have  (gxv)-lgAglv) = g2Av - g2(v)) where  g2= g\  g0g,,and g2(v) = g2vg~   .
(We do not distinguish between g  as an element of Sp2     and as a linear transfor-

mation on F2n.) Thus in general we see that gv is in a conjugacy class coming

from Sp2     il and only if v = (g - l)(u) for some  u £ F  ".  This shows immediately

that the ratio of the cardinality of the conjugacy class  a C S/>2n  containing  g to

the cardinality of the class  a   C Sp2    xs F " containing  g  is  qs^8' where  s(g) =

dim im (g - 1).  Putting this in the formula developed in the discussion in §1, and

using dim im (g — l) + dim ker (g - l) = 2«, we see (ii) follows immediately from (i).

We see also that if g — 1   is nonsingular, then (i) is trivial for g. Hence we

need only worry when g has   1   as an eigenvalue.  Write   F  n = V, ©   V.  where   V,

is the 1-eigenspace of g (that is  g — 1   is nilpotent on   V.), and  g — 1   is nonsin-

gular on  V'.  Then on  V., we have  (g — l)p    = gp    — 1 = 0 for some a.  Thus, if

v.  £ V., v2 £ V2, we have  v2 = (g - lr   u2  lot some   zz.  £ V2, and so if   { , )   is

the symplectic form on  F  ", \ v., v2 ) = (v., (g — l)p  uAl = \v., (gp    - l)u2) =

CiVj, gp  u2) - (vj, Z72) = (g~p  vx, u2) - Cvj, u2) = ((g~p    - Ovj, u2) = \0, zz2)
= 0.  Thus  V.   and  V.  are orthogonal with respect to  ( , ).

Let Sj  be the subgroup of Sp      which fixes   V.   and  V2, and acts trivially

on  V2.  Let S2  fix  V.   and  V-  and act trivially on V,.  Let H   be the inverse

image of  V. in K   .  Then 5\ x    W. = Sô.,     (p) x   K     (f) for some  m ., such that^ i n i     s      i l ¿m i s      m j i7

772. + 7222 = 72.  Moreover, the product of the inclusions gives a map  /': (5j x    H.) x

(S2 xs H2) —► Sp2    x   K  .   It is clear that the pullback by  /' of W  is just the
(outer) tensor product of the Weil representations of degrees  722,   and tt22.  This,

incidentally, establishes (iii) of Proposition 2.  Moreover, we observe that if v . £

V., then Wj + v2 £ (g - l)(F ") if and only if vx £ (g - l)Vj. Thus, to prove (i) we
are reduced to the case when g £ Sp2     is unipotent.

So take g unipotent.  Put X = ker (g - l) C F2", and put  Y = (g - l)F2". Then
if x £ X, y £ Y,   (x, y) = (x, (g - l)v) = ((g~ X - l)x, v) = (0, v) = 0. Here v £

F ". Since dim X + dim Y = 2t2,  Y is the orthogonal complement of X with respect

to   ( , ). Therefore   ( , )   induces a nondegenerate pairing between X and F    /Y.

In particular X/X O Y must be paired with itself.  Hence, if Xj   is a complement

in X to X n Y,   ( , )   must be nondegenerate on Xj.  Let X    be the orthogonal

complement of Xj   in F2".  Then  F2n = Xj © X2>  Let 1., ¡2  be the inverse images

of Xj, X2   in K  .  Let 5, <Sp      fix /,, and fix  L  pointwise, and let S?  do the
same, with  /,, L  reversed.  Then again we have the product of the inclusions  j:

(Sj xs /j) x (S2 xs ¡2) —> G  , and clearly g 6S  .   By the same principal as before

we are reduced to two cases: g = 1, or  ker(g - l) C im (g - l).  The first case is
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all right, since it is well known and easy to show that the character of  (7X   on K^

vanishes off %.  (More generally, the character of a faithful representation of a

finite p-group N always vanishes on  %(2)(/\0 - %ÍN) and off the centralizer of

%^2Xn)A Thus we are finally left with g unipotent and  ker ig - l) C im(g - l).

Let  K be the cyclic group generated by g.  Then the restriction to  KxiK    of the

Weil representation is realizable as a representation induced from a linear charac-

ter on   K x    /, where / Ç K    is a maximal abelian subgroup normalized by  K.

(This is essentially the reason that the Weil representation is an actual represen-

tation for a finite field.) Let Z be the image of / in F  " = K /%.  The fact that
K normalizes  /  translates to the statement that Z is g-invariant.  On the other

hand, any g-invariant zz-dimensional subspace of  F  "  which is isotropic with

respect to   ( , )   may be Z. Since ker(g - l) is isotropic, we may take ker(g - l)

C Z. Then, since  /  is abelian, Z C Y = (g - l)F2". Now it follows that it h £ H^,
and the image of h mod % is v £ F     , and v 4 Y, then g • h cannot be conjugate

in  K x   K    to any element of K x   ]. Therefore Xw the character of the Weil

representation, must vanish on g -h, by the formula for induced characters.  Thus

part (i) of Proposition 2 is proved.

To finish completely, we only have to show (iv) holds. We have already essen-

tially shown that   |xw(<g)|   is an integer if  g  is semisimple.  Because   |x^(g)|   is

always a power of q   , and if  F  ™ = V. © V?  where   V.   is the 1-eigenspace of g,

then  V.   and  V,  are both even dimensional since   ( , )   is nondegenerate on each,

and if g  is semisimple, then   Vj = ker (g - l), so   Ix^ig))   is an even power of q 2.

Thus we only need show  Xw^ 1S real.  This follows easily from the fact that

Xw^8> = Xw^8~   )' an£l g anQl g~     are conjugate. That g and g~     ate conjugate

for g  semisimple in a symplectic group over an algebraically closed field has a

simple proof based on the general theory of semisimple algebraic groups, and using

the fact that Sp2     has no outer automorphisms.  This was pointed out to me by

Professor A. Borel.  Here we shall follow a more elementary route, which also

gives some information on the structure of tori in Sp.   , and will also indicate howr In
to compute the signs of Xw^g)-

If g e sP2n  is semisimple, we may write  F2" = ©™=1 V., where the  V. ate

irreducible subspaces for g.  Either   ( , )   is nondegenerate on a given   V., or it is

completely trivial, since  V. is irreducible for g.  It   ( , )   is trivial on  V., then

there must be some  V   such that   ( , )   is nondegenerate on  V. © V'.. Since then g

preserves the orthogonal complement of  V. © V'., we may assume a decomposition

of the form F2n = (® [      v) © (0* ,  Y.) where  / + 2k = m,  Y. = V, , .   ,   ©
Z = l        Z M^;=l        ; j Z+2;— 1

V/+2;-, and all summands V., i < I, and Y. are mutually orthogonal. By (iii) it is

enough to analyze the situation when there is only one summand V. or one Sum-
mand   Y..
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First, take the case of  ^ = Vj  © V2.  Then  V. a¡ F", and   ( , )  defines a

nondegenerate pairing between  V.   and V2. If \x .\"_l  is a basis for Vl, and

!z.}"_,   is the dual basis to \x.} with respect to (  , ), then it is evident that the

transformation r which takes x. to z ., z . to — x. preserves   ( , ). It is also clear

that g preserves   ( , )   if and only if the matrix with respect to \z.} of the restric-

tion of g to V2  is the inverse transpose of the matrix with respect to \x.} of the

restriction of g  to  V..  It follows that the subgroup  T of Sp2     leaving  V.   and

V2  invariant is isomorphic to Gl (F).  Also, by r, we see g is conjugate to its

inverse transpose.  But g and the transposed matrix have the same characteristic

polynomial, and so are conjugate in Gl    (since they are both irreducible). Thus

g and g~     ate conjugate.

Moreover, if H. is the inverse image in K    of  V., and (p is a linear character

of r x   H., trivial on T, and agreeing with x on -"> tnen 4> induced to Y x   H
defines an extension W,   of  (7V   on K    to T x   I  . Moreover, it is easy to com-1 X 72 S       72 ' '

pute, by the usual formula for induced characters, that the character of W.   is posi-

tive on semisimple elements. Thus  W.   agrees up to a real-valued character with

the restriction of W to T x   K  .  In particular,  W.   and W agree on all elements

of r, the determinant of whose action on V,   is a square in F.  Also, the com-

putation of the sign of Xw^  IS reduced to the computation of the character of the

Weil representation for Sl2  (and even for SL  over the prime field). With these

remarks we turn to the case when g acts irreducibly on V., on which   ( , )   is non-

degenerate.  This is covered by the following lemma.

Lemma.   Let k be a field, not of characteristic 2.  Let V be a vector space

over k, and let   ( , )   be a symplectic form on  V.  Let G  be an abelian group, act-

ing irreducibly on V, and preserving  ( , ). Suppose that the action of G splits

over a Galois extension k.   of k.  Then there is a separable extension k    of k,

and a quadratic extension k     of k , and an embedding of G  into the norm units

of k     over k , and an isomorphism t: k    —>  V, which is G-equivariant (with  G

acting on  k     by left multiplication), such that the pullback of ( , )   to k     by  t

has the form (t(x), t(y)) = tr (k   /k)(Ar(x)y - r(y)x)), where r is the Galois auto-

morphism of k     over k , and tt(k   /k) denotes the trace of k     over k, and c £

ker tt(k   /k ) is chosen appropriately.

Remark. Notice that for  ( , )  of the above form, the entire group of norm units

of k     over k   fixes   (, ). Thus the lemma describes the anisotropic tori of Sp2   .

Moreover, if k is a finite field, then — 1  is a norm from k     to k . If — 1   is the

norm of a, then x —► ar(x) preserves   (  , ), and if  b is a norm unit of  k     over  k ,

then, (ar)~   b(ar) = r(b) — b~   , so  b and   b~     ate conjugate.  Since it follows from

our general formula that if g acts irreducibly on  F  ",  |xn/(g)| = 1, we see   Xji/g)

= + 1. Since the unique field of dimension  2« over F has a norm unit group (over
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the field of dimension n) of degree qn + 1, and the degree of W is  q", it follows

that all characters but one of the norm unit group must appear in W, and that one

character must be real-valued, so there are only two choices for it. In particular,

if g is a square in the norm unit group, then   XiyQ?) = ~ 1> and the entire computa-

tion is reduced to determining the missing character.

Proof. Since G is abelian and irreducible, the subgroup of Hom(K) generated by G will

be a field by Schur's lemma. This field will be k  . G is naturally included in k  . For any
v £ V, the map  t: x —> xiv) tot x £ k    defines a G-equivariant isomorphism of k

onto  V.

Since the action of G splits over the Galois extension k., k    must be separ-

able over k, and the split action must be completely reducible.  Therefore, putting

V. = V ®, k., we may write  V. =   ©. L.   asa direct sum of one dimensional k^-

subspaces invariant by  G, and we may find homomorphisms cß: G —> kx, such that,

if v £ L ., then g(v) = qb.ig)v. Since  G acts irreducibly on  V, the cß. must all be

distinct,    and   the   cß.   and   the     L.   must   be   permuted   transitively   by

Gal(zé./ze), the Galois group of k.   over k, acting on  V..

Since  G preserves a symplectic form, V, and hence  V,, must be self-contra-

gredient as a G-module.  Thus for each  z, there must be  /' such that cß . = cß~   .

Hence cß. and cß~     ate conjugate by Gal(ze./ze).  Thus, there is  r e Gal (&,/&)

such that riqb.ig)) = 0(g)"   . Identifying the field extension generated by cß.iG)

with  k  , as we may, it follows that  z is a Galois automorphism of  k    over  k, of

order 2.  Let k   be the fixed field of r.  Then k    is a quadratic extension of k ,

and the relation  Acß.ig)) = cß.ig)~     shows cß. (G) is a subgroup of the norm-units of

k    over k .

Now, in  k  , ker tr ik /k) is a complement to k , is a k -subspace, and con-

sists of elements  x  satisfying an equation  x    = d,  d being a nonsquare in  k .

Consider the form y(x, y) = tr ik /k)icirix)y - r(y)x)) •    Clearly y is antisymmetric,

and a brief calculation shows it is invariant under multiplication by the norm units

of  k    over  k .  In particular, it is invariant by  G.  Writing  Áx)y - riy)x = r(xx(y)) -

xriy), we see that, if c £ k', then drix)y - riy)x) £ ker (tr ik"/k')) C ker (tr ik"/k)).

However, if c £ ker tr(/e'//e ), then for fixed x ^ 0,  y —» cirix)y - riy)x) maps  k"

onto k , so tr ik /k)ic)rix)y - riy)x)) is in this case nondegenerate, k' being separ-

able over k, and k not having characteristic  2.

Thus y and   ( , )   are two symplectic forms on  k , invariant by G. Since G

is irreducible, we must have   ( , ) = yizx, y) fot some z £ k . Since   ( , )   is anti-

symmetric,    we need   yizx, y) = yix, zy)   also.   We compute   yizx, v) =

ttik"/k)icirizx)y - riy)zx)) = tr ik"/k)icriz)irix)y - Áy)x)) + tt ik"/k)idriz) - z)riy)x).

Similarly yix, zy) = tr ik"/k)icriz)ÍTÍx)y - r(y)x)) - ttik"/k)iciriz) - z)rix)y).

Thus tt ik" / k)iciriz) - z)irix)y + riy)x)) = 0 tot   (,)   to be antisymmetric. Since

rix)y + riy)x is arbitrary in k', and  c(r(z) - z) £ k', we must have riz) - z = 0, or
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z £ k . This shows   ( , )  = y, for suitable c, and finishes the lemma and concludes

the paper.
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